Early life neonicotinoid exposure results in proximal benefits and ultimate carryover effects
1.Mineau, P. & Palmer, C. Neonicotinoid Insecticides and Birds: The Impact of the Nation’s Most Widely Used Insecticides on Birds. (American Bird Conservancy, USA, 2013).2.Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34. https://doi.org/10.1007/s11356-014-3470-y (2015).CAS
Article
Google Scholar
3.Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59, 2897–2908. https://doi.org/10.1021/jf101303g (2011).CAS
Article
PubMed
Google Scholar
4.Tomizawa, M. & Casida, J. E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotining receptors. Annu. Rev. Entomol. 48, 339–364. https://doi.org/10.1146/annurev.ento.48.091801.112731 (2003).CAS
Article
PubMed
Google Scholar
5.Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 1–8. https://doi.org/10.1038/ncomms12459 (2016).CAS
Article
Google Scholar
6.Pisa, L. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. 28, 1–49. https://doi.org/10.1007/s11356-017-0341-3 (2017).CAS
Article
Google Scholar
7.Li, Y., Miao, R. & Khanna, M. Neonicotinoids and decline in bird biodiversity in the United States. Nat. Sustain. 3, 1027–1035. https://doi.org/10.1038/s41893-020-0582-x (2020).Article
Google Scholar
8.Eng, M. L., Stutchbury, B. J. & Morrissey, C. A. Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci. Rep. 7, 1. https://doi.org/10.1038/s41598-017-15446-x (2017).CAS
Article
Google Scholar
9.Eng, M. L., Stutchbury, B. J. & Morrissey, C. A. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 80(365), 1177–1180. https://doi.org/10.1126/science.aaw9419 (2019).ADS
CAS
Article
Google Scholar
10.Lopez-Antia, A., Ortiz-Santaliestra, M. E., Mougeot, F. & Mateo, R. Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ. Res. 136, 97–107. https://doi.org/10.1016/j.envres.2014.10.023 (2015).CAS
Article
PubMed
Google Scholar
11.Pandey, S. P. & Mohanty, B. The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary-thyroid axis of a wildlife bird. Chemosphere 122, 227–234. https://doi.org/10.1016/j.chemosphere.2014.11.061 (2015).ADS
CAS
Article
PubMed
Google Scholar
12.Tokumoto, J. et al. Effects of exposure to clothianidin on the reproductive system of male quails. J. Vet. Med. Sci. 75, 755–760. https://doi.org/10.1292/jvms.12-0544 (2013).CAS
Article
PubMed
Google Scholar
13.Addy-Orduna, L. M., Brodeur, J. C. & Mateo, R. Oral acute toxicity of imidacloprid, thiamethoxam and clothianidin in eared doves: A contribution for the risk assessment of neonicotinoids in birds. Sci. Total Environ. 650, 1216–1223. https://doi.org/10.1016/j.scitotenv.2018.09.112 (2019).ADS
CAS
Article
PubMed
Google Scholar
14.Berheim, E. H. et al. Effects of Neonicotinoid Insecticides on Physiology and Reproductive Characteristics of Captive Female and Fawn White-tailed Deer. Sci. Rep. 9, 1–10. https://doi.org/10.1038/s41598-019-40994-9 (2019).CAS
Article
Google Scholar
15.Wang, Y. et al. Unraveling the toxic effects of neonicotinoid insecticides on the thyroid endocrine system of lizards. Environ. Pollut. 258, 113731. https://doi.org/10.1016/j.envpol.2019.113731 (2020).CAS
Article
PubMed
Google Scholar
16.Khalil, S. R., Awad, A., Mohammed, H. H. & Nassan, M. A. Imidacloprid insecticide exposure induces stress and disrupts glucose homeostasis in male rats. Environ. Toxicol. Pharmacol. 55, 165–174. https://doi.org/10.1016/j.etap.2017.08.017 (2017).CAS
Article
PubMed
Google Scholar
17.Abou-Donia, M. B. et al. Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J. Toxicol. Environ. Heal. – Part A Curr. Issues 71, 119–130. https://doi.org/10.1080/15287390701613140 (2008).CAS
Article
Google Scholar
18.Gawade, L., Dadarkar, S. S., Husain, R. & Gatne, M. A detailed study of developmental immunotoxicity of imidacloprid in Wistar rats. Food Chem. Toxicol. 51, 61–70. https://doi.org/10.1016/j.fct.2012.09.009 (2013).CAS
Article
PubMed
Google Scholar
19.Mohanty, B., Pandey, S. P. & Tsutsui, K. Thyroid disrupting pesticides impair the hypothalamic-pituitary-testicular axis of a wildlife bird. Amandava amandava. Reprod. Toxicol. 71, 32–41. https://doi.org/10.1016/j.reprotox.2017.04.006 (2017).CAS
Article
PubMed
Google Scholar
20.Sun, Q. et al. Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPK(alpha)-Mediated Pathway. J. Agric. Food Chem. 65, 6572–6581. https://doi.org/10.1021/acs.jafc.7b02584 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
21.Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J. Agric. Food Chem. 64, 9293–9306. https://doi.org/10.1021/acs.jafc.6b04322 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
22.Park, Y. et al. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 61, 255–259. https://doi.org/10.1021/jf3039814 (2013).CAS
Article
PubMed
Google Scholar
23.Ricklefs, R. E., Stark, J. M. & Konarzewski, M. Internal constraints on growth in birds. in Avian Growth and Development. Evolution within the Altricial-Precocial Spectrum (eds Starck, J. M. & Ricklefs, R.E.) 266–287 (Oxford Ornithology Series, Oxford, 1998).
Google Scholar
24.Bobek, S., Jastrzebski, M. & Pietras, M. Age-related changes in oxygen consumption and plasma thyroid hormone concentration in the young chicken. Gen. Comput. Endocrinol. 31, 169–174. https://doi.org/10.1016/0016-6480(77)90014-4 (1977).CAS
Article
Google Scholar
25.Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: Grow now, pay later?. Trends Ecol. Evol. 16, 254–260. https://doi.org/10.1016/S0169-5347(01)02124-3 (2001).Article
PubMed
Google Scholar
26.Criscuolo, F., Monaghan, P., Nasir, L. & Metcalfe, N. B. Early nutrition and phenotypic development: “catch-up” growth leads to elevated metabolic rate in adulthood. Proc. Biol. Sci. 275(1642), 1565–1570. https://doi.org/10.1098/rspb.2008.0148 (2008).Article
PubMed
PubMed Central
Google Scholar
27.Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B Biol. Sci. 363, 1635–1645. https://doi.org/10.1098/rstb.2007.0011 (2008).Article
Google Scholar
28.Lee, W. S., Monaghan, P. & Metcalfe, N. B. The pattern of early growth trajectories affects adult breeding performance. Ecology 93, 902–912. https://doi.org/10.1890/11-0890.1 (2012).Article
PubMed
Google Scholar
29.Zera, A. J. & Harshman, L. G. The Physiology of Life History Trade-Offs in Animals. Annu. Rev. Ecol. Syst. 32, 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006 (2001).Article
Google Scholar
30.Botías, C., David, A., Hill, E. M. & Goulson, D. Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ. Pollut. 222, 73–82. https://doi.org/10.1016/j.envpol.2017.01.001 (2017).CAS
Article
PubMed
Google Scholar
31.Hladik, M. L. & Kolpin, D. W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ. Chem. 13, 12. https://doi.org/10.1071/EN15061 (2016).CAS
Article
Google Scholar
32.Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024 (2015).CAS
Article
PubMed
Google Scholar
33.McNabb, F. M. A. The hypothalamic-pituitary-thyroid (HPT) axis in birds and its role in bird development and reproduction. Crit. Rev. Toxicol. 37(1–2), 163–193. https://doi.org/10.1080/10408440601123552 (2007).CAS
Article
PubMed
Google Scholar
34.Gobeli, A., Crossley, D., Johnson, J. & Reyna, K. The effects of neonicotinoid exposure on embryonic development and organ mass in northern bobwhite quail (Colinus virginianus). Comp. Biochem. Physiol. Part – C Toxicol. Pharmacol. 195, 9–15. https://doi.org/10.1016/j.cbpc.2017.02.001 (2017).CAS
Article
Google Scholar
35.Mineau, P. & Callaghan, C. Neonicotinoid insecticides and bats: an assessment of the direct and indirect risks. (Canadian Wildlife Federation, 2018).36.Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 75, 13–30. https://doi.org/10.1016/S0167-8809(99)00064-X (1999).Article
Google Scholar
37.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).Article
Google Scholar
38.Spencer, K., Buchanan, K., Goldsmith, A. & Catchpole, C. Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm. Behav. 44, 132–139. https://doi.org/10.1016/S0018-506X(03)00124-7 (2003).CAS
Article
PubMed
Google Scholar
39.Ayyanath, M.-M., Cutler, G. C., Scott-Dupree, C. D. & Sibley, P. K. Transgenerational Shifts in Reproduction Hormesis in Green Peach Aphid Exposed to Low Concentrations of Imidacloprid. PLoS One 8, e74532. https://doi.org/10.1371/journal.pone.0074532 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
40.Calabrese, E. J. & Baldwin, L. A. Toxicology rethinks its central belief. Nature 421, 691–692. https://doi.org/10.1038/421691a (2003).ADS
CAS
Article
PubMed
Google Scholar
41.Lopez-Antia, A., Ortiz-Santaliestra, M. E., Mougeot, F. & Mateo, R. Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole. Ecotoxicology 22, 125–138. https://doi.org/10.1007/s10646-012-1009-x (2013).CAS
Article
PubMed
Google Scholar
42.Rix, R. R., Ayyanath, M. M. & Christopher Cutler, G. Sublethal concentrations of imidacloprid increase reproduction, alter expression of detoxification genes, and prime Myzus persicae for subsequent stress. J. Pest Sci. (2004) 89, 581–589. https://doi.org/10.1007/s10340-015-0716-5 (2016).Article
Google Scholar
43.von Engelhardt, N. & Groothuis, T. G. G. Maternal hormones in avian eggs. in Hormones and Reproduction of Vertebrates: Birds, 1st edn. (eds Norris, D. & Lopez, K.) 91–127. https://doi.org/10.1016/C2009-0-01697-3 (Academic Press, 2011).Chapter
Google Scholar
44.Hulbert, A. J. Thyroid hormones and their effects: A new perspective. Biol. Rev. Camb. Philos. Soc. 75, 519–631. https://doi.org/10.1017/s146479310000556x (2000).CAS
Article
PubMed
Google Scholar
45.Darras, V. M. et al. Partial Food Restriction Increases Hepatic Inner Ring Deiodinating Activity in the Chicken and the Rat. Gen. Comp. Endocrinol. 100, 334–338. https://doi.org/10.1006/gcen.1995.1164 (1995).CAS
Article
PubMed
Google Scholar
46.Klandorf, H. & Harvey, S. Food intake regulation of circulating thyroid hormones in domestic fowl. Gen. Comp. Endocrinol. 60, 162–170. https://doi.org/10.1016/0016-6480(85)90310-7 (1985).CAS
Article
PubMed
Google Scholar
47.Reyns, G. E., Janssens, K. A., Buyse, J., Kühn, E. R. & Darras, V. M. Changes in thyroid hormone levels in chicken liver during fasting and refeeding. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132(1), 239–245. https://doi.org/10.1016/s1096-4959(01)00528-0.CAS
Article
PubMed
Google Scholar
48.Harvey, S. & Klandorf, H. Reduced adrenocortical function and increased thyroid function in fasted and refed chickens. J. Endocrinol. 98, 129–135. https://doi.org/10.1677/joe.0.0980129 (1983).CAS
Article
PubMed
Google Scholar
49.Rimbach, R., Pillay, N. & Schradin, C. Both thyroid hormone levels and resting metabolic rate decrease in African striped mice when food availability decreases. J. Exp. Biol. 220, 837–843. https://doi.org/10.1242/jeb.151449 (2017).Article
PubMed
Google Scholar
50.Scott, I. & Evans, P. R. The metabolic output of avian (Sturnus vulgaris, Calidris alpina) adipose tissue liver and skeletal muscle: Implications for BMR/body mass relationships. Comp. Biochem. Physiol. Comp. Physiol. 103(2), 329–332. https://doi.org/10.1016/0300-9629(92)90589-I (1992).CAS
Article
PubMed
Google Scholar
51.Mesnage, R., Biserni, M., Genkova, D., Wesolowski, L. & Antoniou, M. N. Evaluation of neonicotinoid insecticides for oestrogenic, thyroidogenic and adipogenic activity reveals imidacloprid causes lipid accumulation. J. Appl. Toxicol. 38, 1483–1491. https://doi.org/10.1002/jat.3651 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
52.Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14(9), 343–348. https://doi.org/10.1016/S0169-5347(99)01639-0 (1999).Article
PubMed
Google Scholar
53.Vézina, F., Love, O. P., Lessard, M. & Williams, T. D. Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol. Biochem. Zool. 82, 248–257. https://doi.org/10.1086/597548 (2009).Article
PubMed
Google Scholar
54.Swanson, D. L., Mckechnie, A. E. & Vézina, F. How low can you go ? An adaptive energetic framew ork for interpreting basal metabolic rate variation in endotherms. J. Comp. Physiol. B 187, 1039–1056. https://doi.org/10.1007/s00360-017-1096-3 (2017).Article
PubMed
Google Scholar
55.Hao, C., Eng, M. L., Sun, F. & Morrissey, C. A. Part-per-trillion LC-MS/MS determination of neonicotinoids in small volumes of songbird plasma. Sci. Total Environ. 644, 1080–1087. https://doi.org/10.1016/j.scitotenv.2018.06.317 (2018).ADS
CAS
Article
PubMed
Google Scholar
56.Taliansky-Chamudis, A., Gómez-Ramírez, P., León-Ortega, M. & García-Fernández, A. J. Validation of a QuECheRS method for analysis of neonicotinoids in small volumes of blood and assessment of exposure in Eurasian eagle owl (Bubo bubo) nestlings. Sci. Total Environ. 595, 93–100. https://doi.org/10.1016/j.scitotenv.2017.03.246 (2017).ADS
CAS
Article
PubMed
Google Scholar
57.Lemon, W. C. The energetics of lifetime reproductive success in the zebra finch Taeniopygia guttata. Physiol. Zool. 66, 946–963. https://doi.org/10.1086/physzool.66.6.30163748 (1993).Article
Google Scholar
58.Chastel, O., Lacroix, A. & Kersten, M. Pre-breeding energy requirements: thyroid hormone, metabolism and the timing of reproduction in house sparrows (Passer domesticus). J. Avian Biol. 34, 298–306. https://doi.org/10.1034/j.1600-048X.2003.02528.x (2003).Article
Google Scholar
59.Hicks, O. et al. The role of parasitism in the energy management of a free-ranging bird. J. Exp. Biol. 221(24), jeb190066. https://doi.org/10.1242/jeb.190066 (2018).Article
PubMed
PubMed Central
Google Scholar
60.Guglielmo, C. G., McGuire, L. P., Gerson, A. R. & Seewagen, C. L. Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J. Ornithol. 152, 75–85. https://doi.org/10.1007/s10336-011-0724-z (2011).Article
Google Scholar
61.Le Pogam, A. et al. Wintering snow buntings elevate cold hardiness to extreme levels but show no changes in maintenance costs. Physiol. Biochem. Zool. 93, 417–433. https://doi.org/10.1086/711370 (2020).Article
PubMed
Google Scholar
62.Lighton, J. R. B. Measuring Metabolic Rates, 2nd edn. https://doi.org/10.1093/oso/9780198830399.001.0001 (Oxford University Press, Oxford, 2018).Book
Google Scholar
63.Gessaman, J. A. & Nagy, K. A. Energy metabolism: Errors in gas-exchange conversion factors. Physiol. Zool. 61, 507–513. https://doi.org/10.1086/physzool.61.6.30156159 (1988).Article
Google Scholar
64.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2017).65.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article
Google Scholar More