More stories

  • in

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    1.Tang, X. et al. Scheme design and main result analysis of the fourth national survey on giant pandas. For. Resour. Manag. 1, 11–16 (2015).
    Google Scholar 
    2.Swaisgood, R. R., Wang, D. & Wei, F. Panda downlisted but not out of the woods. Conserv. Lett. 11, 1 (2018).Article 

    Google Scholar 
    3.Xu, W. et al. Reassessing the conservation status of the giant panda using remote sensing. Nat. Ecol. Evol. 1, 1635–1638 (2017).PubMed 
    Article 

    Google Scholar 
    4.Shen, G. et al. Climate change challenges the current conservation strategy for the giant panda. Biol. Conserv. 190, 43–50 (2015).Article 

    Google Scholar 
    5.Tian, Z. et al. The next widespread bamboo flowering poses a massive risk to the giant panda. Biol. Conserv. 234, 180–187 (2019).Article 

    Google Scholar 
    6.Lu, Z. et al. Patterns of genetic diversity in remaining giant panda populations. Conserv. Biol. 15, 1596–1607 (2001).Article 

    Google Scholar 
    7.Pimm, S. L. The Balance of Nature (Univ. Chicago Press, 1991).8.Pimm, S. L., Dollar, L. & Bass, O. L. Jr The genetic rescue of the Florida panther. Anim. Conserv. 9, 115–122 (2006).Article 

    Google Scholar 
    9.Qing, J. et al. The minimum area requirements (MAR) for giant panda: an empirical study. Sci. Rep. 6, 37715 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fahrig, L. Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manag. 61, 603–610 (1997).Article 

    Google Scholar 
    12.Simberloff, D. Habitat fragmentation and population extinction of birds. IBIS 137, S105–S111 (1995).Article 

    Google Scholar 
    13.Viña, A. et al. Range-wide analysis of wildlife habitat: implications for conservation. Biol. Conserv. 143, 1960–1969 (2010).Article 

    Google Scholar 
    14.Wang, T., Ye, X., Skidmore, A. K. & Toxopeus, A. G. Characterising the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes. J. Biogeogr. 37, 865–878 (2010).CAS 
    Article 

    Google Scholar 
    15.Xu, W. et al. Conservation of giant panda habitat in South Minshan, China, after the May 2008 earthquake. Front. Ecol. Environ. 7, 353–358 (2009).Article 

    Google Scholar 
    16.Gong, M., Guan, T., Hou, M., Liu, G. & Zhou, T. Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecol. Evol. 7, 596–605 (2017).PubMed 
    Article 

    Google Scholar 
    17.Songer, M., Delion, M., Biggs, A. & Huang, Q. Modeling impacts of climate change on giant panda habitat. Int. J. Ecol. 2012, 108752 (2012).Article 

    Google Scholar 
    18.Tuanmu, M. N. et al. Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nat. Clim. Change 3, 249–253 (2013).Article 

    Google Scholar 
    19.He, K. et al. Effects of roads on giant panda distribution: a mountain range scale evaluation. Sci. Rep. 9, 1110 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Li, H. et al. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake—case study of Wolong Nature Reserve in China. Ecol. Model. 221, 944–952 (2010).Article 

    Google Scholar 
    21.Qi, D. et al. Quantifying landscape linkages among giant panda subpopulations in regional scale conservation. Integr. Zool. 7, 165–174 (2012).PubMed 
    Article 

    Google Scholar 
    22.Shen, G. et al. Proposed conservation landscape for giant pandas in the Minshan Mountains, China. Conserv. Biol. 22, 1144–1153 (2008).PubMed 
    Article 

    Google Scholar 
    23.Kong, L. et al. Habitat conservation redlines for the giant pandas in China. Biol. Conserv. 210, 83–88 (2017).Article 

    Google Scholar 
    24.Zhang, J. et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. Ecol. Manag. 319, 1–9 (2014).Article 

    Google Scholar 
    25.Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).Article 

    Google Scholar 
    26.Possingham, H. in Conservation of Australia’s Forest Fauna (ed. Lunney, D.) Ch. 3, 35–40 (Royal Zoological Society of New South Wales, 1991).27.Lacy, R. C. VORTEX: a computer simulation model for population viability analysis. Wildl. Res. 20, 45–65 (1993).Article 

    Google Scholar 
    28.Wei, F., Fgeng, Z. & Hu, J. Population viability analysis computer model of giant panda population in Wuyipeng, Wolong Natural Reserve, China. Int. Conf. Bear. Res. Manag. 9, 19–23 (1997).
    Google Scholar 
    29.Guo, J., Chen, Y. & Hu, J. Population viability analysis of giant pandas in the Yele Nature Reserve. J. Nat. Conserv. 10, 35–40 (2002).Article 

    Google Scholar 
    30.Jiang, H. & Hu, J. Population viability analysis for the Giant Panda in Baoxing County, Sichuan. Sichuan J. Zool. 29, 161–165 (2010).
    Google Scholar 
    31.Li, X., Li, D., Yong, Y. & Zhang, J. A preliminary analysis on population viability analysis for Giant Panda in Foping. Acta Zool. Sin. 43, 285–293 (1997).
    Google Scholar 
    32.Yang, Z., Hu, J. & Liu, N. The influence of dispersal on the metapopulation viability of Giant Panda (Aliuropoda melanoleuca) in the Minshan Mountains. Acta Zool. Acad. Sci. Hung. 53, 169–184 (2007).
    Google Scholar 
    33.Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Carter, J., Ackleh, A. S., Leonard, B. P. & Wang, H. Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous. Ecol. Model. 123, 207–223 (1999).Article 

    Google Scholar 
    35.Xia, W. & Hu, J. On the trend of population dynamics in giant panda based on age structure. Acta Theriologica Sin. 9, 87–93 (1989).
    Google Scholar 
    36.Zhu, L. et al. Conservation implications of drastic reductions in the smallest and most isolated populations of giant pandas. Conserv. Biol. 24, 1299–1306 (2010).PubMed 
    Article 

    Google Scholar 
    37.State Forestry Administration P. R. C. Report of the Third National Giant Panda Census (Science Publishing House, 2006).38.Zhu, L., Hu, Y., Zhang, Z. & Wei, F. Effect of China’s rapid development on its iconic giant panda. Chin. Sci. Bull. 58, 2134–2139 (2013).Article 

    Google Scholar 
    39.Hu, J. Research on the Giant Panda (Shanghai Science and Technology Education Press, 2001).40.Li, R. et al. Climate change threatens giant panda protection in the 21st century. Biol. Conserv. 182, 93–101 (2015).Article 

    Google Scholar 
    41.Yang, B. et al. China’s collective forest tenure reform and the future of the giant panda. Conserv. Lett. 8, 251–261 (2015).Article 

    Google Scholar 
    42.Linderman, M. et al. The effects of understory bamboo on broad-scale estimates of giant panda habitat. Biol. Conserv. 121, 383–390 (2005).Article 

    Google Scholar 
    43.Yang, Z. et al. Reintroduction of the giant panda into the wild: a good start suggests a bright future. Biol. Conserv. 217, 181–186 (2018).CAS 
    Article 

    Google Scholar 
    44.Kaiser, H. The dynamics of populations as result of the properties of individual animals. Fortschr. D. Zool. 25, 109–136 (1979).
    Google Scholar 
    45.Huston, M., DeAngelis, D. & Post, W. New computer models unify ecological theory. BioScience 38, 682–691 (1988).Article 

    Google Scholar 
    46.DeAngelis, D. L. Individual-Based Models and Approaches In Ecology: Populations, Communities and Ecosystems (CRC Press, 2017)47.Uchmański, J. & Grimm, V. Individual-based modelling in ecology: what makes the difference? Trends Ecol. Evol. 11, 437–441 (1996).PubMed 
    Article 

    Google Scholar 
    48.Wei, F. et al. A study on the life table of wild giant pandas. Acta Theriologica Sin. 9, 81–86 (1989).
    Google Scholar 
    49.Hou, W. Revision of the giant panda life table and related data indicators. Zool. Res. 21, 361–366 (2000).
    Google Scholar  More

  • in

    Cuticular hydrocarbons are associated with mating success and insecticide resistance in malaria vectors

    1.Tripet, F., Toure, Y. T., Dolo, G. & Lanzaro, G. C. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am. J. Tropical Med. Hyg. 68, 1–5 (2003).Article 

    Google Scholar 
    2.Beehler, B. M. & Foster, M. S. Hotshots, hotspots, and female preference in the organization of lek mating systems. Am. Nat. 131, 203–219 (1988).Article 

    Google Scholar 
    3.Cator, L. J., Wyer, C. A. S. & Harrington, L. C. Mosquito sexual selection and reproductive control programs. Trends Parasitol. 37, 330–339 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Charlwood, J. D. & Jones, M. D. R. Mating behaviour in the mosquito, Anopheles gambiae s.1.save. Physiol. Entomol. 4, 111–120 (1979).Article 

    Google Scholar 
    5.Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 1395–1401 (2020).7.Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Cator, L. J., Ng’Habi, K. R., Hoy, R. R. & Harrington, L. C. Sizing up a mate: variation in production and response to acoustic signals in Anopheles gambiae. Behav. Ecol. 21, 1033–1039 (2010).Article 

    Google Scholar 
    9.Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. “Singing on the wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Simões, P. M., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Exp. Biol. 220, 379–385 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Sawadogo, S. P. et al. Effects of age and size on Anopheles gambiae s.s. male mosquito mating success. J. Med. Entomol. 50, 285–293 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ng’habi, K. R. et al. Sexual selection in mosquito swarms: may the best man lose? Anim. Behav. 76, 105–112 (2008).Article 

    Google Scholar 
    14.Howell, P. I. & Knols, B. G. J. Male mating biology. Malar. J. 8, S8-S8, https://doi.org/10.1186/1475-2875-8-S2-S8 (2009).CAS 
    Article 

    Google Scholar 
    15.Aldersley, A. & Cator, L. J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Sci. Rep. 9, 2145 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Pantoja-Sánchez, H., Gomez, S., Velez, V., Avila, F. W. & Alfonso-Parra, C. Precopulatory acoustic interactions of the New World malaria vector Anopheles albimanus (Diptera: Culicidae). Parasites Vectors 12, 386–386 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ferveur, J.-F. & Cobb, M. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press 325–343 (2010).18.Theresa, L. S. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38, 394–405 (1998).Article 

    Google Scholar 
    19.Chung, H. et al. A single gene affects both ecological divergence and mate choice in Drosophila. Science 343, 1148–1151 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Grigoraki, L., Grau-Bové, X., Carrington Yates, H., Lycett, G. J. & Ranson, H. Isolation and transcriptomic analysis of Anopheles gambiae oenocytes enables the delineation of hydrocarbon biosynthesis. eLife 9, e58019 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Ingleby, F. C. Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6, 732–742 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Lang, J. T. & Foster, W. A. Is there a female sex pheromone in the mosquito Culiseta inornata? Environ. Entomol. 5, 1109–1115 (1976).Article 

    Google Scholar 
    24.Nijout, H. F. C. J. & George, B. Reproductive isolation in Stepgomyia mosquitoes. III Evidence for a sexual pheromone. Entomol. Exp. Appl. 14, 399–412 (1971).Article 

