The isotopic niche of Atlantic, biting marine mammals and its relationship to skull morphology and body size
1.Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).Article
Google Scholar
2.Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world. Sea mammals (Lynx Edicions 2014).3.Plagányi, E. E. & Butterworth, E. S. Competition with fisheries in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsing, & J. G. M. Thewsissen) 269–275 (Academic Press, 2009).4.Read, A. J. The looming crisis: interactions between marine mammals and fisheries. J. Mammal. 89, 541–548 (2008).Article
Google Scholar
5.Morissette, L., Christensen, V. & Pauly, D. Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries? PLoS One 7, e43966 (2012).6.Gerber, L. R., Morissette, L., Kaschner, K. & Pauly, D. Should whales be culled to increase fishery yield?. Science 323, 880–881 (2009).CAS
PubMed
Article
Google Scholar
7.DeMaster, D. P., Fowler, C. W., Perry, S. L. & Richlen, M. F. Predation and competition: the impact of fisheries on marine-mammals populations over the next one hundred years. J. Mammal. 82, 641–651 (2001).Article
Google Scholar
8.Smith, T. D. Interactions between marine mammals and fisheries: an unresolved problem for fisheries research in Whales, seals, fish and man (eds A.S. Blix, L. Walløe, & t Ø. Ultan) 527–536 (Elsevier Science, 1995).9.Hall, A. J., Watkins, J. & Hammond, P. S. Seasonal variation in the diet of harbour seals in the south-western North Sea. Mar. Ecol. Prog. Ser. 170, 269–281 (1998).ADS
Article
Google Scholar
10.Santos, M. B., Martin, V., Fernández, A. & Pierce, G. J. Insights into the diet of beaked whales from the atypical mass stranding in the Canary Islands in September 2002. J. Mar. Biol. Assoc. U. K. 87, 243–251 (2007).Article
Google Scholar
11.Gómez-Campos, E., Borrell, A., Cardona, L., Forcada, J. & Aguilar, A. Overfishing of small pelagic fishes increases trophic overlap between immature and mature striped dolphins in the Mediterranean sea. PLoS One 6, e24554 (2011).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
12.Adam, P. J. & Berta, A. Evolution of prey capture strategies and diet in the pinnipedimorpha (Mammalia, Carnivora). Oryctos 4, 83–107 (2002).
Google Scholar
13.Kienle, S. S. & Berta, A. The better to eat you with: the comparative feeding morphology of phocid seals (Pinnipedia, Phocidae). J. Anat. 228, 396–413 (2016).PubMed
Article
Google Scholar
14.McCurry, M. R., Fitzgerald, E. M. G., Evans, A. R., Adams, J. W. & McHenry, C. R. Skull shape reflects prey size niche in toothed whales. Biol. J. Linn. Soc. 121, 936–946 (2017).Article
Google Scholar
15.McCurry, M. R. et al. The remarkable convergence of skull shape in crocodilians and toothed whales. Proc. R. Soc. B 284, 20162348 (2017).PubMed
PubMed Central
Article
Google Scholar
16.Davis, R. W. Marine Mammals: adaptations for an aquatic life (Springer, 2019).Book
Google Scholar
17.Marshall, C. D. & Pyenson, N. D. Feeding in aquatic mammals: an evolutionary and functional approach in Feeding in vertebrates: evolution, morphology, behaviour, biomechanics. Fascinating Life Sciences (eds V. Bels & I. Whishaw) 743–785 (Springer, Cham, 2019).18.Werth, A. J. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J. Mammal. 87, 579–588 (2006).Article
Google Scholar
19.Kelley, N. P. & Motani, R. Trophic convergence drives morphological convergence in marine tetrapods. Biol. Lett. 11, 20140709 (2015).PubMed
PubMed Central
Article
Google Scholar
20.Kienle, S. S., Law, C. J., Costa, D. P., Berta, A. & Mehta, R. S. Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc. R. Soc. B 284, 20171035 (2017).PubMed
PubMed Central
Article
Google Scholar
21.Segura, A. M., Franco-Trecu, V., Franco-Fraguas, P. & Arim, M. Gape and energy limitation determining a humped relationship between trophic position and body size. Can. J. Fish. Aquat. Sci. 72, 198–205 (2015).CAS
Article
Google Scholar
22.Taylor, M. A. How tetrapods feed in water: a functional analysis by paradigm. Zool. J. Linn. Soc. 91, 171–195 (1987).Article
Google Scholar
23.Werth, A. Feeding in marine mammals in Feeding: form, function, and evolution in tetrapod vertebrates (ed K. Schwenk) 487–526 (Academic Press, 2010).24.Hocking, D. P., Salverson, M., Fitzgerald, E. M. G. & Evans, A. R. Australian fur seals (Arctocephalus pusillus doriferus) use raptorial biting and suction feeding when targeting prey in different foraging scenarios. PLoS One 9, e112521 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
