1.Arbour, J. H. & Santana, S. E. A major shift in diversification rate helps explain macroevolutionary patterns in primate species diversity. Evolution 71, 1600â1613 (2017).PubMedÂ
ArticleÂ
Google ScholarÂ
2.Groves, C. Primates (Taxonomy) in The International Encyclopedia of Primatology (ed Augustin Fuentes) (John Wiley & Sons, Inc., 2016).3.Cotton, A., Clark, F., Boubli, J. & Schwitzer, C. IUCN red list of threatened primate species in An Introduction to Primate Conservation 31â18 (Oxford University Press, 2016).
Google ScholarÂ
4.Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56â66 (2016).ArticleÂ
Google ScholarÂ
5.West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85â98 (2019).ArticleÂ
Google ScholarÂ
6.Cunningham, A. A., Daszak, P. & Wood, J. L. N. One Health, emerging infectious diseases and wildlife: two decades of progress?. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160167 (2017).ArticleÂ
Google ScholarÂ
7.Ramey, A. M. & Ahlstrom, C. A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 56, 1â15 (2020).PubMedÂ
ArticleÂ
Google ScholarÂ
8.Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376â10381 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
9.Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys. Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).CASÂ
PubMedÂ
Google ScholarÂ
10.Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34â40 (2018).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
11.Mahnert, A. et al. Man-made microbial resistances in built environments. Nat. Commun. 10, 1â12 (2019).CASÂ
ArticleÂ
Google ScholarÂ
12.Amato, K. R. et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Glob. Ecol. Conserv. 7, 225â237 (2016).ArticleÂ
Google ScholarÂ
13.Zhu, H. et al. Diarrhea-associated intestinal microbiota in captive Sichuan golden snub-nosed monkeys (Rhinopithecus roxellana). Microbes Environ. ME17163 (2018).14.Campbell, T. P. et al. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 14, 1584â1599 (2020).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
15.Buzzard, P. J. Ecological partitioning of Cercopithecus campbelli, C. petaurista, and C. diana in the TaĂŻ Forest. Int. J. Primatol. 27, 529â558 (2006).ArticleÂ
Google ScholarÂ
16.Chapman, C. A. et al. The guenons: diversity and adaptation in African monkeys. 325â350 (Springer, 2004).17.Krishnadas, M., Chandrasekhara, K. & Kumar, A. The response of the frugivorous lion-tailed macaque (Macaca silenus) to a period of fruit scarcity. Am. J. Primatol. 73, 1250â1260 (2011).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
18.Swedell, L., Hailemeskel, G. & Schreier, A. Composition and seasonality of diet in wild hamadryas baboons: preliminary findings from Filoha. Folia Primatol. 79, 476â490 (2008).ArticleÂ
Google ScholarÂ
19.Basabose, A. K. Diet composition of chimpanzees inhabiting the montane forest of Kahuzi, Democratic Republic of Congo. Am. J. Primatol. 58, 1â21 (2002).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
20.McLennan, M. R. & Ganzhorn, J. U. Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. Int. J. Primatol. 38, 122â150 (2017).ArticleÂ
Google ScholarÂ
21.Newton-Fisher, N. E. The diet of chimpanzees in the Budongo Forest Reserve Uganda. Afr. J. Ecol. 37, 344â354 (1999).ArticleÂ
Google ScholarÂ
22.Bach, T. H., Chen, J., Hoang, M. D., Beng, K. C. & Nguyen, V. T. Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. Am. J. Primatol. 79, e22667 (2017).ArticleÂ
Google ScholarÂ
23.Fan, P.-F., Fei, H.-L., Scott, M. B., Zhang, W. & Ma, C.-Y. Habitat and food choice of the critically endangered cao vit gibbon (Nomascus nasutus) in China: implications for conservation. Biol. Conserv. 144, 2247â2254 (2011).ArticleÂ
Google ScholarÂ
24.Fan, P. F., Fei, H. L. & Ma, C. Y. Behavioral responses of cao vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi China. Am. J. Primatol. 74, 632â641 (2012).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
25.McConkey, K. R., Ario, A., Aldy, F. & Chivers, D. J. Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu Central Kalimantan. Int. J. Primatol. 24, 19â32 (2003).ArticleÂ
Google ScholarÂ
26.Amora, T. D., BeltrĂO-Mendes, R. & Ferrari, S. F. Use of alternative plant resources by common marmosets (Callithrix jacchus) in the semi-arid Caatinga scrub forests of northeastern Brazil. Am. J. Primatol. 75, 333â341 (2013).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