    Google Scholar 
    25.Lang, J. T. Contact sex pheromone in the mosquito Culiseta inornata (Diptera: Culicidae). J. Med. Entomol. 14, 448–454 (1977).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Polerstock, A. R., Eigenbrode, S. D. & Klowden, M. J. Mating alters the cuticular hydrocarbons of female Anopheles gambiae sensu stricto and aedes Aegypti (Diptera: Culicidae). J. Med. Entomol. 39, 545–552 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl Acad. Sci. USA 113, 9268–9273 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Balabanidou, V. et al. Mosquitoes cloak their legs to resist insecticides. Proc. Biol. Sci. 286, 20191091 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Yahouedo, G. A. et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci. Rep. 7, 11091 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Baeshen, R. et al. Differential effects of inbreeding and selection on male reproductive phenotype associated with the colonization and laboratory maintenance of Anopheles gambiae. Malar. J. 13, 19 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Toe, K. H. et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg. Infect. Dis. 20, 1691–1696 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.World Health Organization. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. Geneva, Switzerland: World Health Organization (2013).33.Toe, K. H., N’Fale, S., Dabire, R. K., Ranson, H. & Jones, C. M. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16, 146 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Kwiatkowska, R. M. et al. Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene 519, 98–106 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ingham, V. A. et al. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics 15, 1018 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Blows, M. W. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. Biol. Sci. 269, 1113–1118 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Lane, S. M., Dickinson, A. W., Tregenza, T. & House, C. M. Sexual selection on male cuticular hydrocarbons via male-male competition and female choice. J. Evol. Biol. 29, 1346–1355 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Steiger, S. et al. Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proc. Biol. Sci. 280, 20132353–20132353 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    39.Chung, H. & Carroll, S. B. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37, 822–830, https://doi.org/10.1002/bies.201500014 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Sawadogo, S. P. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Arcaz, A. C. et al. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons. J. Exp. Biol. 219, 1675–1688 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Hidalgo, K. et al. Distinct physiological, biochemical and morphometric adjustments in the malaria vectors Anopheles gambiae and A. coluzzii as means to survive dry season conditions in Burkina Faso. J. Exp. Biol. 70, 102–116 (2018).43.Wagoner, K. M. et al. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes. Parasit. Vectors 7, 294 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Wicker, C. & Jallon, J. M. Influence of ovary and ecdysteroids on pheromone biosynthesis in Drosophila melanogaster (Diptera: Drosophilidae). EJE 92, 197–202 (1995).CAS 

    Google Scholar 
    45.Andersson, M. Sexual Selection. Princeton University Press (1994).46.Fisher, R. The Genetical Theory of Natural Selection. The Clarendon Press, Oxford (1930).47.Weatherhead, P. J. & Robertson, R. J. Offspring quality and the polygyny threshold: “The Sexy Son Hypothesis”. Am. Nat. 113, 201–208 (1979).Article 

    Google Scholar 
    48.Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Rundle, H. D., Chenoweth, S. F. & Blows, M. W. The roles of natural and sexual selection during adaptation to a novel environment. Evolution 60, 2218–2225 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A. & Catteruccia, F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA 108, 13677–13681, https://doi.org/10.1073/pnas.1104738108 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Charlwood, J. D. Studies on the bionomics of male Anopheles gambiae Giles and male Anopheles funestus Giles from southern Mozambique. J. Vector Ecol. 36, 382–394, https://doi.org/10.1111/j.1948-7134.2011.00179.x (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Glunt, K. D., Thomas, M. B. & Read, A. F. The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS ONE 6, e24968–e24968 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163, https://doi.org/10.1186/1475-2875-7-163 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184–184, https://doi.org/10.1186/1471-2148-11-184 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Niang, A. et al. Does extreme asymmetric dominance promote hybridization between Anopheles coluzzii and Anopheles gambiae s.s. in seasonal malaria mosquito communities of West Africa? Parasit. Vectors 8, 586–586, https://doi.org/10.1186/s13071-015-1190-x (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Caputo, B. et al. Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector Anopheles gambiae s.s. (Diptera: Culicidae): analysis of sexual dimorphism and age-related changes. J. Mass Spectrom. 40, 1595–1604, https://doi.org/10.1002/jms.961 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    Article 

    Google Scholar 
    58.Charlwood, J. Biological variation in Anopheles darlingi root. Mem. Inst. Oswaldo Cruz. 91, 391–398 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    First modern human settlement recorded in the Iberian hinterland occurred during Heinrich Stadial 2 within harsh environmental conditions

    1.Zilhão, J. Neandertal-modern human contact in Western Eurasia: issues of dating, taxonomy, and cultural associations. In Dynamics of Learning in Neanderthals and Modern humans Volume 1: Cultural Perspectives (eds Akazawa, T., Nishiaki, K. & Aoko. Y.), 21–57 (Springer, 2013).2.Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad Sci. 113(40), 11162–11167. https://doi.org/10.1073/pnas.1605834113 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    3.Gravina, B. et al. No reliable evidence for a Neanderthal-Châtelperronian Association at La Roche-à-Pierrot, Saint-Césaire. Sci. Rep. 8, 15134. https://doi.org/10.1038/s41598-018-33084-9 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    4.Wood, R. et al. The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L’Arbreda, Labeko Koba and La Viña. J. Hum Evol. 69, 91–109. https://doi.org/10.1016/j.jhevol.2013.12.017 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    5.Marín-Arroyo, A. B. et al. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE 13(4), e0194708. https://doi.org/10.1371/journal.pone.0194708 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    6.Wood, R. et al. El Castillo (Cantabria, northern Iberia) and the Transitional Aurignacian: Using radiocarbon dating to assess site taphonomy. Quat. Int. 474(A), 56–70. https://doi.org/10.1016/j.quaint.2016.03.005 (2018).Article 

    Google Scholar 
    7.Teyssandier, N. & Zilhão, J. On the entity and antiquity of the Aurignacian at Willendorf (Austria): Implications for modern human emergence in Europe. J. Paleolithic Archaeol. 1, 107–138. https://doi.org/10.1007/s41982-017-0004-4 (2018).Article 

    Google Scholar 
    8.Dinnis, R., Bessudnov, A., Chiotti, L., Flas, D. & Michel, A. Thoughts on the structure of the European Aurignacian, with Particular Focus on Hohle Fels IV. Proc. Prehist. Soc. 85, 29–60. https://doi.org/10.1017/ppr.2019.11 (2019).Article 

    Google Scholar 
    9.Hublin, J. J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302. https://doi.org/10.1038/s41586-020-2259-z (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    10.Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801. https://doi.org/10.1038/s41559-020-1136-3 (2020).Article 

    Google Scholar 
    11.Straus, L. G. The Upper Paleolithic of Iberia. Trab. de Prehist. 75(1), 9–51. https://doi.org/10.3989/tp.2018.12202 (2018).Article 

    Google Scholar 
    12.Zilhão, J. et al. Precise dating of the Middle-to-Upper Paleolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. Heliyon 3, e00435. https://doi.org/10.1016/j.heliyon.2017.e00435 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Zilhão, J. et al. A revised, Last Interglacial chronology for the Middle Palaeolithic sequence of Gruta da Oliveira (Almonda karst system, Torres Novas, Portugal). Quat. Sci. Rev. 258, 106885. https://doi.org/10.1016/j.quascirev.2021.106885 (2021).Article 

    Google Scholar 
    14.Aubry, T. et al. Timing of the Middle-to-Upper Palaeolithic transition in the Iberian inland (Cardina-Salto do Boi, Côa Valley, Portugal). Quat. Res. 98, 81–101. https://doi.org/10.1017/qua.2020.43 (2020).15.Cortés-Sánchez, M. et al. An early Aurignacian arrival in southwestern Europe. Nat. Ecol. Evol. 3, 207–212. https://doi.org/10.1038/s41559-018-0753-6 (2019).Article 
    PubMed 

    Google Scholar 
    16.Haws, J. A. et al. The early Aurignacian dispersal of modern humans into westernmost Eurasia. Proc. Natl Acad. Sci. USA 117(41), 25414–25422. https://doi.org/10.1073/pnas.2016062117 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    17.Anderson, L., Reynolds, N. & Teyssandier, N. No reliable evidence for a very early Aurignacian in Southern Iberia. Nat. Ecol. Evol. 3, 713. https://doi.org/10.1038/s41559-019-0885-3 (2019).Article 
    PubMed 

    Google Scholar 
    18.de la Peña, P. Dating on its own cannot resolve hominin occupation patterns. Nat. Ecol. Evol. 3, 712. https://doi.org/10.1038/s41559-019-0886-2 (2019).Article 
    PubMed 

    Google Scholar 
    19.Morales, J. I. et al. The Middle-to-Upper Paleolithic transition occupations from Cova Foradada (Calafell, NE Iberia). PLoS ONE 14(5), e0215832. https://doi.org/10.1371/journal.pone.0215832 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    20.Alcaraz-Castaño, M. Central Iberia around the Last Glacial Maximum. Hopes and prospects. J. Anthropol. Res. 71(4), 565–578. https://doi.org/10.3998/jar.0521004.0071.406 (2015).Article 

    Google Scholar 
    21.Mosquera, M. et al. Valle de las Orquídeas: un yacimiento al aire libre del Pleistoceno Superior en la Sierra de Atapuerca (Burgos). Trab. de Prehist. 64(2), 143–155. https://doi.org/10.3989/tp.2007.v64.i2.113 (2007).Article 

    Google Scholar 
    22.Carretero, J. M. et al. A Late Pleistocene-Early Holocene archaeological sequence of Portalón de Cueva Mayor (Sierra de Atapuerca, Burgos, Spain). Munibe (Antropologia-Arkeologia). 59, 67–80 (2008).23.Aubry, T., Luis, L., Mangado Llach, J. & Matías, H. We will be known by the tracks we leave behind: Exotic lithic raw materials, mobility and social networking among the Côa Valley foragers (Portugal). J. Anthropol. Archaeol. 31, 528–550. https://doi.org/10.1016/j.jaa.2012.05.003 (2012).Article 

    Google Scholar 
    24.Gaspar, R., Ferreira, J., Carrondo, J., Silva, M. J. & García-Vadillo, F. J. Open-air Gravettian lithic assemblages from Northeast Portugal: The Foz do Medal site (Sabor valley). Quat. Int. 406, 44–64. https://doi.org/10.1016/j.quaint.2015.12.054 (2016).Article 

    Google Scholar 
    25.Alcaraz-Castaño, M. et al. Los orígenes del Solutrense y la ocupación pleniglaciar del interior de la Península Ibérica: implicaciones del nivel 3 de Peña Capón (valle del Sorbe, Guadalajara). Trab. de Prehist. 70(1), 28–53. http://tp.revistas.csic.es/index.php/tp/article/view/637/659(2013).26.Alcaraz-Castaño, M., Alcolea-González, J.J., Balbín Behrmann, R. de, Kehl, M., Weniger, G.C. Recurrent Human Occupations in Central Iberia around the Last Glacial Maximum. The Solutrean Sequence of Peña Capón Updated. In Human Adaptations to the Last Glacial Maximum: The Solutrean and Its Neighbors (eds. I. Schmidt & J. Cascalheira), 148–170 (Cambridge Scholars Publishing, Cambridge, UK, 2019).27.Straus, L. G. The human occupations of southwestern Europe during the Last Glacial Maximum: Solutrean cultural adaptations in France and Iberia. J. Anthropol. Res. 71(4), 465–492. https://doi.org/10.3998/jar.0521004.0071.401 (2015).Article 

    Google Scholar 
    28.Schmidt, I. et al. Rapid climate change and variability of settlement patterns in Iberia during the Late Pleistocene. Quat. Int. 274(1), 179–204. https://doi.org/10.1016/j.quaint.2012.01.018 (2012).Article 

    Google Scholar 
    29.Burke, A. et al. Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia. J. Hum. Evol. 73, 35–46. https://doi.org/10.1016/j.jhevol.2014.06.003 (2014).Article 
    PubMed 

    Google Scholar 
    30.Burke, A. et al. Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quat. Sci. Rev. 164, 217–229. https://doi.org/10.1016/j.quascirev.2017.04.001 (2017).ADS 
    Article 

    Google Scholar 
    31.Lüdwig, P., Shao, Y., Kehl, M. & Weniger, G.-C. The Last Glacial Maximum and Heinrich event I on the Iberian Peninsula: A regional climate modelling study for understanding human settlement patterns. Glob. Planet. Change. 170, 34–47. https://doi.org/10.1016/j.gloplacha.2018.08.006 (2018).ADS 
    Article 

    Google Scholar 
    32.Wren, C. D. & Burke, A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS ONE 14(6), e0217996. https://doi.org/10.1371/journal.pone.0217996 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Klein, K. et al. Human existence potential in Europe during the Last Glacial Maximum. Quat. Int. https://doi.org/10.1016/j.quaint.2020.07.046 (2020).Article 

    Google Scholar 
    34.Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657. https://doi.org/10.1016/S0277-3791(00)00145-1 (2001).ADS 
    Article 

    Google Scholar 
    35.Maier, A. et al. Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quat. Int. 425, 49–61. https://doi.org/10.1016/j.quaint.2016.04.009 (2016).Article 

    Google Scholar 
    36.Banks, W. E. et al. Human ecological niches and ranges during the LGM in Europe derived from an application of eco-cultural niche modeling. J. Archaeol. Sci. 35, 481–491. https://doi.org/10.1016/j.jas.2007.05.011 (2008).Article 

    Google Scholar 
    37.Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the last glacial maximum. Proc. Natl. Acad. Sci. 112, 8232–8237. https://doi.org/10.1073/pnas.1503784112 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    38.Sala, N. et al. Central Iberia in the Middle MIS 3. Paleoecological inferences during the period 34–40 cal kyr BP. Quat. Sci. Rev. 228, 106027 (2020).Article 

    Google Scholar 
    39.Sala, N. et al. Cueva de los Torrejones revisited. New insights on the paleoecology of inland Iberia during the Late Pleistocene. Quat. Sci. Rev. 253, 106765 (2021).Article 

    Google Scholar 
    40.Wolf, D. et al. Climate deteriorations and Neanderthal demise in interior Iberia. Sci. Rep. 8, 7048. https://doi.org/10.1038/s41598-018-25343-6 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    41.Wolf, D. et al. Evidence for strong relations between the upper Tagus loess formation (central Iberia) and the marine atmosphere off the Iberian margin during the last glacial period. Quat. Res. 101, 84-113.https://doi.org/10.1017/qua.2020.119(2021).42.Zilhão, J. et al. Pego do Diabo (Loures, Portugal). Dating the emergence of anatomical modernity in westernmost Eurasia. PLoS ONE 5, e8880. https://doi.org/10.1371/journal.pone.0008880(2010).43.Cascalheira, J. et al. Paleoenvironments and human adaptations during the Last Glacial Maximum in the Iberian Peninsula: A review. Quat. Int. 581-582, 28-51. https://doi.org/10.1016/j.quaint.2020.08.005(2021).44.Binford, L. R. Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets (University of California Press, 2001).45.Kelly, R. L. The Lifeways of Hunter-Gatherers. The Foraging Spectrum (Cambridge University Press, 2013, 2nd edition).46.Bettinger, R. L., Garvey, R. & Tushingham, S. Hunter-Gatherers: Archaeological and Evolutionary Theory (Springer, 2015, 2nd edition).47.Gamble, C., Davies, W., Pettitt, P. & Richards, M. Climate change and evolving human diversity in Europe during the last glacial. Phil. Trans. R. Soc. B 359, 243–254. https://doi.org/10.1098/rstb.2003.1396 (2014).Article 

    Google Scholar 
    48.d’Errico, F. & Banks, W. Identifying Mechanisms behind Middle Paleolithic and Middle Stone Age Cultural Trajectories. Curr. Anthropol. 54(S8), S371–S387. https://doi.org/10.1086/673388 (2013).Article 

    Google Scholar 
    49.Collard, M., Vaesen K., Cosgrove, R. & Roebroeks, W. The empirical case against the ‘demographic turn’ in Palaeolithic archaeology. Phil. Trans. R. Soc. B 371, 20150242. https://doi.org/10.1098/rstb.2015.0242 (2016).50.Banks, W. E. et al. Investigating links between ecology and bifacial tool types in Western Europe during the Last Glacial Maximum. J. Archaeol. Sci. 36(12), 2853–2867. https://doi.org/10.1016/j.jas.2009.09.014 (2009).Article 

    Google Scholar 
    51.Bradtmöller, M., Pastoors, A., Weninger, B. & Weniger, G.-C. The repeated replacement model—Rapid climate change and population dynamics in Late Pleistocene Europe. Quat. Int. 247, 38–49. https://doi.org/10.1016/j.quaint.2010.10.015 (2012).Article 

    Google Scholar 
    52.Cascalheira, J. & Bicho, N. Hunter–gatherer ecodynamics and the impact of the Heinrich event 2 in Central and Southern Portugal. Quat. Int. 318, 117–127 (2013).Article 

    Google Scholar 
    53.Bicho, N., Cascalheira, J., Marreiros, J. & Pereira, T. Rapid climatic events and long term cultural change: The case of the Portuguese Upper Paleolithic. Quat. Int. 428, 3–16. https://doi.org/10.1016/j.quaint.2015.05.044 (2017).Article 

    Google Scholar 
    54.Cascalheira, J. & Bicho, N. Testing the impact of environmental change on hunter-gatherer settlement organization during the Upper Paleolithic in western Iberia. J. Quat. Sci. 33(3), 323–334 (2018).Article 

    Google Scholar 
    55.Weniger, G-C. et al. Late Glacial rapid climate change and human response in the Westernmost Mediterranean (Iberia and Morocco). PLoS ONE 14(12), e0225049. https://doi.org/10.1371/journal.pone.0225049(2019).56.McLaughlin, T. R., Gómez-Puche, M., Cascalheira, J., Bicho, N. & Fernández-López de Pablo, J. Late Glacial and Early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia. Phil. Trans. R. Soc. B 376, 20190724. (2021).57.Portero García, J. M. et al. Mapa Geológico de España 1:50.000, MAGNA n. 486, Jadraque. (Instituto Geológico y Minero de España, Madrid, 1994).58.Portero García, J. M., et al. Mapa Geológico de España 1:50.000, MAGNA n. 485, Valdepeñas de la Sierra, (Instituto Geológico y Minero de España, Madrid, 1995).59.Pérez-González, A. Depresión del Tajo. In Geomorfología de España (ed. Gutiérrez Elorza, M.), 389–436 (Rueda, Madrid, 1994).60.Silva, P. G., Roquero, E., López-Recio, M., Huerta, P. & Martínez-Graña, A. M. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero basins, Central Spain). Quat. Sci. Rev. 166, 188–203. https://doi.org/10.1016/j.quascirev.2016.05.027 (2017).ADS 
    Article 

    Google Scholar 
    61.Angelucci, D. E. The recognition and description of knapped lithic artifacts in thin section. Geoarchaeology 25(2), 220–232. https://doi.org/10.1002/gea.20303 (2010).Article 

    Google Scholar 
    62.Kooistra, M. J. & Pulleman, M. M. Features Related to Faunal Activity. In Interpretation of Micromorphological Features of Soils and Regoliths (eds. Stoops, G., Marcelino, V. & Mess, F.), 397–440 (Elsevier, Amsterdam, 2010).63.Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309. https://doi.org/10.1038/nature13621 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    64.Cascalheira, J. & Bicho, N. On the chronological structure of the Solutrean in Southern Iberia. PLoS ONE 10(9), e0137308. https://doi.org/10.1371/journal.pone.0137308 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    65.Pettitt, P. & Zilhão, J. Problematizing Bayesian approaches to prehistoric chronologies. World Archaeol. 47(4), 525–542. https://doi.org/10.1080/00438243.2015.1070082 (2015).Article 

    Google Scholar 
    66.Douka, K., Chiotti, L., Nespoulet, R. & Higham, T. A refined chronology for the Gravettian sequence of Abri Pataud. J. Hum. Evol. 141, 10230. https://doi.org/10.1016/j.jhevol.2019.102730 (2020).Article 

    Google Scholar 
    67.Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28. https://doi.org/10.1016/j.quascirev.2014.09.007 (2014).ADS 
    Article 

    Google Scholar 
    68.Sánchez Goñi, M. F. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quat. Sci. Rev., 29(21–22), 2823–2827. https://doi.org/10.1016/j.quascirev.2009.11.014(2010).69.Clark, P. U. et al. The last glacial maximum. Science 325(5941), 710–714. https://doi.org/10.1126/science.1172873 (2009).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    70.López-Sáez, J. A. et al. Discrimination of Scots pine forests in the Iberian Central System (Pinus sylvestris var. iberica) by means of pollen analysis. Phytosociological considerations. Lazaroa, 34, 191–208. https://doi.org/10.5209/rev_LAZA.2013.v34.n1.43599 (2013).71.Aranbarri, J. et al. Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a continental region of southwestern Europe. Glob. Planet. Change 114, 50–65. https://doi.org/10.1016/j.gloplacha.2014.01.003 (2014).ADS 
    Article 

    Google Scholar 
    72.Broothaerts, N. et al. Reconstructing past arboreal cover based on modern and fossil pollen data: A statistical approach for the Gredos Range (Central Spain). Rev. Palaeobot. Palynol. 255, 1–13. https://doi.org/10.1016/j.revpalbo.2018.04.007 (2018).Article 

    Google Scholar 
    73.López-Sáez, J. A., et al. Vegetation history, climate and human impact in the Spanish Central System over the last 9,000 years. Quat. Int. 353, 98–122. https://doi.org/10.1016/j.quaint.2013.06.034 (2014).74.López-Sáez, J. A., Sánchez-Mata, D. & Gavilán, R. G. Syntaxonomical update on the relict groves of Scots pine (Pinus sylvestris L. var. iberica Svoboda) and Spanish black pine (Pinus nigra Arnold subsp. salzmannii (Dunal) Franco) in the Gredos range (central Spain). Lazaroa 37, 153–172. https://doi.org/10.5209/LAZA.54043 (2016).75.López-Sáez, J. A., Alba-Sánchez, F., López-Merino, L. & Pérez-Díaz, S. Modern pollen analysis: A reliable tool for discriminating Quercus rotundifolia communities in Central Spain. Phytocoenologia 40, 57–72. https://doi.org/10.1127/0340-269X/2010/0040-0430 (2010).Article 

    Google Scholar 
    76.Sánchez-Mata, D., Gavilán, R. G. & de la Fuente, V. The Sistema Central (Central Range). In The Vegetation of the Iberian Peninsula (ed. Loidi, J.), vol. 1, 549–588 (Springer, Utrecht, 2017).77.López-Sáez, J. A. et al. A palynological approach to the study of Quercus pyrenaica forest communities in the Spanish Central System. Phytocoenologia 45, 107–124. https://doi.org/10.1127/0340-269X/2014/0044-0572 (2015).Article 

    Google Scholar 
    78.van der Knaap, W. O. et al. Migration and population expansion of Abies, Fagus, Picea, and Quercus since 15000 years in and across the Alps, based on pollen percentage threshold values. Quat. Sci. Rev. 24(645–680), 2005. https://doi.org/10.1016/j.quascirev.2004.06.013 (2005).Article 

    Google Scholar 
    79.Abel-Schaad, D. et al. Persistence of tree relicts through the Holocene in the Spanish Central System. Lazaroa 35, 107–131. https://doi.org/10.5209/rev_LAZA.2014.v35.41932 (2014).Article 

    Google Scholar 
    80.López-Sáez, J. A. et al. Late Glacial-early Holocene vegetation and environmental changes in the western Iberian Central System inferred from a key site: The Navamuño record, Béjar range (Spain). Quat. Sci. Rev. 230, 106167. https://doi.org/10.1016/j.quascirev.2020.106167 (2020).Article 

