More stories

  • in

    The use of diversity indices for local assessment of marine sediment quality

    Our analyses of marine invertebrate communities at a regional scale and at two local sites revealed that taxonomic density (i.e. species density) was a sensitive index of marine sediment quality. However, although Hill–Simpson diversity and Pielou evenness were shown to respond to sediment variability in the regional dataset, they could be insensitive or respond falsely when a low number of individuals was observed, and when more than one community co-existed at a local site. These results from two local sites should serve as a point of caution when using diversity indices. Although these indices can provide a good understanding of how communities respond to sediment degradation, it is important to understand how these indices collapse when there is a small number of individuals observed or when the data span multiple co-existing communities. This emphasises the need for better strategies for the ecological assessment of sediment quality based on diversity indices at the local scale in marine areas.The analyses of the regional dataset show that WC had a larger impact than other variables on the taxonomic density of benthic invertebrate communities, although grain size and organic matter content are also thought to affect benthic invertebrate richnesse.g.17,18. The high contribution of WC likely reflects its physical effects on sediment structure. The optimal range of WC for the burrowing activity of benthic invertebrates is between around 25% WC at the densest (i.e. hardest) and around 40% WC at the loosest (i.e. softest) packing of sediment19,20. A WC value exceeding the upper limit of this optimal range could indicate sediment that is too soft for the burrowing activity of benthic invertebrates; this may explain the negative effect of WC on taxonomic density observed in this study.The relatively high standard deviation of random effects as compared against the effect size of WC in GLMMs suggests that unmeasured variables had a strong effect on taxonomic density. Salinity21 and anthropogenic impacts, such as dredging and trawling13, are well-known factors that could affect the diversity of benthic invertebrates. However, they were not considered in the regional dataset, because these factors are site- and sampling-location specific, and therefore it was impossible to identify which factors needed to be measured prior to investigation. Our study highlights one advantage of GLMMs, which is the ability to show the effects of these unmeasured factors. The effect size of WC was almost as large as that of the random effects in the low-frequency group (Table 1), which suggests that rare invertebrates were more sensitive to sediment degradation in this group, and that this sensitivity contributed to the overall response of taxonomic density.The analyses of the regional dataset also showed that an increase in WC caused a decrease in Hill–Simpson diversity and Pielou evenness in the reliable data. This result is consistent with previously identified responses to sediment degradation6. Because the low values of these indices occurred in communities with a few dominant species, this suggests that the benthic community was dominated by a few species in soft sediments (i.e. where WC was high).Similarly, increasing WC was associated with a significant decline in species density at the two local sites (Table 2), and the trend was significant for both reliable and unreliable data. This suggests that WC can be an indicator of benthic invertebrate species density at the local scale. However, it is likely that the trend in species density was not only caused by the effect of sediment softness (as is suggested by our analysis of the regional dataset) but also by other factors. One such factor is anoxia, which has been observed from August to October in the water column above the sediment in Nagoya Port at locations where no individuals were sampled (i.e., N5, N9, N10, and N12)22. Similarly, high organic-carbon and trace-metal concentrations have been reported in our study area23. These factors could have co-occurred with high WC, and thereby contributed to the decline in species density observed in our study. Because spatial correlations between variables tend to occur at local scales24, it is difficult to identify factors that affect species density at this scale. Species density is itself a sensitive indicator; however, if alternatives are needed, parameters that explain variations in species density, such as WC, are recommended for use as a representative variable in local assessment.WC did not always have a significant negative effect on Hill–Simpson diversity or Pielou evenness at the local scale (Table 2). The significant negative effect of WC on Hill–Simpson diversity identified in the reliable data from Nagoya Port indicates that community structure was dominated by a few species at higher WC, which mirrors the results obtained from the regional dataset. However, WC had no significant effect on Pielou evenness, and even the effect on Hill–Simpson diversity was only significant once locations that have different coexisting community structures (i.e., the Fujimae tidal flat, N8, and N20) were excluded from the analysis. These results mean that these diversity indices are not as sensitive to changes in WC as species density. Conversely, we found questionable significant negative effects of WC on both Hill–Simpson diversity and Pielou evenness when unreliable data were included in the analysis (Table 2). The low values of these indices obtained at high WC likely reflect artefacts in the unreliable data (Fig. 5c, d).It is important to find and exclude coexisting communities when analysing the effects of sediment degradation on indices of community structure (i.e., Hill–Simpson diversity and Pielou evenness) in a target community. In Matsunaga Bay, the river-mouth community on the intertidal flat was found to have a distinct sediment-particle-size composition compared to other communities in the bay based on multivariate analysis (Fig. 3c). In addition, because the polychaete Simplisetia erythraeensis that dominated the river-mouth community can be found in brackish environments (WoRMS: http://www.marinespecies.org/), low salinity (which was not measured in this study) may be a distinguishing feature of this location. Therefore, environmental characteristics such as sediment particle size, salinity, and the location of the intertidal flat likely underlie the spatial variability of community structure in this bay.Whereas we were able to predict the spatial variability of community structure prior to field sampling in Matsunaga Bay, this was not true in Nagoya Port. Our a priori expectation was that the benthic community on the Fujimae intertidal flat would have a distinct structure because of its location; although this was borne out by the data, we were unable to predict that there would also be distinct community structures at N8 and N20 because of the complex spatial patterning of benthic communities in this area. The explanatory variables we selected (salinity, C/N, WC, and D50) explained less than 11% of the total variance in community structure. This weak explanatory power indicates that unmeasured environmental variables may underlie the complex spatial patterning of benthic communities observed in our study, which is typical of the complexity often found in urbanised marine areas13.Although our results demonstrate that excluding distinct coexisting communities from the overall data is important when analysing species density (Fig. 5b) and Hill–Simpson diversity (Fig. 5c), such communities can be difficult to distinguish prior to field sampling. Therefore, post-hoc multivariate analysis is needed to distinguish between a target community and other communities. In addition, because diversity indices are affected by both species composition and the proportions of individuals in each taxon, the use of multiple distances between sampling points is recommended to assess how communities differ across space.The unreliability of Hill–Simpson diversity and Pielou evenness values calculated from small sample sizes can be explained by a theoretical framework for the effective number of species9. The effective number of species, which reflects the number of dominant species14, is predicted to decline or remain unchanged in response to low species density in cases where taxonomic density has a sensitive negative response (Fig. 6a). However, the effective number of species can be underestimated when there is a small sample size (Fig. 6b). This suggests that the questionable negative responses of Hill–Simpson diversity and Pielou evenness (which is calculated from the Shannon index) (Table 2) likely do not reflect real changes in community structure in Nagoya Port, but instead are caused by an artefact that negatively correlates with sediment degradation. However, low Pielou evenness was rarely associated with unreliable data in our study (Appendix S2). Pielou evenness tended to be high, approaching 1.0, in unreliable data from the regional dataset (Supplementary Fig. S2) and Matsunaga Bay (Supplementary Fig. S4). This bias can be explained as a possible result of small sample size. Our results should serve as a warning that false or insensitive responses in Hill–Simpson diversity and Pielou evenness may occur if sample size is insufficient to estimate these indices accurately.Figure 6Two mechanisms that can affect the effective number of species (which can be estimated with Hill–Simpson diversity). (a) The effective number of species becomes lower at low species density with sufficient sample size. When the degradation of sediment quality (SQ degradation) affects species density but not the density of individuals, the effective number of species decreases as a real response to community structure. However, as shown in (b), the effective number of species also becomes lower at small sample size n. When SQ degradation affects the density of individuals, the effective number of species might not reflect a real response in community structure.Full size imageIn this study, we used a sample size of 50 individuals as the threshold between reliable and unreliable data. Although a sample-size threshold can be useful when judging whether a sample accurately reflects community structure, the specific value we used was not based on any scientific evidence. In fact, our datasets included several data points classified as “reliable” that were not sufficiently saturated in Hill–Simpson diversity (Supplementary Figs. S2a, S4a, and S5a). Sample coverage is an index that standardises the number of taxa observed by the completeness of the sample15,25. The sample coverage of the reliable data was close to 1.0 (complete) and greater than that of the unreliable data in all three datasets used in this study. Although the rarefaction curve is a more direct way to show the estimation accuracy of Hill–Simpson diversity, the simplicity of the sample coverage index (as compared to drawing a rarefaction curve) is an advantage when judging data reliability. In addition, sample coverage is useful when plotting the degree of accuracy in two-dimensional figures, as was done in this study.When the number of individuals observed, n, is not sufficient to estimate the indices of community structure accurately, we can use an extrapolation technique that provides more reliable estimates by doubling the number of individuals observed to 2n9. Although we did not use this technique in this study because our objective was to explore how small sample sizes affect assessments of marine sediment quality, this technique is a useful solution for practical assessment when the number of individuals observed is not sufficient.In conclusion, our results show that species density responds sensitively to sediment degradation. By contrast, indices of community structure (i.e. Hill–Simpson diversity and Pielou evenness) were insensitive at the local scale because of masking by multiple coexisting communities, and sometimes produced misleading results because of inaccuracies associated with small sample sizes. Because indices for community structure provide a good understanding of how communities respond to sediment degradation, which cannot be provided by species density, ecological approaches using these indices have merits for assessing sediment quality because they are more realistic under field conditions3 and because they reduce uncertainties26,27. The potential for misleading and insensitive results must be avoided to keep from diluting these merits. We recommend that these diversity indices for community structure be used in local assessments only if it is possible to obtain a sufficient sample size for accurate estimation, and if co-existing communities can be differentiated before field sampling or by post-hoc analysis through sampling at multiple distances. More

  • in

    International fisheries threaten globally endangered sharks in the Eastern Tropical Pacific Ocean: the case of the Fu Yuan Yu Leng 999 reefer vessel seized within the Galápagos Marine Reserve

    1.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. U. S. A. 114, E6089–E6096 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Briggs, J. C. Marine extinctions and conservation. Mar. Biol. 158, 485–488 (2011).Article 

    Google Scholar 
    3.Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).ADS 
    Article 

    Google Scholar 
    4.TRAFFIC East Asia. Shark product trade in Hong Kong and mainland China and implementation of the CITES shark listings. TRAFFIC East Asia (2004).5.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, 1–34 (2014).Article 

    Google Scholar 
    7.Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 480-489.e5 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 1–6 (2013).Article 

    Google Scholar 
    9.Cabral, R. B. et al. A global network of marine protected areas for food. Proc. Natl. Acad. Sci. U. S. A. 117, 28134–28139 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Camhi, M. D., Fordham, S. V. & Fowler, S. L. Domestic and International Management for Pelagic Sharks. in Sharks of the Open Ocean: Biology, Fisheries and Conservation (eds. M. D. Camhi, E. K. Pikitch & E. A. Babcock) 418–444 (Blackwell, 2009). https://doi.org/10.1002/9781444302516.ch34.11.Schiller, L., Alava, J. J., Grove, J., Reck, G. & Pauly, D. The demise of Darwin’s fishes: evidence of fishing down and illegal shark finning in the Galápagos Islands. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 431–446 (2015).Article 

    Google Scholar 
    12.Feitosa, L. M. et al. DNA-based identification reveals illegal trade of threatened shark species in a global elasmobranch conservation hotspot. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    13.Reck, G. Development of the Galápagos Marine Reserve. in The Galapagos Marine Reserve. Social and Ecological Interactions in the Galapagos Islands (ed. Denkinger J, V. L.) 139‒158 (Springer, 2014).14.PNG (Parque Nacional Galápagos). Barco chino deberá pagar 6 millones por daño ambiental dispone Sala de lo Penal. https://www.galapagos.gob.ec/barco-chino-debera-pagar-6-millones-por-dano-ambiental-dispone-sala-de-lo-penal/ (2017).15.Fiscalía General del Estado Ecuatoriano. Boletín de Prensa FGE N. 096-DC-2019: Corte Nacional aceptó recurso de casación por delito contra la flora y fauna silvestres en Galápagos. https://www.fiscalia.gob.ec/corte-nacional-acepto-recurso-de-casacion-por-delito-contra-la-flora-y-fauna-silvestres-en-galapagos/ (2019).16.D’Afflisio, E., Braca, P., Millefiori, L. M. & Willett, P. Maritime Anomaly Detection Based on Mean-Reverting Stochastic Processes Applied to a Real-World Scenario. in 2018 21st International Conference on Information Fusion, FUSION 2018 1171–1177 (Institute of Electrical and Electronics Engineers Inc., 2018). https://doi.org/10.23919/ICIF.2018.8455854.17.Cutlip, K. Our Data Suggests Transhippment Involved in Refrigerated Cargo Vessel Just Sentenced to $5.9 Million and Jail Time for Carrying Illegal Sharks. https://globalfishingwatch.org/impacts/policy-compliance/transhippment-involved-in-reefer-sentenced-for-carrying-illegal-sharks/ (2017).18.Compagno, L., Dando, M. & Fowler, S. Sharks of the World (Princeton University Press, 2005).
    Google Scholar 
    19.Bradley, D. et al. Leveraging satellite technology to create true shark sanctuaries. Conserv. Lett. 12, 1–8 (2019).Article 

    Google Scholar 
    20.Cardeñosa, D. et al. Species composition of the largest shark fin retail-market in mainland China. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    21.IATTC. Resolution C-11-10. Resolution on the conservation of oceanic whitetip sharks caught in association with fisheries in the Antigua convention area. (IATCC, 2011).22.Gonzalez-Pestana, A., Kouri J., C. & Velez-Zuazo, X. Shark fisheries in the Southeast Pacific: A 61-year analysis from Peru. F1000Research 3, 164 (2014).23.Martínez-Ortiz, J., Aires-Da-silva, A. M., Lennert-Cody, C. E. & Maunderxs, M. N. The ecuadorian artisanal fishery for large pelagics: Species composition and spatio-temporal dynamics. PLoS ONE 10, 1–29 (2015).Article 
    CAS 

    Google Scholar 
    24.Bustamante, C. & Bennett, M. B. Insights into the reproductive biology and fisheries of two commercially exploited species, shortfin mako (Isurus oxyrinchus) and blue shark (Prionace glauca), in the south-east Pacific Ocean. Fish. Res. 143, 174–183 (2013).Article 

    Google Scholar 
    25.Hinton, M. G. et al. Stock Status Indicators for Fisheries of the Eastern Pacific Ocean. INTER-AMERICAN TROPICAL TUNA COMISSION, 19, 142–182 (2011).26.Duffy, L. M., Lennert-Cody, C. E., Olson, R. J., Minte-Vera, C. V. & Griffiths, S. P. Assessing vulnerability of bycatch species in the tuna purse-seine fisheries of the eastern Pacific Ocean. Fish. Res. 219, 105316 (2019).Article 

    Google Scholar 
    27.Clarke, S. C., Harley, S. J., Hoyle, S. D. & Rice, J. S. Population trends in Pacific Oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).PubMed 
    Article 

    Google Scholar 
    28.Martinez Ortiz, J. et al. Abundancia estacional de Tiburones desembarcados en Manta-Ecuador. EPESPO-PMRC, 9–27 (2007).29.Román-Verdesoto, M. Updated summary regarding hammerhead sharks caught in the tuna fisheries in the Eastern Pacific Ocean 6th Meeting of the Scientific Advisory Committee IATTC. (2015).30.IATTC. Resolution C-16-06: Conservation Measures for Shark Species, with Special Emphasis on the Silky Shark (Carcharhinus falciformis), for the years 2017, 2018, and 2019. (IATTC, 2016).31.Alava, J. J. Massive Chinese Fleet Jeopardizes Threatened Shark Species around the Galápagos Marine Reserve and Waters off Ecuador. Int. J. Fish. Sci. Res. 1, 8–10 (2017).
    Google Scholar 
    32.El Universo. Se detectan tres flotas pesqueras chinas cerca de Galápagos . https://Www.Eluniverso.Com/Noticias/2019/03/21/Nota/7244318/Se-Detectan-Tres-Flotas-Pesqueras-Chinas-Cerca-Galapagos (2019).33.El Universo. Armada del Ecuador detecta flota pesquera con 260 barcos en las cercanías de Galápagos. https://www.eluniverso.com/noticias/2020/07/16/nota/7908768/armada-ecuador-detecta-flota-pesquera-260-barcos-cercanias. (2020).34.El Universo. Varios barcos chinos, que integran la flota extranjera que pesca cerca de Ecuador, estarían emitiendo ‘falsas coordenadas’; aparecen en Nueva Zelanda. https://www.eluniverso.com/noticias/2020/08/06/nota/7932429/flota-china-pesquera-galapagos-ecuador-nueva-zelanda-ecuador#cxrecs_s. (2020)35.Stuff. Chinese vessels off Galapagos ‘cloaking’ in New Zealand. https://www.stuff.co.nz/environment/122339295/chinese-vessels-off-galapagos-cloaking-in-new-zealand. (2020).36.Mas, F., Forselledo, R. & Domingo, A. Length-length relationships for six pelagic shark species. Collect. Vol. Sci. Pap. ICCAT 70, 2441–2450 (2014).
    Google Scholar 
    37.D’Alberto, B. M. et al. Age, growth and maturity of oceanic whitetip shark (Carcharhinus longimanus) from Papua New Guinea. Mar. Freshw. Res. 68, 1118–1129 (2017).Article 

    Google Scholar 
    38.Oshitani, S., Nakano, H. & Tanaka, S. Age and growth of the silky shark Carcharhinus falciformis from the Pacific Ocean. Fish. Sci. 69, 456–464 (2003).CAS 
    Article 

    Google Scholar 
    39.Joung, S. J., Chen, N. F., Hsu, H. H. & Liu, K. M. Estimates of life history parameters of the oceanic whitetip shark, Carcharhinus longimanus, in the Western North Pacific Ocean. Mar. Biol. Res. 12, 758–768 (2016).Article 

    Google Scholar 
    40.Naylor, G. J. P. et al. A DNA sequencebased approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Museum Nat. Hist. 21, 1–262 (2012).
    Google Scholar 
    41.Peñafiel, N., Flores, D. M., Rivero De Aguilar, J., Guayasamin, J. M. & Bonaccorso, E. A cost-effective protocol for total DNA isolation from animal tissue. Neotrop. Biodivers. 5, 69–74 (2019).42.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2018).Article 
    CAS 

    Google Scholar 
    44.Maddison, W. P. & Maddison, D. R. Mesquite: A modular system for evolutionary Mesquite installation for evolutionary analysis. (2003).45.Aparicio-Puerta, E. et al. SRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression. Nucleic Acids Res. 47, W530–W535 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Seki, T., Taniuchi, T., Nakano, H. & Shimizu, M. Age, growth and reproduction of the oceanic Whitetip shark from the Pacific Ocean. Fish. Sci. 64, 14–20 (1998).CAS 
    Article 

    Google Scholar 
    50.Bergman, B. Reefer Fined $5.9 Million for Endangered Catch in Galapagos Recently Rendezvoused with Chinese Longliners. https://skytruth.org/2017/08/galapagos-reefer-fined-5-9-million/ (2017).51.Romero-Caicedo, A. F., Galván-Magaña, F. & Martínez-Ortiz, J. Reproduction of the pelagic thresher shark Alopias pelagicus in the equatorial Pacific. J. Mar. Biol. Assoc. U. K. 94, 1501–1507 (2014).Article 

    Google Scholar 
    52.Chen, C., Liu, K. & Chang, Y. Reproductive biology of the bigeye thresher shark, Alopias superciliosus (Lowe, 1839) (Chondrichthyes: Alopiidae), in the northwestern Pacific. Ichthyol. Res. 44, 227–236 (1997).Article 

    Google Scholar 
    53.Bradley, D. et al. Growth and life history variability of the grey reef shark (Carcharhinus amblyrhynchos) across its range. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    54.Holmes, B. J. et al. Age and growth of the tiger shark Galeocerdo cuvier off the east coast of Australia. J. Fish Biol. 87, 422–448 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Nakano, H Stevens, J. The biology and ecology of the blue shark, Prionace glauca. in Sharks of the open ocean: Biology, fisheries and conservation (Vol. 1) (ed. Camhi, Merry D Pikitch, E K Babcock, E. A.) 140‒151 (Blackwell Scientific Publications, 2008).56.Gubanov, Y. E. The reproduction of some species of pelagic sharks from the equatorial zone of the Indian Ocean. J. Ichthyol. 18, 781–792 (1978).
    Google Scholar 
    57.Fahmi & Sumadhiharga, K. Size, sex and length at maturity of four common sharks caught from Western Indonesia. Mar. Res. Indones. 32, 7–19 (2007).58.Nava, P. N. & Márquez-Farías, J. F. Talla de madurez del tiburón martillo, Sphyrna zygaena, capturado en el Golfo de California. Hidrobiologica 24, 129–135 (2014).
    Google Scholar 
    59.Saïdi, B., Bradaï, M. N. & Bouaïn, A. Reproductive biology of the smooth-hound shark Mustelus mustelus (L.) in the Gulf of Gabès (south-central Mediterranean Sea). J. Fish Biol. 72, 1343–1354 (2008). More

  • in

    Prolonged drought imparts lasting compositional changes to the rice root microbiome

    1.Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).CAS 

    Google Scholar 
    2.Zhang, J. et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int. J. Environ. Res. Public Health 15, 839 (2018).3.Hirasawa, T., in Genetic Improvement of Rice for Water-Limited Environments (eds Ito, O, O’Toole, J. C. & Hardy, B.) 89–98 (International Rice Research Institute, 1999).4.Pandey, V. & Shukla, A. Acclimation and tolerance strategies of rice under drought stress. Rice Sci. 22, 147–161 (2015).
    Google Scholar 
    5.Compant, S., van der Heijden, M. G. A. & Sessitsch, A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 73, 197–214 (2010).CAS 

    Google Scholar 
    6.de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).
    Google Scholar 
    7.Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    8.Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B. & Sundaresan, V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio 8, e00764-17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    9.Naylor, D., DeGraaf, S., Purdom, E. & Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. https://doi.org/10.1038/ismej.2017.118 (2017).10.Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1717617115 (2018).11.Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    12.Zhang, J. et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci. China Life Sci. 61, 613–621 (2018).
    Google Scholar 
    13.Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Liechty, Z. et al. Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters. mSystems 5, e00897-19 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    15.Rong, X. & Huang, Y. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int. J. Syst. Evol. Microbiol. 60, 696–703 (2010).CAS 

    Google Scholar 
    16.Lin, L. & Xu, X. Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr. Microbiol. 67, 209–217 (2013).CAS 

    Google Scholar 
    17.Legault, G. S., Lerat, S., Nicolas, P. & Beaulieu, C. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology 101, 1045–1051 (2011).CAS 

    Google Scholar 
    18.Guo, J. et al. Seed-borne, endospheric and rhizospheric core microbiota as predictor for plant functional traits across rice cultivars are dominated by deterministic processes. New Phytol. https://doi.org/10.1111/nph.17297 (2021).19.de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    20.de Vries, F. T. & Shade, A. Controls on soil microbial community stability under climate change. Front. Microbiol. 4, 265 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    21.Borken, W. & Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824 (2009).
    Google Scholar 
    22.Lueders, T. & Friedrich, M. W. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl. Environ. Microbiol. 68, 2484–2494 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Linquist, B. A. et al. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Change Biol. 21, 407–417 (2015).
    Google Scholar 
    24.Speirs, L. B. M., Rice, D. T. F., Petrovski, S. & Seviour, R. J. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge. Front. Microbiol. 10, 2015 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    25.Thomas, S. H. et al. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS ONE 3, e2103 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    26.Yang, T. H., Coppi, M. V., Lovley, D. R. & Sun, J. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb. Cell Fact. 9, 90 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Keller, K. L. & Wall, J. D. Genetics and molecular biology of the electron flow for sulfate respiration in desulfovibrio. Front. Microbiol. 2, 135 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. https://doi.org/10.1038/s41564-018-0129-3 (2018).29.Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).
    Google Scholar 
    30.Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 224, 132–145 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    31.Casartelli, A. et al. Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice 11, 9 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    32.Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. https://doi.org/10.1038/ismej.2017.85 (2017).33.Kang, D.-J. & Futakuchi, K. Effect of moderate drought-stress on flowering time of interspecific hybrid progenies (Oryza sativa L. × Oryza glaberrima Steud.). J. Crop Sci. Biotechnol. 22, 75–81 (2019).
    Google Scholar 
    34.Guo, X. et al. Host-associated quantitative abundance profiling reveals the microbial load variation of root microbiome. Plant Commun. 1, 100003 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    35.Varoquaux, N. et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1907500116 (2019).36.Li, P. et al. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front. Genet. 10, 55 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
    Google Scholar 
    39.Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).
    Google Scholar 
    40.Suralta, R. R. et al. Plasticity in nodal root elongation through the hardpan triggered by rewatering during soil moisture fluctuation stress in rice. Sci. Rep. 8, 4341 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    41.Hamedi, J. & Mohammadipanah, F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J. Ind. Microbiol. Biotechnol. 42, 157–171 (2015).CAS 

    Google Scholar 
    42.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).
    Google Scholar 
    43.Aznar, A. & Dellagi, A. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J. Exp. Bot. 66, 3001–3010 (2015).CAS 

    Google Scholar 
    44.Viaene, T., Langendries, S., Beirinckx, S., Maes, M. & Goormachtig, S. Streptomyces as a plant’s best friend? FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw119 (2016).45.Meena, K. K. et al. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front. Plant Sci. 8, 172 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    46.Mukamuhirwa, A. et al. Effect of intermittent drought on grain yield and quality of rice (Oryza sativa L.) grown in Rwanda. J. Agro Crop Sci. 206, 252–262 (2020).CAS 

    Google Scholar 
    47.Fleta-Soriano, E. & Munné-Bosch, S. Stress memory and the inevitable effects of drought: a physiological perspective. Front. Plant Sci. 7, 143 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    48.Ding, Y., Fromm, M. & Avramova, Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 3, 740 (2012).
    Google Scholar 
    49.de la Fuente Cantó, C. et al. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103, 951–964 (2020).
    Google Scholar 
    50.Kittas, C., Bartzanas, T. & Jaffrin, A. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosyst. Eng. 85, 87–94 (2003).
    Google Scholar 
    51.Edwards, J. et al. Soil domestication by rice cultivation results in plant–soil feedback through shifts in soil microbiota. Genome Biol. 20, 221 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    52.Edwards, J., Santos-Medellín, C. & Sundaresan, V. Extraction and 16S rRNA sequence analysis of microbiomes associated with rice roots. Bio. Protoc. 8, e2884 (2018).53.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).CAS 

    Google Scholar 
    54.Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. 13, 31 (2012).CAS 

    Google Scholar 
    55.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Weimer, B. C. 100K Pathogen Genome Project. Genome Announc. 5, e00594-17 (2017).59.Kong, N. et al. Draft genome sequences of 1,183 Salmonella strains from the 100K Pathogen Genome Project. Genome Announc. 5, e00518–17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    60.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 

    Google Scholar 
    63.Medema, M. H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/65.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    68.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    69.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Oksanen, J. et al. vegan: Community Ecology Package (2018).71.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).72.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).
    Google Scholar 
    73.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: estimated marginal means, aka least-squares means. R package v.1, 3 (R Foundation for Statistical Computing, 2018).74.Kassambara, A. Rstatix: pipe-friendly framework for basic statistical tests. R package v.0.6.0 (R Foundation for Statistical Computing, 2020).75.Graves, S., Piepho, H.-P., Selzer, L. & Dorai-Raj, S. multcompView: visualizations of paired comparisons. R package v.0.1-7 (R Foundation for Statistical Computing, 2015).76.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Liaw, A. & Wiener, M. Classification and regression by randomForest. R. News 2, 18–22 (2002).
    Google Scholar 
    78.Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Pelagic organisms avoid white, blue, and red artificial light from scientific instruments

    1.Berge, J. et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 3, 102. https://doi.org/10.1038/s42003-020-0807-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Davies, T. W., McKee, D., Fishwick, J., Tidau, S. & Smyth, T. Biologically important artificial light at night on the seafloor. Sci. Rep. 10, 12545. https://doi.org/10.1038/s41598-020-69461-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Ludvigsen, M. et al. Use of an autonomous surface vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4, eaap9887. https://doi.org/10.1126/sciadv.aap9887 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Utne-Palm, A. C., Breen, M., Løkkeborg, S. & Humborstad, O. B. Behavioural responses of krill and cod to artificial light in laboratory experiments. PLoS One https://doi.org/10.1371/journal.pone.0190918 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Marchesan, M., Spoto, M., Verginella, L. & Ferrero, E. A. Behavioural effects of artificial light on fish species of commercial interest. Fish. Res. 73, 171–185. https://doi.org/10.1016/j.fishres.2004.12.009 (2005).Article 

    Google Scholar 
    6.Stickney, A. P. Factors influencing the attraction of Atlantic Herring. Fish. Bull. 68, 73–85 (1969).
    Google Scholar 
    7.Nguyen, K. Q. et al. Application of luminescent netting in traps to improve the catchability of the snow crab Chionoecetes opilio. Mar. Coast. Fish. 11, 295–304. https://doi.org/10.1002/mcf2.10084 (2019).Article 

    Google Scholar 
    8.Wiebe, P. H. et al. Using a high-powered strobe light to increase the catch of Antarctic krill. Mar. Biol. 144, 493–502. https://doi.org/10.1007/s00227-003-1228-z (2004).Article 

    Google Scholar 
    9.Nguyen, T. T. et al. Artificial light pollution increases the sensitivity of tropical zooplankton to extreme warming. Environ. Technol. Innov. 20, 101179. https://doi.org/10.1016/j.eti.2020.101179 (2020).Article 

    Google Scholar 
    10.Kaartvedt, S., Røstad, A., Opdal, A. F. & Aksnes, D. L. Herding mesopelagic fish by light. Mar. Ecol. Prog. Ser. 625, 225–231 (2019).ADS 
    Article 

    Google Scholar 
    11.Underwood, M. J., Utne Palm, A. C., Øvredal, J. T. & Bjordal, Å. The response of mesopelagic organisms to artificial lights. Aquac. Fish. https://doi.org/10.1016/j.aaf.2020.05.002 (2020).Article 

    Google Scholar 
    12.Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Ryer, C. H., Stoner, A. W., Iseri, P. J. & Spencer, M. L. Effects of simulated underwater vehicle lighting on fish behavior. Mar. Ecol. Prog. Ser. 391, 97–106 (2009).ADS 
    Article 

    Google Scholar 
    14.Bicknell, A. W. J., Godley, B. J., Sheehan, E. V., Votier, S. C. & Witt, M. J. Camera technology for monitoring marine biodiversity and human impact. Front. Ecol. Environ. 14, 424–432. https://doi.org/10.1002/fee.1322 (2016).Article 

    Google Scholar 
    15.Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Meth. 8, 462–547. https://doi.org/10.4319/lom.2010.8.462 (2010).Article 

    Google Scholar 
    16.Herman, A. W. & Harvey, M. Application of normalized biomass size spectra to laser optical plankton counter net intercomparisons of zooplankton distributions. J. Geophys. Res. Oceans. https://doi.org/10.1029/2005JC002948 (2006).Article 

    Google Scholar 
    17.Basedow, S. L., Tande, K. S., Norrbin, M. F. & Kristiansen, S. A. Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation. Prog. Oceanogr. 108, 72–80. https://doi.org/10.1016/j.pocean.2012.10.005 (2013).ADS 
    Article 

    Google Scholar 
    18.Sainmont, J. et al. Inter- and intra-specific diurnal habitat selection of zooplankton during the spring bloom observed by Video Plankton Recorder. Mar. Biol. 161, 1931–1941. https://doi.org/10.1007/s00227-014-2475-x (2014).Article 

    Google Scholar 
    19.Schulz, J. et al. Imaging of plankton specimens with the lightframe on-sight key species investigation (LOKI) system. J. Eur. Opt. Soc. 5, 10017s (2010).Article 

    Google Scholar 
    20.Schmid, M. S., Aubry, C., Grigor, J. & Fortier, L. The LOKI underwater imaging system and an automatic identification model for the detection of zooplankton taxa in the Arctic Ocean. Meth. Oceanogr. 15–16, 129–160. https://doi.org/10.1016/j.mio.2016.03.003 (2016).Article 

    Google Scholar 
    21.Williams, K., Rooper, C. N. & Towler, R. Use of stereo camera systems for assessment of rockfish abundance in untrawlable areas and for recording pollock behavior during midwater trawls. Fish. Bull. 108, 352–362 (2010).
    Google Scholar 
    22.Boldt, J. L., Williams, K., Rooper, C. N., Towler, R. H. & Gauthier, S. Development of stereo camera methodologies to improve pelagic fish biomass estimates and inform ecosystem management in marine waters. Fish. Res. 198, 66–77. https://doi.org/10.1016/j.fishres.2017.10.013 (2018).Article 

    Google Scholar 
    23.Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62. https://doi.org/10.1016/j.fishres.2014.01.019 (2014).Article 

    Google Scholar 
    24.Easton, R. R., Heppell, S. S. & Hannah, R. W. Quantification of habitat and community relationships among nearshore temperate fishes through analysis of drop camera video. Mar. Coast. Fish. 7, 87–102. https://doi.org/10.1080/19425120.2015.1007184 (2015).Article 

    Google Scholar 
    25.McLean, D. L. et al. Using industry ROV videos to assess fish associations with subsea pipelines. Cont. Shelf Res. 141, 76–97. https://doi.org/10.1016/j.csr.2017.05.006 (2017).ADS 
    Article 

    Google Scholar 
    26.Devine, B. M., Wheeland, L. J., de Moura Neves, B. & Fisher, J. A. D. Baited remote underwater video estimates of benthic fish and invertebrate diversity within the eastern Canadian Arctic. Polar Biol. 42, 1323–1341. https://doi.org/10.1007/s00300-019-02520-5 (2019).Article 

    Google Scholar 
    27.Trenkel, V. M., Lorance, P. & Mahévas, S. Do visual transects provide true population density estimates for deepwater fish?. ICES J. Mar. Sci. 61, 1050–1056. https://doi.org/10.1016/j.icesjms.2004.06.002 (2004).Article 

    Google Scholar 
    28.Widder, E. A., Robison, B. H., Reisenbichler, K. R. & Haddock, S. H. D. Using red light for in situ observations of deep-sea fishes. Deep-Sea Res. Part I(52), 2077–2085. https://doi.org/10.1016/j.dsr.2005.06.007 (2005).ADS 
    Article 

    Google Scholar 
    29.Benoit-Bird, K. J., Moline, M. A., Schofield, O. M., Robbins, I. C. & Waluk, C. M. Zooplankton avoidance of a profiled open-path fluorometer. J. Plankton Res. 32, 1413–1419. https://doi.org/10.1093/plankt/fbq053 (2010).Article 

    Google Scholar 
    30.Doya, C. et al. Diel behavioral rhythms in sablefish (Anoplopoma fimbria) and other benthic species, as recorded by the Deep-sea cabled observatories in Barkley canyon (NEPTUNE-Canada). J. Mar. Syst. 130, 69–78. https://doi.org/10.1016/j.jmarsys.2013.04.003 (2014).Article 

    Google Scholar 
    31.Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243. https://doi.org/10.1139/f08-032 (2008).Article 

    Google Scholar 
    32.Rooper, C. N., Williams, K., De Robertis, A. & Tuttle, V. Effect of underwater lighting on observations of density and behavior of rockfish during camera surveys. Fish. Res. 172, 157–167. https://doi.org/10.1016/j.fishres.2015.07.012 (2015).Article 

    Google Scholar 
    33.Hop, H. et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167–208 (2002).Article 

    Google Scholar 
    34.Bandara, K. et al. Seasonal vertical strategies in a high-Arctic coastal zooplankton community. Mar. Ecol. Prog. Ser. 555, 49–64 (2016).ADS 
    Article 

    Google Scholar 
    35.Hop, H. et al. In The Ecosystem of Kongsfjorden, Svalbard (eds Hop, H. & Wiencke, C.) 229–300 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    36.Cusa, M., Berge, J. & Varpe, Ø. Seasonal shifts in feeding patterns: Individual and population realized specialization in a high Arctic fish. Ecol. Evol. 9, 11112–11121. https://doi.org/10.1002/ece3.5615 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Sakshaug, E., Johnsen, G. & Volent, Z. In Ecosystem Barents Sea (eds Sakshaug, E. et al.) 117–138 (Tapir Academic Press, 2009).
    Google Scholar 
    38.Gordon, H. R. Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water?. Limnol. Oceanogr. 34, 1389–1409. https://doi.org/10.4319/lo.1989.34.8.1389 (1989).ADS 
    Article 

    Google Scholar 
    39.McKee, D., Cunningham, A. & Craig, S. Estimation of absorption and backscattering coefficients from in situ radiometric measurements: Theory and validation in case II waters. App. Opt. 42, 2804–2810. https://doi.org/10.1364/AO.42.002804 (2003).ADS 
    Article 

    Google Scholar 
    40.Demer, D. A. et al. Calibration of acoustic instruments. ICES Cooperative Research Report No. 326. 133 (2015).41.Mackenzie, K. V. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am. 70, 807 (1981).ADS 
    Article 

    Google Scholar 
    42.François, R. E. & Garrison, G. R. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 72, 1879–1890 (1982).ADS 
    Article 

    Google Scholar 
    43.De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291. https://doi.org/10.1093/icesjms/fsm112 (2007).Article 

    Google Scholar 
    44.Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493. https://doi.org/10.1093/icesjms/fsv121 (2015).Article 

    Google Scholar 
    45.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    46.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. TREE 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008 (2009).Article 
    PubMed 

    Google Scholar 
    47.Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561. https://doi.org/10.1016/j.cub.2015.08.024 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Dalpadado, P. et al. Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biol. 39, 1765–1784. https://doi.org/10.1007/s00300-015-1874-x (2016).Article 

    Google Scholar 
    49.Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619. https://doi.org/10.1007/s00300-018-2368-4 (2018).Article 

    Google Scholar 
    50.Jarms, G., Tiemann, H. & Båmstedt, U. Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar. Biol. 141, 647–657. https://doi.org/10.1007/s00227-002-0858-x (2002).Article 

    Google Scholar 
    51.Pepin, P., Colbourne, E. & Maillet, G. Seasonal patterns in zooplankton community structure on the Newfoundland and Labrador Shelf. Prog. Oceanogr. 91, 273–285. https://doi.org/10.1016/j.pocean.2011.01.003 (2011).ADS 
    Article 

    Google Scholar 
    52.Cohen, J. H. & Epifanio, C. E. In Developmental Biology and Larval Ecology, Ch. 12 (eds Anger, K. et al.) 332–359 (Oxford University Press, 2020).
    Google Scholar 
    53.Orr, M. H. Remote acoustic detection of zooplankton response to field processes, oceanographic instrumentation, and predators. Can. J. Fish. Aquat. Sci. 38, 1096–1105. https://doi.org/10.1139/f81-149 (1981).Article 

    Google Scholar 
    54.Farmer, D. D., Crawford, G. B. & Osborn, T. R. Temperature and velocity microstructure caused by swimming fish1. Limnol. Oceanogr. 32, 978–983. https://doi.org/10.4319/lo.1987.32.4.0978 (1987).ADS 
    Article 

    Google Scholar 
    55.Koslow, J. A., Kloser, R. & Stanley, C. A. Avoidance of a camera system by a deepwater fish, the orange roughy (Hoplostethus atlanticus). Deep-Sea Res Part I 42, 233–244. https://doi.org/10.1016/0967-0637(95)93714-P (1995).Article 

    Google Scholar 
    56.Raymond, E. H. & Widder, E. A. Behavioral responses of two deep-sea fish species to red, far-red, and white light. Mar. Ecol. Prog. Ser. 350, 291–298 (2007).ADS 
    Article 

    Google Scholar 
    57.Bassett, D. K. & Montgomery, J. C. Investigating nocturnal fish populations in situ using baited underwater video: With special reference to their olfactory capabilities. J. Exp. Mar. Biol. Ecol. 409, 194–199. https://doi.org/10.1016/j.jembe.2011.08.019 (2011).Article 

    Google Scholar 
    58.Brill, R., Magel, C., Davis, M., Hannah, R. & Rankin, P. Effects of rapid decompression and exposure to bright light on visual function in black rockfish (Sebastes melanops) and Pacific halibut (Hippoglossus stenolepis). Fish. Bull. 106, 427–437 (2008).
    Google Scholar 
    59.Turner, J. R., White, E. M., Collins, M. A., Partridge, J. C. & Douglas, R. H. Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea. Deep-Sea Res. Part I 56, 1003–1017. https://doi.org/10.1016/j.dsr.2009.01.007 (2009).CAS 
    Article 

    Google Scholar 
    60.de Busserolles, F. & Marshall, N. J. Seeing in the deep-sea: Visual adaptations in lanternfishes. Philos. Trans. R Soc. Lond. B Biol. Sci. 372, 20160070. https://doi.org/10.1098/rstb.2016.0070 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Valen, R., Edvardsen, R. B., Søviknes, A. M., Drivenes, Ø. & Helvik, J. V. Molecular evidence that only two opsin subfamilies, the blue light- (SWS2) and green light-sensitive (RH2), drive colour vision in Atlantic cod (Gadus morhua). PLoS One 9, e115436. https://doi.org/10.1371/journal.pone.0115436 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Anthony, P. D. & Hawkins, A. D. Spectral sensitivity of the cod, Gadus morhua L. Mar. Behav. Physiol. 10, 145–166. https://doi.org/10.1080/10236248309378614 (1983).Article 

    Google Scholar 
    63.Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528. https://doi.org/10.1017/s0952523800174036 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Frank, T. M. & Widder, E. A. Comparative study of the spectral sensitivities of mesopelagic crustaceans. J. Comp. Physiol. A 185, 255–265. https://doi.org/10.1007/s003590050385 (1999).Article 

    Google Scholar 
    65.Båtnes, A. S., Miljeteig, C., Berge, J., Greenacre, M. & Johnsen, G. Quantifying the light sensitivity of Calanus spp. during the polar night: Potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis?. Polar Biol. 38, 1–15. https://doi.org/10.1007/s00300-013-1415-4 (2015).Article 

    Google Scholar 
    66.Cohen, J. H. et al. Is ambient light during the high Arctic polar night sufficient to act as a visual cue for zooplankton?. PLoS ONE https://doi.org/10.1371/journal.pone.0126247 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Jinks, R. N. et al. Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab. Nature 420, 68–70. https://doi.org/10.1038/nature01144 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Aguzzi, J. et al. The potential of video imagery from worldwide cabled observatory networks to provide information supporting fish-stock and biodiversity assessment. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa169 (2020).Article 

    Google Scholar  More

  • in

    Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis

    1.Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, et al. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. 2016;10:1613.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG. Bacterial growth at −15 C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 2013;7:1211.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol. 2011;162:346–61.PubMed 
    Article 

    Google Scholar 
    4.De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014;15:508–17.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F. Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Bio. 2016;15:147–72.Article 

    Google Scholar 
    6.Christner BC, Mosley‐Thompson E, Thompson LG, Reeve JN. Bacterial recovery from ancient glacial ice. Environ Microbiol. 2003;5:433–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Raymond-Bouchard I, Goordial J, Zolotarov Y, Ronholm J, Stromvik M, Bakermans C, et al. Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. FEMS Microbiol Ecol. 2018;94:fiy023.Article 
    CAS 

    Google Scholar 
    8.Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG. Comparative transcriptomics of cold growth and adaptive features of a eury-and steno-psychrophile. Front Microbiol. 2018;9:1565.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Buzzini P, Margesin R. Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Buzzini P, Margesin R, editors. Cold-adapted yeasts. Heidelberg: Springer; 2014. p. 3–22.Chapter 

    Google Scholar 
    10.Altshuler I, Goordial J, Whyte LG. Microbial life in permafrost. In: Margesin R, editor. Psychrophiles: from biodiversity to biotechnology. 2nd edn. Cham: Springer; 2017. p. 153–79.Chapter 

    Google Scholar 
    11.Gilichinsky D, Wilson G, Friedmann E, McKay C, Sletten R, Rivkina E, et al. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology. 2007;7:275–311.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, Junior PAS, et al. Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles. 2020;24:367–76.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Zhang T, Wang N, Yu L. Soil fungal community composition differs significantly among the Antarctic, Arctic, and Tibetan Plateau. Extremophiles. 2020;24:821–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Coleine C, Zucconi L, Onofri S, Pombubpa N, Stajich JE, Selbmann L. Sun exposure shapes functional grouping of fungi in cryptoendolithic Antarctic communities. Life. 2018;8:19.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A. Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol. 2000;32:235–40.CAS 

    Google Scholar 
    16.Perini L, Gostinčar C, Anesio AM, Williamson C, Tranter M, Gunde-Cimerman N. Darkening of the Greenland Ice Sheet: fungal abundance and diversity are associated with algal bloom. Front Microbiol. 2019;10:557.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Tojo M, Newsham KK. Snow moulds in polar environments. Fungal Ecol. 2012;5:395–402.Article 

    Google Scholar 
    18.Rosa LH, Vaz AB, Caligiorne RB, Campolina S, Rosa CA. Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv.(Poaceae). Polar Biol. 2009;32:161–7.Article 

    Google Scholar 
    19.Gianoli E, Inostroza P, Zúñiga-Feest A, Reyes-Díaz M, Cavieres LA, Bravo LA, et al. Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of central Chile and the maritime Antarctic. Arct Antarct Alp Res. 2004;36:484–9.Article 

    Google Scholar 
    20.Duncan SM, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, et al. Endoglucanase‐producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol. 2006;8:1212–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Starmer WT, Lachance M-A. Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T, eds. The yeasts. 5ft ed. London: Elsevier; 2011. p. 65–83.Chapter 

    Google Scholar 
    22.Shivaji S, Prasad G. Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G, editors. Yeast biotechnology: diversity and applications. New Delhi: Springer; 2009. p. 3–18.Chapter 

    Google Scholar 
    23.Gunde-Cimerman N, Plemenitaš A, Buzzini P. Changes in lipids composition and fluidity of yeast plasma membrane as response to cold. In: Buzzini P, Margesin R, editors. Cold-adapted yeasts. Heidelberg: Springer; 2014. p. 225–42.Chapter 

    Google Scholar 
    24.Goordial J, Raymond-Bouchard I, Riley R, Ronholm J, Shapiro N, Woyke T, et al. Improved high-quality draft genome sequence of the eurypsychrophile Rhodotorula sp. JG1b, isolated from permafrost in the hyperarid upper-elevation mcmurdo dry valleys, Antarctica. Genome Announc. 2016;4:e00069–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yen H-W, Liao Y-T, Liu YX. Cultivation of oleaginous Rhodotorula mucilaginosa in airlift bioreactor by using seawater. J Biosci Bioeng. 2016;121:209–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N. Yeasts in polar and subpolar habitats. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Cham: Springer; 2017. p. 331–65.Chapter 

    Google Scholar 
    27.Margesin R, Fonteyne P-A, Schinner F, Sampaio JP. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Micr. 2007;57:2179–84.CAS 
    Article 

    Google Scholar 
    28.Sabri A, Jacques P, Weekers F, Bare G, Hiligsmann S, Moussaif M, et al. Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca. In: Walt DR, editor. Applied biochemistry and biotechnology. New York: Springer Science+Business Media; 2000. p. 391–9.
    Google Scholar 
    29.Marchant DR, Head JW III. Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 2007;192:187–222.Article 

    Google Scholar 
    30.Kurtzman C, Fell JW, Boekhout T, editors. The yeasts: a taxonomic study. 5ft ed. London: Elsevier; 2011.
    Google Scholar 
    31.Kornerup A, Wanscher JH, editors. Methuen handbook of colour. 2nd ed. London: Methuen and Co.; 1967.
    Google Scholar 
    32.Xing W, Yin M, Lv Q, Hu Y, Liu C, Zhang J. Oxygen solubility, diffusion coefficient, and solution viscosity. In: Xing W, Yin G, Zhang J, editors. Rotating electrode methods and oxygen reduction electrocatalysts. London: Elsevier; 2014. p. 1–31.
    Google Scholar 
    33.Viti C, Decorosi F, Marchi E, Galardini M, Giovannetti L. High-throughput phenomics. In: Mengoni A, Galardini M, Fondi M, editors. Bacterial pangenomics. Methods and protocols. New York: Springer; 2015. p. 99–123.Chapter 

    Google Scholar 
    34.Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe. 2008;21:269–82.CAS 
    Article 

    Google Scholar 
    35.Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    39.Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34:W451–54.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Greetham D. Phenotype microarray technology and its application in industrial biotechnology. Biotechnol Lett. 2014;36:1153–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev. 2008;33:191–205.PubMed 
    Article 
    CAS 

    Google Scholar 
    43.Maldonado F, Packard T, Gómez M. Understanding tetrazolium reduction and the importance of substrates in measuring respiratory electron transport activity. J Exp Mar Biol Ecol. 2012;434:110–8.Article 
    CAS 

    Google Scholar 
    44.Barclay BJ, DeHaan CL, Hennig UG, Iavorovska O, von Borstel RW, Von, et al. A rapid assay for mitochondrial DNA damage and respiratory chain inhibition in the yeast Saccharomyces cerevisiae. Environ Mol Mutagen. 2001;38:153–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Jenkins CL, Lawrence SJ, Kennedy AI, Thurston P, Hodgson JA, Smart KA. Incidence and formation of petite mutants in lager brewing yeast Saccharomyces cerevisiae (syn. S. pastorianus) populations. J Am Soc Brew Chem. 2009;67:72–80.CAS 

    Google Scholar 
    46.Glab N, Wise R, Pring D, Jacq C, Slonimski P. Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize: respiratory dysfunction and uncoupling of yeast mitochondria. Mol Gen Genet. 1990;223:24–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J. The petite mutation in yeast: loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970;52:323–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Pinatel E, Peano C. RNA sequencing and analysis in microorganisms for metabolic network reconstruction. In: Fondi M, editor. Metabolic network reconstruction and modeling. Methods and protocols. New York: Springer; 2018. p. 239–65.Chapter 

    Google Scholar 
    50.Raymond‐Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG. