Geodiversity impacts plant community structure in a semi-arid region
1.Gray, M., Gordon, J. & Brown, E. Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental management. Proc. Geol. Assoc. 124, 659–673 (2013).Article
Google Scholar
2.Gray, M. Valuing geodiversity in an ‘ecosystem services’ context. Scott. Geogr. J. 128, 177–194 (2012).Article
Google Scholar
3.Warren, A. & French, J. R. Habitat Conservation: Managing the Physical Environment (Wiley, Hoboken, 2001).
Google Scholar
4.Gordon, J. E., Barron, H. F., Hansom, J. D. & Thomas, M. F. Engaging with geodiversity—Why it matters. Proc. Geol. Assoc. 123, 1–6 (2012).Article
Google Scholar
5.Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).PubMed
Article
PubMed Central
Google Scholar
6.Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature 448 (Wiley, 2004).
Google Scholar
7.Serrano, E. & Ruiz-Flano, P. Geodiversity. A theoretical and applied concept. Geogr. Helv. Jg 62, 140–147 (2007).Article
Google Scholar
8.Comer, P. J. et al. Incorporating geodiversity into conservation decisions. Conserv. Biol. 29, 692–701 (2015).PubMed
Article
PubMed Central
Google Scholar
9.Pătru-Stupariu, I. et al. Integrating geo-biodiversity features in the analysis of landscape patterns. Ecol. Indic. 80, 363–375 (2017).Article
Google Scholar
10.Chakraborty, A. & Gray, M. A call for mainstreaming geodiversity in nature conservation research and praxis. J. Nat. Conserv. 56, 125862 (2020).Article
Google Scholar
11.Poesen, J., Torri, D. & Bunte, K. Effects of rock fragments on soil erosion by water at different spatial scales: A review. CATENA 23, 141–166 (1994).Article
Google Scholar
12.Zhang, Y., Zhang, M., Niu, J., Li, H. & Xiao, R. Rock fragments and soil hydrological processes: Significance and progress. CATENA 147, 153–166 (2016).Article
Google Scholar
13.Xia, L. et al. Effects of rock fragment cover on hydrological processes under rainfall simulation in a semi-arid region of China. Hydrol. Process. 32, 792–804 (2018).ADS
Article
Google Scholar
14.Lavee, H. & Poesen, J. W. A. Overland flow generation and continuity on stone-covered soil surfaces. Hydrol. Process. 5, 345–360 (1991).ADS
Article
Google Scholar
15.Agassi, M. & Levy, G. Stone cover and rain intensity—Effects on infiltration, erosion and water splash. Soil Res. 29, 565–575 (1991).Article
Google Scholar
16.Mandal, U. K. et al. Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain. Eur. J. Soil Sci. 56, 435–443 (2005).Article
Google Scholar
17.Cerdà, A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur. J. Soil Sci. 52, 59–68 (2001).Article
Google Scholar
18.Jury, W. A. & Bellantuoni, B. Heat and water movement under surface rocks in a field soil: I. Thermal effects. Soil Sci. Soc. Am. J. 40, 505–509 (1976).ADS
Article
Google Scholar
19.Yuan, C., Lei, T., Mao, L., Liu, H. & Wu, Y. Catena soil surface evaporation processes under mulches of different sized gravel. CATENA 78, 117–121 (2009).CAS
Article
Google Scholar
20.Poesen, J. & Lavee, H. Rock fragments in top soils: Significance and processes. CATENA 23, 1–28 (1994).Article
Google Scholar
21.Yizhaq, H., Stavi, I., Shachak, M. & Bel, G. Geodiversity increases ecosystem durability to prolonged droughts. Ecol. Complex. 31, 96–103 (2017).Article
Google Scholar
22.Stavi, I., Rachmilevitch, S. & Yizhaq, H. Geodiversity effects on soil quality and geo-ecosystem functioning in drylands. CATENA 176, 372–380 (2019).CAS
Article
Google Scholar
23.Preisler, Y. et al. Mortality versus survival in drought-affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Funct. Ecol. 33, 901–912 (2019).Article
Google Scholar
24.Sauer, T. J. & Logsdon, S. D. Hydraulic and Physical Properties of Stony Soils in a Small Watershed. Soil Sci. Soc. Am. J. 66, 1947–1956 (2002).25.Arnau-Rosalén, E., Calvo-Cases, A., Boix-Fayos, C., Lavee, H. & Sarah, P. Analysis of soil surface component patterns affecting runoff generation. An example of methods applied to Mediterranean hillslopes in Alicante (Spain). Geomorphology 101, 595–606 (2008).ADS
Article
Google Scholar
26.Ceacero, C. J., Díaz-Hernández, J. L., de Campo, A. D. & Navarro-Cerrillo, R. M. Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations. Soil Tillage Res. 197, 104495 (2020).Article
Google Scholar
27.Burnett, M. R., August, P. V., Brown, J. H. & Killingbeck, K. T. The influence of geomorphological heterogeneity on biodiversity I. A patch-scale perspective. Conserv. Biol. 12, 363–370 (2008).Article
Google Scholar
28.Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
29.Stavi, I., Rachmilevitch, S. & Yizhaq, H. Small-scale geodiversity regulates functioning, connectivity, and productivity of shrubby, semi-arid rangelands. L. Degrad. Dev. 29, 205–209 (2018).Article
Google Scholar
30.Dubinin, V., Stavi, I., Svoray, T., Dorman, M. & Yizhaq, H. Hillslope geodiversity improves the resistance of shrubs to prolonged droughts in semiarid ecosystems. J. Arid Environ. 188, 104462 (2021).ADS
Article
Google Scholar
31.Ochoa-Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).CAS
Article
Google Scholar
32.Stavi, I., Rachmilevitch, S., Hjazin, A. & Yizhaq, H. Geodiversity decreases shrub mortality and increases ecosystem tolerance to droughts and climate change. Earth Surf. Process. Landforms 43, 2808–2817 (2018).ADS
Article
Google Scholar
33.Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).ADS
Article
Google Scholar
34.Bailey, J. J., Boyd, D. S. & Field, R. Models of upland species’ distributions are improved by accounting for geodiversity. Landscape Ecol. https://doi.org/10.1007/s10980-018-0723-z (2018).Article
Google Scholar
35.Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).ADS
Article
Google Scholar
36.Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).PubMed
Article
PubMed Central
Google Scholar
37.Nichols, W. F., Killingbeck, K. T. & August, P. V. The influence biodiversity of geomorphological heterogeneity: II. A landscape perspective. Soc. Conserv. Biol. 12, 371–397 (1998).Article
Google Scholar
38.Alahuhta, J., Toivanen, M. & Hjort, J. Geodiversity–biodiversity relationship needs more empirical evidence. Nat. Ecol. Evol. 4, 2–3 (2020).PubMed
Article
Google Scholar
39.Evenari, M., Shanan, L., Tadmor, N. & Shkolnik, A. The Negev: The Challenge of a Desert (Harvard University Press, 1982).Book
Google Scholar
40.Akttani, H., Trimborn, P. & Ziegler, H. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst. Evol. 206, 187–221 (1997).Article
Google Scholar
41.Harley, J. The Biology of Mycorrhiza (Leonard Hill, 1969).
Google Scholar
42.Mejsti, V. K. & Cudlin, P. Mycorrhiza in some plant desert species in Algeria. Plant Soil 71, 363–366 (1983).Article
Google Scholar
43.Segoli, M., Ungar, E. D. & Shachak, M. Shrubs enhance resilience of a semi-arid ecosystem by engineering and regrowth. Ecohydrology 1, 330–339 (2008).Article
Google Scholar
44.Gilad, E., Von Hardenberg, J., Provenzale, A., Shachak, M. & Meron, E. Ecosystem engineers: From pattern formation to habitat creation. Phys. Rev. Lett. 93, 098105 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
45.Wright, J. P., Jones, C. G., Boeken, B. & Shachak, M. Predictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. J. Ecol. 94, 815–824 (2006).Article
Google Scholar
46.Katra, I., Blumberg, D. G., Lavee, H. & Sarah, P. Spatial distribution dynamics of topsoil moisture in shrub microenvironment after rain events in arid and semi-arid areas by means of high-resolution maps. Geomorphology 86, 455–464 (2007).ADS
Article
Google Scholar
47.Hoffman, O., de Falco, N., Yizhaq, H. & Boeken, B. Annual plant diversity decreases across scales following widespread ecosystem engineer shrub mortality. J. Veg. Sci. 27, 578–586 (2016).Article
Google Scholar
48.Shachak, M. et al. Woody species as landscape modulators and their effect on biodiversity patterns. Bioscience 58, 209–221 (2008).Article
Google Scholar
49.Madrigal-González, J., García-Rodríguez, J. A. & Alarcos-Izquierdo, G. Testing general predictions of the stress gradient hypothesis under high inter- and intra-specific nurse shrub variability along a climatic gradient. J. Veg. Sci. 23, 52–61 (2012).Article
Google Scholar
50.Boeken, B. & Shachak, M. The dynamics of abundance and incidence of annual plant species during colonization in a desert. Ecography (Cop.) 21, 63–73 (1998).Article
Google Scholar
51.Golodets, C. & Boeken, B. Moderate sheep grazing in semiarid shrubland alters small-scale soil surface structure and patch properties. CATENA 65, 285–291 (2006).Article
Google Scholar
52.Boeken, B. & Shachak, M. Desert plant communities in human-made patches-implications for management. Ecol. Appl. 4, 702–716 (1994).Article
Google Scholar
53.Hoffman, O., Yizhaq, H. & Boeken, B. Small-scale effects of annual and woody vegetation on sediment displacement under field conditions. CATENA 109, 157–163 (2013).Article
Google Scholar
54.Zaady, E., Arbel, S., Barkai, D. & Sarig, S. Long-term impact of agricultural practices on biological soil crusts and their hydrological processes in a semiarid landscape. J. Arid Environ. 90, 5–11 (2013).ADS
Article
Google Scholar
55.Zaady, E., Stavi, I. & Yizhaq, H. Hillslope geodiversity effects on properties and composition of biological soil crusts in drylands. Eur. J. Soil Sci. https://doi.org/10.1111/ejss.13097 (2021).Article
Google Scholar
56.Feinbrun-Dothan, N. & Danin, A. Analytical Flora of Eretz-Israel (Cana Publishing Ltd, 1991).
Google Scholar
57.Solovchenko, A., Merzlyak, M. N., Khozin-Goldberg, I., Cohen, Z. & Boussiba, S. Coordinated carotenoid and lipid syntheses induced in parietochloris incisa (chlorophyta, trebouxiophyceae) mutant deficient in δ5 desaturase by nitrogen starvation and high light. J. Phycol. 46, 763–772 (2010).CAS
Article
Google Scholar
58.Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet
MATH
Article
Google Scholar
59.Simpson, E. Measurement of diversity. Nature 163, 688 (1949).ADS
MATH
Article
Google Scholar
60.R Core Team. R: A language and environment for statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).61.Richerson, P. J. & Lum, K. Patterns of plant species diversity in California: Relation to weather and topography. Am. Nat. 116, 504–536 (1980).Article
Google Scholar
62.Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).ADS
CAS
Article
Google Scholar
63.Alahuhta, J. et al. The role of geodiversity in providing ecosystem services at broad scales. Ecol. Indic. 91, 47–56 (2018).Article
Google Scholar
64.Zarnetske, P. L. et al. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Wiley Online Libr. 28, 548–556 (2019).
Google Scholar
65.Schrodt, F. et al. To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proc. Natl. Acad. Sci. U. S. A. 116, 16155–161658 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
66.Read, Q. D. et al. Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Wiley Online Libr. 29, 696–710 (2020).
Google Scholar
67.Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).ADS
CAS
Article
Google Scholar
68.Knudson, C., Kay, K. & Fisher, S. Appraising geodiversity and cultural diversity approaches to building resilience through conservation. Nat. Clim. Change 8, 678–685 (2018).ADS
Article
Google Scholar
69.Beier, P., Hunter, M. L. & Anderson, M. Special section: Conserving nature’s stage. Conserv. Biol. 29, 613–617 (2015).PubMed
Article
PubMed Central
Google Scholar
70.Dubinin, V., Svoray, T., Stavi, I. & Yizhaq, H. Using LANDSAT 8 and VENµS data to study the effect of geodiversity on soil moisture dynamics in a semiarid shrubland. Remote Sens. 12, 3377 (2020).ADS
Article
Google Scholar
71.Renne, R. R. et al. Soil and stand structure explain shrub mortality patterns following global change–type drought and extreme precipitation. Ecology 100, e02889 (2019).PubMed
PubMed Central
Google Scholar
72.Gutterman, Y., Golan, T. & Garsani, M. Porcupine diggings as a unique ecological system in a desert environment. Oecologia 85, 122–127 (1990).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
73.Armas, C., Pugnaire, F. I. & Sala, O. E. Patch structure dynamics and mechanisms of cyclical succession in a Patagonian steppe (Argentina). J. Arid Environ. 72, 1552–1561 (2008).ADS
Article
Google Scholar
74.Pickett, S. & White, P. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, 1985). https://doi.org/10.1016/C2009-0-02952-3.Book
Google Scholar
75.Segoli, M., Ungar, E. D., Giladi, I., Arnon, A. & Shachak, M. Untangling the positive and negative effects of shrubs on herbaceous vegetation in drylands. Landsc. Ecol. 27, 899–910 (2012).Article
Google Scholar
76.Rodríguez, F., Mayor, Á. G., Rietkerk, M. & Bautista, S. A null model for assessing the cover-independent role of bare soil connectivity as indicator of dryland functioning and dynamics. Ecol. Indic. 94, 512–519 (2018).Article
Google Scholar
77.Zelnik, Y. R., Kinast, S., Yizhaq, H., Bel, G. & Meron, E. Regime shifts in models of dryland vegetation. Philos. Trans. R. Soc. A https://doi.org/10.1098/rsta.2012.0358 (2013).Article
MATH
Google Scholar
78.Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. PNAS 103, 1342–1346 (2006).79.Kardol, P. et al. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob. Change Biol. 16, 2676–2687 (2010).ADS
Article
Google Scholar
80.Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).PubMed
Article
PubMed Central
Google Scholar
81.Stavi, I., Yizhaq, H., Szitenberg, A. & Zaady, E. Patch-scale to hillslope-scale geodiversity alleviates susceptibility of dryland ecosystems to climate change: Insights from the Israeli Negev. Curr. Opin. Environ. Sustain. 50, 129–137 (2021).Article
Google Scholar
82.Loarie, S. R. et al. Climate change and the future of California’s endemic flora. PLoS ONE 3, 2502 (2008).ADS
Article
CAS
Google Scholar
83.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
84.Ashcroft, M. B., Chisholm, L. A. & French, K. O. Climate change at the landscape scale: Predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob. Change Biol. 15, 656–667 (2009).ADS
Article
Google Scholar
85.Correa-Metrio, A., Meave, J. A., Lozano-García, S. & Bush, M. B. Environmental determinism and neutrality in vegetation at millennial time scales. J. Veg. Sci. 25, 627–635 (2014).Article
Google Scholar
86.Baumgartner, J., Esperon-Rodriguez, M. & Beaumont, L. Identifying in situ climate refugia for plant species. Ecography (Cop.) 41, 1850–1863 (2018).Article
Google Scholar
87.Alahuhta, J. et al. The Role of Geodiversity in Providing Ecosystem Services at Broad Scales (Elsevier, 2018).Book
Google Scholar
88.Parks, K. E. & Mulligan, M. On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers. Conserv. 19, 2751–2766 (2010).Article
Google Scholar
89.Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).Article
Google Scholar
90.Mokany, K. et al. Past, present and future refugia for Tasmania’s palaeoendemic flora. J. Biogeogr. 44, 1537–1546 (2017).Article
Google Scholar More