    Google Scholar 
    81.López-Merino, L., López-Sáez, J. A., Ruiz-Zapata, M.B. & Gil-García, M. J. Reconstructing the history of beech (Fagus sylvatica L.) in north-western Iberian Range (Spain): From Late-Glacial refugia to Holocene anthropic induced forests. Rev. Palaeobot. Palynol. 152, 58–65. https://doi.org/10.1016/j.revpalbo.2008.04.003 (2008).82.Ruiz-Alonso, M., Pérez-Díaz, S. & López-Sáez, J. A. From glacial refugia to the current landscape configuration: permanence, expansion and forest management of Fagus sylvatica L. in the Western Pyrenean Region (Northern Iberian Peninsula). Veget. Hist. Archaeobot. 28, 481–496. https://doi.org/10.1007/s00334-018-0707-6(2019). 83.Cuenca-Bescós G, Straus, L. G., González Morales, M. R & García Pimienta J.C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria Spain). J. Arch. Sci., 36, 947–955. https://doi.org/10.1016/j.jas.2008.09.025 (2009).84.López-García, J. M, Cuenca-Bescós, G., Finlayson, C., Brown, K. & Giles Pacheco, F. Palaeoenvironmental and palaeoclimatic proxies of the Gorham’s cave small mammal sequence Gibraltar southern Iberia. Quat. Int., 243, 137–142. https://doi.org/10.1016/j.quaint.2010.12.032 (2011).85.Garcia-Ibaibarriaga, N. et al. A palaeoenvironmental estimate in Askondo (Bizkaia, Spain) using small vertebrates. Quat. Int. 364, 244–254. https://doi.org/10.1016/j.quaint.2014.09.069 (2015).Article 

    Google Scholar 
    86.Baca, M. et al. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quat. Sci. Rev. 233, 106239. https://doi.org/10.1016/j.quascirev.2020.106239 (2020).Article 

    Google Scholar 
    87.Yravedra, J. et al. Not so deserted…paleoecology and human subsistence in Central Iberia (Guadalajara, Spain) around the Last Glacial Maximum. Quat. Sci. Rev. 140, 21–38. https://doi.org/10.1016/j.quascirev.2016.03.021 (2016).88.Alcolea-González, J. J. et al. Avance al estudio del poblamiento paleolítico del Alto Valle del Sorbe (Muriel, Guadalajara). In Il Congreso de Arqueología Peninsular I, Paleolítico y Epipaleolítico (eds. Balbín R. de & Bueno, P.), 201–218 (Fundacion Rei Afonso Henriques, Zamora, 1997).89.Smith P. Le Solutréen en France (Delmas, Bordeaux, 1966).90.Fullola, J. M. El Solutreo-Gravetiense o Parpallense, industria mediterránea. Zephyrvs XXVIII–XXIX, 125–33 (1978).91.Villaverde, V. & Peña, J. L. Piezas con escotadura del Paleolitico Superior Valenciano. (Servicio de Investigación Prehistórica, Valencia, 1981).92.de la Rasilla, M. Secuencia y cronoestratigrafía del solutrense cantábrico. Trab. de Prehist. 46, 35–46. https://doi.org/10.3989/tp.1989.v46.i0.585 (1989).Article 

    Google Scholar 
    93.Zilhão J. O Paleolítico Superior da Estremadura portuguesa. (Edições Colibri, Lisboa, II vols., 1997).94.Straus, L. G. Once more into the breach: Solutrean chronology. Munibe 38, 35–38 (1986).
    Google Scholar 
    95.Calvo, A. & Prieto, A. El final del Gravetiense y el comienzo del Solutrense en la Península Ibérica. Un estado de la cuestión acerca de la cronología radiocarbónica en 2012. Espacio, Tiempo y Forma 5, 131–148. https://doi.org/10.5944/etfi.5.2012.5377 (2012). 96.Zilhão, J. Seeing the leaves and not missing the forest: a Portuguese perspective of the Solutrean. In Pleistocene foragers on the Iberian Peninsula: their culture and environment (eds. Pastoors A, Auffermann B.), 201–216 (Neanderthal Museum, Mettmann, 2013).97.González-Sampériz, P. et al. Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Rev. Palaeobot. Palynol. 162(3), 427–457. https://doi.org/10.1016/j.revpalbo.2010.03.009 (2010).Article 

    Google Scholar 
    98.González-Sampériz, P. et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: The Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 242, 106425. https://doi.org/10.1016/j.quascirev.2020.106425 (2020).Article 

    Google Scholar 
    99.Cacho, I. et al. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanogr. Paleoclimatol. 16, 40–52. https://doi.org/10.1029/2000PA000502 (2001).100.Fletcher, W. J. & Sánchez Goñi, M. F. Orbital and sub-orbital climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quat. Sci. Rev. 70, 451–464. https://doi.org/10.1016/j.yqres.2008.07.002 (2008).101.Sánchez Goñi, M. F. et al. Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat. Sci. Rev. 27, 1136–1151. https://doi.org/10.1016/j.quascirev.2008.03.003(2008).102.Domínguez-Villar, D. et al. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci. Rep. 3, 2034. https://doi.org/10.1038/srep02034 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Carrasco, R., Pedraza, J., Domínguez-Villar, D., Willenbring, J. & Villa, J. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle. Quat. Sci. Rev. 129, 163–177. https://doi.org/10.1016/j.quascirev.2015.09.021 (2015).ADS 
    Article 

    Google Scholar 
    104.Valdeolmillos, A., Dorado-Valiño, M., Ruiz-Zapata, B., Bardají, T. & Bustamante, I. Palaeoclimatic record of the Last Glacial Cycle at las Tablas de Daimiel National Park (Southern Iberian Meseta, Spain). In Quaternary climatic changes and environmental crises in the Mediterranean region (eds. Ruiz-Zapata, B. et al.), 221–228 (Universidad de Alcalá, Alcalá de Henares, 2003).105.Vegas, J. et al. Identification of arid phases during the last 50 kyr Cal BP from the Fuentillejo maar lacustrine record (Campo de Calatrava Volcanic Field, Spain). J. Quat. Sci. 25, 1051–1062. https://doi.org/10.1002/jqs.1262 (2010).Article 

    Google Scholar 
    106.Alcolea-González, J. J. & Balbín-Behrmann, R. de. El Arte rupestre Paleolítico del interior peninsular. In Arte sin artistas. Una mirada al Paleolítico, 187–207 (Museo Arqueológico Regional, Comunidad de Madrid, Madrid, 2012).107.Alcaraz-Castaño, M. et al. The human settlement of Central Iberia during MIS 2: New technological, chronological and environmental data from the Solutrean workshop of Las Delicias (Manzanares River valley, Spain). Quat. Int. 431, 104–124. https://doi.org/10.1016/j.quaint.2015.06.069 (2017).108.Aubry, T., Luis, L., Mangado Llach, J. & Matias, H. Adaptation to resources and environments during the last glacial maximum by hunter-gatherer societies in Atlantic Europe. J. Anthropol. Res. 71, 521–544. https://doi.org/10.3998/jar.0521004.0071.404 (2015).109.Aubry, T. et al. Upper Paleolithic lithic raw material sourcing in Central and Northern Portugal as an aid to reconstructing hunter-gatherer societies. J. Lithic Stud. 3(2), 7–28. https://doi.org/10.2218/jls.v3i2.1436 (2016).Article 

    Google Scholar 
    110.Alcaraz-Castaño, M. et al. A context for the last Neandertals of interior Iberia: Los Casares cave revisited. PLoS ONE 12(7), e0180823. https://doi.org/10.1371/journal.pone.0180823 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    111.Kehl, M. et al. The rock shelter Abrigo del Molino (Segovia, Spain) and the timing of the late Middle Palaeolithic in Central Iberia. Quat. Res. 90, 180–200. https://doi.org/10.1017/qua.2018.13 (2018).Article 
    CAS 

    Google Scholar 
    112.Hoffecker, J. Desolate landscapes. Ice-age settlement in Eastern Europe. (Rutgers University Press, London, 2002).113.Nigst, P. et al. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl. Acad. Sci. 111(40), 14394–14399. https://doi.org/10.1073/pnas.1412201111 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    114.Terberger T. Le Dernier Maximum glaciaire entre le Rhin et le Danube, un réexamen critique. In Le Paléolithique supérieur ancien de l’Europe du Nord-Ouest (dirs. Bodu, P. et al.), 415–443 (Société Préhistorique Française, Mémoire LVI, Paris, 2013).  115.Terberger, T. & Street, M. Hiatus or continuity? New results for the question of pleniglacial settlement in Central Europe. Antiquity 76, 691–698 (2002).Article 

    Google Scholar 
    116.Verpoorte, A. Limiting factors on early modern human dispersals: The human biogeography of late Pleniglacial Europe. Quatern. Int. 201(1–2), 77–85 (2009).Article 

    Google Scholar 
    117.Slimak, L. Late Mousterian Persistence near the Arctic Circle. Science 332(6031), 841–845. https://doi.org/10.1126/science.1203866 (2011).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    118.Rethemeyer, J. et al. Status report on sample preparation facilities for 14C analysis at the new CologneAMS center. Nucl. Instrum. Methods Phys. Res. B 294, 168–172. https://doi.org/10.1016/j.nimb.2012.02.012 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    119.Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1), 103–112. https://doi.org/10.1017/S0033822200045069 (2010).Article 
    CAS 

    Google Scholar 
    120.Wood, R. E. et al. Testing the ABOx-SC method: dating known age charcoals associated with the Campanian Ignimbrite. Quat. Geochronol. 9, 16–26. https://doi.org/10.1016/j.quageo.2012.02.003 (2012).Article 

    Google Scholar 
    121.Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337–360. https://doi.org/10.1017/S0033822200033865 (2009).Article 

    Google Scholar 
    122.Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41 (2020).Article 
    CAS 

    Google Scholar 
    123.Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3), 1023–1045. https://doi.org/10.1017/S0033822200034093 (2009).Article 

    Google Scholar 
    124.Burjachs, F., López-Sáez, J. A. & Iriarte, M. J. Metodología Arqueopalinológica. In La recogida de muestras en Arqueobotánica: objetivos y propuestas metodológicas. La gestión de los recursos vegetales y la transformación del paleopaisaje en el Mediterráneo occidental (eds. Buxó, R. & Piqué, R.), 11–18 (Museu d’Arqueologia de Catalunya, Barcelona, 2003).125.López-Sáez, J. A., López-García, P. & Burjachs, F. Arqueopalinología: Síntesis Crítica. Polen 12, 5–35 (2003).
    Google Scholar 
    126.Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen analysis (Blackwell Scientific Publications, 1991).
    Google Scholar 
    127.Reille, M. Pollen et spores d’Europe et d’Afrique du Nord. (Marseille: Laboratoire de Botanique Historique et Palynologie, 1999).128.Desprat, S. et al. Pinus nigra (Spanish black pine) as the dominant species of the last glacial pinewoods in south-western to central Iberia: a morphological study of modern and fossil pollen. J. Biogeogr. 42, 1998–2009. https://doi.org/10.1111/jbi.12566 (2015).Article 

    Google Scholar 
    129.Grimm, E. C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35. https://doi.org/10.1016/0098-3004(87)90022-7 (1987).ADS 
    Article 

    Google Scholar 
    130.Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. New. Phytol. 132, 155–170. https://doi.org/10.1111/j.1469-8137.1996.tb04521.x (1996).Article 
    PubMed 
    CAS 

    Google Scholar 
    131.Grimm, E. C. Tilia version 2. (Illinois State Museum. Research and Collection Center, Springfield, 1992).132.Grimm, E. D. TGView. (Illinois State Museum, Research and Collection Center, Springfield, 2004).133.Schweingruber F.H. Microscopic Wood Anatomy; Structural variability of stems and twigs in recent and subfossil woods from Central Europe. (Birmensdorf: Swiss Federal Institute for Forest, Snow and Landscape Research, 1990, 3rd edition).134.Hather, J. G. The Identification of the Northern European Woods. A Guide for Archaeologists and Conservators (Archetype Publications, 2000).
    Google Scholar 
    135.Vernet, J. L., Ogereau, P., Figueiral, I., Machado, C., Uzquiano, C. Guide d’identification des charbons de bois préhistoriques et récents. Sud-Ouest de l’Europe: France, Péninsule Ibérique et Îles Canaries (CNRS Éditions, Paris, 2001).136.Cuenca-Bescós, G., Straus, L. G., González Morales, M. R. & García Pimienta, J. C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria Spain). J. Arch. Sci. 36, 947–955. https://doi.org/10.1016/j.jas.2008.09.025 (2009).Article 

    Google Scholar 
    137.López-García, J. M. Los micromamíferos del Pleistoceno Superior en la Península Ibérica. Evoluión de la diversidad taxonómica y cambios paleoambientales y paleoclimáticos (Editorial Académica Española, 2011).138.Moya-Sola, R. & Cuenca-Bescós, G. Biometría mandibular y dentaria de las musarañas del género Sorex Linnaeus, 1758 en la región central y occidental de los Pirineos. Galemys 31, 11–25. https://doi.org/10.7325/Galemys.2019.A2 (2019).Article 

    Google Scholar 
    139.Lyman, R. L. Relative abundance of skeletal specimens and taphonomic analysis of vertebrate remains. Palaios 9(3), 288–298. https://doi.org/10.2307/3515203 (1994).ADS 
    Article 

    Google Scholar 
    140.Brain, C. K. The contribution of Namib Desert Hottentot to understanding of Australopithecus bone accumulations. Sci. Pap. Namibian Desert Res. Station 32, 1–11 (1969).
    Google Scholar 
    141.Barba, R. & Domínguez-Rodrigo M. The Taphonomic Relevance of the Analysis of Bovid Long Limb Bone Shaft Features and Their Application to Element Identification. Study of Bone Thickness and Morphology of the Medullar Cavity. J. Taphon. 3, 29–42 (2005).142.Yravedra, J. & Domínguez-Rodrigo, M. The shaft-based methodological approach to the quantification of long limb bones and its relevance to understanding hominid subsistence in the Pleistocene: application to four Palaeolithic sites. J. Quat. Sci. 24(1), 85–96. https://doi.org/10.1002/jqs.1164 (2009).Article 

    Google Scholar 
    143.Inizan, M. L., Reduron, M., Roche, H. & Tixier J. Préhistoire de la Pierre Taillée. T. 4. Technologie de la pierre taillée. (CREP, Meudon, Paris, 1995).144.Soressi, M. & Geneste, J.-M. The history and efficacy of the Chaîne Opératoire approach to lithic analysis: Studying techniques to reveal past societies in an evolutionary perspective. PaleoAnthropology 2011, 334–350. https://doi.org/10.4207/PA.2011.ART63 (2011).Article 

    Google Scholar 
    145.Nelson, M. C. The study of technological organization. Archaeol. Method. Theory 3, 57–100 (1991).
    Google Scholar 
    146.Kelly, R. L. The three sides of a biface. Am. Antiq. 53(4), 717–734. https://doi.org/10.2307/281115 (1998).Article 

    Google Scholar 
    147.Robinson, E. & Sellet, F. (eds.). Lithic Technological Organization and Paleoenvironmental Change. Global and Diachronic Perspectives. https://doi.org/10.1007/978-3-319-64407-3(Springer, 2018). 148.Pelegrin, J. & Chauchat, C. Tecnología y función de las puntas de Paijan: el aporte de la experimentación. Lat. Am. Antiq. 4(4), 367–382 (1993).Article 

    Google Scholar 
    149.Callahan, E. The Basics of Biface Knapping in the Eastern Fluted Point Tradition: a Manual for Flintknappers and Lithic Analysts. (Piltdown Productions, 2000, 4th edition).
    Google Scholar 
    150.Aubry, T. et al. Solutrean laurel leaf production at Maîtreaux: An experimental approach guided by techno-economic analysis. World. Archaeol. 40, 48–66 (2008).Article 

    Google Scholar  More

  • in

    Seasonality and landscape characteristics impact species community structure and temporal dynamics of East African butterflies

    Study sitesOur study sites are located on the Yatta Plateau in south-eastern Kenya. This region is characterized by dry savannahs. Annual rainfall (average: 810 mm) occurs during two periods, from March to May (average: 330 mm) and from October to January (average 480 mm) (c.f. Jaetzold et al.37). The commonest soil types are ferralsols and luvisols, which are of low fertility37. 97.1% of the human population in our study region depend on subsistence crop farming38, and the population has almost doubled in number from 1999 to 200938. Consequently, fallow periods for fields are omitted, which further decreases soil fertility, and increases pressure on pristine habitats.The dry savannah landscape is traversed by temporary (seasonal) rivers. These rivers are bordered by riparian vegetation, consisting of a diverse and unique plant community. However, this vegetation is frequently exploited for timber, charcoal and brick production39,40. The region is further affected by climate change, with an increase in rainfall variability and mean temperature37. These factors lower the reliability of agricultural production and food security, hence leading to severe destruction of pristine habitats.We selected two study sites, affected by different anthropogenic pressures, but which are subject to identical biotic and abiotic preconditions (including seasonality): Firstly, a highly degraded anthropogenic landscape along Nzeeu River, south of Kitui city. Secondly, a largely intact dryland environment along Kainaini River located near the university campus of the South Eastern Kenya University, north of Kitui city (Fig. 1). The landscape along Nzeeu River is densely populated by subsistence farmers. Thus, the original riparian and savannah vegetation has been mostly transformed into arable fields for the cultivation of maize, sorghum, peas, and mangos. Furthermore, the riparian vegetation, where it still exists, has largely been replaced by invasive exotic plant species (e.g. Lantana camara)12. The landscape of our second study site along Kainaini River represents a still largely intact riparian forest with adjoining dry savannahs. It remains mostly undisturbed, except for some moderate live-stock pasturing by nearby subsistence settlers.Butterfly assessmentsWe counted butterflies in both habitat types along line-transects, each 150 m long. We set 24 transects along each of the two rivers, with eight transects along the river bank, eight 250 m distant to the river, and another eight 500 m distant to the river (in total: 2 × 24 transects = 48 transects). The minimum distance between transects was at least 200 m, to minimize spatial autocorrelation. Exact GPS coordinates of each transect are given in Appendix S2.We recorded all butterflies encountered during transect counts (species, number of individuals of each species). Each transect was visited eight times during the dry season (August/September 2019) and eight times during the rainy season (January/February 2020). Data collection was performed between 9 a.m. and 4 p.m. Each butterfly individual within 5 m of the transect line (horizontally to vertically) was recorded by visual observation and, if needed, a butterfly net (see Pollard15, with modifications). While recording butterflies, the observers walked very slowly and spent about 15 min per transect. Species were identified either immediately while the butterfly was on the wing, or individuals were netted and then determined in the field. Individuals of species for which ad hoc identification was critical (e.g. many blues and skippers) were caught with the net, photographed (upper and under wing side) and released again. The photograph-based identification of these individuals was performed later using literature25. Apart from species and number of individuals per species, we recorded cloud cover during each transect walk (classified as: clear, slightly cloudy, mostly cloudy, overcast), exact time, and date. Field teams comprised two observers and one person making notes of all observations. Transects are displayed in Fig. 1. All butterfly data collected are compiled in Appendix S3.TraitsThe occurrence of a species in a specific environment strongly depends on its ecology, behaviour, and life-history41. Therefore, we considered these characteristics for each butterfly species recorded in the field. These trait data were compiled from Larsen25 and web-sites (e.g. www.gbif.org, www.lepiforum.de/non-eu.pl). We considered the following characteristics: wing span (mm), ratio length/width of the forewing (relative), ratio forewing length/thorax width (relative), geographic distribution (4 categories), savannah index (5 categories), forest index (5 categories), tree index (3 categories), wetness index (3 categories), habitat specialisation (3 categories), larval foodplant specialisation (3 categories), larval food plant type (dicotyledonous, monocotyledonous), and hemeroby index (4 categories). Detailed classifications are provided in Appendix S4.Habitat parametersHabitat structures impact species´ occurrence, abundances and community structures42. In our study, we considered habitat structures for each transect. Habitat parameters were recorded (counted and estimated) every 20 m along each transect. We estimated the following habitat parameters: Canopy cover (percentage of leaf cover vs. sky measured with the CanopeoApp); herb, shrub and tree cover (percentage coverage of each layer within a radius of 3 m); flowers on herbs, shrubs and trees (estimated within a radius of 3 m, and subsequently allocated to the classes 0, 1–10, 11–50, 51–100 and  > 100 flowers); occurrence of Lantana camara shrub, and exotic trees (estimated coverage within a radius of 3 m, and subsequently allocated to the classes 0 (no), 1 (rare), 2 (present) and 3 (dominant), respectively); and water availability (presence/absence) within a radius of 3 m. All raw data of habitat parameters are provided in Appendix S5.StatisticsWe first arranged the raw data in three matrices: a 71 × 14 species × trait matrix T, a 71 × 96 species × transect matrix M, and a 6 × 96 habitat characteristics × transect matrix H. Matrix multiplication of E = T−1MA−1, where A is the vector of total abundances in the transects, returned a matrix E of average trait expression in each transect.To answer the first research question, we compared species richness, abundances, and trait expression between the transects and used general linear modelling (glm) to detect differences in richness and trait expression with respect to the study sites (i.e. the two river systems with their different land-use patterns), season, distance from the rivers, as well as to environmental variables. Some of the habitat variables and trait expressions were highly positively correlated (Appendix S1). Consequently, the glm included only variables correlated by less than r = 0.7 (i.e. shrub cover, tree cover, habitat specialisation, savannah index, larval foodplant specialisation, and hemeroby).To infer differences in community structure between transects (second research question), we first calculated the two most dominant eigenvectors, which explained 91.5% and 3.5% of variance, of a principal components analysis of the M matrix. These eigenvectors cover differences in species composition between and within transects. We used glm and two-way Permanova to relate these differences to season, distance to river, and study sites (i.e. different land-use types in the two river systems). Additionally, we assessed the degree of β-diversity among sets of transects with the proportional turnover metric of Tuomisto43: (beta =1-frac{alpha }{gamma }); where α denotes the average species richness per transect and γ the corresponding total richness.To infer species spill-over effects from the riparian forests into the adjoining savannah (third research question), we calculated the Bray–Curtis similarities for three groups of transects within each season and study site. First, we compared average pairwise Bray–Curtis values between transects of intermediate and greater distance with the near-river transects within each study site. Second, we calculated the average Bray–Curtis similarities between all transects within each study site (2)—season (2)—distance class to river (3) combination. Third, we calculated the average within-transect Bray–Curtis similarity for the rainy season, to infer small scale compositional variability. The latter calculations were impossible for the dry season, due to the overall low number of recorded species. Calculations were done with Statistica 12. More

  • in

    Quality assessment of Urochloa (syn. Brachiaria) seeds produced in Cameroon

    1.Renvoize, S., Clayton, W. D. & Kabuye C. H. S. In Brachiaria: Biology, Agronomy, and Improvement 1–15 (CIAT and Embrapa, 1996).2.Keller-Grein, G., Maass, B. L. & Hanson, J. In Brachiaria: Biology, Agronomy, and Improvement 16–42 (CIAT and Embrapa, 1996).3.Barnard, C. Herbage Plant Species 154 (Australian Herbage Plant Registration Authority, Canberra, Australia, 1969).4.Roberts, O. T. A review of pasture species in Fiji 1. Grasses. Trop. Grassl. 4, 129–137 (1970).
    Google Scholar 
    5.Serrão, E. A. S. & Simão Neto, M. Informaçõessobreduasespécies de gramíneasforrageiras do gênero Brachiaria na Amazônia: B. decumbens Stapf, B. ruziziensis Germain et Everard. Estudossobreforrageirasna Amazônia (IPEAN, 1971)6.Parsons, J. J. Spread of African pasture grasses to the American tropics. J. Range. Manag. 25, 12–17 (1972).Article 

    Google Scholar 
    7.Sendulsky, T. Brachiaria: Taxonomy of cultivated and native species in Brazil. Hoehnea 7, 99–139 (1978).
    Google Scholar 
    8.Oram, R. N. Register of Australian herbage plant cultivars. In Australian Herbage Plant Registration Authority, 304 (East Melbourne, Australia, 1990).9.Argel, P. J. & Keller-Grein, G. In Brachiaria: Biology, Agronomy, and Improvement 205–224 (CIAT and Embrapa, 1996).10.Pizarro, E. A., do Valle, C. B., Keller-Grein, G., Schultze-Kraft. R. & Zimmer, A. H. In Brachiaria: Biology, Agronomy, and Improvement 225–246 (CIAT and Embrapa, 1996).11.Jank, L., Barrios, S. C., Valle, C. B., Simeão, R. M. & Alves, G. F. The value of improved pastures to Brazilian beef production. Crop. Pasture Sci. 65, 1132–1137. https://doi.org/10.1071/CP13319 (2014).Article 

    Google Scholar 
    12.Rueda, Thaiana et al. Yield component responses of the Brachiaria brizantha forage grass to soil water availability in the Brazilian Cerrado. Agriculture 10(1), 13 (2020).Article 

    Google Scholar 
    13.Stür, W. W., Hopkinson, J. M. & Chen, C.P. In Brachiaria: Biology, Agronomy, and Improvement 258–271 (CIAT and Embrapa, 1996).14.Ndikumana, J. & de Leeuw, P. N. In Brachiaria: Biology, Agronomy, and Improvement 247–257(CIAT and Embrapa, 1996).15.Maass, B. L. et al. Home coming of Brachiaria: Improved hybrids prove useful for African animal agricultural. E. Afr. Agric. For. J. 81, 71–78 (2015).Article 

    Google Scholar 
    16.Mutimura, M. & Everson, T. M. On-farm evaluation of improved Brachiaria grasses in low rainfall and aluminum toxicity prone areas of Rwanda. Int. J. Biodivers. Conserv. 4, 137–154 (2012).Article 

    Google Scholar 
    17.Njarui, D. M. G., Gatheru, M. & Ghimire, S. R. In African Handbook of Climate Change Adaptation 1–21 https://doi.org/10.1007/978-3-030-42091-8_146-1 (2020).18.Ghimire, S. et al. In Proceedings of 23rd International Grassland Congress 361–370 (Range Management Society of India, 2015).19.Njarui, D. M. G., Gichangi, E. M., Ghimire, S. R. & Muinga, R. W. Climate smart Brachiaria Grass for Improving Livestock Production in East Africa—Kenya Experiences (KALRO, 2016).20.Mutimura, M., Ebong, C., Rao, I. M. & Nsahlai, I. V. Change in growth performance of crossbred (Ankole × Jersey) dairy heifers fed on forage grass diets supplemented with commercial concentrates. Trop. Anim. Health. Prod. 48, 741–746 (2016).Article 

    Google Scholar 
    21.Boonman, J. G. Experimental studies on seed production of tropical grasses in Kenya. 2. Tillering and heading in seed crops of eight grasses. Neth. J. Agric. Sci. 19, 237–249 (1971).
    Google Scholar 
    22.Pamo, E. T., Yonkeu, S. & Onana, J. Evaluation des plantesfourragèresintroduites dans l’AdamaouaCamerounais. Cahiers d’Agric. 6, 203–207 (1997).
    Google Scholar 
    23.Borget, M. Les recherchesfourragères à l’IRAT/Cameroun (Bilan à la mi-1968). L’AgronomieTropicale Série 2, Agronomie Générale. Etudes Techniques 23, 1231–1241 (1968).
    Google Scholar 
    24.Husson, O. et al. Brachiaria sp., B. ruziziensis, B. brizantha, B. decumbens, B. humidicola. Manuel pratique du semis direct à Madagascar (CIRAD, 2008).25.Ministry of Agriculture and Rural Development. The State of Biodiversity for Food and Agriculture in the Republic of Cameroon (MINADER, 2015), http://www.fao.org/3/CA3431EN/ca3431en.pdf26.Institute of Agricultural Research for Development. Annual report. Regional Agricultural Research Centre (Wakwa, Ngaoundéré, Cameroon, 2015).27.Addinsoft. XLSTAT Statistical and Data Analysis Solution. New York, USA. https://www.xlstat.com (2021).28.Botwright, T. L., Condon, A. G., Rebetzke, G. J. & Richards, R. A. Field evaluation of early vigour for genic improvement of grain yield in wheat. Aust. J. Agric. Res. 53, 1137–1145 (2002).Article 

    Google Scholar 
    29.Dholakia, B. B. et al. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed. 122, 392–395 (2003).CAS 
    Article 

    Google Scholar 
    30.Wu, W. et al. A measurement system of thousand kernel weight based on the Android Platform. Agronomy 8(9), 178 (2018).Article 

    Google Scholar 
    31.Heimbach, U. Variability of thousand grain weights of seed batches of important arable and some horticultural crops. J. für Kulturpflanzen 70, 250–254 (2018).
    Google Scholar 
    32.Parihar, S. S. & Pathak, P. S. Flowering phenology and seed biology of selected tropical perennial grasses. Trop. Ecol. 47, 81–87 (2006).
    Google Scholar 
    33.Hare, M., Tatsapong, P. P. & Phengphet, S. Effect of storage duration, storage room and bag type on seed germination of Brachiaria hybrid cv.. Mulato. Trop. Grassl. 42, 224–228 (2008).
    Google Scholar 
    34.de Andrade, R. P., Thomas, D. & Ferguson, J. E. Seed production of pasture species in a tropical savanna region of Brazil. II Grasses. Trop. Grassl. 17, 59–64 (1983).
    Google Scholar 
    35.Nakamanee, G. & Phaikaew, C. In Proceedings of the third regional meeting of the Forages for Smallholders Project 155–162 (CIAT, 1998).36.Song, L. & Kalms, I. Improving germination of tropical grasses with new seed-coating technologies. Trop. Grassl. 41, 242 (2007).
    Google Scholar 
    37.Adkins, S. W., Bellairs, S. M. & Loch, D. S. Seed dormancy mechanisms in warm season grass species. Euphytica 126, 13–20 (2002).CAS 
    Article 

    Google Scholar 
    38.Simpson, G. M. Seed Dormancy in Grasses (Cambridge University Press, Cambridge, 1990).Book 

    Google Scholar 
    39.Hopkinson, J. M., de Souza, F. H. D., Diulgheroff, S., Ortiz, A. & Sanchez, M. In Brachiaria: Biology, Agronomy, and Improvement 124–140 (CIAT, 1996)40.Food and Agriculture Organization. Genebank Standards for Plant Genetic Resources for Food and Agriculture (FAO, 2013).41.Hare, M. D., Sutin, N., Phengphet, S. & Songsiri, T. Germination of tropical forage seeds stored for six years in ambient and controlled temperature and humidity conditions in Thailand. Trop. Grassl. Forrajes Trop. 6, 26–33 (2018).Article 

    Google Scholar 
    42.Mobli, A., Mollaee, M., Manalil, S. & Chauhan, B. S. Germination ecology of Brachiaria eruciformis in Australia and its implications for weed management. Agronomy 10, 30. https://doi.org/10.3390/agronomy10010030 (2020).CAS 
    Article 

    Google Scholar 
    43.Romani, F., Inacio, R. & de Carvalho, R. I. N. Break dormancy, germination and vigour of Brachiaria brizantha cv. Brs Piatã seeds. R. Eletr. Cient Uergs. Porto Alegre 2, 235–239 (2016).Article 

    Google Scholar 
    44.Pizarro, E. A., Hare, M. D., Mutimura, M. & Changjun, B. Brachiaria hybrids: potential, forage use and seed yield. Trop. Grassl. Forrajes. Trop. 1, 31–35 (2013).Article 

    Google Scholar 
    45.Herrera, J. Efecto de alguns tratamentos para interromper o resto em sementes de grama. II. Urochloa decumbens. Agron. Costarric 18, 75–85 (1994).
    Google Scholar 
    46.Whiteman, P. C. & Mendra, K. Effects of storage and seed treatments on germination of Brachiaria decumbens. Seed Sci. Technol. 10, 233–242 (1982).
    Google Scholar 
    47.Bakhtavar, M. A. & Afzal, I. Preserving wheat grain quality and preventing aflatoxin accumulation during storage without pesticides using dry chain technology. Environ. Sci. Pollut. Res. Int. 27, 42064–42071 (2020).CAS 
    Article 

    Google Scholar 
    48.Batista, T. B., da Silva Binotti, F. F., Cardoso, E. D., Costa, E. & do Nascimento, D. M. Appropriate hydration period and chemical agent improve priming in Brachiaria seeds. Pesqui. Agropecu. Trop. 46, 350–356 (2016).Article 

    Google Scholar 
    49.Pereira, S. R., da Lima, A. E. S., Contreiras-Rodrigues, A. P. D., de Oliveira, D. R. & Laura, V. A. Priming of Urochloa brizantha cv. Xaraes seeds. Afr. J. Agric. Res. 13, 2804–2807 (2018).CAS 
    Article 

    Google Scholar 
    50.Ferguson, J. E., Thomas, D., de Andrade, R. P., Costa, N. S. & Jutzi, S. In Proceedings of XIV International Grassland Congress 275–278 (Westview Press, 1983)51.Boonman, J. G. East Africa’s Grasses and Fodders: Their Ecology and Husbandry (Kluwer Academic Publishers, The Netherlands, 1993).Book 

    Google Scholar  More

  • in

    Response of deep soil moisture to different vegetation types in the Loess Plateau of northern Shannxi, China

    1.Feng, Q., Zhao, W. W., Zhao, M. Y. & Zhong, L. N. Spatial heterogeneity of soil moisture and the scale variability of its influencing factors: A case study in the Loess Plateau of China. Water 5, 1228 (2013).ADS 
    Article 

    Google Scholar 
    2.Hu, W., Shao, M. A., Wang, Q. J. & Reichardt, K. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed. CATENA 79(1), 72–82 (2009).CAS 
    Article 

    Google Scholar 
    3.Legates, D. R. et al. Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr. 35(1), 65–86 (2010).Article 

    Google Scholar 
    4.Hou, G. R. et al. Response of soil moisture to single-rainfall events under three vegetation types in the gully region of the Loess Plateau. Sustainability 10, 3793 (2018).CAS 
    Article 

    Google Scholar 
    5.Chen, L. D., Huang, Z. L., Gong, J., Fu, B. J. & Huang, Y. L. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. CATENA 70(2), 200–208 (2007).Article 

    Google Scholar 
    6.Li, Y. S. The properties of water cycle in soil and their effect on water cycle for land in the Loess Region. Acta Ecol Sin 3(2), 91–101 (1983) (in Chinese).7.Li, Y. Y. & Shao, M. A. Climatic change, vegetation evolution and low moisture layer of soil on the Loess Plateau. J. Arid Land Resour. Environ. 15(1), 72–77 (2001) (in Chinese).8.Mu, X. M., Xu, X. X., Wang, W. L., Wen, Z. M. & Du, F. Impact of artificial forest on soil moisture of the deep soil layer on Loess Platea. Acta Pedo. Sin. 2, 210–217 (2003) ((in Chinese)).
    Google Scholar 
    9.Yang, L., Wei, W., Chen, L. D. & Mo, B. R. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 475, 111–122 (2012).ADS 
    Article 

    Google Scholar 
    10.Zhao, X. K., Li, Z. Y., Zhu, D. H., Zhu, Q. K. & Robeson, M. Revegetation using the deep planting of container seedings to overcome the limitations associated with topsoil desiccation on exposed steep earthy road slopes in the semiarid loess region of China. Land Degrad. Dev. 2018(29), 2797–2807 (2018).Article 

    Google Scholar 
    11.Jia, Y. H. & Shao, M. A. Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China. J. Hydrol. 519, 523–531 (2014).ADS 
    Article 

    Google Scholar 
    12.Deng, L., Shangguan, Z. P. & Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment. Res. 27(1), 120–127 (2012).Article 

    Google Scholar 
    13.Zhou, P., Wen, A. B., Zhang, X. B. & He, X. B. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environ. Earth Sci. 2013(68), 633–639 (2013).
    Google Scholar 
    14.Chen, Y. P. et al. Balancing green and grain trade. Nat. Geosci. 10(8), 739–741 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Liu, Y. X., Lu, Y. H., Fu, B. J., Harris, P. & Wu, L. H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 650, 1029–1040 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Wang, K. B. et al. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China. J. Arid Land 8(2), 207–220 (2016).Article 

    Google Scholar 
    17.Su, B. Q. & Shangguan, Z. P. Decline in soil moisture due to vegetation restoration on the Loess Plateau of China. Land Degrad. Dev. 30, 290–299 (2019).Article 

    Google Scholar 
    18.Wang, Y. Q., Shao, M. A., Zhu, Y. J. & Liu, Z. P. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. Forest Meteorol. 151(4), 437–448 (2011).ADS 
    Article 

    Google Scholar 
    19.Wang, Y. Q., Shao, M. A., Liu, Z. P. & Warrington, D. N. Regional spatial pattern of deep soil water content and its influencing factors. Hydrol. Sci. J. 57(2), 265–281 (2012).Article 

    Google Scholar 
    20.Wang, Y. Q., Shao, M. A. & Liu, Z. P. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau. Geoderma 193, 300–310 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    21.Nosetto, M. D., Jobbagy, E. G., Toth, T. & Di Bella, C. M. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia 152(4), 695–705 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Deng, X. Z., Shi, Q. L., Zhang, Q., Shi, C. C. & Yin, F. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Phys. Chem. 79–82, 2–10 (2015).ADS 

    Google Scholar 
    23.Sun, Z. X., Wu, F., Shi, C. C. & Zhan, J. Y. The impact of land use change on water balance in Zhangye city, China. Phys. Chem. Earth 96, 64–73 (2016).Article 

    Google Scholar 
    24.Porporato, A., D’Odorico, P., Laio, F. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25(8–12), 1335–1348 (2002).ADS 
    Article 

    Google Scholar 
    25.Chen, H. S., Shao, M. A. & Li, Y. S. Soil desiccation in the Loess Plateau of China. Geoderma 143, 91–100 (2008).ADS 
    Article 

    Google Scholar 
    26.Shen, M. S. et al. Seasonal variations in the influence of vegetation cover on soil water on the loess hillslope. J. Mt. Sci. 17(9), 2148–2160 (2020).Article 

    Google Scholar 
    27.Wang, S., Fu, B. J., Gao, G. Y., Liu, Y. & Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. CATENA 101(2), 122–128 (2013).Article 

    Google Scholar 
    28.Fu, B. J., Wang, J., Chen, L. D. & Qiu, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. CATENA 54, 197–213 (2003).Article 

    Google Scholar 
    29.Gao, X. D. et al. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. CATENA 87(3), 357–367 (2011).Article 

    Google Scholar 
    30.Mei, X. M. et al. The spatial variability of soil water storage and its controlling factors during dry and wet periods on loess hillslopes. CATENA 162, 333–344 (2018).Article 

    Google Scholar 
    31.Liu, B. X. & Shao, M. A. Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China. J. Arid Land 8(1), 47–59 (2016).Article 

    Google Scholar 
    32.Longobardi, A. Observing soil moisture temporal variability under fluctuating climatic conditions. Hydrol. Earth Syst. Sci. 5, 935–969 (2008).
    Google Scholar 
    33.Shao, M. A., Wang, Y. Q., Xia, Y. Q. & Jia, X. X. Soil drought and water carrying capacity for vegetation in the critical zone of the Loess Plateau: A review. Vadose Zone J. 17(1), 170017 (2018).34.Vörösmarty, C. J., Green, P. J., Salisbury, J. & Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 289(5477), 284–288 (2000).ADS 
    PubMed 
    Article 

    Google Scholar 
    35.Wang, L., Wang, Q. J., Wei, S. P., Shao, M. A. & Yi, L. Soil desiccation for Loess soils on natural and regrown areas. Forest Ecol. Manag. 255(7), 2467–2477 (2008).Article 

    Google Scholar 
    36.Yang, L., Wei, W., Mo, B. R. & Chen, L. D. Soil water deficit under different artificial vegetation restoration in the semi-arid hilly region of the Loess Plateau. Acta Ecol. Sin. 31(11), 3060–3068 (2011) ((in Chinese)).
    Google Scholar 
    37.Cao, R. X. et al. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Sci. Rep. 8(1), 12346 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Fang, X. N. et al. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China. Hydrol. Earth Syst. Sci. 20(8), 3309–3323 (2016).ADS 
    Article 

    Google Scholar 
    39.Yang, L., Chen, L. D., Wei, W., Yu, Yang. & Zhang, H. D. Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions. J. Hydrol. 513, 314–321 (2014).40.Xiao, L., Xue, S., Liu, G. B. & Zhang, C. Soil moisture variability under different land uses in the Zhifanggou catchment of the Loess Plateau, China. Arid Land Res. Manag. 28(3), 274–290 (2014).Article 

    Google Scholar 
    41.Mei, X. M. et al. The variability in soil water storage on the loess hillslopes in China and its estimation. CATENA 172, 807–818 (2019).Article 

    Google Scholar 
    42.Guo, Z. S. Estimating method of maximum infiltration depth and soil water supply. Sci. Rep. 10(1), 9726 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Guo, Z. S. & Shao, M. A. Dynamics of soil water supply and consumption inartificial caragana shrub land. J. Soil Water Conserv. 2007(02), 119–123 (2007) ((in Chinese)).
    Google Scholar 
    44.Wang, Z. Q., Liu, B. Y. & Zhang, Y. Soil moisture of different vegetation types on the Loess Plateau. J. Geogr. Sci. 19(6), 707–718 (2009).Article 

    Google Scholar 
    45.Cheng, L. P. & Liu, W. Z. Long term effects of farming system on soil water content and dry soil layer in deep loess profile of Loess Tableland in China. J. Integr. Agric. 13(6), 1382–1392 (2014).Article 

    Google Scholar 
    46.Sun, C. F. & Ma, Y. Y. Effects of non-linear temperature and precipitation trends on Loess Plateau droughts. Quatern. Int. 372, 175–179 (2015).Article 

    Google Scholar 
    47.Mei, X. M. et al. Responses of soil moisture to vegetation restoration type and slope length on the loess hillslope. J. Mt. Sci. 15(3), 548–562 (2018).Article 

    Google Scholar  More

  • in

    Cascading effects of moth outbreaks on subarctic soil food webs

    1.Pickett, S. T. A. & White, P. S. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, 1985).
    Google Scholar 
    2.IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
    Google Scholar 
    3.Brun, P. et al. Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Glob. Change Biol. 00, 1–15 (2020).CAS 

    Google Scholar 
    4.Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    5.Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. U.S.A. 110, 19456–19459 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, 2010).
    Google Scholar 
    7.Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190112 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests: Disturbance impacts on biodiversity and services. Biol. Rev. 91, 760–781 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.van der Putten, W. H. et al. Trophic interactions in a changing world. Basic Appl. Ecol. 5, 487–494 (2004).Article 

    Google Scholar 
    11.Lafferty, K. D. & Suchanek, T. H. Revisiting Paine’s 1966 sea star removal experiment, the most-cited empirical article in the American Naturalist. Am. Nat. 188, 365–378 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Barbier, M. & Loreau, M. Pyramids and cascades: A synthesis of food chain functioning and stability. Ecol. Lett. 22, 405–419 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mancinelli, G. & Mulder, C. Chapter three—detrital dynamics and cascading effects on supporting ecosystem services. In Advances in ecological research Vol. 53 (eds Woodward, G. & Bohan, D. A.) 97–160 (Academic Press, 2015).
    Google Scholar 
    16.Mulder, C., Vonk, J. A., Hollander, H. A. D., Hendriks, A. J. & Breure, A. M. How allometric scaling relates to soil abiotics. Oikos 120, 529–536 (2011).Article 

    Google Scholar 
    17.Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12, 369–384 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).Book 

    Google Scholar 
    21.Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150268 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Elton, C. S. Animal Ecology 1–256 (Macmillan Co., 1927). https://doi.org/10.5962/bhl.title.7435.Book 

    Google Scholar 
    24.Bohan, D. A. et al. Next-generation global biomonitoring: Large-scale, automated reconstruction of ecological networks. Trends Ecol. Evol. 32, 477–487 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Roslin, T. & Majaneva, S. The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite!. Genome 59, 603–628 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Cohen, J. E. et al. Improving food webs. Ecology 74, 252–258 (1993).Article 

    Google Scholar 
    27.Buzhdygan, O. Y. et al. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat. Ecol. Evol. 4, 393–405 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Martinez, N. D. Effects of resolution on food web structure. Oikos 66, 403 (1993).Article 

    Google Scholar 
    29.Thompson, R. M. et al. Food webs: Reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kardol, P., Throop, H. L., Adkins, J. & de Graaff, M.-A. A hierarchical framework for studying the role of biodiversity in soil food web processes and ecosystem services. Soil Biol. Biochem. 102, 33–36 (2016).CAS 
    Article 

    Google Scholar 
    31.Ohlmann, M. et al. Diversity indices for ecological networks: A unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Jepsen, J. U. et al. Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16, 561–575 (2013).Article 

    Google Scholar 
    34.Karlsen, S. R., Jepsen, J. U., Odland, A., Ims, R. A. & Elvebakk, A. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. Oecologia 173, 859–870 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).PubMed 
    Article 

    Google Scholar 
    36.Vindstad, O. P. L., Jepsen, J. U., Ek, M., Pepi, A. & Ims, R. A. Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest?. J. Ecol. 107, 1141–1153 (2019).Article 

    Google Scholar 
    37.Sandén, H. et al. Moth outbreaks reduce decomposition in subarctic forest soils. Ecosystems 23, 151–163 (2019).Article 
    CAS 

    Google Scholar 
    38.Vindstad, O. P. L. et al. Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest. PLoS ONE 9, e99624 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Nilsson, M.-C. & Wardle, D. A. Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3, 421–428 (2005).Article 

    Google Scholar 
    40.Bråthen, K. A. & Ravolainen, V. T. Niche construction by growth forms is as strong a predictor of species diversity as environmental gradients. J. Ecol. 103, 701–713 (2015).Article 

    Google Scholar 
    41.Bråthen, K. A., Gonzalez, V. T. & Yoccoz, N. G. Gatekeepers to the effects of climate warming? Niche construction restricts plant community changes along a temperature gradient. Perspect. Plant Ecol. Evol. Syst. 30, 71–81 (2018).Article 

    Google Scholar 
    42.Vindstad, O. P. L., Jepsen, J. U. & Ims, R. A. Resistance of a sub-arctic bird community to severe forest damage caused by geometrid moth outbreaks. Eur. J. For. Res. 134, 725–736 (2015).Article 

    Google Scholar 
    43.Parker, T. C. et al. Slowed biogeochemical cycling in sub-arctic birch forest linked to reduced mycorrhizal growth and community change after a defoliation event. Ecosystems 20, 316–330 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Saravesi, K. et al. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microb. Ecol. 69, 788–797 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Dunne, J. A. The network structure of food webs. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).
    Google Scholar 
    46.Rodriguez-Ramos, J. C. et al. Changes in soil fungal community composition depend on functional group and forest disturbance type. New Phytol. 00, 1–13 (2020).
    Google Scholar 
    47.Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    48.Bardgett, R. D., Yeates, G. W. & Anderson, J. M. Patterns and determinants of soil biological diversity. In Biological Diversity and Function in Soils (eds Hopkins, D. et al.) 100–118 (Cambridge University Press, 2005).Chapter 

    Google Scholar 
    49.Worm, B. & Duffy, J. E. Biodiversity, productivity and stability in real food webs. Trends Ecol. Evol. 18, 628–632 (2003).Article 

    Google Scholar 
    50.Ponsard, S., Arditi, R. & Jost, C. Assessing top-down and bottom-up control in a litter-based soil macroinvertebrate food chain. Oikos 89, 524–540 (2000).Article 

    Google Scholar 
    51.Kristensen, J. Å., Rousk, J. & Metcalfe, D. B. Below-ground responses to insect herbivory in ecosystems with woody plant canopies: A meta-analysis. J. Ecol. 108, 917–930 (2020).Article 

    Google Scholar 
    52.González, V. T. et al. Batatasin-III and the allelopathic capacity of Empetrum nigrum. Nord. J. Bot. 33, 225–231 (2015).ADS 
    Article 

    Google Scholar 
    53.Veen, G. F. et al. The role of plant litter in driving plant-soil feedbacks. Front. Environ. Sci. 7, 168 (2019).Article 

    Google Scholar 
    54.Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Antiqueira, P. A. P., Petchey, O. L., dos Santos, V. P., de Oliveira, V. M. & Romero, G. Q. Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms. Glob. Change Biol. 24, 3715–3728 (2018).ADS 
    Article 

    Google Scholar 
    56.Hedlund, K. et al. Trophic interactions in changing landscapes: Responses of soil food webs. Basic Appl. Ecol. 5, 495–503 (2004).Article 

    Google Scholar 
    57.Ettema, C. H. & Wardle, D. A. Spatial soil ecology. Trends Ecol. Evol. 17, 177–183 (2002).Article 

    Google Scholar 
    58.O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jiménez, J. J., Decaëns, T., Lavelle, P. & Rossi, J.-P. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecol. 14, 26 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 1816–1820 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol. Biochem. 96, 16–19 (2016).CAS 
    Article 

    Google Scholar 
    62.Binladen, J. et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2, e197 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Valentini, A. et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach. Mol. Ecol. Resour. 9, 51–60 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences. in Programs and Abstracts of the SeqBio 2013 workshop. Abstract 27–29 (Citeseer, 2013).66.Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Zinger, L. et al. metabaR : an R package for the evaluation and improvement of DNA metabarcoding data quality. https://doi.org/10.1101/2020.08.28.271817 (2020).68.R Core Team. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).69.Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    70.Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Fiore-Donno, A. M. et al. Functional traits and spatio-temporal structure of a major group of soil protists (Rhizaria: Cercozoa) in a temperate grassland. Front. Microbiol. 10, 1332 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 93, 6 (2017).
    Google Scholar 
    74.Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47, 193–206 (2020).Article 

    Google Scholar 
    75.Antunes, P. M. & Koyama, A. Chapter 9 – Mycorrhizas as Nutrient and Energy Pumps of Soil Food Webs: Multitrophic Interactions and Feedbacks. in Mycorrhizal Mediation of Soil Fertility, Structure, and Carbon Storage (eds. Johnson, N. C., Gehring, C. & Jansa, J.) 149–173 (Elsevier, 2017).76.Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. (R package version 2.21.1, 2020).77.McArtor, D. B., Lubke, G. H. & Bergeman, C. S. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika 82, 1052–1077 (2017).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Kinship networks of seed exchange shape spatial patterns of plant virus diversity

    1.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).Article 

    Google Scholar 
    2.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.McGuire, S. & Sperling, L. Seed systems smallholder farmers use. Food Secur. 8, 179–195 (2016).Article 

    Google Scholar 
    4.Almekinders, C. J., Louwaars, N. P. & De Bruijn, G. H. Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 78, 207–216 (1994).Article 

    Google Scholar 
    5.McGuire, S. & Sperling, L. Making seed systems more resilient to stress. Global Environ. Chang. 23, 644–653 (2013).Article 

    Google Scholar 
    6.Legg, J. et al. Community phytosanitation to manage Cassava Brown Streak Disease. Virus Res. 241, 236–253 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McQuaid, C. F. et al. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput. Biol. 13, e1005654 (2017a).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Chernela, J. M. Os cultivares de mandioca na área do Uaupés (Tukâno). In Suma Etnológica Brasileira (ed Ribeiro, D.) 151–158 (Finep, Petrópolis, 1986).9.Emperaire, L., Pinton, F. & Second, G. Gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. Nat. Sci. Soc. 6, 27–42 (1998).Article 

    Google Scholar 
    10.Sirbanchongkran, A., Yimyam, N., Boonma, W. & Rerkasem, K. Varietal turnover and seed exchange: implications for conservation of rice genetic diversity on farm. Int. Rice Res. Notes 29, 12–14 (2004).
    Google Scholar 
    11.Delêtre, M., McKey, D. B. & Hodkinson, T. R. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc. Natl Acad. Sci. USA 108, 18249–18254 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Labeyrie, V., Thomas, M., Muthamia, Z. K. & Leclerc, C. Seed exchange networks, ethnicity, and sorghum diversity. Proc. Natl Acad. Sci. USA 113, 98–103 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Brown, J. K. et al. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160, 1593–1619 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Legg, J. P. et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak pandemics in Africa. Virus Res. 159, 161–170 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Harrison, B. D., Zhou, X., Otim‐Nape, G. W., Liu, Y. & Robinson, D. J. Role of a novel type of double infection in the geminivirus‐induced epidemic of severe cassava mosaic in Uganda. Ann. Appl. Biol. 131, 437–448 (1997).Article 

    Google Scholar 
    17.Consultative Group for International Agricultural Research. CGIAR Research Program 3.4: Roots, tubers, and bananas for food security and income. Final revised proposal. September 2011. https://hdl.handle.net/10947/5314.18.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Fauquet, C. & Fargette, D. African cassava mosaic virus: etiology, epidemiology and control. Plant Dis. 74, 404–411 (1990).Article 

    Google Scholar 
    22.Zhou, X. et al. Evidence that DNA A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Pita, J. S. et al. Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82, 655–665 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lefeuvre, P. & Moriones, E. Recombination as a motor of host switches and virus emergences: geminiviruses as case studies. Curr. Opin. Virol. 10, 14–19 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Tiendrébéogo, F. et al. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. Virol. J. 9, 67 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Syrjala, S. E. A statistical test for a difference between the spatial distributions of two populations. Ecology 77, 75–80 (1996).Article 

    Google Scholar 
    27.Chevenet, F., Jung, M., Peeters, M., de Oliveira, T. & Gascuel, O. Searching for virus phylotypes. Bioinformatics 29, 561–570 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    29.Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user‐defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. 56, 585–599 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Legg, J. P., Ndjelassili, F. & Okao-Okuja, G. First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathol. 53, 232 (2004).Article 

    Google Scholar 
    33.Legg, J. P. Bemisia tabaci: the whitefly vector of cassava mosaic geminiviruses in Africa: an ecological perspective. Afr. Crop Sci. J. 2, 437–448 (1994).
    Google Scholar 
    34.Fargette, D. & Thresh, J. M. The ecology of African cassava mosaic geminivirus. In Ecology of Plant Pathogens (eds Blakeman, J. P. & Williamson, B.) 269–282 (CAB International, Oxford, 1994).35.Anderson, P. K. & Morales, F. Whitefly and whitefly borne viruses in the tropics: building a knowledge base for global action (International Center for Tropical Agriculture, Cali, 2005).36.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. 44, 6–12 (2013).Article 

    Google Scholar 
    37.Delêtre, M. The ins and outs of manioc diversity in Gabon, Central Africa: a pluridisciplinary approach to the dynamics of genetic diversity of Manihot esculenta Crantz (Euphorbiaceae) (Trinity College Dublin, 2010).38.Messe Mbega, C. Y. Les régions transfrontalières: un exemple d’intégration sociospatiale de la population en Afrique centrale? Éthique publique 17, http://ethiquepublique.revues.org/1724 (2015).39.Akinbade, S. A. et al. First report of the East African cassava mosaic virus-Uganda (EACMV-UG) infecting cassava (Manihot esculenta) in Cameroon. N. Dis. Rep. 22, 2044–0588 (2010).
    Google Scholar 
    40.Valam-Zango, A. et al. First report of cassava mosaic geminiviruses and the Uganda strain of East African cassava mosaic virus (EACMV-UG) associated with cassava mosaic disease in Equatorial Guinea. N. Dis. Rep. 32, 29 (2015).Article 

    Google Scholar 
    41.Trovão, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. 1, vev016 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sallinen, S. et al. Intraspecific host variation plays a key role in virus community assembly. Nat. Commun. 11, 5610 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Patil, B. L., Legg, J. P., Kanju, E. & Fauquet, C. M. Cassava brown streak disease: a threat to food security in Africa. J. Gen. Virol. 96, 956–968 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Maruthi, M. N., Jeremiah, S. C., Mohammed, I. U. & Legg, J. P. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. J. Phytopathol. 165, 707–717 (2017).CAS 
    Article 

    Google Scholar 
    45.McQuaid, C. F., Gilligan, C. A. & van den Bosch, F. Considering behaviour to ensure the success of a disease control strategy. R. Soc. Open Sci. 4, 170721 (2017b).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Almekinders, C. J. et al. Understanding the relations between farmers’ seed demand and research methods: the challenge to do better. Outlook Agric. 48, 16–21 (2019a).Article 

    Google Scholar 
    47.Almekinders, C. J. et al. Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Secur. 11, 23–42 (2019b).Article 

    Google Scholar 
    48.R Foundation for Statistical Computing. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2018).49.Zeileis, A. ineq: Measuring inequality, concentration, and poverty. R package version 0.2-13. https://CRAN.R-project.org/package=ineq (2014).50.Alabi, O. J., Kumar, P. L. & Naidu, R. A. Multiplex PCR method for the detection of African cassava mosaic virus and East African cassava mosaic Cameroon virus in cassava. J. Virol. Methods 154, 111–120 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).PubMed 
    Article 

    Google Scholar 
    55.Rambaut, A., Lam, T. T., de Carvalho, L. M. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst. Virus Evol. 2, vew007 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ragonnet-Cronin, M. et al. Automated analysis of phylogenetic clusters. BMC Bioinforma. 14, 317 (2013).Article 

    Google Scholar 
    57.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    58.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    59.Scherer, R. & Pallmann, P. Simboot: simultaneous inference for diversity indices. R package version 0.2-6. https://CRAN.R-project.org/package=simboot (2017).60.Oksanen J. et al. vegan: Community Ecology Package. R package version 2.4-1. https://CRAN.R-project.org/package=vegan (2016).61.Prost, S. & Anderson, C. N. K. TempNet: a method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).Article 

    Google Scholar 
    62.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. TRENDS Ecol. Evol. 16, 37–45 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinforma. 9, 539 (2008).Article 
    CAS 

    Google Scholar 
    64.Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.De la Cruz, M. Métodos para analizar datos puntuales. In Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones (eds Maestre, F. T., Escudero, A. & Bonet, A.) 76–127. (Asociación Española de Ecología Terrestre, Universidad Rey Juan Carlos y Caja de Ahorros del Mediterráneo, Madrid, 2008).66.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    67.Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land‐cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).Article 

    Google Scholar 
    68.Guthrie, M. The Classification of the Bantu Languages (Oxford Univ. Press for the International African Institute, London, 1948).69.Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19, 153–170 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Rogers, J. S. Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. Syst. Biol. 35, 297–310 (1986).Article 

    Google Scholar  More