27.Dietz, J. M., Peres, C. A. & Pinder, L. Foraging ecology and use of space in wild golden lion tamarins (Leontopithecus rosalia). Am. J. Primatol. 41, 289â305 (1997).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
28.Garber, P. A. Feeding ecology and behaviour of the genus Saguinus. Marmosets and tamarins: systematics behaviour and ecology (1993).29.Heymann, E. W., Knogge, C. & Tirado Herrera, E. R. Vertebrate predation by sympatric tamarins, Saguinus mystax and Saguinus fuscicollis. Am. J. Primatol. 51, 153â158 (2000).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
30.Porter, L. M. Dietary differences among sympatric Callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22, 961â992 (2001).ArticleÂ
Google ScholarÂ
31.Anapol, F. & Lee, S. Morphological adaptation to diet in platyrrhine primates. Am. J. Phys. Anthropol. 94, 239â261 (1994).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
32.Nash, L. T. Dietary, behavioral, and morphological aspects of gummivory in primates. Am. J. Phys. Anthropol. 29, 113â137 (1986).ArticleÂ
Google ScholarÂ
33.Abreu, F., De la Fuente, M. F. C., Schiel, N. & Souto, A. Feeding ecology and behavioral adjustments: flexibility of a small neotropical primate (Callithrix jacchus) to survive in a semiarid environment. Mammal Res. 61, 221â229 (2016).ArticleÂ
Google ScholarÂ
34.Cunha, A. A., Vieira, M. V. & Grelle, C. E. V. Preliminary observations on habitat, support use and diet in two non-native primates in an urban Atlantic forest fragment: the capuchin monkey (Cebus sp.) and the common marmoset (Callithrix jacchus) in the Tijuca forest Rio de Janeiro. Urban Ecosyst. 9, 351â359 (2006).ArticleÂ
Google ScholarÂ
35.Passamani, M. & Rylands, A. B. Feeding behavior of Geoffroyâs marmoset (Callithrix geoffroyi) in an Atlantic forest fragment of south-eastern Brazil. Primates 41, 27â38 (2000).PubMedÂ
ArticleÂ
Google ScholarÂ
36.Veracini, C. Habitat use and ranging behavior of the silvery marmoset (Mico argentatus) at CaxiuanĂŁ National Forest (eastern Brazilian Amazonia) in The smallest anthropoids 221â240 (Springer, 2009).37.YĂ©pez, P., De La Torre, S. & Snowdon, C. T. Interpopulation differences in exudate feeding of pygmy marmosets in Ecuadorian Amazonia. Am. J. Primatol. 66, 145â158 (2005).PubMedÂ
ArticleÂ
Google ScholarÂ
38.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515â527 (2018).PubMedÂ
ArticleÂ
Google ScholarÂ
39.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434â443 (2015).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
40.Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R. & Amato, K. R. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 81, e23061 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
41.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690â704 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
42.Lugli, G. A. et al. Evolutionary development and coâphylogeny of primateâassociated bifidobacteria. Environ. Microbiol. (2020).43.Milani, C. et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 11, 2834â2847 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
44.Lugli, G. A. et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genom. 18, 568 (2017).ArticleÂ
CASÂ
Google ScholarÂ
45.Pokusaeva, K., Fitzgerald, G. F. & van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6, 285â306 (2011).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
46.Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583â588 (2018).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
47.Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183â196 (2019).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
48.Neuzil-Bunesova, V. et al. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int. J. Syst. Evol. Microbiol. (2020).49.Duranti, S. et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. Nov. and Bifidobacterium leontopitheci sp. nov.. Int. J. Syst. Evol. Microbiol. 70, 2288â2297 (2020).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
50.Modesto, M. et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst. Appl. Microbiol. (2018).51.Neuzil-Bunesova, V. et al. Bifidobacterium canis sp nov a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris). Int. J. Syst. Evol. Microbiol. 70, 5040â5047 (2020).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
52.VlkovĂĄ, E. et al. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 34, 27â33 (2015).PubMedÂ
ArticleÂ
CASÂ
PubMed CentralÂ
Google ScholarÂ
53.Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).
Google ScholarÂ
54.WagnerMackenzie, B. et al. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 19, 381â392 (2017).CASÂ
ArticleÂ
Google ScholarÂ
55.Arboleya, S., Watkins, C., Stanton, C. & Ross, R. P. Gut bifidobacteria populations in human health and aging. Front. Microbiol. 7 (2016).56.Binda, C. et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 50, 421â428 (2018).MathSciNetÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
57.Tojo, R. et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163 (2014).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
58.Rodriguez, C. I. & Martiny, J. B. H. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genom. 21, 1â12 (2020).ArticleÂ
Google ScholarÂ
59.Sharma, V., Mobeen, F. & Prakash, T. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes 9, 477 (2018).PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
60.Sun, Z. et al. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium. a snapshot of its genetic diversity and evolution. PLoS One 10, 0117912 (2015).
Google ScholarÂ
61.Frey, J. C. et al. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 72, 3788â3792 (2006).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
62.Makovska, M., Modrackova, N., Bolechova, P., Drnkova, B. & Neuzil-Bunesova, V. Antibiotic susceptibility screening of primate-associated Clostridium ventriculi. Anaerobe, 102347 (2021).63.Ushida, K. et al. Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Genome announcements 4 (2016).64.Owens, L. A. et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat. Commun. 12, 1â16 (2021).ADSÂ
ArticleÂ
CASÂ
Google ScholarÂ
65.VlkovĂĄ, E., Rada, V., Ć mehilovĂĄ, M. & Killer, J. Auto-aggregation and co-aggregation ability in bifidobacteria and clostridia. Folia Microbiol. 53, 263â269 (2008).ArticleÂ
CASÂ
Google ScholarÂ
66.Wang, L. et al. Adhesive Bifidobacterium induced changes in cecal microbiome alleviated constipation in mice. Front. Microbiol. 10, 1721 (2019).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
67.Wei, Y. et al. Protective effects of bifidobacterial strains against toxigenic Clostridium difficile. Front. Microbiol. 9, 888 (2018).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
68.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nature Commun. 10, 1â11 (2019).ArticleÂ
CASÂ
Google ScholarÂ
69.Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. Open Biol. 9, 190128 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
70.Korpela, K. et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 6, 1â11 (2018).ArticleÂ
Google ScholarÂ
71.Timperio, A. M., Gorrasi, S., Zolla, L. & Fenice, M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PloS One 12, 0181860 (2017).ArticleÂ
CASÂ
Google ScholarÂ
72.BĂ€ckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690â703 (2015).PubMedÂ
ArticleÂ
CASÂ
Google ScholarÂ
73.Brown, C. J. et al. Comparative genomics of Bifidobacterium species isolated from marmosets and humans. Am. J. Primatol. 81, e983 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
74.Killer, J. et al. Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. MicrobiologyOpen 7, e00579 (2018).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
75.Milani, C. et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol. Ecol. 90, 493â503 (2014).CASÂ
PubMedÂ
Google ScholarÂ
76.Srinivasan, R. et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS One 10, e0117617 (2015).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
77.Maiden, M. C. J. et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Rev. Microbiol. 11, 728â736 (2013).CASÂ
ArticleÂ
Google ScholarÂ
78.Lugli, G. A. et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst. Appl. Microbiol. 41, 173â183 (2018).PubMedÂ
ArticleÂ
Google ScholarÂ
79.Malukiewicz, J. et al. The effects of host taxon, hybridization, and environment on the gut microbiome of Callithrix marmosets. BioRxiv, 708255 (2019).80.Amato, K. R. et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia 180, 717â733 (2016).ADSÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
81.HernĂĄndezâRodrĂguez, D., VĂĄsquezâAguilar, A. A., SerioâSilva, J. C., Rebollar, E. A. & AzaolaâEspinosa, A. Molecular detection of Bifidobacterium spp. in faeces of black howler monkeys (Alouatta pigra). J. Med. Primatol. 48, 99â105 (2019).82.Zhu, L. et al. Sex bias in gut microbiome transmission in newly paired marmosets (Callithrix jacchus). Msystems 5, e00910-00919 (2020).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
83.Kap, Y. S. et al. Targeted diet modification reduces multiple sclerosisâlike disease in adult marmoset monkeys from an outbred colony. J. Immunol. 201, 3229â3243 (2018).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
84.Ren, T., Grieneisen, L. E., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312â1325 (2016).PubMedÂ
ArticleÂ
Google ScholarÂ
85.Xu, B. et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genom. 16, 1â11 (2015).ArticleÂ
CASÂ
Google ScholarÂ
86.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155â189 (2005).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
87.Killer, J. et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int. J. Syst. Evol. Microbiol. 61, 1315â1321 (2011).88.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576â587 (2019).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
89.Garber, P. A., Mallott, E. K., Porter, L. M. & Gomez, A. The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a smallâbodied primate. Am. J. Primatol. 81, e23003 (2019).90.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176âR1188 (2020).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
91.Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 1â16 (2018).CASÂ
ArticleÂ
Google ScholarÂ
92.Koo, B. S. et al. Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis). J. Med. Primatol. 49, 56â59 (2020).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
93.Krynak, K. L., Burke, D. J., Martin, R. A. & Dennis, P. M. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). FEMS Microbiol. Lett. 364 (2017).94.Modrackova, N. et al. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact. Carbohydr. Diet. Fibre 20, 100199 (2019).95.McKenzie, V. J., Kueneman, J. G. & Harris, R. N. Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann. N. Y. Acad. Sci. 1429, 18â30 (2018).ADSÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
96.Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1â18 (2018).CASÂ
ArticleÂ
Google ScholarÂ
97.Hungate, R. E. & Macy, J. The roll-tube method for cultivation of strict anaerobes. Bulletins from the ecological research committee, 123â126 (1973).98.Rada, V. & Petr, J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods 43, 127â132 (2000).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
99.Orban, J. I. & Patterson, J. A. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J. Microbiol. Methods 40, 221â224 (2000).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
100.Kim, B. J., Kim, H.-Y., Yun, Y.-J., Kim, B.-J. & Kook, Y.-H. Differentiation of Bifidobacterium species using partial RNA polymerase ÎČ-subunit (rpoB) gene sequences. Int. J. Syst. Evol. Microbiol. 60, 2697â2704 (2010).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
101.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 41 edn 95â98 ([London]: Information Retrieval Ltd., c1979-c2000.).102.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673â4680 (1994).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
103.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581â583 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
104.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Ress 41, D590âD596 (2012).ArticleÂ
CASÂ
Google ScholarÂ
105.Shannon, C. E. & Weaver, W. The mathematical theory of information. Urbana: University of Illinois Press 97 (1949).106.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131â144 (1966).ADSÂ
ArticleÂ
Google ScholarÂ
107.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
108.fundamental algorithms for scientific computing in Python. Virtanen, P. et al. SciPy 1.0. Nat. Methods 17, 261â272 (2020).ArticleÂ
CASÂ
Google ScholarÂ
109.Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python in Proceedings of the 9th Python in Science Conference 57 (Austin, TX, 2010).110.MacKinnon, J. G. & White, H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. J. Econom. 29, 305â325 (1985).ArticleÂ
Google Scholar More