More stories

  • in

    Community composition of aquatic fungi across the thawing Arctic

    Study sitesWe sampled ponds in the following five sites representing different regional-scale permafrost integrity: Toolik, Alaska, USA; Qeqertarsuaq, Disko Island, Greenland, Denmark; Whapmagoostui-Kuujjuarapik, Nunavik, Quebec, Canada; Abisko, Sweden and Khanymey, Western Siberia, Russia (Online-only Table 1). The aim was to include representatives of different stages of permafrost thaw in order to understand whether responses can be generalized across different geographic and environmental conditions.The sampling site in Alaska is located in a continuous permafrost area, mostly dominated by moss-tundra characterized by tussock-sedge Eriophorum vaginatum and Carex bigelowii, and dwarf-shrub Betula nana and Salix pulchra15. The average depth of the active layer in 2017 was ~50 cm16. Records of surface air temperature from 1989 to 2014 showed no significant warming trend, and there was no significant increase in the mean maximum thickness of the active layer or maximum thaw depth17.The sampling site in Greenland is located in the Blæsedalen Valley, south of Disko Island, and is characterized as a discontinuous permafrost area. From 1991 to 2011, Hollensen et al.18 observed an increase of the mean annual air temperatures of 0.2 °C per year in the area, while Hansen et al.19 highlighted that sea ice cover reduced 50% from 1991 to 2004. Soil temperatures recorded by the Arctic Station from the active layer of the coarse marine stratified sediments also showed an increase over the years18. The sampling site is comprised of wet sedge tundra, and the dominating species are Carex rariflora, Carex aquatilis, Eriophorum angustifolium, Equisetum arvense, Salix arctophila, Tomentypnum nitens and Aulacomnium turgidum20.The Canadian site is located within a sporadic permafrost zone, in a palsa bog, in the valley of Great Whale river, close to the river mouth to Hudson Bay. The vegetation consists of a coastal forest tundra, dominated by the species Carex sp. and Sphagnum sp.21 Since the mid-1990s, there has been a significant increase in the surface air temperature of the region for spring and fall, which has been correlated to a decline of sea ice coverage in Hudson Bay22. This area has experienced an accelerated thawing of the permafrost over the past decades, resulting in the collapse of palsas and the emergence of thermokarst ponds as well as significant peat accumulation21,23. In this specific site, thermokarst ponds at different development stage can be found, from recently emerging to older, mature thermokarstic waterbodies. The stage of the ponds was estimated based on the distance between the pond and the edge of the closest palsa, as well as based on satellite images14. The edges of the emerging ponds reached a maximum of 1 m from the closest palsa and were less than 0.5 m deep, whereas the edges of the developing ponds had a maximum distance of 2–3 m to the closest palsa and were ~1 m deep. Mature ponds were identified based on satellite images and were up to 60 years old.The Swedish site is located in a discontinuous permafrost zone at the Stordalen palsa mire, on an area of collapsed peatland affected by active thermokarst. The region has experienced an increase in mean annual air temperature and active layer thickness since the 1980s, which has been followed by a shift to wetter conditions24. The vegetation found on the surface of the palsa depressions of Stordalen mire is dominated by sedges (Eriophorum vaginatum, Carex sp.) and mosses (Sphagnum sp.)24,25.The Russian site is located in a discontinuous permafrost area in Western Siberia Lowland, near Khanymey village. The sampling site is a flat frozen palsa bog with a peat depth no more than 2 m, and is affected by active thermokarst, resulting in the emergence of thermokarst ponds26,27. The vegetation is dominated by lichens (Cladonia sp.), schrubs (Ledum palustre, Betula nana, Vaccinium vitis-idaea, Andromeda polifolia, Rubus chamaemorus) and mosses (Sphagnum sp.)28.Sample collectionAt all sites, water from the depth of 10 cm was collected from 12 ponds, totaling 60 ponds for the full dataset. Unfiltered water samples were collected for total P analysis. For analyzing Fe, various dissolved anions and cations, DOC concentrations, and perform optical and mass spectrometry analyses on DOM, water was filtered through GF/F glass fiber filters (0.7 μm, 47 mm, Whatman plc, Maidstone, United Kingdom). Moreover, water samples were collected in order to measure GHG (CO2 and CH4) concentrations. Water, detritus and sediment samples were also collected from ponds for fungal community analyses. Water samples were collected and filtered sequentially first through 5 µm Durapore membrane filter (Millipore, Burlington, Massachusetts, USA) and then through a 0.22 µm Sterivex filter (Millipore) to capture fungal cells of different sizes. The samples were filtered until clogging or up to a maximum of 3.5 liters (filtered volume ranging from 0.1 l to 3.5 l). Surface sediments were sampled from each of the ponds, with the exception of the Canadian site, where only one emerging and three developing ponds were sampled for sediments. From the sites in Alaska, Greenland, and Sweden, also detritus samples (dead plant material) were collected. The detritus was washed in the lab using tap water, followed by overnight incubation in 50 ml tap water to induce sporulation. The use of tap water may have added fungal spores to the samples, which should be kept in mind when using the detritus data. After the incubation, the water was filtered through a 5 μm pore size filter and the filter was stored at −20 °C.All the samples for DNA extraction were transported to the laboratory frozen, with the exception of the Alaskan samples, which were freeze dried prior to transportation. The samples transported frozen were freeze dried prior to DNA extraction to ensure similar treatment of all samples. The samples for nutrient and carbon measurements were transported frozen with the exception of samples for DOC and fluorescence analyses, which were transported cooled.Chemical analysesAll chemical, optical and mass spectrometry results are provided in OSF29. DOC quantification was carried out using a carbon analyzer (TOC-L + TNM-L, Shimadzu, Kyoto, Japan). Accuracy was assessed using EDTA at 11.6 mg C/l as a quality control (results were within + − 5%) and the standard calibration range was of 2–50 mg C/l. Fe(II) and Fe(III) were determined by using the ferrozine method30, but instead of reducing Fe(III) with hydroxylamine hydrochloride, ascorbic acid was used31. Absorbance was measured at 562 nm on a spectrophotometer (UV/Vis Spectrometer Lambda 40, Perkin Elmer, Waltham, Massachusetts, USA). The samples were diluted with milli-Q water if needed. The concentration of total P was determined using persulfate digestion32. The anion NO3− was measured on a Metrohm IC system (883 Basic IC Plus and 919 Autosampler Plus; Riverview, Florida, USA). NO3− were separated with a Metrosep A Supp 5 analytical column (250 × 4.0 mm) which was fit with a Metrosep A Supp 4/5 guard column at a flow rate of 0.7 ml/min, using a carbonate eluent (3.2 mM Na2CO3 + 1.0 mM NaHCO3). SO4 was analyzed using Metrohm IC system (883 Basic IC Plus and 919 Autosampler Plus, Riverview), NH4+ spectrophotometrically as described by Solórzano33, and NO2− and DN as in Greenberg et al.34.For the gas analyses, samples from Alaska and Canada were taken as previously described in Kankaala et al.35, except that room air was used instead of N2 for extracting the gas from the water. Shortly, 30 ml of water was taken into 50 ml syringes, which were warmed to room temperature prior to extraction of the gas. To each syringes 0.5 ml of HNO3 and 10 ml of room air was added and the syringes were shaken for 1 min. Finally, the volumes of liquid and gas phases were recorded and the gas was transferred into glass vials that had been flushed with N2 and vacuumed. For Greenland, Sweden and Russia 5 ml of water was taken for the gas samples with a syringe and immediately transferred to 20 ml glass vials filled with N and with 150 µL H2PO4 to preserve the sample. All gas samples were measured using gas chromatography (Clarus 500, Perkin Elmer, Polyimide Uncoated capillary column 5 m x 0.32 mm, TCD and FID detector respectively).Optical analysesIn order to characterize DOM, we recorded the absorbance of DOM using a UV-visible Cary 100 (Agilent Technologies, Santa Clara, California, USA) or a LAMBDA 40 UV/VIS (PerkinElmer) spectrophotometer, depending on sample origin. SUVA254 is a proxy of aromaticity and the relative proportion of terrestrial versus algal carbon sources in DOM36 and was determined from DOC normalized absorbance at 254 nm after applying a corrective factor based on iron concentration37. S289 enlights the importance of fulvic and humic acids related to algal production38 and were determined for the intervals 279–299 nm by performing regression calculations using SciLab v 5.5.2.39We also recorded fluorescence intensity on a Cary Eclipse spectrofluorometer (Agilent Technologies), across the excitation waveband from 250–450 nm (10 nm increments) and emission waveband of 300–560 nm (2 nm increments), or on a SPEX FluoroMax-2 spectrofluorometer (HORIBA, Kyoto, Japan), across the excitation waveband from 250–445 nm (5 nm increments) and emission waveband of 300–600 nm (4 nm increments), depending on sample origin. Based on the fluorometric scans, we constructed excitation-emission matrices (EEMs) after correction for Raman and Raleigh scattering and inner filter effect40. We calculated the FI as the ratio of fluorescence emission intensities at 450 nm and 500 nm at the excitation wavelength of 370 nm to investigate the origin of fulvic acids41. Higher values (~1.8) indicate microbial derived DOM (autochthonous), whereas lower values (~1.2) indicate terrestrial derived DOM (allochthonous), from plant or soil42. HIX is a proxy of the humic content of DOM and was calculated as the sum of intensity under the emission spectra 435–480 nm divided by the peak intensity under the emission spectra 300–445 nm, at an excitation of 250 nm. Higher values of HIX indicate more complex, higher molecular weight, condensed aromatic compounds43,44. BIX emphasizes the relative freshness of the bulk DOM and was calculated as the ratio of emission at 380 nm divided by the emission intensity maximum observed between 420 and 436 nm at an excitation wavelength of 310 nm45. High values ( >1) are related to higher proportion of more recently derived DOM, predominantly originated from autochthonous production, while lower values (0.6–0.7) indicate lower production and older DOM42,44.High resolution mass spectrometry50 ml water samples were collected from each of the ponds and were filtered with a Whatman GF/F filter for mass spectrometry analyses. For each sample, 1.5 ml of water was dried completely with a vacuum drier, and was then re-dissolved in 100 µL 20% acetonitrile, 80% water with three added compounds as internal standards (Hippuric acid, glycyrrhizic acid and capsaicin, all at 400 ppb v/v). Samples were filtered to an autosampler vials and injected at 50 µL onto the column. In order not to overload the detectors, some of the higher concentration samples were injected at a lower volume, to give a maximum of 20 µg carbon loaded.High-performance liquid chromatography – high resolution mass spectrometry (ESI-HRMS) was conducted as described in Patriarca et al.46 using a C18-Evo column (100 × 2.1 mm, 2.6 µm; Phenomenex, Torrance, California, USA). The ESI-HRMS data was averaged from 2–17 min to allow formula assignment to a single mass list. Formulas considered had masses 150–800 m/z, 4–50 carbon (C) atoms, 4–100 hydrogen (H) atoms, 1–40 oxygen (O) atoms, 0–1 nitrogen (N) atoms and 0–1 13 C atoms. Formulas were only considered if they had an even number of electrons, H/C 0.3–2.2 and O/C ≤ 1. The data are presented as a number of assigned formulas and weighted average O/C ratio, H/C ratio and m/z.The analysis was run in two batches (36 and 24 samples per run, respectively) and to the latter run, three samples of Suwannee River fulvic acid (SRFA, reference material) were added. At the moment of the run, the DOC concentration of these samples was unknown, so 50 µL was injected. From high resolution mass spectrometry, average H/C and a number of assigned formulas were obtained. The H/C can be used as a proxy of DOM aliphatic content; higher H/C values (  > 1) indicate more saturated (aliphatic) compounds, whereas values lower than 1 indicate more unsaturated, aromatic molecules47.DNA extraction, ITS2 amplification and sequencingAll samples for molecular analyses (water and detritus filters and sediments) were extracted using DNeasy PowerSoil® kit (Qiagen, Hilden, Germany), following the manufacturer’s recommendations for low input DNA. Extracts were eluted in 100 µl of Milli-Q water and DNA concentrations were measured with Qubit dsDNA HS kit. The fungal ribosomal internal transcribed spacer 2 (ITS2) sequences were amplified using a modified ITS3 Mix2 forward primer from Tedersoo48, named ITS3-mkmix2 CAWCGATGAAGAACGCAG, and a reverse primer ITS4 (equimolar mix of cwmix1 TCCTCCGCTTAyTgATAtGc and cwmix2 TCCTCCGCTTAtTrATAtGc)14. Each sample received a unique combination of primers containing identification tags generated by Barcrawl49. All tags had a minimum base difference of 3 and a length of 8 nucleotides. Both forward and reverse primer tags were extended by two terminal bases (CA) at the ligation site to avoid bias during ligation of sequencing adaptors, and the forward primer tag also had a linker base (T) added to it50. The list of primers and tags is found in Supplementary Table S1. PCR reactions were performed on a final volume of 50 µl, with an input amount of DNA ranging from 0.07 ng to 10 ng, 0.25 µM of each primer, 200 µM of dNTPs, 1U of Phusion™ High-Fidelity DNA Polymerase (Thermo Fisher Scientific, Waltham, Massachusetts, USA), 1X PhusionTM HF Buffer (1X buffer provides 1.5 mM MgCl2, Thermo Fisher Scientifics) and 0.015 mg of BSA. PCR conditions consisted of an initial denaturation cycle at 95 °C for 3 min, followed by 21–35 cycles for amplification (95 °C for 30 sec, 57 °C for 30 sec and 72 °C for 30 sec), and final extension at 72 °C for 10 min. In order to reduce PCR bias, all samples (in duplicates) were first submitted to 21 amplification cycles. In case of insufficient yield, the number of cycles was increased up to 35 cycles (see the records on the number of cycles for each of the samples in Supplementary Table S2).The PCR products were purified with Sera-MagTM beads (GE Healthcare Life Sciences, Marlborough, Massachusetts, USA), visualized on a 1.5% agarose gel and quantified using Qubit dsDNA HS kit. The purified PCR products were randomly allocated into three DNA pools (20 ng of each sample), which were purified with E.Z.N.A.® Cycle-Pure kit (Omega Bio-Tek, Norcross, Georgia, USA). Nine of the samples (4 water, 1 sediment and 4 detritus) were left out of the pools because of too little PCR product, giving a total of 203 samples for sequencing (Online-only Table 1). Negative PCR controls were added to each pool, as well as a mock community sample containing 10 different fragment sizes from the ITS2 region of a chimera of Heterobasidium irregular and Lophium mytilinum, ranging from 142 to 591 bases, as described by Castaño et al.51. The size distribution and quality of all the pools were verified with BioAnalyzer DNA 7500 (Agilent Technologies), and purity was assessed by spectrophotometry (OD 260:280 and 260:230 ratios) using NanoDrop (Thermo Fisher Scientific). The libraries were sequenced at Science for Life Laboratory (Uppsala University, Sweden), on a Pacific Biosciences Sequel instrument II, using 1 SMRT cell per pool. This PacBio technology allows the generation of highly accurate reads ( >99% accuracy) which are produced based on a consensus sequence after a circularization step.Quality filtering of reads, clustering and taxonomy identification of clustersThe sequencing resulted in a total of 1071489 sequences, ranging from 397 to 9184 sequences per sample (average on 2551 sequences per sample). The raw sequences were filtered for quality and clustered using the SCATA pipeline (https://scata.mykopat.slu.se/, accessed on May 19th, 2020). For quality filtering, sequences from each pool were screened for the primers and tags, requiring a minimum of 90% match for the primers and a 100% match for the tags. Reads shorter than 100 bp were removed, as well as reads with a mean quality lower than 20, or containing any bases with a quality lower than 7. After this filtering, 582234 sequences were retained in the data. The sequences were clustered at the species level by single-linkage clustering at a clustering distance of 1.5%, with penalties of 1 for mismatch, 0 for gap open, 1 for gap extension, and 0 for end gaps. Homopolymers were collapsed to 3 and unique genotypes across all pools were removed. For a preliminary taxonomy affiliation of the clusters, hereafter called OTUs (Operational Taxonomic Units), sequences from the UNITE + INSD dataset for Fungi52 database were included in the clustering process. After the clustering, the data included 518128 sequences, divided among 8218 OTUs. For taxonomical annotation, all OTUs with a minimum of ten total reads in the full dataset were included, retaining 3108 OTUs and 498414 sequences in the taxonomical analysis. More

  • in

    Fish biodiversity and assemblages along the altitudinal gradients of tropical mountainous forest streams

    1.Jaramillo-Villa, U., Maldonado-Ocampo, J. A. & Escobar, F. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. J. Fish Biol. 76, 2401–2417 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Mercado-silva, N., Lyons, J., Díaz-Pardo, E., Navarrete, S. & Gutiérrez-Hernández, A. Environmental factors associated with fish assemblage patterns in a high gradient river of the Gulf of Mexico slope. Revista Mexicana de Biodiversidad 83, 117–128 (2012).Article 

    Google Scholar 
    3.Cheng, D. et al. Quantifying the distribution and diversity of fish species along elevational gradients in the Weihe River Basin, Northwest China. Sustainability 11, 6177 (2019).Article 

    Google Scholar 
    4.Lorion, C. M., Kennedy, B. P. & Braatne, J. H. Altitudinal gradients in stream fish diversity and the prevalence of diadromy in the Sixaola River basin, Costa Rica. Environ. Biol. Fishes 91, 487–499 (2011).Article 

    Google Scholar 
    5.Li, J. et al. Spatial and temporal variation of fish assemblages and their associations to habitat variables in a mountain stream of north Tiaoxi River, China. Environ. Biol. Fishes 93, 403–417 (2012).Article 

    Google Scholar 
    6.Súarez, Y. R. et al. Patterns of species richness and composition of fish assemblages in streams of the Ivinhema River basin, Upper Paraná River. Acta Limnol. Bras. 23, 177–188 (2011).Article 

    Google Scholar 
    7.Vieira, T. B. & Tejerina-Garro, F. L. Relationships between environmental conditions and fish assemblages in tropical Savanna headwater streams. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    8.Pokharel, K. K., Basnet, K. B., Majupuria, T. C. & Baniya, C. B. Correlations between fish assemblage structure and environmental variables of the Seti Gandaki River Basin, Nepal. J. Freshw. Ecol. 33, 31–43 (2018).CAS 
    Article 

    Google Scholar 
    9.Carvajal-Quintero, J. D. et al. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecol. Evol. 5, 2608–2620 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Li, J. et al. Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions. Glob. Ecol. Biogeogr. 18, 264–272 (2009).Article 

    Google Scholar 
    11.Fu, C., Wu, J., Chen, J., Wu, Q. & Lei, G. Freshwater fish biodiversity in the Yangtze River basin of China: Patterns, threats and conservation. Biodivers. Conserv. 12, 1649–1685 (2003).Article 

    Google Scholar 
    12.Orrego, R., Adams, S. M., Barra, R., Chiang, G. & Gavilan, J. F. Patterns of fish community composition along a river affected by agricultural and urban disturbance in south-central Chile. Hydrobiologia 620, 35–46 (2009).Article 

    Google Scholar 
    13.Nyanti, L. et al. Acidification tolerance of Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758)—Implication of fish size. AACL Bioflux 10, 746–753 (2017).
    Google Scholar 
    14.Nyanti, L. et al. Effects of water temperature, dissolved oxygen and total suspended solids on juvenile Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758). AACL Bioflux 11, 394–406 (2018).
    Google Scholar 
    15.Ling, T. Y. et al. Assessment of the water and sediment quality of tropical forest streams in upper reaches of the Baleh River, Sarawak, Malaysia, subjected to logging activities. J. Chem. 2016, 1–13 (2016).CAS 

    Google Scholar 
    16.Davies, P. & Nelson, M. Relationships between riparian buffer widths and the effects of logging on stream habitat, invertebrate community composition and fish abundance. Mar. Freshw. Res. 45, 1289–1305 (1994).Article 

    Google Scholar 
    17.Ikhwanuddin, M., Amal, M., Shohaimi, S., Hasan, H. & Jamil, N. Environmental influences on fish assemblages of the Upper Sungai Pelus, Kuala Kangsar, Perak, Malaysia. Sains Malaysiana 45, 1487–1495 (2016).CAS 

    Google Scholar 
    18.Zainuddin, Z., Jamal, P. & Akbar, I. Modeling the effect of dam construction and operation towards downstream water quality of Sg. Tawau and Batang Baleh. World J. Appl. Environ. Chem. 1, 57–66 (2012).
    Google Scholar 
    19.Nyanti, L., Ling, T. & Muan, T. Water quality of Bakun Hydroelectric Dam Reservoir, Sarawak, Malaysia, during the construction of Murum Dam. ESTEEM Acad. J. 11, 81–88 (2015).
    Google Scholar 
    20.Ling, T. Y. et al. Changes in water and sediment quality of a river being impounded and differences among functional zones of the new large tropical hydroelectric reservoir. Pol. J. Environ. Stud. 28, 4271–4285 (2019).CAS 
    Article 

    Google Scholar 
    21.Osman, N. B., Othman, H. T., Karim, R. A. & Mazlan, M. A. F. Biomass in Malaysia: Forestry-based residues. Int. J. Biomass Renew. 3, 7–14 (2014).
    Google Scholar 
    22.Inger, R. F. & Chin, P. K. Freshwater Fish of North Borneo (Natural History Publications, 2002).
    Google Scholar 
    23.Mohsin, A. K. M. & Ambak, M. A. Freshwater fishes of Peninsular Malaysia (Universiti Pertanian Malaysia, 1983).
    Google Scholar 
    24.Kottelat, M. The fishes of the inland waters of Southeast Asia: A catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull. Zool. 27, 1–663 (2013).
    Google Scholar 
    25.Kottelat, M. Conspectus Cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bull. Zool. 26, 1–199 (2012).
    Google Scholar 
    26.Kottelat, M. & Tan, H. H. A synopsis of the genus Lobocheilos in Java, Sumatra and Borneo, with descriptions of six new species (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 19, 27–58 (2008).
    Google Scholar 
    27.Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. https://www.fishbase.se/search.php (2019).28.van der Laan, R., Fricke, R. & Eschmeyer, W. N. Eschmeyer’s Catalog of Fishes: Classification. http://www.calacademy.org/scientists/catalog-of-fishes-classification/ (2020).29.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).MATH 

    Google Scholar 
    30.Margalef, R. Perspectives in Ecological Theory (University of Chicago Press, 1968).
    Google Scholar 
    31.Pielou, E. C. Species diversity and pattern diversity in the study of ecological succession. J. Theor. Biol. 10, 370–383 (1966).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    33.Ter Braak, C. J. F. & Verdonschot, P. F. M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57, 255–289 (1995).Article 

    Google Scholar 
    34.Ward-Campbell, B. M. S., Beamish, F. W. H. & Kongchaiya, C. Morphological characteristics in relation to diet in five coexisting Thai fish species. J. Fish Biol. 67, 1266–1279 (2005).Article 

    Google Scholar 
    35.Beamish, F. W. H., Sa-ardrit, P. & Tongnunui, S. Habitat characteristics of the cyprinidae in small rivers in Central Thailand. Environ. Biol. Fishes 76, 237–253 (2006).Article 

    Google Scholar 
    36.Muchlisin, Z. A. & Siti Azizah, M. N. Diversity and distribution of freshwater fishes in Aceh water, northern Sumatra, Indonesia. Int. J. Zool. Res. 5, 62–79 (2009).Article 

    Google Scholar 
    37.Rashid, Z. A., Asmuni, M. & Amal, M. N. A. Fish diversity of Tembeling and Pahang rivers, Pahang, Malaysia. Check List 11, 1–6 (2015).Article 

    Google Scholar 
    38.Suvarnaraksha, A., Lek, S., Lek-Ang, S. & Jutagate, T. Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand). Hydrobiologia 694, 153–169 (2012).CAS 
    Article 

    Google Scholar 
    39.Kottelat, M. Conspectus cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bull. Zool. 26, 1–199 (2012).
    Google Scholar 
    40.Tan, H. H. The Borneo suckers. Revision of the Torrent Loaches of Borneo (Balitoridae: Gastromyzon, Neogastromyzon) (Natural History Publications, 2006).
    Google Scholar 
    41.Beamish, F. W. H., Sa-Ardrit, P. & Cheevaporn, V. Habitat and abundance of Balitoridae in small rivers of central Thailand. J. Fish Biol. 72, 2467–2484 (2008).Article 

    Google Scholar 
    42.Ahmad, A., Nek, S. A. R. T. & Ambak, M. A. Preliminary study on fish diversity of Ulu Tungud, Meliau range, Sandakan, Sabah. J. Sustain. Sci. Manag. 1, 21–26 (2006).
    Google Scholar 
    43.Odum, E. P. & Barret, G. W. Fundamental of Ecology (Cengage Learning, Inc, 2004).
    Google Scholar 
    44.Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).Book 

    Google Scholar 
    45.Au, D. W. T. et al. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper Epinephelus coioides. Mar. Ecol. Prog. Ser. 266, 255–264 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Kimbell, H. S. & Morrell, L. J. Turbidity influences individual and group level responses to predation in guppies, Poecilia reticulata. Anim. Behav. 103, 179–185 (2015).Article 

    Google Scholar 
    47.Li, W. et al. Effects of turbidity and light intensity on foraging success of juvenile mandarin fish Siniperca chuatsi (Basilewsky). Environ. Biol. Fishes 96, 995–1002 (2013).Article 

    Google Scholar 
    48.Kukula, K. & Bylak, A. Synergistic impacts of sediment generation and hydrotechnical structures related to forestry on stream fish communities. Sci. Total Environ. 737, 139751 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Krause, K. P., Wu, C. L., Chu, M. L. & Knouft, J. H. Fish assemblage–environment relationships suggest differential trophic responses to heavy metal contamination. Freshw. Biol. 64, 632–642 (2019).CAS 
    Article 

    Google Scholar 
    50.Askeyev, A. et al. River fish assemblages along an elevation gradient in the eastern extremity of Europe. Environ. Biol. Fishes 100, 585–596 (2017).Article 

    Google Scholar 
    51.Zamani Faradonbe, M. & Eagderi, S. Fish assemblages as influenced by environmental factors in Taleghan River (the Caspian Sea basin, Alborz Province, Iran). Caspian J. Environ. Sci. 13, 363–371 (2015).
    Google Scholar 
    52.Bolner, K. C. S., Copatti, C. E., Rosso, F. L., Loro, V. L. & Baldisserotto, B. Water pH and metabolic parameters in silver catfish (Rhamdia quelen). Biochem. Syst. Ecol. 56, 202–208 (2014).CAS 
    Article 

    Google Scholar 
    53.Abbink, W. et al. The effect of temperature and pH on the growth and physiological response of juvenile yellowtail kingfish Seriola lalandi in recirculating aquaculture systems. Aquaculture 330–333, 130–135 (2012).Article 
    CAS 

    Google Scholar 
    54.Paller, V. G. V., Corpuz, M. N. C. & Ocampo, P. P. Diversity and distribution of freshwater fish assemblages in Tayabas River, Quezon (Philippines). Philip. J. Sci. 142, 55–67 (2013).
    Google Scholar 
    55.Jeppesen, R. et al. Effects of hypoxia on fish survival and oyster growth in a highly eutrophic estuary. Estuaries Coasts 41, 89–98 (2018).CAS 
    Article 

    Google Scholar 
    56.Rosso, J. J. & Quirós, R. Patterns in fish species composition and assemblage structure in the upper Salado river lakes, Pampa Plain, Argentina. Neotrop. Ichthyol. 8, 135–144 (2010).Article 

    Google Scholar 
    57.Batzer, D. P., Jackson, C. R. & Mosner, M. Influences of riparian logging on plants and invertebrates in small, depressional wetlands of georgia, U.S.A.. Hydrobiologia 441, 123–132 (2000).Article 

    Google Scholar 
    58.Cheimonopoulou, M. T., Bobori, D. C., Theocharopoulos, I. & Lazaridou, M. Assessing ecological water quality with macroinvertebrates and fish: A case study from a small mediterranean river. Environ. Manag. 47, 279–290 (2011).ADS 
    Article 

    Google Scholar 
    59.Roberts, T. R. The Freshwater Fishes of Western Borneo (Kalimantan Barat, Indonesia) (California Academy of Science, 1989).
    Google Scholar 
    60.Tan, H. H. & Leh, C. U. M. Three new species of Gastromyzon (Teleostei: Balitoridae) from southern Sarawak. Zootaxa 19, 1–19 (2006).
    Google Scholar 
    61.Tan, H. H. & Martin-Smith, K. M. Two new species of Gastromyzon (Teleostei: Balitoridae) from the Kuamut headwaters, Kinabatangan basin, Sabah, Malaysia. Raffles Bull. Zool. 46, 361–371 (1998).
    Google Scholar  More

  • in

    Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination

    Active ingredients detected in bee collected pollenAll 188 pollen samples had at least 12 active ingredients detected in each sample, with a maximum of 31 AIs and an average of 22.0 ± 0.3 per sample. Over both years, 80 of the 259 screened pesticide active ingredients were detected in the pollen. These included 28 fungicides, 26 insecticides, 21 herbicides, two miticides, and one rodenticide. We also detected one synthetic antioxidant and one pesticide synergist (Table S1). We detected approximately twice as many AIs in pollen collected by honey bees (68 AIs) in 2019 than in pollen collected by bumble bees (32). All AIs detected in pollen from bumble bees were also collected by honey bees in either 2018 or 2019. Honey bee collected pollen also had significantly more AIs on average detected at each site (35.0 ± 0.9 S.E. AIs per site) compared to bumble bees (18.6 ± 0.6) in 2019 (R2m = 0.73; X2 = 68.2, df = 1, p  More

  • in

    Short-term cell death in tissues of Pulsatilla vernalis seeds from natural and ex situ conserved populations

    1.Zielińska, K. M., Kiedrzynski, M., Grzyl, A. & Rewicz, A. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands. Sci. Rep. https://doi.org/10.1038/srep31913 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Zielińska, K. M., Kiedrzynski, M., Grzyl, A. & Tomczyk, P. P. Anthropogenic sites maintain the last individuals during the rapid decline of the lowland refugium of the alpine-arctic plant Pulsatilla vernalis (L.) Mill. Pak. J. Bot. 50, 211–215 (2018).3.Grzyl, A. & Ronikier, M. Pulsatilla vernalis (Ranunculaceae) in the Polish lowlands: Current population resources of a declining species. Pol. Bot. J. 56, 185–194 (2011).
    Google Scholar 
    4.Åström, S. & Stridh, B. The present status of Pulsatilla vernalis in Sweden. Sven. Bot. Tidskr. 97, 117–126 (2003).
    Google Scholar 
    5.Chappuis, E. Pulsatilla vernalis. The IUCN Red List of Threatened Species 2014: e.T55730086A55730098. (2014). https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T55730086A55730098.en. Downloaded on 02 December 2020 >.6.Ronikier, M. et al. Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): Chloroplast DNA reveals two evolutionary lineages across central Europe and Scandinavia. J. Biogeogr. 35, 1650–1664. https://doi.org/10.1111/j.1365-2699.2008.01907.x (2008).7.Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Rewicz, A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 31, 815–827. https://doi.org/10.1007/s10682-017-9913-4 (2017).Article 

    Google Scholar 
    8.Betz, C., Scheuerer, M. & Reisch, C. Population reinforcement—A glimmer of hope for the conservation of the highly endangered Spring Pasque flower (Pulsatilla vernalis). Biol. Conserv. 168, 161–167. https://doi.org/10.1016/j.biocon.2013.10.004 (2013).Article 

    Google Scholar 
    9.Nawrocka-Grześkowiak, U. & Frydel, K. Spring pasque-flower (Pulsatilla vernalis (L.) Miller) localities in the Kaliska Forest District. Zarządzanie Ochroną Przyrody w Lasach 6, 77–84 (2012).10.Gutterman, Y. In Seeds: The Ecology of Regeneration in Plant Communities (ed M. Fenner) 59–84 (CAB International, 2000).11.Luzuriaga, A. L., Escudero, A. & Perez-Garcia, F. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Res. 46, 163–174. https://doi.org/10.1111/j.1365-3180.2006.00496.x (2006).Article 

    Google Scholar 
    12.Rao, N. K., Dulloo, M. E. & Engels, J. M. M. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 64, 1061–1074. https://doi.org/10.1007/s10722-016-0425-9 (2017).CAS 
    Article 

    Google Scholar 
    13.Doniak, M., Barciszewska, M. Z., Kaźmierczak, J. & Kaźmierczak, A. The crucial elements of the ‘last step’ of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. Plant Cell Rep. 33, 2063–2076. https://doi.org/10.1007/s00299-014-1681-9 (2014).14.Doniak, M., Byczkowska, A. & Kaźmierczak, A. Kinetin-induced programmed death of cortex cells is mediated by ethylene and calcium ions in roots of Vicia faba ssp minor. Plant Growth Regul. 78, 335–343. https://doi.org/10.1007/s10725-015-0096-0 (2016).CAS 
    Article 

    Google Scholar 
    15.Doniak, M., Kaźmierczak, A., Byczkowska, A. & Glińska, S. Reactive oxygen species and sugars may be the messengers in kinetin-induced death of field bean root cortex cells. Biol. Plant. 61, 178–186. https://doi.org/10.1007/s10535-016-0654-y (2017).CAS 
    Article 

    Google Scholar 
    16.Tudela-Isanta, M. et al. Habitat-related seed germination traits in alpine habitats. Ecol. Evol. 8, 150–161. https://doi.org/10.1002/ece3.3539 (2018).Article 
    PubMed 

    Google Scholar 
    17.Baskin, J. M. & Baskin, C. C. A classification system for seed dormancy. Seed Sci. Res. 14, 1–16. https://doi.org/10.1079/ssr2003150 (2004).ADS 
    Article 

    Google Scholar 
    18.Finch-Savage, W. E. & Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 171, 501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Latrasse, D., Benhamed, M., Bergounioux, C., Raynaud, C. & Delarue, M. Plant programmed cell death from a chromatin point of view. J. Exp. Bot. 20, 5887–5900 (2016).Article 

    Google Scholar 
    20.Baskin, J. M., Baskin, C. C. & Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15, 139–152. https://doi.org/10.1046/j.1442-1984.2000.00034.x (2000).Article 

    Google Scholar 
    21.Grzyl, A. Biology and Ecology of Isolated Populations of Pulsatilla vernalis (L.) Mill. on the Eastern Limits of its RANGE in Poland. (PhD thesis. University of Lodz, Department of Geobotany and Plant Ecology, 2012).22.Grzyl, A., Kiedrzynski, M., Zielinska, K. M. & Rewicz, A. The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis: The last breath of a relict plant or a fluctuating cycle of regeneration?. Plant Ecol. 215, 457–466. https://doi.org/10.1007/s11258-014-0316-0 (2014).Article 

    Google Scholar 
    23.Oostermeijer, J. G. B., Vaneijck, M. W. & Dennijs, J. C. M. Offspring fitness in relation to population size and genetic variation in the rare perennial plant species Gentiana pneumonanthe (Gentianaceae). Oecologia 97, 289–296. https://doi.org/10.1007/bf00317317 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Ouborg, N. J. & Vantreuren, R. Variation in fitness-related characters among small and large populations of Salvia pratensis. J. Ecol. 83, 369–380. https://doi.org/10.2307/2261591 (1995).Article 

    Google Scholar 
    25.Fischer, M. & Matthies, D. RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am. J. Bot. 85, 811–819. https://doi.org/10.2307/2446416 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics. (Cambridge University Press, 2002).27.Hensen, I., Oberprieler, C. & Wesche, K. Genetic structure, population size, and seed production of Pulsatilla vulgaris Mill. (Ranunculaceae) in Central Germany. Flora 200, 3–14. https://doi.org/10.1016/j.flora.2004.05.001 (2005).28.Jakobsson, A. & Eriksson, O. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88, 494–502. https://doi.org/10.1034/j.1600-0706.2000.880304.x (2000).Article 

    Google Scholar 
    29.Melser, C. & Klinkhamer, P. G. L. Selective seed abortion increases offspring survival in Cynoglossum officinale (Boraginaceae). Am. J. Bot. 88, 1033–1040. https://doi.org/10.2307/2657085 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Meyer, K. M., Soldaat, L. L., Auge, H. & Thulke, H. H. Adaptive and selective seed abortion reveals complex conditional decision making in plants. Am. Nat. 183, 376–383. https://doi.org/10.1086/675063 (2014).Article 
    PubMed 

    Google Scholar 
    31.Bochenková, M., Hejcman, M. & Karlík, P. Effect of plant community on recruitment of Pulsatilla pratensis in dry grassland. Sci. Agric. Bohem. 2012, 127–133. https://doi.org/10.7160/sab.2012.430402 (2012).Article 

    Google Scholar 
    32.Ghazoul, J. & Satake, A. Nonviable seed set enhances plant fitness: The sacrificial sibling hypothesis. Ecology 90, 369–377. https://doi.org/10.1890/07-1436.1 (2009).Article 
    PubMed 

    Google Scholar 
    33.Laitinen, P. The Effects of Forest Fires on the Persistence of Pulsatilla vernalis (L.) Mill. edn, (Ms. thesis, University of Jyväskylä, Faculty of Mathematics and Science, Department of Biological and Environmental Science, 2008) [in Finnish with an English abstract].34.Skalická, R., Karlík, P., Hejcman, M. & Bochenková, M. In 17th Symposium of the European Grassland Federation. 388–390.35.Arathi, H. S., Ganeshaiah, K. N., Shaanker, R. U. & Hedge, S. G. Seed abortion in Pongamia pinnata (Fabaceae). Am. J. Bot. 86, 659–662. https://doi.org/10.2307/2656574 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Brookes, R. H., Jesson, L. K. & Burd, M. A test of simultaneous resource and pollen limitation in Stylidium armeria. New Phytol. 179, 557–565. https://doi.org/10.1111/j.1469-8137.2008.02453.x (2008).Article 
    PubMed 

    Google Scholar 
    37.Yang, C. F., Sun, S. G. & Guo, Y. H. Resource limitation and pollen source (self and outcross) affecting seed production in two louseworts, Pedicularis siphonantha and P. longiflora (Orobanchaceae). Bot. J. Linn. Soc. 147, 83–89. https://doi.org/10.1111/j.1095-8339.2005.00363.x (2005).38.Cendán, C., Sampedro, L. & Zas, R. The maternal environment determines the timing of germination in Pinus pinaster. Environ. Exp. Bot. 94, 66–72. https://doi.org/10.1016/j.envexpbot.2011.11.022 (2013).Article 

    Google Scholar 
    39.Li, R. et al. Effects of cultivar and maternal environment on seed quality in Vicia sativa. Front. Plant Sci. 8. https://doi.org/10.3389/fpls.2017.01411 (2017).40.Valencia-Diaz, S. & Montaña, C. Temporal variability in the maternal environment and its effect on seed size and seed quality in Flourensia cernua DC. (Asteraceae). J. Arid Environ. 63, 686–695. https://doi.org/10.1016/j.jaridenv.2005.03.024 (2005).41.Chinnusamy, V., Gong, Z. Z. & Zhu, J. K. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J. Integr. Plant Biol. 50, 1187–1195. https://doi.org/10.1111/j.1744-7909.2008.00727.x (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Butuzova, O. G. Peculiarities of seed formation in Pulsatilla vulgaris and Helleborus niger (Ranunculaceae) with embryo postdevelopment. Botanicheskii Zhurnal (St. Petersburg) 103, 313—330 (2018) [in Russian].43.Duncan, C., Schultz, N., Lewandrowski, W., Good, M. K. & Cook, S. Lower dormancy with rapid germination is an important strategy for seeds in an arid zone with unpredictable rainfall. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0218421 (2019).44.Gremer, J. R., Kimball, S. & Venable, D. L. Within and among year germination in Sonoran Desert winter annuals: bet hedging and predictive germination in a variable environment. Ecol. Lett. 19, 1209–1218. https://doi.org/10.1111/ele.12655 (2016).Article 
    PubMed 

    Google Scholar 
    45.Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090. https://doi.org/10.1890/06-1495 (2007).Article 
    PubMed 

    Google Scholar 
    46.Evans, M. E. K. & Dennehy, J. J. Germ banking: Bet-hedging and variable release from egg and seed dormancy. Q. R. Biol. 80, 431–451. https://doi.org/10.1086/498282 (2005).Article 

    Google Scholar 
    47.Goldberg, R. B., de Paiva, G. & Yadegari, R. Plant embryogenesis – zygote to seed. Science 266, 605–614. https://doi.org/10.1126/science.266.5185.605 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Lester, R. N. & Kang, J. H. Embryo and endosperm function and failure in Solanum species and hybrids. Ann. Bot. 82, 445–453. https://doi.org/10.1006/anbo.1998.0695 (1998).Article 

    Google Scholar 
    49.Lopes, M. A. & Larkins, B. A. Endosperm origin, development, and function. Plant Cell 5, 1383–1399. https://doi.org/10.1105/tpc.5.10.1383 (1993).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Yan, D. W., Duermeyer, L., Leoveanu, C. & Nambara, E. The functions of the endosperm during seed germination. Plant Cell Physiol. 55, 1521–1533. https://doi.org/10.1093/pcp/pcu089 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Willis, C. G. et al. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309. https://doi.org/10.1111/nph.12782 (2014).Article 
    PubMed 

    Google Scholar 
    52.Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14, 841–851. https://doi.org/10.1111/j.1461-0248.2011.01645.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Pfeifer, E., Holderegger, R., Matthies, D. & Rutishauser, R. Investigation on the population biology of a flagship species of dry meadows: Pulsatilla vulgaris Mill. in north-eastern Switzerland. Bot. Helvet. 112, 153–171 (2002).54.Gargiulo, R. et al. Conservation of the threatened species, Pulsatilla vulgaris Mill. (Pasqueflower), is aided by reproductive system and polyploidy. J. Hered. 110, 618–628. https://doi.org/10.1093/jhered/esz035 (2019).55.Seglias, A. E., Williams, E., Bilge, A. & Kramer, A. T. Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0191931 (2018).56.Byczkowska, A., Kunikowska, A. & Kaźmierczak, A. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma 250, 121–128. https://doi.org/10.1007/s00709-012-0383-9 (2013).57.Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20. https://doi.org/10.18637/jss.v022.i04 (2007).58.Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).59.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    60.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).61.Fox, F. & Weisberg, S. An {R} Companion to Applied Regression, Third Edition. (Sage, 2019). https://socialsciences.mcmaster.ca/jfox/Books/Companion/. More

  • in

    Exposure to foreign gut microbiota can facilitate rapid dietary shifts

    1.Shiels, A. B. et al. Dietary niche differentiation among three species of invasive rodents (Rattus rattus, R. exulans, Mus musculus). Biol. Invasions 15, 1037–1048 (2013).Article 

    Google Scholar 
    2.Gulka, J. et al. Dietary niche shifts of multiple marine predators under varying prey availability on the northeast Newfoundland coast. Front. Mar. Sci. 4, 324 (2017).Article 

    Google Scholar 
    3.Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: Evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2012).Article 

    Google Scholar 
    4.Wilby, A. & Thomas, M. B. Natural enemy diversity and pest control: Patterns of pest emergence with agricultural intensification. Ecol. Lett. 5, 353–360 (2002).Article 

    Google Scholar 
    5.Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).Article 

    Google Scholar 
    6.Gould, J. Description of new species of finches collected by Darwin in the Galapagos. In Vol. 5, pp. 4–7 (1837).7.Jung, K. & Kalko, E. K. Where forest meets urbanization: Foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. J. Mammal. 91, 144–153 (2010).Article 

    Google Scholar 
    8.Manenti, R., Denoël, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382 (2013).Article 

    Google Scholar 
    9.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    Article 

    Google Scholar 
    10.Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019).Article 

    Google Scholar 
    11.Legal, L., Chappe, B. & Jallon, J. M. Molecular basis of Morinda citrifolia (L.): Toxicity on drosophila. J. Chem. Ecol. 20, 1931–1943 (1994).CAS 
    Article 

    Google Scholar 
    12.R’kha, S., Capy, P. & David, J. R. Host-plant specialization in the Drosophila melanogaster species complex: A physiological, behavioral, and genetical analysis. Proc. Natl. Acad. Sci. 88, 1835–1839 (1991).ADS 
    Article 

    Google Scholar 
    13.Chandler, J. A., Lang, J. M., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: Ecological context of a host–microbe model system. PLoS Genet. 7, e1002272 (2011).CAS 
    Article 

    Google Scholar 
    14.Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).CAS 
    Article 

    Google Scholar 
    15.Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).Article 

    Google Scholar 
    17.Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, e1000546 (2010).Article 

    Google Scholar 
    18.Gomez, A. et al. Plasticity in the human gut microbiome defies evolutionary constraints. MSphere 4, e00271-e319 (2019).Article 

    Google Scholar 
    19.Chen, C.-Y., Chen, P.-C., Weng, F.C.-H., Shaw, G.T.-W. & Wang, D. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS ONE 12, e0181427 (2017).Article 

    Google Scholar 
    20.Vijendravarma, R. K., Narasimha, S. & Kawecki, T. J. Predatory cannibalism in Drosophila melanogaster larvae. Nat. Commun. 4, 1–8 (2013).Article 

    Google Scholar 
    21.Fisher, A. M. et al. Relatedness modulates density-dependent cannibalism rates in Drosophila. In review.22.Amlou, M., Moreteau, B. & David, J. Genetic analysis of Drosophila sechellia specialization: Oviposition behavior toward the major aliphatic acids of its host plant. Behav. Genet. 28, 455–464 (1998).CAS 
    Article 

    Google Scholar 
    23.Early, A. M., Shanmugarajah, N., Buchon, N. & Clark, A. G. Drosophila genotype influences commensal bacterial levels. PLoS ONE 12, e0170332 (2017).Article 

    Google Scholar 
    24.Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).Article 

    Google Scholar 
    25.Lizé, A. & Lewis, Z. The microbiome and host behaviour. In Microbiomes of Soils, Plants and Animals: An Integrated Approach (Eds. Antwis, R. E. et al.) 98–121 (Cambridge University Press, 2020).26.Wong, A.C.-N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404 (2017).CAS 
    Article 

    Google Scholar 
    27.Hulme, P. E. Climate change and biological invasions: Evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).Article 

    Google Scholar 
    28.Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).Article 

    Google Scholar 
    29.Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Bertani, G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J. Bacteriol. 186, 595–600 (2004).CAS 
    Article 

    Google Scholar 
    31.Atlas, R. M. Handbook of microbiological media (CRC Press, Boca Raton, 2010).Book 

    Google Scholar 
    32.Heys, C. et al. The effect of gut microbiota elimination in Drosophila melanogaster: A how-to guide for host–microbiota studies. Ecol. Evol. 8, 4150–4161 (2018).Article 

    Google Scholar 
    33.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    34.Dekker, T., Ibba, I., Siju, K., Stensmyr, M. C. & Hansson, B. S. Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr. Biol. 16, 101–109 (2006).CAS 
    Article 

    Google Scholar 
    35.Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar 
    36.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).37.Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R Package Version 2, 74 (2007).
    Google Scholar 
    38.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms

    1.Nowakowska M, Sterzel M, Szczubiałka K. Photosensitized oxidation of cyanide in aqueous solutions of photoactive modified hydroxyethylcellulose. J Polym Environ. 2006;14:59–64.CAS 
    Article 

    Google Scholar 
    2.Kamennaya NA, Chernihovsky M, Post AF. The cyanate utilization capacity of marine unicellular Cyanobacteria. Limnol Oceanogr. 2008;53:2485–94.CAS 
    Article 

    Google Scholar 
    3.Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–8.CAS 
    Article 

    Google Scholar 
    4.Mooshammer M, Wanek W, Jones SH, Richter A, Wagner M. Cyanate–a low abundant but actively cycled nitrogen compound in soil. https://www.biorxiv.org/content/10.1101/2020.07.12.199737v1.full. 2020.5.Linder T. Cyanase-independent utilization of cyanate as a nitrogen source in ascomycete yeasts. World J Micro Biot. 2019;35:1–7.CAS 
    Article 

    Google Scholar 
    6.Widner B, Fuchsman CA, Chang BX, Rocap G, Mulholland MR. Utilization of urea and cyanate in waters overlying and within the eastern tropical north Pacific oxygen deficient zone. FEMS Microbiol Ecol. 2018;94:fiy138.CAS 
    Article 

    Google Scholar 
    7.Widner B, Mulholland MR, Mopper K. Distribution, sources, and sinks of cyanate in the coastal North Atlantic Ocean. Environ Sci Tech Let. 2016;3:297–302.CAS 
    Article 

    Google Scholar 
    8.Widner B, Mulholland MR, Mopper K. Chromatographic determination of nanomolar cyanate concentrations in estuarine and sea waters by precolumn fluorescence derivatization. Anal Chem. 2013;85:6661–6.CAS 
    Article 

    Google Scholar 
    9.Widner B, Mordy CW, Mulholland MR. Cyanate distribution and uptake above and within the Eastern Tropical South Pacific oxygen deficient zone. Limnol Oceanogr. 2018;63:S177–S192.CAS 
    Article 

    Google Scholar 
    10.Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263.CAS 
    Article 

    Google Scholar 
    11.Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, Horák A, et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat Commun. 2019;10:1–14.Article 

    Google Scholar 
    12.Allen JrCM, Jones ME. Decomposition of carbamylphosphate in aqueous solutions. Biochemistry. 1964;3:1238–47.CAS 
    Article 

    Google Scholar 
    13.Kamenaya NA, Post AF. Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp. Appl Enviro Micro. 2011;77:291–301.Article 

    Google Scholar 
    14.Kamennaya NA, Post AF. Distribution and expression of the cyanate acquisition potential among cyanobacterial populations in oligotrophic marine waters. Limnol Oceanogr. 2013;58:1959–71.CAS 
    Article 

    Google Scholar 
    15.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    Article 

    Google Scholar 
    16.Pachiadaki MG, Sintes E, Bergauer K, Brown JM, Record NR, Swan BK, et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science. 2017;358:1046–51.CAS 
    Article 

    Google Scholar 
    17.Ganesh S, Bertagnolli AD, Bristow LA, Padilla CC, Blackwood N, Aldunate M, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J. 2018;12:2706–22.CAS 
    Article 

    Google Scholar 
    18.Johnson WV, Anderson PM. Bicarbonate is a recycling substrate for cyanase. J Biol Chem. 1987;262:9021–5.CAS 
    Article 

    Google Scholar 
    19.Miller AG, Espie GS. Photosynthetic metabolism of cyanate by the cyanobacterium Synechococcus UTEX 625. Arch Microbiol. 1994;162:151–7.CAS 
    Article 

    Google Scholar 
    20.Harano Y, Suzuki I, Maeda S, Kaneko T, Tabata S, Omata T. Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942. J Bacteriol. 1997;179:5744.CAS 
    Article 

    Google Scholar 
    21.Sung YC, Anderson PM, Fuchs JA. Characterization of high-level expression and sequencing of the Escherichia coli K-12 cynS gene encoding cyanase. J Bacteriol. 1987;169:5224.CAS 
    Article 

    Google Scholar 
    22.Sáez LP, Cabello P, Ibáñez MI, Luque-Almagro VM, Roldán MD, Moreno-Vivián C. Cyanate assimilation by the alkaliphilic cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344: mutational analysis of the cyn gene cluster. Int J Mol Sci. 2019;20:3008.Article 

    Google Scholar 
    23.Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, et al. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol. 1998;169:148–58.CAS 
    Article 

    Google Scholar 
    24.Elleuche S, Pöggeler S. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol. 2008;45:1458–69.CAS 
    Article 

    Google Scholar 
    25.Schlachter CR, Klapper V, Wybouw N, Radford T, Van Leeuwen T, Grbic M, et al. Structural characterization of a eukaryotic cyanase from Tetranychus urticae. J Agr Food Chem. 2017;65:5453–62.CAS 
    Article 

    Google Scholar 
    26.Qian D, Jiang L, Lu L, Wei C, Li Y. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa. PLoS One. 2011;6:e18300.CAS 
    Article 

    Google Scholar 
    27.Zarlenga DS, Mitreva M, Thompson P, Tyagi R, Tuo W, Hoberg EP. A tale of three kingdoms: members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria. Parasitology. 2019;146:445–52.CAS 
    Article 

    Google Scholar 
    28.Ranjan B, Choi PH, Pillai S, Permaul K, Tong L, Singh S. Crystal structure of a thermophilic fungal cyanase and its implications on the catalytic mechanism for bioremediation. Sci Rep. 2021;11:1–10.Article 

    Google Scholar 
    29.Villar E, Vannier T, Vernette C, Lescot M, Cuenca M, Alexandre A, et al. The Ocean Gene Atlas: exploring the biogeography of plankton genes online. Nucleic Acids Res. 2018;46:W289–W295.CAS 
    Article 

    Google Scholar 
    30.Walsh MA, Otwinowski Z, Perrakis A, Anderson PM, Joachimiak A. Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site. Structure. 2000;8:505–14.CAS 
    Article 

    Google Scholar 
    31.Butryn A, Stoehr G, Linke-Winnebeck C, Hopfner KP. Serendipitous crystallization and structure determination of cyanase (CynS) from Serratia proteamaculans. Acta Crystallogr F. 2015;71:471–6.CAS 
    Article 

    Google Scholar 
    32.Pederzoli R, Tarantino D, Gourlay LJ, Chaves-Sanjuan A, Bolognesi M. Detecting the nature and solving the crystal structure of a contaminant protein from an opportunistic pathogen. Acta Crystallogr F. 2020;76:392–7.CAS 
    Article 

    Google Scholar 
    33.Wybouw N, Balabanidou V, Ballhorn DJ, Dermauw W, Grbić M, Vontas J, et al. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Insect Biochem Molec. 2012;42:881–9.CAS 
    Article 

    Google Scholar 
    34.Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia‐oxidizing candidatus nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    Article 

    Google Scholar 
    35.Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISMEJ. 2018;12:1779–93.Article 

    Google Scholar  More

  • in

    Late Pleistocene human paleoecology in the highland savanna ecosystem of mainland Southeast Asia

    1.Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Heaney, L. R. A synopsis of climatic and vegetational change in Southeast Asia. Clim. Change 19, 53–61 (1991).ADS 
    Article 

    Google Scholar 
    3.Morley, R. J. Origin and Evolution of Tropical Rain Forests (Wiley, 2000).
    Google Scholar 
    4.Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the last Glacial Period: a savanna corridor in Sundaland?. Quat. Sci. Rev. 24, 2228–2242 (2005).ADS 
    Article 

    Google Scholar 
    5.Wurster, C. M., Rifai, H., Zhou, B., Haig, J. & Bird, M. I. Savanna in equatorial Borneo during the late Pleistocene. Sci. Rep. 9, 6392. https://doi.org/10.1038/s41598-019-42670-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Wurster, C. M. & Bird, M. I. Barriers and bridges: early human dispersals in equatorial SE Asia. Geol. Soc. Spec. Publ. 411, 235–250 (2016).ADS 
    Article 

    Google Scholar 
    7.Zaim, Y. Geological evidence for the earliest appearance of hominins in Indonesia. In Out of Africa I: The First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 97–110 (Springer, 2010).Chapter 

    Google Scholar 
    8.Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. USA 106, 11188–11193 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Raes, N. et al. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl. Acad. Sci. USA 111, 16790–16795 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Suraprasit, K., Jongautchariyakul, S., Yamee, C., Pothichaiya, C. & Bocherens, H. New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 1055861 (2019).Article 

    Google Scholar 
    11.Pookajorn, S. Human activities and environmental changes during the late pleistocene to middle holocene in Southern Thailand and Southeast Asia. In Humans at the End of the Ice Age: The Archaeology of the Pleistocene—Holocene Transition, Interdisciplinary Contributions to Archaeology (eds Straus, L. G. et al.) 201–213 ( Springer, 1996).Chapter 

    Google Scholar 
    12.Schepartz, L. A., Miller-Antonio, S. & Bakken, D. A. Upland resources and the early palaeolithic occupation of Southern China, Vietnam, Laos Thailand and Burma. World Archaeol. 32, 1–13 (2000).Article 

    Google Scholar 
    13.Mudar, K. & Anderson, D. New evidence for Southeast Asian pleistocene foraging economies: faunal remains from the early levels of Lang Rongrien Rockshelter, Krabi, Thailand. Asian Perspect. 46, 298–334 (2007).Article 

    Google Scholar 
    14.Shoocongdej, R. Late Pleistocene activities at the Tham Lod rockshelter in Highland Pang Mapha, Mae Hong Son province, Norhwestern Thailand. In Uncovering Southeast Asia’s Past (eds Bacus, E. et al.) 22–37 (NUS Press, 2006).
    Google Scholar 
    15.Shoocongdej, R. et al. Final report of Highland Archaeology Project in Pang Mapha District, Mae Hong Son Province Phase 2, Vol. 2 (Thailand Research Fund, 2007).16.Demeter, F. et al. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proc. Natl. Acad. Sci. USA 109, 14375–14380 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17Demeter, F. et al. Early modern humans and morphological variation in Southeast Asia: fossil evidence from Tam Pa Ling. Laos. PLoS ONE 10, e0121193. https://doi.org/10.1371/journal.pone.0121193 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Viet, N. First archaeological evidence of symbolic activities from the Pleistocene of Vietnam. In Emergence and Diversity of Human Behavior Paleolithic Asia (ed. Kaifu, Y.) 133–139 (Texas A&M University Press, 2015).
    Google Scholar 
    19.Higham, C. F. & Thosarat, R. An early hunter-gatherer site at Ban Non Wat, Northeast Thailand. J. Indo. Pacif. Archaeol. 43, 93–96 (2019).Article 

    Google Scholar 
    20.Gorman, C. F. Excavations at Spirit Cave, North Thailand: Some Interim Interpretations. Asian Perspect. 13, 79–107 (1970).
    Google Scholar 
    21.Tayles, N., Halcrow, S. E., Sayavongkhamdy, T. & Souksavatdy, V. A prehistoric flexed human burial from Pha Phen, Middle Mekong Valley, Laos: its context in Southeast Asia. Anthropol. Sci. 123, 1–12 (2015).Article 

    Google Scholar 
    22.Conrad, C., Higham, C., Eda, M. & Marwick, B. Palaeoecology and forager subsistence strategies during the Pleistocene—Holocene transition: A reinvestigation of the zooarchaeological assemblage from Spirit Cave, Mae Hong Son Province, Thailand. Asian Perspect. 5, 2–27 (2016).Article 

    Google Scholar 
    23.Zeitoun, V. D. et al. Discovery of an outstanding Hoabinhian site from the Late Pleistocene at Doi Pha Kan (Lampang province, northern Thailand). Archaeol. Res. Asia 18, 1–16 (2019).Article 

    Google Scholar 
    24.Shoocongdej, R. Forager mobility organization in seasonal tropical environments of western Thailand. World Archaeol. 32, 14–40 (2000).Article 

    Google Scholar 
    25.Forestier, H. et al. The Hoabinhian from Laang Spean Cave in its stratigraphic, chronological, typo-technological and environmental context (Cambodia, Battambang province). J. Archaeol. Sci. Rep. 3, 194–206 (2015).
    Google Scholar 
    26.Chitkament, T., Gaillard, C. & Shoocongdej, R. Tham Lod rockshelter (Pang Mapha district, north-western Thailand): Evolution of the lithic assemblages during the late Pleistocene. Quat. Int. 416, 151–161 (2016).Article 

    Google Scholar 
    27.Marwick, B. The Hoabinhian of Southeast Asia and its relationship to regional Pleistocene lithic technologies. In Lithic Technological Organization and Paleoenvironmental Change Global and Diachronic Perspectives (eds Robinson, E. & Sellet, F.) 63–78 (Springer, 2018).Chapter 

    Google Scholar 
    28.Marwick, B. & Gagan, M. K. Late Pleistocene monsoon variability in northwest Thailand: an oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province. Quat. Sci. Rev. 30, 3088–3098 (2011).ADS 
    Article 

    Google Scholar 
    29.Marwick, B. Multiple Optima in Hoabinhian flaked stone artefact palaeoeconomics and palaeoecology at two archaeological sites in Northwest Thailand. J. Anthropol. Archaeol. 32, 553–564 (2013).Article 

    Google Scholar 
    30.Wattanapituksakul, A., Filoux, A., Amphansri, A. & Tumpeesuwan, S. Late Pleistocene Caprinae assemblages of Tham Lod Rockshelter (Mae Hong Son Province, Northwest Thailand). Quat. Int. 493, 212–226 (2018).Article 

    Google Scholar 
    31.Shoocongdej, R. & Wattanapituksakul, A. Faunal assemblages and demography during the Late Pleistocene (MIS 2–1) to Early Holocene in Highland Pang Mapha, Northwest Thailand. Quat. Int. 563, 51–63 (2020).Article 

    Google Scholar 
    32.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Van Der Merwe, N. J. & Vogel, J. C. 13C Content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276, 815–816 (1978).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Cerling, T. E., Hart, J. A. & Hart, T. B. Stable isotope ecology in the Ituri Forest. Oecologia 138, 5–12 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl. Acad. Sci. USA 117, 4675–4681 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.van Klinken, G. J. Bone Collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).Article 

    Google Scholar 
    38.Pestle, W. J. & Colvard, M. Bone collagen preservation in the tropics: a case study from ancient Puerto Rico. J. Archaeol. Sci. 39, 2079–2090 (2012).CAS 
    Article 

    Google Scholar 
    39.Ecker, M. et al. Middle Pleistocene ecology and Neanderthal subsistence: Insights from stable isotope analyses in Payre (Ardèche, southeastern France). J. Hum. Evol. 65, 363–373 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40Kohn, M. & Cerling, T. E. Stable isotope compositions of biological apatite. In Phosphates—Geochemical Geobiological and Materials Importance Reviews in Mineralogy and Geochemistry Vol. 48 (eds Kohn, M. et al.) 455–488 (Mineralogical Society of America, 2002).Chapter 

    Google Scholar 
    41.Biasatti, D., Wang, Y., Gao, F., Xu, Y. & Flynn, L. Paleoecologies and paleoclimates of late cenozoic mammals from Southwest China: evidence from stable carbon and oxygen isotopes. J. Asian Earth Sci. 44, 48–61 (2012).ADS 
    Article 

    Google Scholar 
    42.Clementz, M. T., Fox-Dobbs, K., Wheatley, P.-V., Koch, P. L. & Doak, D. F. Revisiting old bones: coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geol. J. 44, 605–620 (2009).CAS 
    Article 

    Google Scholar 
    43.Domingo, M. S., Domingo, L., Badgley, C., Sanisidro, O. & Morales, J. Resource partitioning among top predators in a Miocene food web. Proc. R. Soc. B 280, 20122138. https://doi.org/10.1098/rspb.2012.2138 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Codron, D., Clauss, M., Codron, J. & Tütken, T. Within trophic level shifts in collagen–carbonate stable carbon isotope spacing are propagated by diet and digestive physiology in large mammal herbivores. Ecol. Evol. 8, 3983–3995 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45Tejada-Lara, J. V. et al. Body mass predicts isotope enrichment in herbivorous mammals. Proc. R. Soc. B 285, 20181020. https://doi.org/10.1098/rspb.2018.1020 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl. Acad. Sci. USA 110, 10501–10506 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Ayliffe, L. K. & Chivas, A. R. Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim. Cosmochim. Acta 54, 2603–2609 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl. Acad. Sci. USA 103, 11201–11205 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Bocherens, H., Koch, P., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominoid sites. Palaios 11, 306–308 (1996).ADS 
    Article 

    Google Scholar 
    50.Hambali, K., Ismail, A., Md-Zain, B. M., Amir, A. & Karim, F. A. Diet of long-tailed macaques (Macaca fascicularis) at the entrance of Kuala Selangor Nature Park (anthropogenic habitat): food selection that leads to human-macaque conflict. Acta Biol. Malay. 3, 58–68 (2014).
    Google Scholar 
    51.Nila, S., Suryobroto, B. & Widayati, K. A. Dietary variation of long tailed macaques (Macaca fascicularis) in Telaga Warna, Bogor, West Java. HAYATI J. Biosci. 21, 8–14 (2014).Article 

    Google Scholar 
    52.Lekagul, B. & McNeely, J. A. Mammals of Thailand: Association for the Conservation of Wildlife (Kurusapa Ladproa Press, 1988).
    Google Scholar 
    53.Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42 (2018).ADS 
    Article 

    Google Scholar 
    54Suraprasit, K. et al. Long-term isotope evidence on the diet and habitat breadth of pleistocene to holocene caprines in Thailand: implications for the extirpation and conservation of Himalayan Gorals. Front. Ecol. Evol. 8, 67. https://doi.org/10.3389/fevo.2020.00067 (2020).Article 

    Google Scholar 
    55.Kohn, M. J. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60, 4811–4829 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Dunbar, J. & Wilson, T. Oxygen and hydrogen isotopes in fruits and vegetable juices. Plant Physiol. 72, 725–727 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Yakir, D. Variations in the natural abundances of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ. 15, 1005–1020 (1992).CAS 
    Article 

    Google Scholar 
    59.Fricke, H. C. & O’Neil, J. R. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 91–99 (1996).Article 

    Google Scholar 
    60.Fricke, H. C., Clyde, W. C. & O’Neil, J. R. Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochem. Cosmochim. Acta 62, 1839–1850 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Balasse, M., Ambrose, S. H., Smith, A. B. & Price, T. D. The seasonal mobility model for prehistoric herders in the south-western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. J. Archaeol. Sci. 29, 917–932 (2002).Article 

    Google Scholar 
    62Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 2015305. https://doi.org/10.1098/rstb.2015.0305 (2016).CAS 
    Article 

    Google Scholar 
    63.Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470 (2005).Article 

    Google Scholar 
    66.Dutt, S. et al. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophys. Res. Lett. 42, 5526–5532 (2015).ADS 
    Article 

    Google Scholar 
    67.Ronay, E. R., Breitenbach, S. F. M. & Oster, J. L. Sensitivity of speleothem records in the Indian Summer Monsoon region to dry season infiltration. Sci. Rep. 9, 5091. https://doi.org/10.1038/s41598-019-41630-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68Liu, G. et al. On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records. Sci. Adv. 6, 8eaay8189. https://doi.org/10.1126/sciadv.aay8189 (2020).CAS 
    Article 

    Google Scholar 
    69.Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70Rabett, R. J. Human Adaptation in the Asian Palaeolithic: hominin dispersal and behaviour during the late quaternary (Cambridge University Press, 2012).Book 

    Google Scholar 
    71.Bailey, R. C. et al. Hunting and gathering in tropical rain forest: Is it possible?. Am. Anthropol. 91, 59–82 (1989).Article 

    Google Scholar 
    72.Mercader, J. Forest people: the role of African rainforests in human evolution and dispersal. Evol. Anthropol. 11, 117–124 (2002).Article 

    Google Scholar 
    73.Mercader, J. Under the Canopy: The Archaeology of Tropical Rainforests (Rutgers University Press, 2002).
    Google Scholar 
    74.Mercader, J. Foragers of the Congo: the early settlement of the Ituri forest. In Under the Canopy: The Archeology of Tropical Rain Forests (ed. Mercader, J.) 93–116 (Rutgers University Press, London, 2003).
    Google Scholar 
    75.Perera, N. et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka. J. Hum. Evol. 61, 254–269 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Roberts, P. et al. Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Roberts, P. et al. Fruits of the forest: human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (~36 to 3 ka) Sri Lanka. J. Hum. Evol. 106, 102–118 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739. https://doi.org/10.1038/s41467-019-08623-1 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Ji, X. et al. The oldest Hoabinhian technocomplex in Asia (43.5 ka) at Xiaodong rockshelter, Yunnan Province, southwest China. Quat. Int. 400, 166–174 (2016).Article 

    Google Scholar 
    80.Olsen, J. W. & Ciochon, R. L. A review of evidence for postulated Middle Pleistocene occupations in Viet Nam. J. Hum. Evol. 19, 761–788 (1990).Article 

    Google Scholar 
    81.Rabett, R. et al. The Tràng An Project: Late-to-Post-Pleistocene Settlement of the Lower Song Hong Valley, North Vietnam. J. R. Asiat. Soc. 19, 83–109 (2009).Article 

    Google Scholar 
    82.Rabett, R. et al. Tropical limestone forest resilience and late Pleistocene foraging during MIS-2 in the Tràng An massif, Vietnam. Quat. Int. 448, 62–81 (2017).Article 

    Google Scholar 
    83.Barker, G. et al. The ‘Human Revolution’ in lowland tropical Southeast Asia: the antiquity and behavior of anatomically modern humans at Niah Cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Piper, P. & Rabett, R. Hunting in a tropical rainforest: evidence from the terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).Article 

    Google Scholar 
    85.Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).ADS 
    Article 

    Google Scholar 
    86.de Vos, J. The Pongo faunas from Java and Sumatra and their significance for biostratigraphical and paleoecological interpretations. Proc. K. Ned. Akad. Wet. B. 86, 417–425 (1983).
    Google Scholar 
    87.Westaway, K. E. An early modern human presence in Sumatra 73000–63000 years ago. Nature 548, 322–325 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Storm, P. et al. Late Pleistocene Homo Sapiens in a tropical rainforest Fauna in East Java. J. Hum. Evol. 49, 536–545 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Storm, P. & de Vos, J. Rediscovery of the late Pleistocene Punung Hominin Sites and the Discovery of a New Site Gunung Dawung in East Java. Senck. Leth. 86, 271–281 (2006).Article 

    Google Scholar 
    90Roberts, P. et al. Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea. Nat. Commun. 11, 2068. https://doi.org/10.1038/s41467-020-15969-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Pasveer, J. M., Clarke, S. J. & Miller, G. H. Late Pleistocene human occupation of inland rainforest, Bird’s Head, Papua. Archaeol. Oceania 37, 92–95 (2002).Article 

    Google Scholar 
    92.Summerhayes, G. R. et al. Human adaptation and plant use in highland New Guinea 49,000 to 44,000 Years Ago. Science 330, 78–81 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Summerhayes, G. R., Field, J. H., Shaw, B. & Gaffney, D. The archaeology of forest exploitation and change in the tropics during the Pleistocene: the case of Northern Sahul (Pleistocene New Guinea). Quat. Int. 448, 14–30 (2017).Article 

    Google Scholar 
    94.Roberts, P., Gaffney, D., Lee-Thorp, J. A. & Summerhayes, G. R. Persistent tropical foraging in the highlands of terminal Pleistocene/Holocene New Guinea. Nature Ecol. Evol. 1, 1–6 (2017).CAS 
    Article 

    Google Scholar 
    95.Wedage, O. et al. Microliths in the South Asian rainforest ~45–4 ka: New insights from Fa-Hien Lena Cave, Sri Lanka. PLoS ONE https://doi.org/10.1371/journal.pone.0222606 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Bettis, E. A. et al. Way out of Africa: early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Brumm, A. et al. Age and context of the oldest known hominin fossils from Flores. Nature 534, 249–253 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar  More