More stories

  • in

    The isotopic niche of Atlantic, biting marine mammals and its relationship to skull morphology and body size

    1.Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).Article 

    Google Scholar 
    2.Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world. Sea mammals (Lynx Edicions 2014).3.Plagányi, E. E. & Butterworth, E. S. Competition with fisheries in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsing, & J. G. M. Thewsissen) 269–275 (Academic Press, 2009).4.Read, A. J. The looming crisis: interactions between marine mammals and fisheries. J. Mammal. 89, 541–548 (2008).Article 

    Google Scholar 
    5.Morissette, L., Christensen, V. & Pauly, D. Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries? PLoS One 7, e43966 (2012).6.Gerber, L. R., Morissette, L., Kaschner, K. & Pauly, D. Should whales be culled to increase fishery yield?. Science 323, 880–881 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.DeMaster, D. P., Fowler, C. W., Perry, S. L. & Richlen, M. F. Predation and competition: the impact of fisheries on marine-mammals populations over the next one hundred years. J. Mammal. 82, 641–651 (2001).Article 

    Google Scholar 
    8.Smith, T. D. Interactions between marine mammals and fisheries: an unresolved problem for fisheries research in Whales, seals, fish and man (eds A.S. Blix, L. Walløe, & t Ø. Ultan) 527–536 (Elsevier Science, 1995).9.Hall, A. J., Watkins, J. & Hammond, P. S. Seasonal variation in the diet of harbour seals in the south-western North Sea. Mar. Ecol. Prog. Ser. 170, 269–281 (1998).ADS 
    Article 

    Google Scholar 
    10.Santos, M. B., Martin, V., Fernández, A. & Pierce, G. J. Insights into the diet of beaked whales from the atypical mass stranding in the Canary Islands in September 2002. J. Mar. Biol. Assoc. U. K. 87, 243–251 (2007).Article 

    Google Scholar 
    11.Gómez-Campos, E., Borrell, A., Cardona, L., Forcada, J. & Aguilar, A. Overfishing of small pelagic fishes increases trophic overlap between immature and mature striped dolphins in the Mediterranean sea. PLoS One 6, e24554 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Adam, P. J. & Berta, A. Evolution of prey capture strategies and diet in the pinnipedimorpha (Mammalia, Carnivora). Oryctos 4, 83–107 (2002).
    Google Scholar 
    13.Kienle, S. S. & Berta, A. The better to eat you with: the comparative feeding morphology of phocid seals (Pinnipedia, Phocidae). J. Anat. 228, 396–413 (2016).PubMed 
    Article 

    Google Scholar 
    14.McCurry, M. R., Fitzgerald, E. M. G., Evans, A. R., Adams, J. W. & McHenry, C. R. Skull shape reflects prey size niche in toothed whales. Biol. J. Linn. Soc. 121, 936–946 (2017).Article 

    Google Scholar 
    15.McCurry, M. R. et al. The remarkable convergence of skull shape in crocodilians and toothed whales. Proc. R. Soc. B 284, 20162348 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Davis, R. W. Marine Mammals: adaptations for an aquatic life (Springer, 2019).Book 

    Google Scholar 
    17.Marshall, C. D. & Pyenson, N. D. Feeding in aquatic mammals: an evolutionary and functional approach in Feeding in vertebrates: evolution, morphology, behaviour, biomechanics. Fascinating Life Sciences (eds V. Bels & I. Whishaw) 743–785 (Springer, Cham, 2019).18.Werth, A. J. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J. Mammal. 87, 579–588 (2006).Article 

    Google Scholar 
    19.Kelley, N. P. & Motani, R. Trophic convergence drives morphological convergence in marine tetrapods. Biol. Lett. 11, 20140709 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Kienle, S. S., Law, C. J., Costa, D. P., Berta, A. & Mehta, R. S. Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc. R. Soc. B 284, 20171035 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Segura, A. M., Franco-Trecu, V., Franco-Fraguas, P. & Arim, M. Gape and energy limitation determining a humped relationship between trophic position and body size. Can. J. Fish. Aquat. Sci. 72, 198–205 (2015).CAS 
    Article 

    Google Scholar 
    22.Taylor, M. A. How tetrapods feed in water: a functional analysis by paradigm. Zool. J. Linn. Soc. 91, 171–195 (1987).Article 

    Google Scholar 
    23.Werth, A. Feeding in marine mammals in Feeding: form, function, and evolution in tetrapod vertebrates (ed K. Schwenk) 487–526 (Academic Press, 2010).24.Hocking, D. P., Salverson, M., Fitzgerald, E. M. G. & Evans, A. R. Australian fur seals (Arctocephalus pusillus doriferus) use raptorial biting and suction feeding when targeting prey in different foraging scenarios. PLoS One 9, e112521 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bearhop, S., Adams, C. E., Waldrons, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    27.Layman, C. A., Arrington, D. A., Montanä, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Michener, R. H. & Lajtha, K. Stable isotopes in ecology and environmental science. Second edn, (Blackwell publishing, 2007).30.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    31.Das, K. et al. Marine mammals from northeast Atlantic: relationship between their trophic status as determined by d13C and d15N measurements and their trace metal concentration. Mar. Environ. Res. 56, 349–365 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Das, K., Lepoint, G., Leroy, Y. & Bouquegneau, J. M. Marine mammals from the southern North Sea: feeding ecology data from d13C and d15N measurements. Mar. Ecol. Prog. Ser. 263, 287–298 (2003).ADS 
    Article 

    Google Scholar 
    33.Mèndez-Fernandez, P. et al. Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. J. Exp. Mar. Biol. Ecol. 413, 150–158 (2012).Article 
    CAS 

    Google Scholar 
    34.Pinela, A. M., Borrell, A., Cardona, L. & Aguilar, A. Stable isotope analysis reveals habitat partitioning among marine mammals off the NW African coast and unique trophic niches for two globally threatened species. Mar. Ecol. Prog. Ser. 416, 295–306 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Costa, A. F., Botta, S., Siciliano, S. & Giarrizzo, T. Resource partitioning among stranded aquatic mammals from Amazon and northeastern coast of Brazil revealed through carbon and nitrogen stable isotopes. Sci. Rep. 10, 12897 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Bisi, T. L. et al. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition. PLoS One 8, e82205 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Riccialdelli, L., Newsome, S. D., Fogel, M. L. & Goodall, R. N. Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar. Ecol. Prog. Ser. 418, 235–248 (2010).ADS 
    Article 

    Google Scholar 
    38.Saporiti, F. et al. Resource partitioning among air-breathing marine predators: are body size and mouth diameter the major determinants?. Mar. Ecol. 37, 957–969 (2016).ADS 
    Article 

    Google Scholar 
    39.Ford, J. K. B. Killer whale Orcinus orca in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 531–537 (Academic Press, 2018).40.Durban, J. W. & Pitman, R. L. Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?. Biol. Lett. 8, 274–277 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Drago, M. et al. Mouth gape determines the response of marine top predators to long-term fishery-induced changes in food web structure. Sci. Rep. 8, 15759 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Drago, M. et al. Isotopic niche partitioning between two apex predators over time. J. Anim. Ecol. 86, 766–780 (2017).PubMed 
    Article 

    Google Scholar 
    43.Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).Article 

    Google Scholar 
    44.Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572 (2010).CAS 

    Google Scholar 
    46.Keeling, C. D. The Suess effect: 13Carbon-14Carbon interactions. Environ. Int. 2, 229–300 (1979).CAS 
    Article 

    Google Scholar 
    47.Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).ADS 
    Article 

    Google Scholar 
    48.Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochem. Cycles 13, 307–335 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & McNichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles 17, 1004 (2003).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Borrell, A., Abad-Oliva, N., Gómez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    52.R Core Team. R: A language and environment for statistical computing, http://www.R-project.org. (2018).53.Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes analysis. I: Turnover of 13C in tissues. The Condor 94, 181–188 (1992).Article 

    Google Scholar 
    54.Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. The Condor 94, 189–197 (1992).Article 

    Google Scholar 
    55.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106, 131–148 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Barnes, C., Seeting, C. J., Jennings, S., Barry, J. T. & Polunin, N. V. C. Effect of temperature and ration size on carbon and nitrogen isotope trophic fractionation. Funct. Ecol. 21, 356–362 (2007).Article 

    Google Scholar 
    57.Bloomfield, A. L., Elsdon, T. S., Walther, B. D. & Gier, E. J. Temperature and diet affect carbon and nitrogen isotopes of fish muscle: can amino acid nitrogen isotopes explain effects?. J. Exp. Mar. Biol. Ecol. 399, 48–59 (2011).CAS 
    Article 

    Google Scholar 
    58.Saporiti, F. et al. Latitudinal changes in the structure of marine food webs in the Southwestern Atlantic Ocean. Mar. Ecol. Prog. Ser. 538, 23–34 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Wells, R. S. & Scott, M. D. Bottlenose dolphin, Tursiops truncatus, common bottlenose dolphin in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 118–125 (Academic Press, 2018).60.Natoli, A., Peddemors, V. M. & Hoelzel, A. R. Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J. Evol. Biol. 17, 363–375 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Costa, A. P. B., Rosel, P. E., Daura-Jorge, F. G. & Simões-Lopes, P. C. Offshore and coastal common bottlenose dolphins of the western South Atlantic face-to-face: what the skull and the spine can tell us. Mar. Mamm. Sci. 32, 1433–1457 (2016).Article 

    Google Scholar 
    62.Drago, M. et al. Stable oxygen isotopes reveal habitat use by marine mammals in the Río de la Plata estuary and adjoining Atlantic Ocean. Estuar. Coast. Shelf Sci. 238, 106708 (2020).63.Koen, A. M., Pedraza, S. N., Sciavini, A. C. M., Goodall, R. N. & Crespo, E. A. Stomach contents of false killer whales (Pseudorca crassidens) stranded on the coasts of the strait of Magellan, Tierra del Fuego. Mar. Mamm. Sci. 15, 712–724 (1999).64.Page, C. E. & Cooper, N. Morphological convergence in ‘river dolphin’ skulls. PeerJ 5, e4090 (2017).65.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldañas, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).Article 

    Google Scholar 
    66.Cohen, J. E., Jonsson, T. & Carpenter, S. R. Ecological community description using the food web, species abundance, and body size. Proc. Natl. Acad. Sci. U.S.A. 100, 1781–1786 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Warren, P. H. & Lawton, J. H. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure?. Oecologia 74, 231–235 (1987).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Kerr, S. R. & Dickie, L. M. The biomass spectrum: a predator-prey theory of aquatic production. (Columbia University Press, 2001).69.Leaper, R. & Huxham, M. Size constraints in a real food web: predator, parasite and prey body-size relationships. Oikos 99, 443–456 (2002).Article 

    Google Scholar 
    70.Memmott, J., Martinez, N. D. & J.E., C. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J. Anim. Ecol. 69, 1–15 (2000).71.Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Jennings, S. Size-based analyses of aquatic food webs in Aquatic food webs: an ecosystem approach (eds A. Belgrano, U.M. Scharler, J. Dunne, & R.E. Ulanowicz) 86–97 (Oxford University Press, 2005).73.Layman, C. A., Winemiller, K. O., Arrington, D. A. & Jepsen, D. B. Body size and trophic position in a diverse tropical food web. Ecology 86, 2530–2535 (2005).Article 

    Google Scholar 
    74.Jeglinski, J., Goetz, K. T., Werner, C., Costa, D. P. & Trillmich, F. Same size – same niche? Foraging niche separation between sympatric juvenile Galapagos sea lions and adult Galapagos fur seals. J. Anim. Ecol. 82, 694–706 (2013).PubMed 
    Article 

    Google Scholar 
    75.Akin, S. & Winemiller, K. O. Body size and trophic position in a temperate estuarine food web. Acta Oecol. 33, 144–153 (2008).ADS 
    Article 

    Google Scholar 
    76.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).Article 

    Google Scholar 
    77.Madigan, D. J. et al. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Sci. Rep. 2, 654 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Niche partitioning among dead wood-dependent beetles

    1.Polechová, J. & Storch, D. Ecological niche. Encycl. Ecol. 2, 1088–1097 (2008).
    Google Scholar 
    2.Vannette, R. L. & Fukami, T. Historical contingency in species interactions: Towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).PubMed 
    Article 

    Google Scholar 
    3.Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2011).Book 

    Google Scholar 
    4.Clark, J. S. The coherence problem with the unified neutral theory of biodiversity. Trends Ecol. Evol. 27, 198–202 (2012).PubMed 
    Article 

    Google Scholar 
    5.McGill, B. J. A test of the unified neutral theory of biodiversity. Nature 422, 881–885 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Bocci, A. et al. Sympatric snow leopards and Tibetan wolves: Coexistence of large carnivores with human-driven potential competition. Eur. J. Wildl. Res. 63, 92 (2017).Article 

    Google Scholar 
    7.Dueser, R. D. & Shuggart, H. H. Niche pattern in a forest-floor small-mammal fauna. Ecology 60, 108–118 (1979).Article 

    Google Scholar 
    8.Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 4, 170060 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Armstrong, R. A. & McGehee, R. Coexistence of species competing for shared resources. Theor. Popul. Biol. 9, 317–328 (1976).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    10.Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 55, 2147–2159 (2018).Article 

    Google Scholar 
    11.Kadowaki, K. Species coexistence patterns in a mycophagous insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus (Polyporaceae: Basidiomycota). Eur. J. Entomol. 107, 89 (2010).Article 

    Google Scholar 
    12.Peter, A.-K. Survival in adults of the water frog Rana lessonae and its hybridogenetic associate Rana esculenta. Can. J. Zool. 79, 652–661 (2001).Article 

    Google Scholar 
    13.Borkowski, A. & Skrzecz, I. Ecological segregation of bark beetle (Coleoptera, Curculionidae, Scolytinae) infested Scots pine. Ecol. Res. 31, 135–144 (2016).Article 

    Google Scholar 
    14.Bobiec, A., Gutowski, J. M. & Laudenslayer, W. F. The Afterlife of a Tree (WWF Poland, 2005).
    Google Scholar 
    15.Alexander, K. N. Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev. Ecol. 10, 9–13 (2008).
    Google Scholar 
    16.Véle, A. & Horák, J. The importance of host characteristics and canopy openness for pest management in urban forests. Urban For. Urban Green. 36, 84–89 (2018).Article 

    Google Scholar 
    17.Přikryl, Z. B., Turčáni, M. & Horák, J. Sharing the same space: Foraging behaviour of saproxylic beetles in relation to dietary components of morphologically similar larvae. Ecol. Entomol. 37, 117–123 (2012).Article 

    Google Scholar 
    18.Brin, A. & Bouget, C. Biotic interactions between saproxylic insect species. In Saproxylic insects: Diversity, ecology and conservation (ed. Ulyshen, M. D.) 471–514 (Springer, 2018).Chapter 

    Google Scholar 
    19.Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge University Press, 2012).Book 

    Google Scholar 
    20.Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).PubMed 
    Article 

    Google Scholar 
    21.Biedermann, P. H. & Taborsky, M. Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. U.S.A. 108, 17064–17069 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Hanks, L. M. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 44, 483–505 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Horak, J. What is happening after an abiotic disturbance? Response of saproxylic beetles in the Primorsky Region woodlands (Far Eastern Russia). J. Insect Conserv. 19, 97–103 (2015).Article 

    Google Scholar 
    24.Hůrka, K. Beetles of the Czech and Slovak Republics (Kabourek, 2005).
    Google Scholar 
    25.Horák, J. & Chobot, K. Phenology and notes on the behaviour of Cucujus cinnaberinus: Points for understanding the conservation of the saproxylic beetle. North-West. J. Zool. 7, 352–355 (2011).
    Google Scholar 
    26.Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Crowson, R. Observations on Dendrophagus crenatus (Paykull)(Cucujidae) and some comparisons with piestine Staphylinidae (Coleoptera). Entomol. Mon. Mag. 104, 161–169 (1969).
    Google Scholar 
    28.Tarno, H. et al. The behavioral role of males of platypus quercivorus murayama in their subsocial colonies. Agrivita 38, 47–54 (2016).
    Google Scholar 
    29.Della Rocca, F. & Milanesi, P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. J. Biogeogr. 47, 1427–1438 (2020).Article 

    Google Scholar 
    30.Buse, J. “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J. Insect Conserv. 16, 93–102 (2012).Article 

    Google Scholar 
    31.Røed, K. H. et al. Isolation and characterization of ten microsatellite loci for the wood-living and threatened beetle Cucujus cinnaberinus (Coleoptera: Cucujidae). Conserv. Genet. Resour. 6, 641–643 (2014).Article 

    Google Scholar 
    32.Konvicka, M., Hula, V. & Fric, Z. Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): What can be learned from vegetation composition and architecture?. Eur. J. Entomol. 100, 313–322 (2003).Article 

    Google Scholar 
    33.Bonacci, T. et al. Artificial feeding and laboratory rearing of endangered saproxylic beetles as a tool for insect conservation. J. Insect Sci. 20, 20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mazzei, A. et al. Rediscovering the ‘umbrella species’ candidate Cucujus cinnaberinus (Scopoli, 1763) in Southern Italy (Coleoptera Cucujidae), and notes on bionomy. Ital. J. Zool. 78, 264–270 (2011).Article 

    Google Scholar 
    35.Horák, J., Chumanová, E. & Chobot, K. Habitat preferences influencing populations, distribution and conservation of the endangered saproxylic beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) at the landscape level. Eur. J. Entomol. 107, 81–88 (2010).Article 

    Google Scholar 
    36.Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Carmel, Y. et al. Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos 126, 1451–1458 (2017).Article 

    Google Scholar 
    38.Horák, J., Chumanová, E. & Hilszczański, J. Saproxylic beetle thrives on the openness in management: a case study on the ecological requirements of Cucujus cinnaberinus from Central Europe. Insect Conserv. Divers. 5, 403–413 (2012).Article 

    Google Scholar 
    39.Keddy, P. Competiton 2nd edn. (Springer, 2001).Book 

    Google Scholar 
    40.Bonacci, T. et al. Beetles “in red”: are the endangered flat bark beetles Cucujus cinnaberinus and C. haematodes chemically protected? (Coleoptera: Cucujidae). Eur. Zool. J. 85, 128–136 (2018).Article 
    CAS 

    Google Scholar 
    41.Chararas, C., Chipoulet, J. M. & Courtois, J. E. Purification partielle et caracterisation d’une beta-glucosidase des larves de Pyrochroa coccinea (Coleoptere, Pyrochroidae). C. R. Séances Soc. Biol. Fil. 1771, 22–27 (1983).
    Google Scholar 
    42.Dettner, K. Description of defensive glands from cardinal beetles (Coleoptera, Pyrochroidae)—their phylogenetic significance as compared with other heteromeran defensive glands. Entomol. Basil. 9, 204–215 (1984).
    Google Scholar 
    43.Nardi, G. & Bologna, M. Cantharidin attraction in Pyrochroa (Coleoptera: Pyrochroidae). Entomol. News 111, 74–75 (2000).
    Google Scholar 
    44.Hirzel, A. & Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 157, 331–341 (2002).Article 

    Google Scholar 
    45.Jaworski, T. et al. Saproxylic moths reveal complex within-group and group-environment patterns. J. Insect Conserv. 20, 677–690 (2016).Article 

    Google Scholar 
    46.Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null Model Analysis for Ecologicaldata. R package version 0.1.0 (Zenodo, 2015).47.Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland. https://CRAN.R-project.org/package=HH (2020).48.Walsh, C. & Mac Nally, R. M. Hier.Part: Hierarchical partitioning. https://cran.r-project.org/web/packages/hier.part/index.html (2020). More

  • in

    Computational sustainability meets materials science

    Computational sustainability research has been supported by an Expedition in Computing from the US National Science Foundation (NSF; CCF-1522054). eBird has been supported by the Leon Levy Foundation, the Wolf Creek Foundation, and NSF (DBI-1939187). Materials science research has also been supported by the AFOSR Multidisciplinary University Research Initiative (MURI) Program FA9550-18-1-0136, US DOE Award No.DE-SC0020383, and an award from the Toyota Research Institute. More

  • in

    Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef

    1.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, 6371 (2018).Article 
    CAS 

    Google Scholar 
    2.Laffoley, D. & Baxter, J. M. Ocean deoxygenation: everyone’s problem—causes, impacts, consequences and solutions (IUCN, 2019).3.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl Acad. Sci. USA 114, 3660–3665 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Pandolfi, J. M. et al. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Hoegh-Guldberg, O. et al. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).7.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158 (2014).Article 

    Google Scholar 
    9.Wild, C. et al. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar. Freshw. Res. 62, 205–215 (2011).CAS 
    Article 

    Google Scholar 
    10.Muscatine, L. & Porter, J. W. Reef corals-mutualistics symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).Article 

    Google Scholar 
    11.Ainsworth, T. D., Turber, R. V. & Gates, R. D. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25, 233–240 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Garren, M. et al. Resilience of coral-associated bacterial communities exposed to fish farm effluent. PLoS ONE 4, 10 (2009).Article 
    CAS 

    Google Scholar 
    13.Kelly, L. W. et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl Acad. Sci. USA 111, 10227–10232 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Altieri, A. H., Johnson, M. D., Swaminathan, S. D., Nelson, H. & Gedan, K. Resilience of tropical ecosystems to ocean deoxygenation. Trends Ecol. Evol. 36, 227–238 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Lucey, N. M., Collins, M. & Collin, R. Oxygen-mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecol. Evol. 10, 1145–1157 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Kealoha, A. K. et al. Localized hypoxia may have caused coral reef mortality at the Flower Garden Banks. Coral Reefs 39, 119–132 (2020).Article 

    Google Scholar 
    17.Nelson, H. R. & Altieri, A. H. Oxygen: the universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).ADS 
    Article 

    Google Scholar 
    18.Glynn, P. W. Coral-reef bleaching: ecological perspectives. Coral Reefs 12, 1–17 (1993).ADS 
    Article 

    Google Scholar 
    19.Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Alderice, R. et al. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. Glob. Change Biol. 27, 312–326 (2020).21.Cramer, K. L. et al. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching. Ecol. Lett. 15, 561–567 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Warner, M. E., Fit, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Guzmán, H. M. & Guevara, C. A. Coral reefs of Bocas del Toro, Panama: distribution, structure and state of conservation of the continental reefs of Laguna de Chiriquí and Bahía Almirante. Rev. Biol. Trop. 46, 601–623 (1998).
    Google Scholar 
    24.Prada, C. et al. Genetic species delineation among branching Caribbean Porites corals. Coral Reefs 33, 1019–1030 (2014).ADS 
    Article 

    Google Scholar 
    25.Wegley Kelly, L. et al. Diel population and functional synchrony of microbial communities on coral reefs. Nat. Comm. 10, 1691 (2019).26.Wegley Kelly, L., Haas, A. F. & Nelson, C. E. Ecosystem microbiology of coral reefs: Linking genomic, metabolomic, and biogeochemical dynamics from animal symbioses to reefscape processes. mSystems 3, e00162-17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 
    Article 

    Google Scholar 
    28.On, S. L. W. et al. A critical rebuttal of the proposed division of the genus Arcobacter into six genera using comparative genomic, phylogenetic, and phenotypic criteria. Syst. Appl. Microbiol. 43, 126108 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Pérez-Cataluña, A. et al. Revisiting the taxonomy of the genus Arcobacter: Getting order from the chaos. Front. Microbiol. 9, 2077 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Wang, Y. et al. Aliiroseovarius marinus sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 70, 334–339 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Park, S. et al. Aliiroseovarius pelagivivens gen. nov., sp. nov., isolated from seawater, and reclassification of three species of the genus Roseovarius as Aliiroseovarius crassostreae comb. nov., Aliiroseovarius halocynthiae comb. nov. and Aliiroseovarius sediminilitoris comb. nov. Int. J. Syst. Evol. Microbiol. 65, 2646–2652 (2015).33.Zhou, H. et al. Pyrene biodegradation and its potential pathway involving Roseobacter clade bacteria. Int. Biodeterio. Biodegrad. 150, 104961 (2020).CAS 
    Article 

    Google Scholar 
    34.Friedrich, C. G. et al. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Wirsen, C. O. et al. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp that produces filamentous sulfur. Appl. Environ. Microbiol. 68, 316–325 (2002).36.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 1–12 (2020).37.Seemann, J. et al. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama. Environ. Monit. Assess. 186, 747–1763 (2014).Article 
    CAS 

    Google Scholar 
    38.Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    39.Sievert, S. M. et al. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ. Microbiol. 9, 271–276 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Berg, C. et al. Acetate-utilizing bacteria at an oxic-anoxic interface in the Baltic Sea. FEMS Microbiol. Ecol. 85, 251–261 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Broman, E. et al. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front. Microbiol. 8, 2453 (2017).42.Bourlat, S. J. et al. Genomics in marine monitoring: new opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Change Biol. 21, 1395–1406 (2015).ADS 
    Article 

    Google Scholar 
    44.Fitt, W. K. et al. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article 

    Google Scholar 
    45.Johnson, M. D. et al. Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific. PLoS ONE 15, e0228448 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74 (1991).Article 

    Google Scholar 
    47.Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher-plants, algae, and natural phytolplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).48.Bates, D. et al. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).ADS 
    Article 

    Google Scholar 
    49.R Core Team. R: A language and environment for statistical computing (v3.6.2) (R Foundation for Statistical Computing, 2019).50.Kuznetsova, A., Brockhoff, P. B. & Christensen R. H. B. lmerTest package: tests in linear mixed effects models (2017).51.Oksanen, J. et al. The vegan package. Community ecology package. 631–637 (2007).52.Martinez Arbizu, P. Pairwiseadonis: pairwise multilevel comparison using adonis (2017).53.Nguyen, B. N. et al. Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Sci. Rep. 10, 6729 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    55.Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Msystems 1, e00009-15 (2016).56.Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: a custom and streamlined workflow for microbiome research. Msystems 2, e00127–00116 (2017).57.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).58.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Wang, Q. et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.McMurdie, P. J. & Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).62.Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    63.Roberts, D. W. labdsv: ordination and multivariate analysis for ecology. R package (2017).64.Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platformfor ‘omics data. PeerJ 3, e1319 (2015).65.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Koster, J. & Rahmann, S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    67.Eren, A. M. et al. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).68.Li, D. H. et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).70.Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).71.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–U54 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Menzel, P., Ng, K. L., & Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Comm. 7, 11257 (2016).73.Roux, S. et al. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).74.Buchfink, B., Xie, C. & Huson, D. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2014).Article 
    CAS 

    Google Scholar 
    77.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Kanehisa, M. et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Jain, C. et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Comm. 9, 1–8 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    80.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Hoang, D. T. et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Johnson, M.D. et al. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Zenodo. https://doi.org/10.5281/zenodo.4940132 (2021). More

  • in

    Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks

    1.Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 1997;61:262–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007;107:4206–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016;7:235–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Amend JP, McCollom TM, Hentscher M, Bach W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta. 2011;75:5736–48.CAS 
    Article 

    Google Scholar 
    8.Reveillaud J, Reddington E, McDermott J, Algar C, Meyer JL, Sylva S, et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol. 2016;18:1970–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. Geobiology. 2013;11:340–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Schubotz F, Hays LE, Meyer-Dombard D, Gillespie A, Shock EL, Summons RE. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs. Front Microbiol. 2015;6:42.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fortunato CS, Huber JA. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J. 2016;10:1925–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.McNichol J, Stryhanyuk H, Sylva SP, Thomas F, Musat N, Seewald JS, et al. Primary productivity below the seafloor at deep-sea hot springs. Proc Natl Acad Sci USA. 2018;115:6756–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Coskun ÖK, Pichler M, Vargas S, Gilder S, Orsi WD. Linking uncultivated microbial populations with benthic carbon turnover using quantitative stable isotope probing. Appl Environ Microbiol 2018;84:e01083–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T, Häggblom MM, et al. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 2014;8:139–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Maia M, Sichel S, Briais A, Brunelli D, Ligi M, Ferreira N, et al. Extreme mantle uplift and exhumation along a transpressive transform fault. Nat Geosci. 2016;9:619–23.CAS 
    Article 

    Google Scholar 
    17.Klein F, Tarnas JD, Bach W. Abiotic sources of molecular hydrogen on Earth. Elements. 2020;16:19–24.CAS 
    Article 

    Google Scholar 
    18.Seewald JS, Doherty KW, Hammar TR, Liberatore SP. A new gas-tight isobaric sampler for hydrothermal fluids. Deep Sea Res Part I. 2002;49:189–96.CAS 
    Article 

    Google Scholar 
    19.Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vuillemin A, Wankel SD, Coskun OK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv. 2019;5:eaaw4108.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Oremland RS, Miller LG, Whiticar MJ. Sources and flux of natural gases from Mono Lake, California. Geochim Cosmochim Acta. 1987;51:2915–29.CAS 
    Article 

    Google Scholar 
    22.Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta. 2010;74:941–52.CAS 
    Article 

    Google Scholar 
    23.Butler IB, Schoonen MA, Rickard DT. Removal of dissolved oxygen from water: a comparison of four common techniques. Talanta. 1994;41:211–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Ortega-Arbulu AS, Pichler M, Vuillemin A, Orsi WD. Effects of organic matter and low oxygen on the mycobenthos in a coastal lagoon. Environ Microbiol. 2019;21:374–88.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 2016;18:1403–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Coskun ÖK, Özen V, SD Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.27.Pichler M, Coskun ÖK, Ortega-Arbulú A-S, Conci N, Wörheide G, Vargas S, et al. A 16S rRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. Microbiologyopen 2018:7;e00611.28.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    Article 

    Google Scholar 
    29.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    Article 

    Google Scholar 
    30.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Morrissey EM, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Phylogenetic organization of bacterial activity. ISME J. 2016;10:2336.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Youngblut ND, Barnett SE, Buckley DH. HTSSIP: an R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP) experiments. PLoS ONE. 2018;13:e0189616.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.R. Team. Others, RStudio: integrated development for R. vol. 42. Boston, MA: RStudio, Inc; 2015. P. 14.
    Google Scholar 
    36.Blomberg SP, Garland T Jr, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Orsi WD, Morard R, Vuillemin A, Eitel M, Worheide G, Milucka J, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME J. 2020;14:2580–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Sieradzki ET, Koch BJ, Greenlon A, Sachdeva R, Malmstrom RR, Mau RL, et al. Measurement error and resolution in quantitative stable isotope probing: implications for experimental design. mSystems. 2020;5:e00151–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Youngblut ND, Barnett SE, Buckley DH. SIPSim: a modeling toolkit to predict accuracy and aid design of DNA-SIP experiments. Front Microbiol 2018;9:570.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–235.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Keck F, Rimet F, Bouchez A, Franc A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol 2016;6:2774–80.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Meier DV, Pjevac P, Bach W, Markert S, Schweder T, Jamieson J, et al. Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses. Environ Microbiol. 2019;21:682–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Lecoeuvre A, Menez B, Cannat M, Chavagnac V, Gerard E. Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME J. 2021;15:818–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J. 2009;3:231–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lucker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, et al. Abundance and diversity of microbial life in ocean crust. Nature. 2008;453:653–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Schrenk MO, Brazelton WJ, Lang SQ. Serpentinization, carbon, and deep life. Rev Mineral Geochem 2013;75:575–606.CAS 
    Article 

    Google Scholar 
    57.Klein F, Bach W, Humphris SE, Kahl W-A, Jöns N, Moskowitz B, et al. Magnetite in seafloor serpentinite—some like it hot. Geology. 2014;42:135–8.CAS 
    Article 

    Google Scholar 
    58.Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science. 2005;307:1428–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Wankel SD, Germanovich LN, Lilley MD, Genc G, DiPerna CJ, Bradley AS, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4:461–8.CAS 
    Article 

    Google Scholar 
    60.McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F. Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci USA. 2014;111:E3948–3956.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS, Spear JR, et al. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME J. 2021;15:1121–35.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Carr SA, Orcutt BN, Mandernack KW, Spear JR. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica. Front Microbiol 2015;6:872.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, et al. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J. 2016;10:273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Schuchmann K, Müller V. Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 2016;82:4056–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Vuillemin A, Vargas S, Coskun OK, Pockalny R, Murray RW, Smith DC, et al. Atribacteria reproducing over millions of years in the Atlantic Abyssal subseafloor. mBio. 2020;11:e01937–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Bryant FO, Adams MW. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 1989;264:5070–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Berney M, Greening C, Conrad R, Jacobs WR Jr, Cook GM. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci USA 2014;111:11479–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Kwan P, McIntosh CL, Jennings DP, Hopkins RC, Chandrayan SK, Wu C-H, et al. The [NiFe]-hydrogenase of Pyrococcus furiosus exhibits a new type of oxygen tolerance. J Am Chem Soc. 2015;137:13556–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, et al. Cultivation and genomic analysis of “Candidatus Nitrosocaldus islandicus,” an obligately thermophilic, ammonia-oxidizing Thaumarchaeon from a hot spring biofilm in Graendalur Valley, Iceland. Front Microbiol. 2018;9:193.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.W Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.Article 
    CAS 

    Google Scholar 
    72.Seyler LM, McGuinness LR, Gilbert JA, Biddle JF, Gong D, Kerkhof LJ. Discerning autotrophy, mixotrophy and heterotrophy in marine TACK archaea from the North Atlantic. FEMS Microbiol Ecol 2018;94:fiy014.73.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Diaz R, Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural response of benthic macrofauna. Oceanogr Mar Biol. 1995;33:245–303.
    Google Scholar 
    75.Jenkins MC, Kemp WM. The coupling of nitrification and denitrification in two estuarine sediments. Limnol Oceanogr. 1984;29:609–19.CAS 
    Article 

    Google Scholar 
    76.Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, et al. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol. 2017;8:56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ragsdale SW. Life with carbon monoxide. Crit Rev Biochem Mol Biol. 2004;39:165–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S, Rempfert KR, et al. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. ISME J. 2019;13:1750–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Morrill PL, Brazelton WJ, Kohl L, Rietze A, Miles SM, Kavanagh H, et al. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN. Front Microbiol. 2014;5:613.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Wilcoxen J, Zhang B, Hille R. Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones. Biochemistry. 2011;50:1910–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Seewald JS, Zolotov MY, McCollom T. Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta. 2006;70:446–60.CAS 
    Article 

    Google Scholar 
    83.Can M, Armstrong FA, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev. 2014;114:4149–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. Temperature-controlled organic carbon mineralization in lake sediments. Nature. 2010;466:478–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Katayama T, Nobu MK, Kusada H, Meng XY, Hosogi N, Uematsu K, et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat Commun. 2020;11:6381.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Brisbarre N, Fardeau M-L, Cueff V, Cayol J-L, Barbier G, Cilia V, et al. Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol. 2003;53:1043–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Roslev P, Larsen MB, Jørgensen D, Hesselsoe M. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods. 2004;59:381–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Spona-Friedl M, Braun A, Huber C, Eisenreich W, Griebler C, Kappler A, et al. Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. FEMS Microbiol Ecol 2020;96:fiaa080.89.Jansen K, Thauer RK, Widdel F, Fuchs G. Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol. 1984;138:257–62.CAS 
    Article 

    Google Scholar 
    90.Braun A, Spona-Friedl M, Avramov M, Elsner M, Baltar F, Reinthaler T, et al. Reviews and syntheses: heterotrophic fixation of inorganic carbon—significant but invisible flux in global carbon cycling. Biogeosciences 2020;18:3689–3700.91.Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology. 2010;8:355–71. https://doi.org/10.1111/j.1472-4669.2010.00249.x92.Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6:805–14. 10.1038/nrmicro1991. More

  • in

    Geographically targeted surveillance of livestock could help prioritize intervention against antimicrobial resistance in China

    DataWe reviewed PPS reporting rates of AMR in healthy animals and animal food products in China between 2000 and 2019 (Supplementary Text S1). We focused on three common food animal species: chicken, pigs and cattle. Dairy cattle and meat cattle were pooled in this study, in consistency with the categorization adopted in the maps of livestock created by the Food and Agriculture Organization27. The review focused on four common foodborne bacteria: E. coli, non-typhoidal Salmonella, S. aureus and Campylobacter. We recorded resistance rates reported in PPSs, defined as the percentage of isolates tested resistant to an antimicrobial compound. In addition, we extracted the anatomical therapeutic chemical classification codes of the drugs tested, the year of publication, the guidelines used for susceptibility testing, the latitude and longitude of sampling sites, the number of samples collected and the host animals. We recorded sample types for each survey, including live animals, slaughtered animals, animal products and faecal samples. Each sample was taken from one animal or animal product. These sample types were pooled in the current analysis. In total, 10,747 rates of AMR were extracted from 446 surveys (Supplementary Fig. 8), including 318 surveys from China’s National Knowledge Infrastructure (CNKI), the leading Chinese-language academic search engine. All data extracted in the review are available at https://resistancebank.org.Two steps were taken to ensure comparability of the resistance rates extracted from the surveys. First, the panel of drug–bacteria combinations extracted from each survey was that recommended for susceptibility testing by the World Health Organization Advisory Group on Integrated Surveillance of Antimicrobial Resistance40. This resulted in the extraction of 6,295 resistance rates for 76 drug–bacteria combinations. Second, resistance rates were harmonized using a methodology4 accounting for potential variations in the clinical breakpoints used for antimicrobial susceptibility testing (Supplementary Text S1). There are two major families of methods used for susceptibility testing in this dataset: diffusion methods (for example, disc diffusion) and dilution methods (for example, broth dilution). Previous works have shown good agreement between the two approaches in measuring resistance in foodborne bacteria4,46. For each family of methods, variations of breakpoints may result from differences between laboratory guidelines systems (European Committee on Antimicrobial Susceptibility Testing vs Clinical and Laboratory Standards Institute), or from variations over time of clinical breakpoints within a laboratory guidelines system (Clinical and Laboratory Standards Institute or European Committee on Antimicrobial Susceptibility Testing). Here we accounted for both situations using distributions of minimum inhibitory concentrations and inhibition zones obtained from eucast.org (Supplementary Text S1).Trends in AMRWe defined a composite metric of AMR to summarize trends in resistance across multiple drugs and bacterial species. For each survey, we calculated the proportion of antimicrobial compounds with resistance higher than 50% (P50). For each animal–bacteria combination, we assessed the significance of the temporal trends of P50 between 2000 to 2019 using a logistic regression model, weighted by the log10-transformed number of samples in each survey.For each bacteria–drug (antimicrobial class) combination, we estimated prevalence of resistance by calculating a curve of the distribution of resistance rates across all surveys (Fig. 2). The analysis was conducted for surveys published between 2000 and 2009, and between 2010 and 2019, respectively. The distribution was estimated at 100 equally spaced intervals from resistance rates of 0% to 100%, using kernel density estimation. We used the centre of mass of the density distribution to estimate prevalence of resistance. The calculation was conducted for six animal–bacteria combinations. This included E. coli in chicken, pigs and cattle, Salmonella in chicken and pigs, and S. aureus in cattle. The remaining animal–bacteria combinations were excluded due to limited sample size, only represented in 32 out of 446 PPSs. The analysis was restricted to antimicrobial classes represented by at least 10 resistance rates. In addition, we estimated the association between resistance rates and the ease of obtaining antimicrobials from the market, using data from online stores (Supplementary Text S3).Geospatial modellingWe interpolated P50 values from the survey locations to create a map of P50 at a resolution of 10 × 10 km across China. The approach followed a two-step procedure47. In step 1, three ‘child models’ were trained using four-fold spatial cross-validation to quantify the relation between P50 and environmental and anthropogenic covariates (Supplementary Text S2 and Supplementary Table 1). In step 2, the predictions of the child models were stacked using universal kriging (Supplementary Text S2). This approach combined the ability of the child models to capture interactions and non-linear relationships between P50 and environmental and anthropogenic covariates, as well as the ability to account for spatial autocorrelation in the distribution of P50.The outputs of the two-step procedure were a map of P50 (Fig. 3) and a map of uncertainty on the P50 predictions (Supplementary Fig. 9 and Supplementary Text S2). The overall accuracy of the geospatial model was evaluated using the area under the AUC. The contribution of each covariate was evaluated by permuting sequentially all covariates, and calculating the reduction in AUC compared with a full model including all covariates (Supplementary Fig. 4). The administrative boundaries used in all maps were obtained from the Global Administrative Areas database (http://www.gadm.org).Identifying (optimal) locations for future surveys on AMRWe identified the locations of 50 hypothetical new surveys—the rounded average number of surveys conducted per year (54 surveys per year) between 2014 and 2019 in China. The location of each new survey was determined recursively such that it minimized the overall uncertainty levels on the geographical trends in AMR across the country. This process took into account the locations of existing surveys and the location of each additional hypothetical survey. The objective of this approach was to maximize gain in information about AMR given the resource invested in conducting surveys.The map of uncertainty consisted of the variance in the child model predictions Var(PBRT,PLASSO–GLM,PFFNN) (step 1) across 10 Monte Carlo simulations, where PBRT, PLASSO–GLM, and PFFNN were the predictions of P50 using boosted regression trees, logistic regression with LASSO regularization, and feed-forward neural network, and the kriging variance VarK (step 2):Vartotal = Var(PBRT,PLASSO–GLM,PFFNN) + VarKIn this study, the location of hypothetical surveys was solely based on VarK, instead of the sum of both terms. This approach was preferred because including both terms would have required to hypothesize P50 values associated with surveys to be conducted in the future, adding an additional source of uncertainty that cannot be quantified. In any case, the uncertainty attributable to VarK was 4.1 times the Var(PBRT,PLASSO–GLM,PFFNN) (Supplementary Text S2).The allocation of new surveys was based on a map of ‘necessity for additional surveillance’ (NS), defined as:NS = VarK × Wwhere VarK reflects the uncertainty of the spatial interpolation, and W is the log10-transformed population density of humans48, animals27 in total, and in chicken, pigs and cattle, separately, which reflected exposure (Supplementary Fig. 10). Animal population density was calculated here as the sum of population-corrected units of pigs, chicken and cattle, using methods described by Van Boeckel et al.7. We adjusted the values of W such that its density distribution equals that of VarK. Concretely, for each pixel i, we calculated the quantile of Wi on the map of W, and replaced the value by the corresponding value of VarK at the same quantile. VarK and W were both standardized to range [0,1], thus giving each term equal weight in the need for surveillance.Four approaches were used to distribute 50 surveys across China based on the map of NS. The reduction in uncertainty on AMR level associated with each of the four spatial configurations of the hypothetical surveys was evaluated by calculating the reduction in the mean values of NS across 7,857 possible pixels on the map of China.First, we used a ‘greedy’ approach where all possible locations for additional surveys were tested. Concretely, the first hypothetical survey was placed at each of the 7,857 possible pixel locations, and a revised map of NS(+1 survey) was calculated for each of the placements. The survey was eventually placed in the pixel that led to the largest reduction in NS(+1 survey). The map of NS was then revised to account for the reduction in uncertainty in the neighbourhood of the new survey. The process was repeated recursively for the next hypothetical surveys (2nd–50th). This approach, by definition, yields the optimal set of locations to reduce uncertainty, but it also bears a considerable computational burden, because every possible location is tested (Npixels = 7,857) by the geospatial model for each hypothetical survey.The second approach developed was a computational approximation to the greedy approach, hereafter referred to as the ‘overlap approach’. This approach exploits a key feature of the kriging procedure: the decrease of the kriging variance (VarK) with increasing proximity to existing survey locations. Each additional survey reduces the variance of the geospatial model at its own location, but also in its surrounding area (Supplementary Fig. 11). The ‘overlap approach’ selects an optimal set of locations that reflect a compromise between high local NS and distance to other surveys. It iteratively selects new locations based on the highest local NS penalized by the degree of overlap between the hypothetical new surveys and existing surveys (Supplementary Fig. 12). The first survey was placed at the location Xp,Yp with the highest local NS (Supplementary Fig. 12, part 1). Then the value of NS at each pixel location Xi,Yi was recalculated as ({mathrm{NS}}_{{(+1,{mathrm{survey}})}X_i,,Y_i}={mathrm{NS}}_{X_i,,Y_i}times(1-{mathrm{overlap}},{mathrm{area}}/{mathrm{neighborhood}},{mathrm{area}})) (Supplementary Fig. 12, Part 2), where the neighbourhood area was the circular area of decreased kriging variance around a new survey, and its radius was the distance until which NS decreased due to this new survey; the ‘overlap area’ is the shared area of the neighbourhoods of location Xp,Yp and of location Xi,Yi. The radius of the neighbourhood was determined using a sensitivity analysis, optimized by approximate Bayesian computation (sequential Monte Carlo)49 (Supplementary Text S5). The optimal neighbourhood radius was chosen such that it minimizes reduction in NS across all pixels. The procedure (Supplementary Fig. 12, parts 1 and 2) was repeated recursively for the hypothetical surveys (2nd–50th).The third approach tested consisted of distributing surveys equally between provinces to reflect a common approach to disease surveillance based on equal allocation of resources between administrative entities. Twenty-two provinces with the highest human population were assigned two surveys, and the remaining six provinces were assigned one survey per province. The exact location of each survey was randomly selected inside a province. Finally, all approaches were compared with the fourth approach (the random approach) as a ‘null model’, in which the 50 hypothetical surveys were located randomly across the country without any geographic weighting criteria. The reduction in NS associated with the third and fourth approaches, which was compared to the greedy approach and overlap approach, was the average over 50 simulations.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    1.Tang, X. et al. Scheme design and main result analysis of the fourth national survey on giant pandas. For. Resour. Manag. 1, 11–16 (2015).
    Google Scholar 
    2.Swaisgood, R. R., Wang, D. & Wei, F. Panda downlisted but not out of the woods. Conserv. Lett. 11, 1 (2018).Article 

    Google Scholar 
    3.Xu, W. et al. Reassessing the conservation status of the giant panda using remote sensing. Nat. Ecol. Evol. 1, 1635–1638 (2017).PubMed 
    Article 

    Google Scholar 
    4.Shen, G. et al. Climate change challenges the current conservation strategy for the giant panda. Biol. Conserv. 190, 43–50 (2015).Article 

    Google Scholar 
    5.Tian, Z. et al. The next widespread bamboo flowering poses a massive risk to the giant panda. Biol. Conserv. 234, 180–187 (2019).Article 

    Google Scholar 
    6.Lu, Z. et al. Patterns of genetic diversity in remaining giant panda populations. Conserv. Biol. 15, 1596–1607 (2001).Article 

    Google Scholar 
    7.Pimm, S. L. The Balance of Nature (Univ. Chicago Press, 1991).8.Pimm, S. L., Dollar, L. & Bass, O. L. Jr The genetic rescue of the Florida panther. Anim. Conserv. 9, 115–122 (2006).Article 

    Google Scholar 
    9.Qing, J. et al. The minimum area requirements (MAR) for giant panda: an empirical study. Sci. Rep. 6, 37715 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Fahrig, L. Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manag. 61, 603–610 (1997).Article 

    Google Scholar 
    12.Simberloff, D. Habitat fragmentation and population extinction of birds. IBIS 137, S105–S111 (1995).Article 

    Google Scholar 
    13.Viña, A. et al. Range-wide analysis of wildlife habitat: implications for conservation. Biol. Conserv. 143, 1960–1969 (2010).Article 

    Google Scholar 
    14.Wang, T., Ye, X., Skidmore, A. K. & Toxopeus, A. G. Characterising the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes. J. Biogeogr. 37, 865–878 (2010).CAS 
    Article 

    Google Scholar 
    15.Xu, W. et al. Conservation of giant panda habitat in South Minshan, China, after the May 2008 earthquake. Front. Ecol. Environ. 7, 353–358 (2009).Article 

    Google Scholar 
    16.Gong, M., Guan, T., Hou, M., Liu, G. & Zhou, T. Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecol. Evol. 7, 596–605 (2017).PubMed 
    Article 

    Google Scholar 
    17.Songer, M., Delion, M., Biggs, A. & Huang, Q. Modeling impacts of climate change on giant panda habitat. Int. J. Ecol. 2012, 108752 (2012).Article 

    Google Scholar 
    18.Tuanmu, M. N. et al. Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nat. Clim. Change 3, 249–253 (2013).Article 

    Google Scholar 
    19.He, K. et al. Effects of roads on giant panda distribution: a mountain range scale evaluation. Sci. Rep. 9, 1110 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Li, H. et al. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake—case study of Wolong Nature Reserve in China. Ecol. Model. 221, 944–952 (2010).Article 

    Google Scholar 
    21.Qi, D. et al. Quantifying landscape linkages among giant panda subpopulations in regional scale conservation. Integr. Zool. 7, 165–174 (2012).PubMed 
    Article 

    Google Scholar 
    22.Shen, G. et al. Proposed conservation landscape for giant pandas in the Minshan Mountains, China. Conserv. Biol. 22, 1144–1153 (2008).PubMed 
    Article 

    Google Scholar 
    23.Kong, L. et al. Habitat conservation redlines for the giant pandas in China. Biol. Conserv. 210, 83–88 (2017).Article 

    Google Scholar 
    24.Zhang, J. et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. Ecol. Manag. 319, 1–9 (2014).Article 

    Google Scholar 
    25.Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).Article 

    Google Scholar 
    26.Possingham, H. in Conservation of Australia’s Forest Fauna (ed. Lunney, D.) Ch. 3, 35–40 (Royal Zoological Society of New South Wales, 1991).27.Lacy, R. C. VORTEX: a computer simulation model for population viability analysis. Wildl. Res. 20, 45–65 (1993).Article 

    Google Scholar 
    28.Wei, F., Fgeng, Z. & Hu, J. Population viability analysis computer model of giant panda population in Wuyipeng, Wolong Natural Reserve, China. Int. Conf. Bear. Res. Manag. 9, 19–23 (1997).
    Google Scholar 
    29.Guo, J., Chen, Y. & Hu, J. Population viability analysis of giant pandas in the Yele Nature Reserve. J. Nat. Conserv. 10, 35–40 (2002).Article 

    Google Scholar 
    30.Jiang, H. & Hu, J. Population viability analysis for the Giant Panda in Baoxing County, Sichuan. Sichuan J. Zool. 29, 161–165 (2010).
    Google Scholar 
    31.Li, X., Li, D., Yong, Y. & Zhang, J. A preliminary analysis on population viability analysis for Giant Panda in Foping. Acta Zool. Sin. 43, 285–293 (1997).
    Google Scholar 
    32.Yang, Z., Hu, J. & Liu, N. The influence of dispersal on the metapopulation viability of Giant Panda (Aliuropoda melanoleuca) in the Minshan Mountains. Acta Zool. Acad. Sci. Hung. 53, 169–184 (2007).
    Google Scholar 
    33.Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Carter, J., Ackleh, A. S., Leonard, B. P. & Wang, H. Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous. Ecol. Model. 123, 207–223 (1999).Article 

    Google Scholar 
    35.Xia, W. & Hu, J. On the trend of population dynamics in giant panda based on age structure. Acta Theriologica Sin. 9, 87–93 (1989).
    Google Scholar 
    36.Zhu, L. et al. Conservation implications of drastic reductions in the smallest and most isolated populations of giant pandas. Conserv. Biol. 24, 1299–1306 (2010).PubMed 
    Article 

    Google Scholar 
    37.State Forestry Administration P. R. C. Report of the Third National Giant Panda Census (Science Publishing House, 2006).38.Zhu, L., Hu, Y., Zhang, Z. & Wei, F. Effect of China’s rapid development on its iconic giant panda. Chin. Sci. Bull. 58, 2134–2139 (2013).Article 

    Google Scholar 
    39.Hu, J. Research on the Giant Panda (Shanghai Science and Technology Education Press, 2001).40.Li, R. et al. Climate change threatens giant panda protection in the 21st century. Biol. Conserv. 182, 93–101 (2015).Article 

    Google Scholar 
    41.Yang, B. et al. China’s collective forest tenure reform and the future of the giant panda. Conserv. Lett. 8, 251–261 (2015).Article 

    Google Scholar 
    42.Linderman, M. et al. The effects of understory bamboo on broad-scale estimates of giant panda habitat. Biol. Conserv. 121, 383–390 (2005).Article 

    Google Scholar 
    43.Yang, Z. et al. Reintroduction of the giant panda into the wild: a good start suggests a bright future. Biol. Conserv. 217, 181–186 (2018).CAS 
    Article 

    Google Scholar 
    44.Kaiser, H. The dynamics of populations as result of the properties of individual animals. Fortschr. D. Zool. 25, 109–136 (1979).
    Google Scholar 
    45.Huston, M., DeAngelis, D. & Post, W. New computer models unify ecological theory. BioScience 38, 682–691 (1988).Article 

    Google Scholar 
    46.DeAngelis, D. L. Individual-Based Models and Approaches In Ecology: Populations, Communities and Ecosystems (CRC Press, 2017)47.Uchmański, J. & Grimm, V. Individual-based modelling in ecology: what makes the difference? Trends Ecol. Evol. 11, 437–441 (1996).PubMed 
    Article 

    Google Scholar 
    48.Wei, F. et al. A study on the life table of wild giant pandas. Acta Theriologica Sin. 9, 81–86 (1989).
    Google Scholar 
    49.Hou, W. Revision of the giant panda life table and related data indicators. Zool. Res. 21, 361–366 (2000).
    Google Scholar  More

  • in

    Cuticular hydrocarbons are associated with mating success and insecticide resistance in malaria vectors

    1.Tripet, F., Toure, Y. T., Dolo, G. & Lanzaro, G. C. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am. J. Tropical Med. Hyg. 68, 1–5 (2003).Article 

    Google Scholar 
    2.Beehler, B. M. & Foster, M. S. Hotshots, hotspots, and female preference in the organization of lek mating systems. Am. Nat. 131, 203–219 (1988).Article 

    Google Scholar 
    3.Cator, L. J., Wyer, C. A. S. & Harrington, L. C. Mosquito sexual selection and reproductive control programs. Trends Parasitol. 37, 330–339 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Charlwood, J. D. & Jones, M. D. R. Mating behaviour in the mosquito, Anopheles gambiae s.1.save. Physiol. Entomol. 4, 111–120 (1979).Article 

    Google Scholar 
    5.Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 1395–1401 (2020).7.Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Cator, L. J., Ng’Habi, K. R., Hoy, R. R. & Harrington, L. C. Sizing up a mate: variation in production and response to acoustic signals in Anopheles gambiae. Behav. Ecol. 21, 1033–1039 (2010).Article 

    Google Scholar 
    9.Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. “Singing on the wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Simões, P. M., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Exp. Biol. 220, 379–385 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Sawadogo, S. P. et al. Effects of age and size on Anopheles gambiae s.s. male mosquito mating success. J. Med. Entomol. 50, 285–293 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ng’habi, K. R. et al. Sexual selection in mosquito swarms: may the best man lose? Anim. Behav. 76, 105–112 (2008).Article 

    Google Scholar 
    14.Howell, P. I. & Knols, B. G. J. Male mating biology. Malar. J. 8, S8-S8, https://doi.org/10.1186/1475-2875-8-S2-S8 (2009).CAS 
    Article 

    Google Scholar 
    15.Aldersley, A. & Cator, L. J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Sci. Rep. 9, 2145 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Pantoja-Sánchez, H., Gomez, S., Velez, V., Avila, F. W. & Alfonso-Parra, C. Precopulatory acoustic interactions of the New World malaria vector Anopheles albimanus (Diptera: Culicidae). Parasites Vectors 12, 386–386 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ferveur, J.-F. & Cobb, M. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press 325–343 (2010).18.Theresa, L. S. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38, 394–405 (1998).Article 

    Google Scholar 
    19.Chung, H. et al. A single gene affects both ecological divergence and mate choice in Drosophila. Science 343, 1148–1151 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Grigoraki, L., Grau-Bové, X., Carrington Yates, H., Lycett, G. J. & Ranson, H. Isolation and transcriptomic analysis of Anopheles gambiae oenocytes enables the delineation of hydrocarbon biosynthesis. eLife 9, e58019 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Ingleby, F. C. Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6, 732–742 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Lang, J. T. & Foster, W. A. Is there a female sex pheromone in the mosquito Culiseta inornata? Environ. Entomol. 5, 1109–1115 (1976).Article 

    Google Scholar 
    24.Nijout, H. F. C. J. & George, B. Reproductive isolation in Stepgomyia mosquitoes. III Evidence for a sexual pheromone. Entomol. Exp. Appl. 14, 399–412 (1971).Article 

    Google Scholar 
    25.Lang, J. T. Contact sex pheromone in the mosquito Culiseta inornata (Diptera: Culicidae). J. Med. Entomol. 14, 448–454 (1977).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Polerstock, A. R., Eigenbrode, S. D. & Klowden, M. J. Mating alters the cuticular hydrocarbons of female Anopheles gambiae sensu stricto and aedes Aegypti (Diptera: Culicidae). J. Med. Entomol. 39, 545–552 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl Acad. Sci. USA 113, 9268–9273 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Balabanidou, V. et al. Mosquitoes cloak their legs to resist insecticides. Proc. Biol. Sci. 286, 20191091 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Yahouedo, G. A. et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci. Rep. 7, 11091 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Baeshen, R. et al. Differential effects of inbreeding and selection on male reproductive phenotype associated with the colonization and laboratory maintenance of Anopheles gambiae. Malar. J. 13, 19 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Toe, K. H. et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg. Infect. Dis. 20, 1691–1696 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.World Health Organization. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. Geneva, Switzerland: World Health Organization (2013).33.Toe, K. H., N’Fale, S., Dabire, R. K., Ranson, H. & Jones, C. M. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16, 146 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Kwiatkowska, R. M. et al. Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene 519, 98–106 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ingham, V. A. et al. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics 15, 1018 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Blows, M. W. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. Biol. Sci. 269, 1113–1118 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Lane, S. M., Dickinson, A. W., Tregenza, T. & House, C. M. Sexual selection on male cuticular hydrocarbons via male-male competition and female choice. J. Evol. Biol. 29, 1346–1355 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Steiger, S. et al. Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proc. Biol. Sci. 280, 20132353–20132353 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    39.Chung, H. & Carroll, S. B. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37, 822–830, https://doi.org/10.1002/bies.201500014 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Sawadogo, S. P. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Arcaz, A. C. et al. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons. J. Exp. Biol. 219, 1675–1688 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Hidalgo, K. et al. Distinct physiological, biochemical and morphometric adjustments in the malaria vectors Anopheles gambiae and A. coluzzii as means to survive dry season conditions in Burkina Faso. J. Exp. Biol. 70, 102–116 (2018).43.Wagoner, K. M. et al. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes. Parasit. Vectors 7, 294 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Wicker, C. & Jallon, J. M. Influence of ovary and ecdysteroids on pheromone biosynthesis in Drosophila melanogaster (Diptera: Drosophilidae). EJE 92, 197–202 (1995).CAS 

    Google Scholar 
    45.Andersson, M. Sexual Selection. Princeton University Press (1994).46.Fisher, R. The Genetical Theory of Natural Selection. The Clarendon Press, Oxford (1930).47.Weatherhead, P. J. & Robertson, R. J. Offspring quality and the polygyny threshold: “The Sexy Son Hypothesis”. Am. Nat. 113, 201–208 (1979).Article 

    Google Scholar 
    48.Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Rundle, H. D., Chenoweth, S. F. & Blows, M. W. The roles of natural and sexual selection during adaptation to a novel environment. Evolution 60, 2218–2225 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A. & Catteruccia, F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA 108, 13677–13681, https://doi.org/10.1073/pnas.1104738108 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Charlwood, J. D. Studies on the bionomics of male Anopheles gambiae Giles and male Anopheles funestus Giles from southern Mozambique. J. Vector Ecol. 36, 382–394, https://doi.org/10.1111/j.1948-7134.2011.00179.x (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Glunt, K. D., Thomas, M. B. & Read, A. F. The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS ONE 6, e24968–e24968 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163, https://doi.org/10.1186/1475-2875-7-163 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184–184, https://doi.org/10.1186/1471-2148-11-184 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Niang, A. et al. Does extreme asymmetric dominance promote hybridization between Anopheles coluzzii and Anopheles gambiae s.s. in seasonal malaria mosquito communities of West Africa? Parasit. Vectors 8, 586–586, https://doi.org/10.1186/s13071-015-1190-x (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Caputo, B. et al. Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector Anopheles gambiae s.s. (Diptera: Culicidae): analysis of sexual dimorphism and age-related changes. J. Mass Spectrom. 40, 1595–1604, https://doi.org/10.1002/jms.961 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    Article 

    Google Scholar 
    58.Charlwood, J. Biological variation in Anopheles darlingi root. Mem. Inst. Oswaldo Cruz. 91, 391–398 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More