25.Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
26.Bearhop, S., Adams, C. E., Waldrons, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article
Google Scholar
27.Layman, C. A., Arrington, D. A., Montanä, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).PubMed
Article
PubMed Central
Google Scholar
28.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed
Article
PubMed Central
Google Scholar
29.Michener, R. H. & Lajtha, K. Stable isotopes in ecology and environmental science. Second edn, (Blackwell publishing, 2007).30.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).Article
Google Scholar
31.Das, K. et al. Marine mammals from northeast Atlantic: relationship between their trophic status as determined by d13C and d15N measurements and their trace metal concentration. Mar. Environ. Res. 56, 349–365 (2003).CAS
PubMed
Article
Google Scholar
32.Das, K., Lepoint, G., Leroy, Y. & Bouquegneau, J. M. Marine mammals from the southern North Sea: feeding ecology data from d13C and d15N measurements. Mar. Ecol. Prog. Ser. 263, 287–298 (2003).ADS
Article
Google Scholar
33.Mèndez-Fernandez, P. et al. Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. J. Exp. Mar. Biol. Ecol. 413, 150–158 (2012).Article
CAS
Google Scholar
34.Pinela, A. M., Borrell, A., Cardona, L. & Aguilar, A. Stable isotope analysis reveals habitat partitioning among marine mammals off the NW African coast and unique trophic niches for two globally threatened species. Mar. Ecol. Prog. Ser. 416, 295–306 (2010).ADS
CAS
Article
Google Scholar
35.Costa, A. F., Botta, S., Siciliano, S. & Giarrizzo, T. Resource partitioning among stranded aquatic mammals from Amazon and northeastern coast of Brazil revealed through carbon and nitrogen stable isotopes. Sci. Rep. 10, 12897 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
36.Bisi, T. L. et al. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition. PLoS One 8, e82205 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
37.Riccialdelli, L., Newsome, S. D., Fogel, M. L. & Goodall, R. N. Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar. Ecol. Prog. Ser. 418, 235–248 (2010).ADS
Article
Google Scholar
38.Saporiti, F. et al. Resource partitioning among air-breathing marine predators: are body size and mouth diameter the major determinants?. Mar. Ecol. 37, 957–969 (2016).ADS
Article
Google Scholar
39.Ford, J. K. B. Killer whale Orcinus orca in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 531–537 (Academic Press, 2018).40.Durban, J. W. & Pitman, R. L. Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?. Biol. Lett. 8, 274–277 (2011).PubMed
PubMed Central
Article
Google Scholar
41.Drago, M. et al. Mouth gape determines the response of marine top predators to long-term fishery-induced changes in food web structure. Sci. Rep. 8, 15759 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
42.Drago, M. et al. Isotopic niche partitioning between two apex predators over time. J. Anim. Ecol. 86, 766–780 (2017).PubMed
Article
Google Scholar
43.Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).Article
Google Scholar
44.Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).CAS
PubMed
Article
Google Scholar
45.Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572 (2010).CAS
Google Scholar
46.Keeling, C. D. The Suess effect: 13Carbon-14Carbon interactions. Environ. Int. 2, 229–300 (1979).CAS
Article
Google Scholar
47.Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).ADS
Article
Google Scholar
48.Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochem. Cycles 13, 307–335 (1999).ADS
CAS
Article
Google Scholar
49.Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & McNichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles 17, 1004 (2003).ADS
Article
CAS
Google Scholar
50.Borrell, A., Abad-Oliva, N., Gómez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
51.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).ADS
CAS
Article
Google Scholar
52.R Core Team. R: A language and environment for statistical computing, http://www.R-project.org. (2018).53.Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes analysis. I: Turnover of 13C in tissues. The Condor 94, 181–188 (1992).Article
