More stories

  • in

    Rice paddy soils are a quantitatively important carbon store according to a global synthesis

    1.Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).Article 
    CAS 

    Google Scholar 
    2.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).CAS 
    Article 

    Google Scholar 
    3.Buringh, P. in The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing, 91–109 (Wiley, 1984).4.Hiederer, R. & Köchy, M. Global soil organic carbon estimates and the harmonized world soil database. EUR 79, 25225 (2011).
    Google Scholar 
    5.Smith, P. et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028 (2016).Article 

    Google Scholar 
    6.Schlesinger, W. H. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (Wiley, 1984).7.Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article 

    Google Scholar 
    8.Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon–Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).Article 
    CAS 

    Google Scholar 
    9.Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    10.Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).CAS 
    Article 

    Google Scholar 
    11.Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).CAS 
    Article 

    Google Scholar 
    12.Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Rice Almanac: Source book for the most important economic activity on earth, 3rd edn. (CABI Publishing, 2002).13.Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).Article 
    CAS 

    Google Scholar 
    14.Wu, J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur. J. Soil Sci. 62, 29–34 (2011).CAS 
    Article 

    Google Scholar 
    15.Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).CAS 
    Article 

    Google Scholar 
    16.FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: FAO Statistical Databases. http://faostat.fao.org/default.aspx (2018).17.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).CAS 
    Article 

    Google Scholar 
    18.Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 13, 1989–2007 (2007).Article 

    Google Scholar 
    19.Qin, Z., Huang, Y. & Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 27, 711–722 (2013).CAS 
    Article 

    Google Scholar 
    20.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).Article 

    Google Scholar 
    21.Haefele, S. M., Nelson, A. & Hijmans, R. J. Soil quality and constraints in global rice production. Geoderma 235, 250–259 (2014).Article 
    CAS 

    Google Scholar 
    22.Pan, G., Li, L., Wu, L. & Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 10, 79–92 (2004).Article 

    Google Scholar 
    23.Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121 (2021).Article 

    Google Scholar 
    24.Wang, P. et al. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci. Rep. 5, 15704 (2015).CAS 
    Article 

    Google Scholar 
    25.Li, Y. et al. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol. Biochem. 153, 108106 (2021).CAS 
    Article 

    Google Scholar 
    26.Evans, C. D. et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 18, 3317–3331 (2012).Article 

    Google Scholar 
    27.Liu, Y. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biol. Fertil. Soils 55, 589–602 (2019).CAS 
    Article 

    Google Scholar 
    28.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    29.Liu, Y. et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13, 6565–6586 (2016).CAS 
    Article 

    Google Scholar 
    30.Liu, Y. et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Eur. J. Soil Sci. 67, 443–455 (2016).CAS 
    Article 

    Google Scholar 
    31.Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    32.Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land‐use change on soil organic carbon stocks-a meta‐analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).Article 

    Google Scholar 
    33.Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).CAS 
    Article 

    Google Scholar 
    34.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    Article 

    Google Scholar 
    35.Kirk, G. The Biogeochemistry of Submerged Soils (Wiley, 2004).36.Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 18, 2594–2605 (2012).Article 

    Google Scholar 
    37.Scharpenseel, H. W., Pfeiffer, E. M. & Becker-Heidmann, P. in Advances in Soil Science (eds. Carter, MR, Stewart, BA) (Lewis Publishers, 1996).38.Liao, Q. et al. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 15, 861–875 (2009).Article 

    Google Scholar 
    39.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    40.Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. & Sainju, U. M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. J. Integr. Agric. 16, 1–15 (2017).Article 

    Google Scholar 
    41.Maillard, É. & Angers, D. A. Animal manure application and soil organic carbon stocks: a meta‐analysis. Glob. Chang. Biol. 20, 666–679 (2014).Article 

    Google Scholar 
    42.Tian, K. et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric. Ecosyst. Environ. 204, 40–50 (2015).CAS 
    Article 

    Google Scholar 
    43.Liu, Y. et al. Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338, 30–39 (2019).CAS 
    Article 

    Google Scholar 
    44.Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).CAS 
    Article 

    Google Scholar 
    45.Zhu, Z. et al. Rice rhizodeposits affect organic matter decomposition in paddy soil: the role of N fertilization and rice growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 116, 369–377 (2018).CAS 
    Article 

    Google Scholar 
    46.Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).Article 

    Google Scholar 
    47.Li, X. et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 112, 47–55 (2017).CAS 
    Article 

    Google Scholar 
    48.Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).CAS 
    Article 

    Google Scholar 
    49.Geisseler, D., Linquist, B. A. & Lazicki, P. A. Effect of fertilization on soil microorganisms in paddy rice systems—a meta-analysis. Soil Biol. Biochem. 115, 452–460 (2017).CAS 
    Article 

    Google Scholar 
    50.Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Chang. Biol. 26, 3325–3335 (2020).Article 

    Google Scholar 
    51.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res. 126, 60–71 (2013).Article 

    Google Scholar 
    52.Baker, J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration—-what do we really know? Agric. Ecosyst. Environ. 118, 1–5 (2007).CAS 
    Article 

    Google Scholar 
    53.Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60, 158–169 (2009).CAS 
    Article 

    Google Scholar 
    54.Lal, R. Soil carbon sequestration in India. Clim. Change 65, 277–296 (2004).CAS 
    Article 

    Google Scholar 
    55.Liu, Y. et al. Carbon input and allocation by rice into paddy soils: a review. Soil Biol. Biochem. 133, 97–107 (2019).CAS 
    Article 

    Google Scholar 
    56.Zhao, Y. et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).CAS 
    Article 

    Google Scholar 
    57.Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10, 100145 (2019).Article 

    Google Scholar 
    58.Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. https://doi.org/10.22004/ag.econ.288998. (2012).59.Rui, W. & Zhang, W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: a meta-analysis. Agric. Ecosyst. Environ. 135, 199–205 (2010).CAS 
    Article 

    Google Scholar 
    60.Song, K. et al. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage. 54, 255–271 (2014).Article 

    Google Scholar 
    61.Dong, J. et al. Northward expansion of paddy rice in northeastern Asia during 2000–2014. Geophys. Res. Lett. 43, 3754–3761 (2016).CAS 
    Article 

    Google Scholar 
    62.Chaturvedi, V. et al. Climate mitigation policy implications for global irrigation water demand. Mitig. Adapt. Strat. Glob. Chang. 20, 389–407 (2015).Article 

    Google Scholar 
    63.Gathorne-Hardy, A. A life cycle assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. J. 61, 111–125 (2013).
    Google Scholar 
    64.Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C. & Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 18, 194–209 (2012).Article 

    Google Scholar 
    65.IPCC. in Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al) (Cambridge University Press, 2014).66.Xie, Z. et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci. China Earth Sci. 53, 1351–1357 (2010).CAS 
    Article 

    Google Scholar 
    67.Yan, X. et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 130, 42–51 (2013).Article 

    Google Scholar 
    68.Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob. Chang. Biol. 17, 2196–2210 (2011).Article 

    Google Scholar 
    69.Ma, Y. et al. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 164, 209–219 (2013).Article 

    Google Scholar 
    70.Xiong, Z. et al. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. Sci. Rep. 5, 1–9 (2015).CAS 

    Google Scholar 
    71.Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    CAS 

    Google Scholar 
    72.Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta‐analysis. Glob. Chang. Biol. 20, 1366–1381 (2014).Article 

    Google Scholar 
    73.Shakoor, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 750, 142299 (2021).CAS 
    Article 

    Google Scholar 
    74.Zhao, X. et al. Methane and nitrous oxide emissions under no‐till farming in China: a meta‐analysis. Glob. Chang. Biol. 22, 1372–1384 (2016).Article 

    Google Scholar 
    75.Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267, 34–40 (2016).CAS 
    Article 

    Google Scholar 
    76.Ball, B. C., Scott, A. & Parker, J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 53, 29–39 (1999).Article 

    Google Scholar 
    77.Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop. Res. 135, 10–21 (2012).Article 

    Google Scholar 
    78.Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).CAS 
    Article 

    Google Scholar 
    79.Choudhury, A. T. M. A. & Kennedy, I. R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun. Soil Sci. Plan. 36, 1625–1639 (2005).CAS 
    Article 

    Google Scholar 
    80.Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop. Res. 234, 47–54 (2019).Article 

    Google Scholar 
    81.Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 11, 321–329 (2013).Article 

    Google Scholar 
    82.Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003299 (2009).83.Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Chang. Biol. 23, 4728–4738 (2017).Article 

    Google Scholar 
    84.Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002045 (2004).85.Yin, S. et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: a review. Artif. Intell. Agric. 4, 140–149 (2020).
    Google Scholar 
    86.FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. Rep., FAO, Rome, Italy and IIASA, Laxenburg, Austria (2012).87.Allison, L. in Organic carbon. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, (ed. A.g. Norman). (American Society of Agronomy, 1965).88.Fang, C. & Moncrieff, J. B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268, 243–253 (2005).CAS 
    Article 

    Google Scholar 
    89.Yan, X., Cai, Z., Wang, S. & Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 17, 1487–1496 (2011).Article 

    Google Scholar 
    90.Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin 2.0: statistical software for meta-analysis (Sinauer, 2000).91.Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246–10257 (2019).CAS 
    Article 

    Google Scholar 
    92.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    93.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta‐analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    94.Van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).Article 
    CAS 

    Google Scholar  More

  • in

    An insight of anopheline larvicidal mechanism of Trichoderma asperellum (TaspSKGN2)

    1.Ghosh, S. K., Podder, D., Panja, S., & Mukherjee, S. In target areas where human mosquito-borne diseases are diagnosed, the inclusion of the pre-adult mosquito aquatic niches parameters will improve the integrated mosquito control program. PLos Neg. Trop. Dis. 14(8), e0008605 (2020).Article 

    Google Scholar 
    2.Becker, B. N. et al. Mosquitoes and Their Control 499 (Springer, 2010).Book 

    Google Scholar 
    3.Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).Article 

    Google Scholar 
    4.Clark, T. B., Kellen, W. R., Fukuda, T. & Lindegren, J. E. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. J. Invertebr. Pathol. 11(1), 1–7 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Scholte, E. J., Knols, B. G. & Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91(1), 43–49 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bukhari, T., Takken, W. & Koenraadt, C. J. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit. Vectors 4(1), 23 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Mukherjee, A., Debnath, P., Ghosh, S. K. & Medda, P. K. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33, 1–10 (2020).Article 

    Google Scholar 
    8.Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D. & Stevenson, P. C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9, 173 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Sobczak, J. F. et al. Manipulation of wasp (Hymenoptera: Vespidae) behavior by the entomopathogenic fungus Ophiocordyceps humbertii in the Atlantic forest in Ceará, Brazil. Entomol. News 129, 98–104 (2020).Article 

    Google Scholar 
    10.Ghosh, S. K. & Pal, S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ. Monit. Assess. 188(1), 37 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Podder, D. & Ghosh, S. K. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci. Reps. 9(1), 1108 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Jones, E. B. G. Fungal adhesion. Mycol. Res. 98(9), 961–981 (1994).Article 

    Google Scholar 
    13.Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Rudall, K. M. The chitin/protein complexes of insect cuticles. Adv. Insect Physiol. 1, 257–313 (1963).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Shah, F. A., Wang, C. S. & Butt, T. M. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251(2), 259–266 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55(1), 129–145 (2010).Article 

    Google Scholar 
    17.Vega, F.E.; Meyling, N., Luangsa-ard, J.& Blackwell, M. Fungal entomopathogens. In: edit Vega, F. and Kaya, H. A. Insect pathology, 2nd edn , San Diego, CA, Academic Press, pp 171–220 (2012).18.Gaugler, R. Entomopathogenic nematodes in biological control. CRC press (2018).19.McKinnon, A. C. et al. Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed zea mays plants. Front. Microbiol. 9, 1161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 17(9), 879–920 (2007).Article 

    Google Scholar 
    21.Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239(4837), 288–290 (1988).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Dhawan, M. & Joshi, N. (Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz. J. Microbiol. 48(3), 522–529 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mora, M. A. E., Castilho, A. M. C. & Fraga, M. E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 0552015 (2017).
    Google Scholar 
    24.Li, J., Tracy, J. W. & Christensen, B. M. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev. Comp. Immunol. 16(1), 41–48 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nanda, K. P. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere 236, 124349 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ghosh, S. K., Chatterjee, T., Chakravarty, A. & Basak, A. K. Sodium and potassium nitrite-induced developmental genotoxicity in Drosophila melanogaster—effects in larval immune and brain stem cells. Interdiscip. Toxicol. 13(4), 101–105 (2020).
    Google Scholar 
    28.Chatterjee, T., Ghosh, S. K., Paik, S., Chakravarty, A. & Basak, A. K. Benzoic acid treated Drosophila melanogaster the genetic disruption of larval brain stem cells and non-neural cells during metamorphosis. Toxicol. Environ. Health Sci. https://doi.org/10.1007/s13530-021-00082-w (2021).Article 

    Google Scholar 
    29.Campos, R. A. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50(5), 257–261 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.McFarlane, H. E., Gendre, D. & Western, T. L. Seed coat ruthenium red staining assay. Bio-Protoc. 4, 1096 (2014).Article 

    Google Scholar 
    31.Bhosale, R. R., Osmani, R. A. M. & Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. Int. J. Res. Phytochem. Pharmacol 6(4), 901–912 (2014).
    Google Scholar 
    32.Shah, F. A., Allen, N., Wright, C. J. & Butt, T. M. Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol. Lett. 276(1), 60–66 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Hsu, S. C. & Lockwood, J. L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Environ. Microbiol. 29(3), 422–426 (1975).CAS 
    Article 

    Google Scholar 
    34.Parida, D., Jena, S. K. & Rath, C. C. Enzyme activities of bacterial isolates from iron mine areas of Barbil, Keonjhar district, Odisha, India. Int. J. Pure Appl. Biosci. 2(3), 265–271 (2014).
    Google Scholar 
    35.Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Medina, P. & Baresi, L. Rapid identification of gelatin and casein hydrolysis using TCA. J. Microbiol. Methods 69(2), 391–393 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Al-Nahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2(9), 71–74 (2012).CAS 

    Google Scholar 
    38.Murthy, N. K. & Bleakley, B. H. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Int. J. Microbiol. 10(2), 1937–8289 (2012).
    Google Scholar 
    39.Park, S. H., Lee, J. H. & Lee, H. K. Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J. Microbiol 38, 224–229 (2000).CAS 

    Google Scholar 
    40.Roberts, W. K. & Selitrennikoff, C. P. Plant and bacterial chitinases differ in antifungal activity. Microbiology 134(1), 169–176 (1986).Article 

    Google Scholar 
    41.Tsuchida, O. et al. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14(1), 7–12 (1986).CAS 
    Article 

    Google Scholar 
    42.Crowell, A. M., Wall, M. J. & Doucette, A. A Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 796, 48–54 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.He, F. BCA (Bicinchoninic Acid) protein assay. Bio Protocol 1(5), 44 (2011).Article 

    Google Scholar 
    44.Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. The comet assay in Drosophila: neuroblast and hemocyte cells. In Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. 269–82 (2014).45.Xu, T. et al. (2012) HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS ONE 7(11), e50789 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Basak, A. K., Chatterjee, T., Chakravarty, A. & Ghosh, S. K. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Environ. Monit. Assess. 191(8), 497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Harnessing the power of host–microbe symbioses to address grand challenges

    1.McFall-Ngai, M. et al. Animals in a bacterial world: a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).CAS 
    Article 

    Google Scholar 
    2.Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    Article 

    Google Scholar 
    3.Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).CAS 
    Article 

    Google Scholar 
    4.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    Article 

    Google Scholar 
    5.Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).CAS 
    Article 

    Google Scholar 
    6.Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968 (2018).Article 

    Google Scholar 
    7.Bosch, T. C. G., Guillemin, K. & McFall-Ngai, M. Evolutionary “experiments” in symbiosis: the study of model animals provides insights into the mechanisms underlying the diversity of host–microbe interactions. Bioessays 41, e1800256 (2019).8.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).Article 
    PubMed 

    Google Scholar 
    9.Visick, K. L., Stabb, E. V. & Ruby, E. G. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00557-0 (2021).Article 
    PubMed 

    Google Scholar 
    10.Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).Article 

    Google Scholar  More

  • in

    Gene drives gaining speed

    1.Serebrovsky, A. S. On the possibility of a new method for the control of insect pests. Zool. Zh. 19, 618–630 (1940).
    Google Scholar 
    2.Curtis, C. F. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218, 368–369 (1968). This paper is one of the first to describe how reciprocal chromosomal translocations could be used to drive a favoured linked trait in a threshold-dependent fashion.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Dawkins, R. The Selfish Gene Vol. 345 (Oxford University Press, 1976).4.Bastide, H. et al. Rapid rise and fall of selfish sex-ratio X chromosomes in Drosophila simulans: spatiotemporal analysis of phenotypic and molecular data. Mol. Biol. Evol. 28, 2461–2470 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Corbett-Detig, R., Medina, P., Frerot, H., Blassiau, C. & Castric, V. Bulk pollen sequencing reveals rapid evolution of segregation distortion in the male germline of Arabidopsis hybrids. Evol. Lett. 3, 93–103 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Kingan, S. B., Garrigan, D. & Hartl, D. L. Recurrent selection on the Winters sex-ratio genes in Drosophila simulans. Genetics 184, 253–265 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McLaughlin, R. N. Jr. & Malik, H. S. Genetic conflicts: the usual suspects and beyond. J. Exp. Biol. 220, 6–17 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Presgraves, D. C., Gerard, P. R., Cherukuri, A. & Lyttle, T. W. Large-scale selective sweep among segregation distorter chromosomes in African populations of Drosophila melanogaster. PLoS Genet. 5, e1000463 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Seymour, D. K., Chae, E., Arioz, B. I., Koenig, D. & Weigel, D. Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity 122, 294–304 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Courret, C., Chang, C. H., Wei, K. H., Montchamp-Moreau, C. & Larracuente, A. M. Meiotic drive mechanisms: lessons from Drosophila. Proc. Biol. Sci. 286, 20191430 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Kusano, A., Staber, C., Chan, H. Y. & Ganetzky, B. Closing the (Ran)GAP on segregation distortion in Drosophila. Bioessays 25, 108–115 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Merel, V., Boulesteix, M., Fablet, M. & Vieira, C. Transposable elements in Drosophila. Mob. DNA 11, 23 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Boulesteix, M. & Biemont, C. Transposable elements in mosquitoes. Cytogenet. Genome Res. 110, 500–509 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Lee, Y. C. & Langley, C. H. Transposable elements in natural populations of Drosophila melanogaster. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1219–1228 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Kelleher, E. S. Reexamining the P-element invasion of Drosophila melanogaster through the lens of piRNA silencing. Genetics 203, 1513–1531 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Majumdar, S. & Rio, D. C. P transposable elements in drosophila and other eukaryotic organisms. Microbiol. Spectr. 3, MDNA3–0004-2014 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    17.Burns, K. H. & Boeke, J. D. Human transposon tectonics. Cell 149, 740–752 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Doring, H. P., Tillmann, E. & Starlinger, P. DNA sequence of the maize transposable element Dissociation. Nature 307, 127–130 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Wallau, G. L., Capy, P., Loreto, E. & Hua-Van, A. Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genomics 15, 727 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Hawkins, J. S., Hu, G., Rapp, R. A., Grafenberg, J. L. & Wendel, J. F. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51, 11–18 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Biemont, C., Vieira, C., Borie, N. & Lepetit, D. Transposable elements and genome evolution: the case of Drosophila simulans. Genetica 107, 113–120 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Buchman, A. B., Ivy, T., Marshall, J. M., Akbari, O. S. & Hay, B. A. Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in drosophila. ACS Synth. Biol. 7, 1359–1370 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Akbari, O. S. et al. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression. ACS Synth. Biol. 3, 915–928 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Buchman, A., Marshall, J. M., Ostrovski, D., Yang, T. & Akbari, O. S. Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proc. Natl Acad. Sci. USA 115, 4725–4730 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Champer, J., Zhao, J., Champer, S. E., Liu, J. & Messer, P. W. Population dynamics of underdominance gene drive systems in continuous space. ACS Synth. Biol. 9, 779–792 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Chen, C. C. et al. EXO1 suppresses double-strand break induced homologous recombination between diverged sequences in mammalian cells. DNA Repair. 57, 98–106 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Leftwich, P. T. et al. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem. Soc. Trans. 46, 1203–1212 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Raban, R. R., Marshall, J. M. & Akbari, O. S. Progress towards engineering gene drives for population control. J. Exp. Biol. 223 (Suppl. 1), jeb208181 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Ward, C. M. et al. Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis. Evolution 65, 1149–1162 (2011).PubMed 
    Article 

    Google Scholar 
    30.Oberhofer, G., Ivy, T. & Hay, B. A. Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements. Proc. Natl Acad. Sci. USA 117, 9013–9021 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Oberhofer, G., Ivy, T. & Hay, B. A. Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. Proc. Natl Acad. Sci. USA 116, 6250–6259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Champer, J. et al. A toxin-antidote CRISPR gene drive system for regional population modification. Nat. Commun. 11, 1082 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Yen, P. S. & Failloux, A. B. A review: Wolbachia-based population replacement for mosquito control shares common points with genetically modified control approaches. Pathogens 9, 404 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    34.O’Neill, S. L. The use of wolbachia by the world mosquito program to interrupt transmission of aedes aegypti transmitted viruses. Adv. Exp. Med. Biol. 1062, 355–360 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    35.Niang, E. H. A., Bassene, H., Fenollar, F. & Mediannikov, O. Biological control of mosquito-borne diseases: the potential of wolbachia-based interventions in an IVM framework. J. Trop. Med. 2018, 1470459 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Chevalier, B. S. & Stoddard, B. L. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 29, 3757–3774 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Macreadie, I. G., Scott, R. M., Zinn, A. R. & Butow, R. A. Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell 41, 395–402 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Rong, Y. S. & Golic, K. G. The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics 165, 1831–1842 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Chan, Y. S., Huen, D. S., Glauert, R., Whiteway, E. & Russell, S. Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience. PLoS ONE 8, e54130 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Windbichler, N. et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473, 212–215 (2011). This study is the first demonstration of nuclease-mediated gene drive in mosquitoes based on the homing endonuclease gene I-SceI.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Carroll, D. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83, 409–439 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). This foundational study developed the most widely used dual synthetic CRISPR system consisting of Cas9 endonuclease and gRNA components.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Doudna, J. A., Sternberg, S. H. A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution 281 (Houghton Mifflin Harcourt, 2017).45.Gantz, V. M. & Bier, E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015). This study reported the first CRISPR-based gene drive in a metazoan organism (D. melanogaster) with a specialized germline.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Gantz, V. M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl Acad. Sci. USA 112, E6736–E6743 (2015). This study describes the first efficient CRISPR-based gene drive system in mosquitoes, which carried a dual anti-malarial effector cassette.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016). This study describes the first efficient CRISPR-based suppression gene drive system in mosquitoes.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Kyrou, K. et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1066 (2018). This study describes a highly efficient suppression gene drive system in mosquitoes targeting an invariant genome target site in the doublesex locus.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Li, M. et al. Development of a confinable gene drive system in the human disease vector Aedes aegypti. eLife 9, e51701 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Grunwald, H. A. et al. Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline. Nature 566, 105–109 (2019). This study provided the first proof-of-principle gene drive system in mammals, which selectively sustained drive via the female germline.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. & Church, G. M. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol. 33, 1250–1255 (2015). This study demonstrated CRISPR-based gene conversion in diploid yeast, which could then be transmitted meiotically.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Valderrama, J. A., Kulkarni, S. S., Nizet, V. & Bier, E. A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nat. Commun. 10, 5726 (2019). This study generalizes the concept of gene drive to bacteria, where it is applied to efficiently reduce the frequency of antibiotic reistance.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Esvelt, K. M., Smidler, A. L., Catteruccia, F. & Church, G. M. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3, e03401 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Adolfi, A. et al. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nat. Commun. 11, 5553 (2020). This study reports on the first recoded gene drive in mosquitoes that drove efficiently through both males and females based on the process of lethal/sterile mosaicism.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Champer, J. et al. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proc. Natl Acad. Sci. USA 117, 24377–24383 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Kandul, N. P., Liu, J., Bennett, J. B., Marshall, J. M. & Akbari, O. S. A confinable home-and-rescue gene drive for population modification. eLife 10, e65939 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Terradas, G. et al. Inherently confinable split-drive systems in Drosophila. Nat. Commun. 12, 1480 (2021). This study further develops the strategy of inserting a recoded gene drive in genes essential for viability or reproduction in the context of split drive systems.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Xu, X. S., Gantz, V. M., Siomava, N. & Bier, E. CRISPR/Cas9 and active genetics-based trans-species replacement of the endogenous Drosophila kni-L2 CRM reveals unexpected complexity. eLife 6, e30281 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lopez Del Amo, V. et al. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nat. Commun. 11, 352 (2020). This study reports on the reconstitution of a full gene drive from split constituent parts.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Guichard, A. et al. Efficient allelic-drive in Drosophila. Nat. Commun. 10, 1640 (2019). The study develops two allelic drive systems, copy-cutting and copy-grafting, to propagate favoured alleles of an essential gene.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Kandul, N. P. et al. Assessment of a split homing based gene drive for efficient knockout of multiple genes. G3 10, 827–837 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Xu, X.-R. S. et al. Active-genetic neutralizing elements for halting or deleting gene-drives. Mol. Cell 80, 246–262 (2020). This study reports on two drive-neutralizing systems that either inactivate (e-CHACR) or delete and replace (ERACR) a gene drive.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. Biol. Sci. 270, 921–928 (2003). This seminal modelling study provides the theoretical underpinnings for the modern gene-drive field.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.North, A. R., Burt, A. & Godfray, H. C. J. Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biol. 17, 26 (2019). This study provides a comprehensive analysis of the perfomance of suppressive gene drives following iterative releases across various topographies.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.North, A. R., Burt, A. & Godfray, H. C. J. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. BMC Biol. 18, 98 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Collins, C. M., Bonds, J. A. S., Quinlan, M. M. & Mumford, J. D. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Med. Vet. Entomol. 33, 1–15 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.James, A. A. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol. 21, 64–67 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Gantz, V. M. & Bier, E. The dawn of active genetics. Bioessays 38, 50–63 (2016).PubMed 
    Article 

    Google Scholar 
    69.Macias, V. M. & James, A. A. in Genetic Control of Malaria and Dengue (ed. Adelman, Z. N.) 423–444 (Elsevier Academic Press, 2015).70.Eckhoff, P. A., Wenger, E. A., Godfray, H. C. & Burt, A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc. Natl Acad. Sci. USA 114, E255–E264 (2017). This study provides a detailed analysis of drive parameters relevant to both suppression-based and modification-based drives and is the first to model a drive in the context of a two-dimensional environment.CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Hammond, A. M. et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 13, e1007039 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Joyce, E. F., Paul, A., Chen, K. E., Tanneti, N. & McKim, K. S. Multiple barriers to nonhomologous DNA end joining during meiosis in Drosophila. Genetics 191, 739–746 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Bozas, A., Beumer, K. J., Trautman, J. K. & Carroll, D. Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics 182, 641–651 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Do, A. T., Brooks, J. T., Le Neveu, M. K. & LaRocque, J. R. Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3 4, 425–432 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    75.Wei, D. S. & Rong, Y. S. A genetic screen for DNA double-strand break repair mutations in Drosophila. Genetics 177, 63–77 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Lin, C. C. & Potter, C. J. Non-Mendelian dominant maternal effects caused by CRISPR/Cas9 transgenic components in Drosophila melanogaster. G3 6, 3685–3691 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Champer, J. et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 13, e1006796 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Anopheles gambiae 1000 Genomes Consortiumet al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature 552, 96–100 (2017).Article 
    CAS 

    Google Scholar 
    79.Deredec, A., Burt, A. & Godfray, H. C. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179, 2013–2026 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Fasulo, B. et al. A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLoS Genet. 16, e1008647 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Galizi, R. et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5, 3977 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Galizi, R. et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6, 31139 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Turner, J. M. Meiotic sex chromosome inactivation. Development 134, 1823–1831 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Simoni, A. et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat. Biotechnol. 38, 1054–1060 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Carballar-Lejarazu, R. & et al. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae.Proc. Natl Acad. Sci. USA 117, 22805–22814 (2020). This study describes a modification gene drive that propagates with high efficiency through both males and females.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Pham, T. B. et al. Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet. 15, e1008440 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Dong, Y., Simoes, M. L. & Dimopoulos, G. Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles. Sci. Adv. 6, eaay5898 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Dong, Y. et al. Engineered anopheles immunity to Plasmodium infection. PLoS Pathog. 7, e1002458 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Isaacs, A. T. et al. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc. Natl Acad. Sci. USA 109, E1922–E1930 (2012). This study demonstrates 100% protection against parasite transmission in transgenic mosquitoes carrying a dual anti-parasite effector cassette.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Haber, J. E. TOPping off meiosis. Mol. Cell 57, 577–581 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Hammond, A. et al. Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genet. 17, e1009321 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Lee, Y. et al. Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics 20, 204 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Callaway, E. Gene drives thwarted by emergence of resistant organisms. Nature 542, 15 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    94.Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).PubMed 
    Article 

    Google Scholar 
    95.Drury, D. W., Dapper, A. L., Siniard, D. J., Zentner, G. E. & Wade, M. J. CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci. Adv. 3, e1601910 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Schmidt, H. et al. Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes. Nat. Commun. 11, 1425 (2020). This study provides computational evidence that conserved CRISPR cleavage sites are abundant in the genome.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Akbari, O. S. et al. Safeguarding gene drive experiments in the laboratory. Science 349, 927–929 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Li, J. et al. Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae. Proc. Natl Acad. Sci. USA 110, 20675–20680 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Niu, G. et al. The fibrinogen-like domain of FREP1 protein is a broad-spectrum malaria transmission-blocking vaccine antigen. J. Biol. Chem. 292, 11960–11969 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Zhang, G. et al. Anopheles midgut FREP1 mediates plasmodium invasion. J. Biol. Chem. 290, 16490–16501 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Dong, Y., Simoes, M. L., Marois, E. & Dimopoulos, G. CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog. 14, e1006898 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    102.Simoes, M. L., Caragata, E. P. & Dimopoulos, G. Diverse host and restriction factors regulate mosquito-pathogen interactions. Trends Parasitol. 34, 603–616 (2018).PubMed 
    Article 

    Google Scholar 
    103.Nash, A. et al. Integral gene drives for population replacement. Biol. Open 8, bio037762 (2019). This study describes a bipartite drive system that can enable testing of anti-parasite effector cassettes under standard mosquito confinement protocols.CAS 
    PubMed 

    Google Scholar 
    104.Enayati, A., Hanafi-Bojd, A. A., Sedaghat, M. M., Zaim, M. & Hemingway, J. Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malar. J. 19, 258 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Silva, J. J. & Scott, J. G. Conservation of the voltage-sensitive sodium channel protein within the Insecta. Insect Mol. Biol. 29, 9–18 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Casida, J. E. & Durkin, K. A. Novel GABA receptor pesticide targets. Pestic. Biochem. Physiol. 121, 22–30 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Ihara, M., Buckingham, S. D., Matsuda, K. & Sattelle, D. B. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors. Curr. Med. Chem. 24, 2925–2934 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    109.Thapa, S., Lv, M. & Xu, H. Acetylcholinesterase: a primary target for drugs and insecticides. Mini Rev. Med. Chem. 17, 1665–1676 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible Conduct; Board on Life Sciences; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values (The National Academies Press, 2016). This comprehensive advisory and historical review document summarizes consensus views for how to safely rear and study gene-drive systems in the laboratory.113.Adelman, Z. et al. Rules of the road for insect gene drive research and testing. Nat. Biotechnol. 35, 716–718 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.James, S. et al. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in Sub-Saharan Africa: recommendations of a scientific working group(dagger). Am. J. Trop. Med. Hyg. 98, 1–49 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.James, S. L., Marshall, J. M., Christophides, G. K., Okumu, F. O. & Nolan, T. Toward the definition of efficacy and safety criteria for advancing gene drive-modified mosquitoes to field testing. Vector Borne Zoonotic Dis. 20, 237–251 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Warmbrod, K. L. et al. Gene Drives: Pursuing Opportunities, Minimizing Risk – A Johns Hopkins University Report on Responsible Governance (Johns Hopkins Bloomberg School of Public Health, Center for Health Security, Johns Hopkins University, 2020).117.Vella, M. R., Gunning, C. E., Lloyd, A. L. & Gould, F. Evaluating strategies for reversing CRISPR-Cas9 gene drives. Sci. Rep. 7, 11038 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    118.Rode, N. O., Courtier-Orgogozo, V. & Debarre, F. Can a population targeted by a CRISPR-based homing gene drive be rescued? G3 10, 3403–3415 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Fedoroff, N., Wessler, S. & Shure, M. Isolation of the transposable maize controlling elements Ac and Ds. Cell 35, 235–242 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    120.Paix, A. et al. Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc. Natl Acad. Sci. USA 114, E10745–E10754 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Wu, B., Luo, L. & Gao, X. J. Cas9-triggered chain ablation of cas9 as a gene drive brake. Nat. Biotechnol. 34, 137–138 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    122.Taxiarchi, C. et al. A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression. Nat. Commun. 12, 3977 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Conklin, B. R. On the road to a gene drive in mammals. Nature 566, 43–45 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    124.Salkeld, D. J. Vaccines for conservation: plague, prairie dogs & black-footed ferrets as a case study. Ecohealth 14, 432–437 (2017).PubMed 
    Article 

    Google Scholar 
    125.Teem, J. L. et al. Genetic biocontrol for invasive species. Front. Bioeng. Biotechnol. 8, 452 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    126.Godwin, J. et al. Rodent gene drives for conservation: opportunities and data needs. Proc. Biol. Sci. 286, 20191606 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    127.McFarlane, G. R., Whitelaw, C. B. A. & Lillico, S. G. CRISPR-based gene drives for pest control. Trends Biotechnol. 36, 130–133 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    128.Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    129.Koonin, E. V., Makarova, K. S., Wolf, Y. I. & Krupovic, M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat. Rev. Genet. 21, 119–131 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    130.Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Wiegand, T. & Wiedenheft, B. CRISPR Surveillance Turns Transposon Taxi. CRISPR J. 3, 10–12 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    133.Hamilton, T. A. et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat. Commun. 10, 4544 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Price, V. J. et al. Enterococcus faecalis CRISPR-cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. mSphere 4, e00464-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L. & Duerkop, B. A. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob. Agents Chemother. 63, e01454-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    136.Carraro, N. et al. Plasmid-like replication of a minimal streptococcal integrative and conjugative element. Microbiology 162, 622–632 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    137.Brophy, J. A. N. et al. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3, 1043–1053 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    138.Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    140.Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 112, 7267–7272 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    141.Park, J. Y. et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci. Rep. 7, 44929 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    142.Pazda, M., Kumirska, J., Stepnowski, P. & Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems – a review. Sci. Total. Env. 697, 134023 (2019).CAS 
    Article 

    Google Scholar 
    143.Kraemer, S. A., Ramachandran, A. & Perron, G. G. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7, 180 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    144.Ram, G., Ross, H. F., Novick, R. P., Rodriguez-Pagan, I. & Jiang, D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat. Biotechnol. 36, 971–976 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Bier, E. & Nizet, V. Driving to safety: CRISPR-based genetic approaches to reducing antibiotic resistance. Trends Genet. https://doi.org/10.1016/j.tig.2021.02.007 (2021).Article 
    PubMed 

    Google Scholar 
    146.Rossati, A. et al. Climate, environment and transmission of malaria. Infez. Med. 24, 93–104 (2016).PubMed 

    Google Scholar 
    147.Fontenille, D. & Powell, J. R. From anonymous to public enemy: how does a mosquito become a feared arbovirus vector? Pathogens 9, 265 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    148.Lidani, K. C. F. et al. Chagas disease: from discovery to a worldwide health problem. Front. Public Health 7, 166 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    149.Buscher, P., Cecchi, G., Jamonneau, V. & Priotto, G. Human African trypanosomiasis. Lancet 390, 2397–2409 (2017).PubMed 
    Article 

    Google Scholar 
    150.Desjeux, P. Leishmaniasis: current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis. 27, 305–318 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    151.Saxena, V., Bolling, B. G. & Wang, T. West nile virus. Clin. Lab. Med. 37, 243–252 (2017).PubMed 
    Article 

    Google Scholar 
    152.Simon, L. V., Kong, E. L. & Graham, C. in St. Louis Encephalitis (StatPearls, 2020).153.Feng, X. et al. Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes. Nat. Commun. 12, 2960 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    154.Nepomichene, T. N., Andrianaivolambo, L., Boyer, S. & Bourgouin, C. Efficient method for establishing F1 progeny from wild populations of Anopheles mosquitoes. Malar. J. 16, 21 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    155.Marchand, R. P. A new cage for observing mating behavior of wild Anopheles gambiae in the laboratory. J. Am. Mosq. Control. Assoc. 1, 234–236 (1985).CAS 
    PubMed 

    Google Scholar 
    156.Nunes-da-Fonseca, R., Berni, M., Tobias-Santos, V., Pane, A. & Araujo, H. M. Rhodnius prolixus: from classical physiology to modern developmental biology. Genesis https://doi.org/10.1002/dvg.22995 (2017).Article 
    PubMed 

    Google Scholar 
    157.Chaverra-Rodriguez, D. et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun. 9, 3008 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    158.Macias, V. M. et al. Cas9-mediated gene-editing in the malaria mosquito anopheles stephensi by ReMOT Control. G3 10, 1353–1360 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    159.Chaverra-Rodriguez, D. et al. Germline mutagenesis of Nasonia vitripennis through ovarian delivery of CRISPR-Cas9 ribonucleoprotein. Insect Mol. Biol. 29, 569–577 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    160.Heu, C. C., McCullough, F. M., Luan, J. & Rasgon, J. L. CRISPR-Cas9-based genome editing in the silverleaf whitefly (Bemisia tabaci). CRISPR J. 3, 89–96 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    161.Prowse, T. A., Adikusuma, F., Cassey, P., Thomas, P. & Ross, J. V. A Y-chromosome shredding gene drive for controlling pest vertebrate populations. eLife 8, e41873 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    162.Carballar-Lejarazu, R. & James, A. A. Population modification of Anopheline species to control malaria transmission. Pathog. Glob. Health 111, 424–435 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    163.Annas, G. J. et al. A code of ethics for gene drive research. CRISPR J. 4, 19–24 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    164.Bier, E. & Sober, E. Gene editing and the war against malaria. Am. Sci. 108, 162–169 (2020).Article 

    Google Scholar 
    165.Long, K. C. et al. Core commitments for field trials of gene drive organisms. Science 370, 1417–1419 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    166.Kormos, A. et al. Application of the relationship-based model to engagement for field trials of genetically engineered malaria vectors.Am. J. Trop. Med. Hyg. 104, 805–811 (2020).PubMed Central 
    PubMed 

    Google Scholar 
    167.World Health Organization. Guidance framework for testing of genetically modified mosquitoes. WHO http://apps.who.int/iris/bitstream/10665/127889/1/9789241507486_eng.pdf (2014).168.Smith, D. L., McKenzie, F. E., Snow, R. W. & Hay, S. I. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 5, e42 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    169.Brauer, F., Castillo-Chavez, C., Mubayi, A. & Towers, S. Some models for epidemics of vector-transmitted diseases. Infect. Dis. Model. 1, 79–87 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    170.Deredec, A., Godfray, H. C. & Burt, A. Requirements for effective malaria control with homing endonuclease genes. Proc. Natl Acad. Sci. USA 108, E874–E880 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    171.Escalante, A. A. & Pacheco, M. A. Malaria molecular epidemiology: an evolutionary genetics perspective. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.AME-0010-2019 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    172.Selvaraj, P. et al. Vector genetics, insecticide resistance and gene drives: An agent-based modeling approach to evaluate malaria transmission and elimination. PLoS Comput. Biol. 16, e1008121 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains

    1.Kumar, V. et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst. Environ. 252, 132–147 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Ladha, J. K. et al. How extensive are yield declines in long-term rice-wheat experiments in Asia?. For. Crop. Res. 81, 159–180 (2003).Article 

    Google Scholar 
    3.Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S. & Yadav, M. Sustainability issues on rice–wheat cropping system. Int. Soil Water Conserv. Res. 4, 64–74 (2016).Article 

    Google Scholar 
    4.Sidhu, H. S. et al. Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agric. Water Manag. 216, 273–283 (2019).Article 

    Google Scholar 
    5.Singh, M. et al. intercomparison of crop establishment methods for improving yield and profitability in the rice-wheat system of Eastern India. For. Crop. Res. 250, 107776 (2020).Article 

    Google Scholar 
    6.Jat, H. S. et al. Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renew. Energy 155, 1372–1382 (2020).Article 

    Google Scholar 
    7.Lohan, S. K. et al. Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 81, 693–706 (2018).Article 

    Google Scholar 
    8.Buhler, D. D. Weed population responses to weed control practices. II. Residual effects on weed populations, control, and Glycine max yield. Weed Sci. 47, 423–426 (1999).CAS 
    Article 

    Google Scholar 
    9.Armengot, L. et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 222, 276–285 (2016).Article 

    Google Scholar 
    10.Chhokar, R. S., Singh, S., Sharma, R. K. & Singh, M. Influence of straw management on Phalaris minor Retz control. Indian J. Weed Sci. 41, 150–156 (2009).
    Google Scholar 
    11.Chhokar, R. S. & Malik, R. K. Isoproturon-resistant Littleseed Canarygrass (Phalaris minor) and its response to alternate herbicides. Weed Technol. 16, 116–123 (2002).CAS 
    Article 

    Google Scholar 
    12.Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    13.Hassan, G., Khan, I., Khan, H. & Munir, M. Effect of different herbicides on weed density and some agronomic traits of wheat. Pak. J. Weed Sci. Res. 11, 17–22 (2005).
    Google Scholar 
    14.Chhokar, R. S. Ã., Sharma, R. K., Jat, G. R., Pundir, A. K. & Gathala, M. K. Effect of tillage and herbicides on weeds and productivity of wheat under rice–wheat growing system. Crop Prot. 26, 1689–1696 (2007).CAS 
    Article 

    Google Scholar 
    15.Yadav, D. B., Yadav, A., Punia, S. S. & Chauhan, B. S. Management of herbicide-resistant Phalaris minor in wheat by sequential or tank-mix applications of pre- and post-emergence herbicides in north-western Indo-Gangetic Plains. Crop Prot. 89, 239–247 (2016).Article 

    Google Scholar 
    16.Harker, K. N. & O’Donovan, J. T. Recent weed control, weed management, and integrated weed management. Weed Technol. 27, 1–11 (2013).Article 

    Google Scholar 
    17.Scherner, A., Melander, B. & Kudsk, P. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil Tillage Res. 161, 135–142 (2016).Article 

    Google Scholar 
    18.Hillocks, R. J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 31, 85–93 (2012).Article 

    Google Scholar 
    19.Nikolić, L., Šeremešić, S., Ljevnaić-Mašić, B., Latković, D. & Konstantinović, B. Weeds and their ecological indicator values in a long-term experiment. Appl. Ecol. Environ. Res. 18, 4775–4790 (2020).Article 

    Google Scholar 
    20.Blubaugh, C. K. & Kaplan, I. Tillage compromises weed seed predator activity across developmental stages. Biol. Control 81, 76–82 (2015).Article 

    Google Scholar 
    21.Nichols, V., Verhulst, N., Cox, R. & Govaerts, B. Weed dynamics and conservation agriculture principles: A review. For. Crop. Res. 183, 56–68 (2015).Article 

    Google Scholar 
    22.Sepat, S. et al. Effects of weed control strategy on weed dynamics, soybean productivity and profitability under conservation agriculture in India. For. Crop. Res. 210, 61–70 (2017).Article 

    Google Scholar 
    23.Sharma, P., Singh, M. K., Verma, K. & Prasad, S. K. Changes in the weed seed bank in long-term establishment methods trials under rice-wheat cropping system. Agronomy 10, 1–14 (2020).
    Google Scholar 
    24.Plaza-Bonilla, D. et al. Carbon management in dryland agricultural systems. A review. Agron. Sustain. Dev. 35, 1319–1334 (2015).Article 

    Google Scholar 
    25.Nandan, R. et al. Viable weed seed density and diversity in soil and crop productivity under conservation agriculture practices in rice-based cropping systems. Crop Prot. 136, 105210 (2020).CAS 
    Article 

    Google Scholar 
    26.Choudhary, M., Vivek Sharma, P. C., Yadav, A. K. & Jat, H. S. Influence of management practices on weed dynamics, crop productivity and profitability in Wheat under Rice-Wheat cropping system in reclaimed sodic soils. J. Soil Salin. Water Qual. 9, 78–83 (2017).
    Google Scholar 
    27.Menalled, F. D., Smith, R. G., Dauer, J. T. & Fox, T. B. Impact of agricultural management on carabid communities and weed seed predation. Agric. Ecosyst. Environ. 118, 49–54 (2007).Article 

    Google Scholar 
    28.Shahzad, M., Farooq, M. & Hussain, M. Weed spectrum in different wheat-based cropping systems under conservation and conventional tillage practices in Punjab, Pakistan. Soil Tillage Res. 163, 71–79 (2016).Article 

    Google Scholar 
    29.Kumar, V. et al. Weed management strategies to reduce herbicide use in zero-till Rice–Wheat cropping systems of the Indo-Gangetic Plains. Weed Technol. 27, 241–254 (2013).Article 

    Google Scholar 
    30.Weisberger, D., Nichols, V. & Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS One 14, 1–12 (2019).
    Google Scholar 
    31.Melander, B. et al. European perspectives on the adoption of nonchemical weed management in reduced-tillage systems for arable crops. Weed Technol. 27, 231–240 (2013).Article 

    Google Scholar 
    32.Nandan, R. et al. Comparative assessment of the relative proportion of weed morphology, diversity, and growth under new generation tillage and crop establishment techniques in rice-based cropping systems. Crop Prot. 111, 23–32 (2018).Article 

    Google Scholar 
    33.Westerman, P., Luijendijk, C. D., Wevers, J. D. A. & Van Der Werf, W. Weed seed predation in a phenologically late crop. Weed Res. 51, 157–164 (2011).Article 

    Google Scholar 
    34.Honek, A., Martinkova, Z. & Jarosik, V. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100, 531–544 (2003).Article 

    Google Scholar 
    35.Jat, H. S. et al. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil Tillage Res. 199, 104595 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Liebman, M. & Davis, A. S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 20, 27–47 (2000).Article 

    Google Scholar 
    37.Lee, S. H., Yoo, S. H., Choi, J. Y. & Bae, S. Assessment of the impact of climate change on drought characteristics in the Hwanghae Plain, North Korea using time series SPI and SPEI: 1981–2100. Water (Switzerland) 9, 20 (2017).
    Google Scholar 
    38.Jat, H. S. et al. Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India. Sci. Rep. 9, 1–14 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Jat, H. S. et al. Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of north-west India. CATENA 181, 104059 (2019).CAS 
    Article 

    Google Scholar 
    40.Hernández Plaza, E., Navarrete, L. & González-Andújar, J. L. Intensity of soil disturbance shapes response trait diversity of weed communities: The long-term effects of different tillage systems. Agric. Ecosyst. Environ. 207, 101–108 (2015).Article 

    Google Scholar 
    41.Trichard, A., Ricci, B., Ducourtieux, C. & Petit, S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 188, 40–47 (2014).Article 

    Google Scholar 
    42.Franke, A. C. et al. Phalaris minor seedbank studies: Longevity, seedling emergence and seed production as affected by tillage regime. Weed Res. 47, 73–83 (2007).Article 

    Google Scholar 
    43.Usman, K. et al. Integrated weed management through tillage and herbicides for Wheat production in Rice-Wheat cropping system in northwestern Pakistan. J. Integr. Agric. 11, 946–953 (2012).CAS 
    Article 

    Google Scholar 
    44.Naresh, R. K. et al. Conservation agriculture improving soil quality for sustainable production systems under smallholder farming conditions in north west India: A review. Int. J. life Sci. Biotechnol. Pharm. Res. 2, 65 (2013).CAS 

    Google Scholar 
    45.Kumar, V. et al. Conservation agriculture (CA)-based practices reduced weed problem in wheat and caused shifts in weed seedbank community in rice-wheat cropping systems. In Weed Science for Sustainable Agriculture, Environment, and Biodiversity. (Eds. Rao A. N and Yaduraju N. T), Proceedings of 25th Asian Pacific Weed Science Society Conference 142 (2015).46.Malik, R. K., Kumar, V. & McDonald, A. Conservation agriculture-based resource-conserving practices and weed management in the rice-wheat cropping systems of the Indo-Gangetic Plains. Indian J. Weed Sci. 50, 218 (2018).Article 

    Google Scholar 
    47.Roth, C. M., Shroyer, J. P. & Paulsen, G. M. Allelopathy of sorghum on wheat under several tillage systems. Agron. J. 20, 855–860 (2000).Article 

    Google Scholar 
    48.Ayodele, O. P. & Aluko, O. A. Weed management strategies for conservation agriculture and environmental sustainability in Nigeria. IOSR J. Agric. Vet. Sci. Ver. I(10), 2319–2372 (2017).
    Google Scholar 
    49.Crutchfield, D. A., Wicks, G. A. & Burnside, O. C. Effect of winter wheat (Triticum aestivum) straw mulch level on weed control. Weed Sci. 34, 110–114 (1986).CAS 
    Article 

    Google Scholar 
    50.Khanh, T. D., Xuan, T. D. & Chung, I. M. Rice allelopathy and the possibility for weed management. Ann. Appl. Biol. 151, 325–339 (2007).CAS 
    Article 

    Google Scholar 
    51.Santín-Montanyá, M. I., Martín-Lammerding, D., Walter, I., Zambrana, E. & Tenorio, J. L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 48, 43–49 (2013).Article 

    Google Scholar 
    52.Heggenstaller, A. H., Liebman, M. & Anex, R. P. Growth analysis of biomass production in sole-crop and double-crop corn systems. Crop Sci. 49, 2215–2224 (2009).Article 

    Google Scholar 
    53.Liebman, M. & Mohler, C. L. Weeds and the soil environment. In Ecological Management of Agricultural Weeds, (M. Liebman et al. eds.) 210–268 (2001). https://doi.org/10.1071/ea04026.54.Shrestha, A., Jeffrey, P. M. & Lanini, W. T. Subsurface drip irrigation as a weed management tool for conventional and conservation tillage Tomato (Lycopersicon esculentum Mill.) production in semi-arid agroecosystems. J. Sustain. Agric. 31, 37–41 (2007).Article 

    Google Scholar 
    55.Coolong, T. Using irrigation to manage weeds: A focus on drip irrigation. In Weed and Pest Control—Conventional and New Challenges (ed. Goyal, M. R.) 162–182 (Apple Academic Press, 2013).
    Google Scholar 
    56.Chhokar, R. S., Malik, R. K. & Balyan, R. S. Effect of moisture stress and seeding depth on germination of littleseed Canarygrass (Phalaris minor Retz.). Indian J. Weed Sci. 31, 78–79 (1999).
    Google Scholar 
    57.Singh, R., Gajri, P. R., Gill, K. S. & Khera, R. Puddling intensity and nitrogen use efficiency of rice (Oryza sativa) on a sandy loam soil of Punjab. Indian J. Agric. Sci. 65, 749–751 (1995).
    Google Scholar 
    58.Bajwa, A., Anjum, S. A. & Tanveer, M. Impact of fertilizer use on weed management in conservation agriculture—a review. Paki. J. Agric. Res. 69, 20 (2014).
    Google Scholar 
    59.Derksen, D. A., Anderson, R. L., Blackshaw, R. E. & Maxwell, B. Weed dynamics and management in the Northern Great Plains. Agron. J. 94, 174–185 (2002).Article 

    Google Scholar 
    60.Gathala, M. K. et al. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year Rice-Wheat rotation. Soil Sci. Soc. Am 75, 1851–1863 (2011).CAS 
    Article 

    Google Scholar 
    61.Dong, H., Ma, Y., Wu, H., Jiang, W. & Ma, X. Germination of Solanum nigrum l (black nightshade) in response to different abiotic factors. Planta Daninha 2016, 1–12 (2020).
    Google Scholar 
    62.Farooq, M., Flower, K. C., Jabran, K., Wahid, A. & Siddique, K. H. M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 117, 172–183 (2011).Article 

    Google Scholar 
    63.Swanton, C. J., Clements, D. R. & Derksen, D. A. Weed succession under conservation tillage: A hierarchical framework for research and management. Weed Technol. 7, 286–297 (1993).Article 

    Google Scholar 
    64.Humphreys, E., Kukal, S. S., Christen, E. W. & Hira, G. S. Halting the groundwater decline in North-West India—which crop technologies will be Winners?. Adv. Agron. 109, 155–217 (2010).Article 

    Google Scholar 
    65.Gomez, K. A. & Gomez, A. Statistical Procedures for Agricultural Research. (1984).66.Microsoft Corporation. (2010). Microsoft Excel. https://office.microsoft.com/excel. More

  • in

    Plant pathogen infection risk tracks global crop yields under climate change

    1.Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).
    Google Scholar 
    2.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Geometry and evolution of the ecological niche in plant-associated microbes. Nat. Commun. 11, 2955 (2020).CAS 

    Google Scholar 
    3.Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 

    Google Scholar 
    4.Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).
    Google Scholar 
    5.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 37, 637–669 (2006).
    Google Scholar 
    6.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).
    Google Scholar 
    7.Yan, Y., Wang, Y.-C., Feng, C.-C., Wan, P.-H. M. & Chang, K. T.-T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 82, 83–92 (2017).
    Google Scholar 
    8.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    9.Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
    Google Scholar 
    10.Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).
    Google Scholar 
    11.Bregaglio, S., Donatelli, M. & Confalonieri, R. Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron. Sustain. Dev. 33, 767–776 (2013).
    Google Scholar 
    12.Bebber, D. P. Climate Change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B 374, 20180269 (2019).
    Google Scholar 
    13.Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).
    Google Scholar 
    14.Ostberg, S., Schewe, J., Childers, K. & Frieler, K. Changes in crop yields and their variability at different levels of global warming. Earth Syst. Dyn. 9, 479–496 (2018).
    Google Scholar 
    15.Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).CAS 

    Google Scholar 
    16.Magarey, R. D., Sutton, T. B. & Thayer, C. L. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95, 92–100 (2005).CAS 

    Google Scholar 
    17.Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).
    Google Scholar 
    18.Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 (2009).
    Google Scholar 
    19.Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. N. Phytol. 202, 901–910 (2014).
    Google Scholar 
    20.Sparks, A. H., Forbes, G. A., Hijmans, R. J. & Garrett, K. A. Climate change may have limited effect on global risk of potato late blight. Glob. Change Biol. 20, 3621–3631 (2014).
    Google Scholar 
    21.Chen, X. M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 27, 314–337 (2005).
    Google Scholar 
    22.Zhan, J. & McDonald, B. A. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol. Ecol. 20, 1689–1701 (2011).
    Google Scholar 
    23.Robin, C., Andanson, A., Saint-Jean, G., Fabreguettes, O. & Dutech, C. What was old is new again: thermal adaptation within clonal lineages during range expansion in a fungal pathogen. Mol. Ecol. 26, 1952–1963 (2017).
    Google Scholar 
    24.Rowlandson, T. et al. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 99, 310–319 (2014).
    Google Scholar 
    25.IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).26.Dunn, R. J. H., Willett, K. M., Ciavarella, A. & Stott, P. A. Comparison of land surface humidity between observations and CMIP5 models. Earth Syst. Dyn. 8, 719–747 (2017).
    Google Scholar 
    27.Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).
    Google Scholar 
    28.Liu, X. et al. Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. N. Phytol. 221, 1574–1584 (2019).
    Google Scholar 
    29.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).30.Sohl, T. L., Wimberly, M. C., Radeloff, V. C., Theobald, D. M. & Sleeter, B. M. Divergent projections of future land use in the United States arising from different models and scenarios. Ecol. Model. 337, 281–297 (2016).
    Google Scholar 
    31.Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021).
    Google Scholar 
    32.Folberth, C. et al. Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble. PLoS ONE 14, e0221862 (2019).CAS 

    Google Scholar 
    33.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
    Google Scholar 
    34.Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, 1–24 (2010).
    Google Scholar 
    35.Liu, J., Williams, J. R., Zehnder, A. J. B. & Yang, H. GEPIC—modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 94, 478–493 (2007).
    Google Scholar 
    36.Liu, W. et al. Global investigation of impacts of PET methods on simulating crop–water relations for maize. Agric. Meteorol. 221, 164–175 (2016).
    Google Scholar 
    37.Williams, J. R. & Sharpley, A. N. EPIC—Erosion/Productivity Impact Calculator: 1. Model Documentation (USDA, 1989).38.Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).
    Google Scholar 
    39.Collins, W. J. et al. Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).
    Google Scholar 
    40.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
    Google Scholar 
    41.Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).
    Google Scholar 
    42.Bebber, D. P., Chaloner, T. M. & Gurr, S. J. Fungal and Oomycete Cardinal Temperatures (the Togashi Dataset) (Dryad, 2020); https://doi.org/10.5061/DRYAD.TQJQ2BVW643.Viswanath, K. et al. Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario. Clim. Change 142, 155–167 (2017).
    Google Scholar 
    44.Boixel, A.-L., Delestre, G., Legeay, J., Chelle, M. & Suffert, F. Phenotyping thermal responses of yeasts and yeast-like microorganisms at the individual and population levels: proof-of-concept, development and application of an experimental framework to a plant pathogen. Microb. Ecol. 78, 42–56 (2019).
    Google Scholar 
    45.Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package v.3.1-5 (2020).46.Yan, W. & Hunt, L. A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).
    Google Scholar 
    47.Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).CAS 

    Google Scholar 
    48.Chen, Y. A new methodology of spatial cross-correlation analysis. PLoS ONE 10, e0126158 (2015).
    Google Scholar  More

  • in

    Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects

    ModelWe model a tri-trophic food chain of one plant, one herbivore and one predator population on one or two habitat patches and complex meta-food-webs consisting of 10 plants and 30 animals in different landscapes containing 50 patches. The feeding dynamics are constant overall patches and are determined by the allometric food-web model by Schneider et al. 201633. We integrate dispersal as species-specific biomass flux between habitat patches according to Ryser et al. 201934. With the use of a dynamic bioenergetic model we formulate feeding and dispersal dynamics in terms of ordinary differential equations. The rate of change in biomass densities of a species are the sum of its biomass loss by metabolism, being preyed upon and emigration and its biomass gain by feeding and immigration. For detailed equations and for model parameters see section Equations and parameters and the supplement (Supplementary Table 1).Local food-web dynamicsFollowing the allometric food-web model by Schneider et al. 201633 each species is fully characterised by its average adult body mass. For the complex food-web log10 body masses were randomly drawn from a uniform distribution from 0 to 3 for plants and from 2 to 6 for animals. For the food chain the plant body mass was set to 102, the herbivore body mass to 104 and the predator body mass to 106. We set mass ratios of the herbivore to the plant and the predator to the herbivore to the optimum of 100, thus the respective resource being a one-hundredth of its consumer’s body mass. This simplifies feeding efficiency rates (see section Equations and parameters; Li,j, Eq. (5)) to 1 in the case of a food chain. Trophic dynamical parameters, such as metabolic rates and feeding rates, scale with body masses of model species. Also, we assume a type-II functional response for the food chain and a slight nonlinearity of the functional response in the food web as this stabilises persistence in more complex systems. Compared to Ryser et al 2019, capture rates were reduced to 5% to achieve viable food chains and food webs to increase the stability in the absence of interference competition.Nutrient modelWe have an underlying nutrient model with one nutrient that is driving the nutrient uptake and therefore the growth rate of the plant population11,33. The nutrient model consists of one nutrient, a nutrient turnover rate of 0.25 and a nutrient supply concentration. The nutrient supply concentration was varied to get eutrophic and oligotrophic patches (see Setup).Spatial dynamicsWe model dispersal between local communities as a dynamic process of emigration and immigration, assuming dispersal to occur at the same timescale as the local population dynamics35. Thus, biomass flows change dynamically between local populations and the dispersal dynamics directly influence local population dynamics and vice versa25.Dispersal rates of animals are modelled with an adaptive emigration rate depending on the net growth rate on the given patch. Dispersal ranges depend on the body masses of our model species with larger species having a higher dispersal range. We model a hostile matrix between habitat patches that does not allow feeding interactions to occur during dispersal. Depending on the scenario, we define a landscape with one, two or 50 patches. In cases with two or 50 patches, their locations are spatially explicit and were chosen in a way that the distances between reflect the dispersal loss of the predator across the matrix hostility gradient.Emigration and immigrationBased on empirical observations36 and previous theoretical frameworks13,22,37, we assume that the maximum dispersal distance of animal species increases with their body mass. For simplicity, we do not let the plants disperse, as they do not move themselves and the dispersal of plant propagules strongly depends on their dispersal strategy. We model emigration rates as a function of each species’ per capita net growth rate, which is summarising local conditions such as resource availability, predation pressure, and inter- and intra-specific competition25 (but see Sensitivity Analyses for dispersal models with constant dispersal or non-body-mass-scaled dispersal ranges). Dispersal losses scale linearly with the distance between two patches and are 100% in scenarios with only one patch or when the distance between the two patches surpasses the dispersal range of an animal. Even though we model dispersal losses according to dispersal distances, this loss term could also represent any other sort of dispersal loss. For numerical reasons, we did not allow dispersal flows smaller than 10−10.Numerical simulationsWe initialised each local population with a biomass density randomly sampled from a uniform probability density within the interval (0,10). Starting from these random initial conditions, we numerically simulated food web and dispersal dynamics over 100,000 time steps by integrating the system of differential equations implemented in C++ using procedures of the SUNDIALS CVODE solver version 2.7.0 (backward differentiation formula with absolute and relative error tolerances of 10−10) and the time series of biomass densities were saved for last 10,000 time steps. For numerical reasons, a local population was considered extinct and was set to 0 once its biomass density dropped below 10−20. Based on the empirically derived metabolic rates, these 100,000 time steps correspond to ~11 years. Our model does, however, not account for time spent for organisms’ other non-trophic activities such as sleeping or mating. Thus, the time scales of the simulation should only be compared with caution to natural time scales of population dynamics. Transient dynamics usually equilibrate within the first few thousand time steps.Equations and parametersOur model formulates the change of biomass densities over time in ordinary differential equations. Given the empirical origin of metabolic rates used in our model, one time step corresponds to an hour and body masses are in mg, areas of patches are not defined. The feeding links (i.e. who eats whom) are constant overall patches and are as well as the feeding dynamics determined by the allometric food-web model by Schneider et al. 201633. We integrate dispersal as species-specific biomass flow between habitat patches. Using ordinary differential equations to describe the feeding and dispersal dynamics, the rate of change in biomass density Bi,z of species i on patch z is given by$$frac{d{B}_{i,z}}{{dt}}[{mg}* {{{{{{{mathrm{Area}}}}}}}}^{-1}* {h}^{-1}]={B}_{i,z}mathop{sum}limits_{j}{e}_{j}{F}_{{ij},z}-mathop{sum}limits_{j}{{B}_{j,z}F}_{{ji},z}-{x}_{i}{B}_{i,z}-{E}_{i,z}+{I}_{i,z}({{{{{rm{for}}}}}}; {{{{{rm{animals}}}}}})$$
    (1)
    $$frac{d{B}_{i,z}}{{dt}}[{mg}* {{{{{{{mathrm{Area}}}}}}}}^{-1}* {h}^{-1}]={r}_{i}{G}_{i}{B}_{i,z}-mathop{sum}limits_{j}{B}_{j,z}{F}_{{ji},z}-{x}_{i}{B}_{i,z}({{{{{rm{for}}}}}}; {{{{{rm{plants}}}}}})$$
    (2)
    with the first three terms describing local trophic dynamics and the last two terms describing emigration, Ei,z (Eq. 9), and immigration, Ii,z (Eq. 11). For simplicity, we do not let plants disperse. Trophic dynamics are driven by following three processes. First, predation or herbivory on species j with assimilation efficiency e (ej = 0.545, if j is a plant, typical for herbivory; ej = 0.906 if j is an animal, typical for carnivory38) and the functional response Fij,z (Eq. 3) for animals, and a nutrient dependent growth (Eq. 7) for plants. Second, losses due to predation or herbivory, respectively. Third, losses by metabolic demands with xi = xAmi−0.305 with scaling constant xA = 0.141 (tenfold laboratory metabolic rate39 at a temperature of 20° Celsius to represent field metabolic rates) for animals and xi = xPmi−0.25 with xP = 0.138 for plants. We used a dynamic nutrient model (Eq. 8) as the energetic basis of our food web. Each species i is fully characterised by its average adult body mass mi. Body masses determine the interaction strengths of feeding links as well as the metabolic demands of species. Data from empirical feeding interactions are used to parametrise the functions that characterise the optimal prey body mass and the location and width of the feeding niche of a predator33. From each mi a unimodal attack kernel, called feeding efficiency Lij is constructed which determines the probability of consumer species i to attack and capture an encountered resource species j. We model Lij as an asymmetrical hump-shaped Ricker’s function (Eq. 5) that is maximised for an energetically optimal resource body mass (optimal consumer-resource body mass ratio Ropt = 100) and has a width of γ. The maximum of the feeding efficiency Lij equals 1. Supplementary table 1 is an overview of the standard parameter set for the equations. See also Schneider et al. 201633 for further information regarding the allometric food-web model.Functional response$${F}_{{ij},z}=frac{{omega }_{i}{b}_{i,j}{R}_{j,z}^{1+q}}{1+{omega }_{i}{sum }_{k}{b}_{{ik}}{h}_{{ik}}{R}_{k,z}^{1+q}}cdot frac{1}{{m}_{i}}$$
    (3)
    Per unit biomass feeding rate of consumer i as function of the biomass density of the resource Rj, with bi,j, resource-specific capture coefficient (Eq. 4); hi,j, resource-specific handling time (Eq. 6); ωi = 1/(number of resource species of i), an inefficiency parameter for generalists assuming that generalist are less adapted in for example search patterns or hunting strategies to a specific prey species; and q, the Hill coefficient for nonlinearities in density dependency (if q = 0 it is a Type-II functional response, if q = 1 it is a Type-III functional response).Capture coefficient$${b}_{{ij}}=f{a}_{k}{m}_{i}^{{beta }_{i}}{m}_{j}^{{beta }_{j}}{L}_{{ij}}$$
    (4)
    Resource-specific capture coefficient of consumer species i on resource species j scaling the feeding kernel Lij by a power function of consumer and resource body mass, assuming that the encounter rate between consumer and resource scales with their respective movement speed. This body mass scaling of encounter rates is assumed to occur before the attempt of a predator to capture its prey is made. We differentiate between carnivorous and herbivorous interactions with each comprising a constant scaling factor for their capture coefficients ak with k ∈ 0, 1 (a0 = 15 for carnivorous species and a1 = 3500 for herbivorous species). For plant resources, ({m}_{j}^{{beta }_{j}}) was replaced with the constant value of 1 (as plants do not move).Feeding efficiency$${L}_{i,j}={left(frac{{m}_{i}}{{m}_{j}{R}_{{{{{{{mathrm{opt}}}}}}}}}{e}^{1-frac{{m}_{i}}{{m}_{j}{R}_{{{{{{{mathrm{opt}}}}}}}}}}right)}^{gamma }$$
    (5)
    The probability of consumer i to attack and capture an encountered resource j (which can be either plant or animal), described by an asymmetrical hump-shaped curve (Ricker’s function), centered around an optimal consumer-resource body mass ratio Ropt = 10033 and with γ that that affects the width of the hump. An increase in γ results in a decrease in the width.Handling time$${h}_{{ij}}={h}_{0}{m}_{i}^{{eta }_{i}}{m}_{j}^{{eta }_{j}}$$
    (6)
    The time consumer i needs to kill, ingest, and digest resource species j, with scaling constant h0 = 0.4 and allometric exponents ηi = −0.48 and ηj = −0.6640.Growth factor for plants$${G}_{i}=frac{N}{{K}_{i}+N}$$
    (7)
    Species-specific growth factor of plants determined dynamically by the nutrient; with Ki, half-saturation densities determining the nutrient uptake efficiency assigned randomly for each plant species i and (uniform distribution within (0.1, 0.2)).Nutrient dynamics$$frac{d{N}_{z}}{{dt}}=Dleft(S-Nright)-mathop{sum}limits_{i,z}{r}_{i}{G}_{i}{P}_{i,z}$$
    (8)
    Rate of change of nutrient concentration N of nutrient on patch z, with global turnover rate D = 0.25, determining the rate at which nutrients are refreshed and the nutrient supply concentration S.Generating landscapesWe generated different fragmented landscapes, represented by random geometric graphs, by randomly drawing the locations of Z patches from a uniform distribution between 0 and 1 for x- and y-coordinates, respectively.DispersalWe model dispersal between local communities as a dynamic process of emigration and immigration, assuming dispersal to occur at the same timescale as the local population dynamics. Thus, biomass flows dynamically between local populations and the dispersal dynamics directly influence local population dynamics and vice versa. We model a hostile matrix between habitat patches that does not allow for feeding interactions to occur during dispersal. The total rate of emigration of animal species i from patch z is$${E}_{i,z}={d}_{i,z}{B}_{i,z}$$
    (9)
    with di,z as the corresponding per capita dispersal rate. We model di,z as$${d}_{i,z}=frac{a}{1+{{{{{{rm{e}}}}}}}^{-b({x}_{i}-{v}_{i,z})}}$$
    (10)
    with a, the maximum dispersal rate, b = 10, a parameter determining the shape of the dispersal rate, xi, the inflection point determined by the metabolic demands per unit biomass of species i, and υi,z, the net growth rate of species i on patch z. The net growth rate consists of the biomass gain by feeding, the biomass loss by being fed upon and the metabolic loss (({v}_{i,z}=frac{{B}_{i,z}mathop{sum}limits_{j}{e}_{j}{F}_{{ij},z}-mathop{sum}limits_{j}{{B}_{j,z}F}_{{ji},z}-{x}_{i}{B}_{i,z}}{{B}_{i,z}})). We chose to model di,z as a function of each species’ net growth rate to account for emigration triggers, such as resource availability, predation pressure, and inter- and intra-specific competition. If for example an animal species’ net growth is positive, there is no need for dispersal and emigration will be low. However, if the local environmental conditions deteriorate, the growing incentives to search for a better habitat increase the fraction of individuals emigrating.ImmigrationThe rate of immigration of biomass density of species i into patch z follows$${I}_{i,z}=mathop{sum}limits_{n,epsilon, {N}_{z}}{E}_{i,n}{max }(1-{delta }_{i,{nz}},0)frac{{max }(1-{delta }_{i,{nz}},0)}{mathop{sum}limits_{m,epsilon, {N}_{n}}{max }(1-{delta }_{i,{nz}},0)}$$
    (11)
    where Nz and Nn are the sets of all patches within the dispersal range of species i on patches z and n, respectively. In this equation, Ei,n is the emigration rate of species i from patch n, ({max }(1-{delta }_{i,{nz}},0)) is the fraction of successfully dispersing biomass, i.e. the fraction of biomass not lost to the matrix, and δi,nz is the distance between patches n and z relative to species i’s maximum dispersal distance δi (see below paragraph Maximum dispersal distance). The term (frac{{max }(1-{delta }_{i,{nz}},0)}{mathop{sum}limits_{m,epsilon, {N}_{n}}{max }(1-{delta }_{i,nz},0)})determines the fraction of biomass of species i emigrating from source patch n towards target patch z. This fraction depends on the relative distance between the patches, δi,nz, and the relative distances to all other potential target patches m of species i on the source patch n, δi,nm. Thus, the flow of biomass is greatest between patches with small distances to account for the logic that the first patch dispersing organism come across is closer. In other words, the further a destination is, the more likely it is to come across another patch before.For numerical reasons, we did not allow for dispersal flows with Ii,z  More

  • in

    Climate amenities

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More