Google Scholar
54.Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. The Condor 94, 189–197 (1992).Article
Google Scholar
55.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106, 131–148 (2011).ADS
CAS
Article
Google Scholar
56.Barnes, C., Seeting, C. J., Jennings, S., Barry, J. T. & Polunin, N. V. C. Effect of temperature and ration size on carbon and nitrogen isotope trophic fractionation. Funct. Ecol. 21, 356–362 (2007).Article
Google Scholar
57.Bloomfield, A. L., Elsdon, T. S., Walther, B. D. & Gier, E. J. Temperature and diet affect carbon and nitrogen isotopes of fish muscle: can amino acid nitrogen isotopes explain effects?. J. Exp. Mar. Biol. Ecol. 399, 48–59 (2011).CAS
Article
Google Scholar
58.Saporiti, F. et al. Latitudinal changes in the structure of marine food webs in the Southwestern Atlantic Ocean. Mar. Ecol. Prog. Ser. 538, 23–34 (2015).ADS
CAS
Article
Google Scholar
59.Wells, R. S. & Scott, M. D. Bottlenose dolphin, Tursiops truncatus, common bottlenose dolphin in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 118–125 (Academic Press, 2018).60.Natoli, A., Peddemors, V. M. & Hoelzel, A. R. Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J. Evol. Biol. 17, 363–375 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Costa, A. P. B., Rosel, P. E., Daura-Jorge, F. G. & Simões-Lopes, P. C. Offshore and coastal common bottlenose dolphins of the western South Atlantic face-to-face: what the skull and the spine can tell us. Mar. Mamm. Sci. 32, 1433–1457 (2016).Article
Google Scholar
62.Drago, M. et al. Stable oxygen isotopes reveal habitat use by marine mammals in the Río de la Plata estuary and adjoining Atlantic Ocean. Estuar. Coast. Shelf Sci. 238, 106708 (2020).63.Koen, A. M., Pedraza, S. N., Sciavini, A. C. M., Goodall, R. N. & Crespo, E. A. Stomach contents of false killer whales (Pseudorca crassidens) stranded on the coasts of the strait of Magellan, Tierra del Fuego. Mar. Mamm. Sci. 15, 712–724 (1999).64.Page, C. E. & Cooper, N. Morphological convergence in ‘river dolphin’ skulls. PeerJ 5, e4090 (2017).65.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldañas, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).Article
Google Scholar
66.Cohen, J. E., Jonsson, T. & Carpenter, S. R. Ecological community description using the food web, species abundance, and body size. Proc. Natl. Acad. Sci. U.S.A. 100, 1781–1786 (2003).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
67.Warren, P. H. & Lawton, J. H. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure?. Oecologia 74, 231–235 (1987).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
68.Kerr, S. R. & Dickie, L. M. The biomass spectrum: a predator-prey theory of aquatic production. (Columbia University Press, 2001).69.Leaper, R. & Huxham, M. Size constraints in a real food web: predator, parasite and prey body-size relationships. Oikos 99, 443–456 (2002).Article
Google Scholar
70.Memmott, J., Martinez, N. D. & J.E., C. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J. Anim. Ecol. 69, 1–15 (2000).71.Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).ADS
CAS
PubMed
Article
Google Scholar
72.Jennings, S. Size-based analyses of aquatic food webs in Aquatic food webs: an ecosystem approach (eds A. Belgrano, U.M. Scharler, J. Dunne, & R.E. Ulanowicz) 86–97 (Oxford University Press, 2005).73.Layman, C. A., Winemiller, K. O., Arrington, D. A. & Jepsen, D. B. Body size and trophic position in a diverse tropical food web. Ecology 86, 2530–2535 (2005).Article
Google Scholar
74.Jeglinski, J., Goetz, K. T., Werner, C., Costa, D. P. & Trillmich, F. Same size – same niche? Foraging niche separation between sympatric juvenile Galapagos sea lions and adult Galapagos fur seals. J. Anim. Ecol. 82, 694–706 (2013).PubMed
Article
Google Scholar
75.Akin, S. & Winemiller, K. O. Body size and trophic position in a temperate estuarine food web. Acta Oecol. 33, 144–153 (2008).ADS
Article
Google Scholar
76.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).Article
Google Scholar
77.Madigan, D. J. et al. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Sci. Rep. 2, 654 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar More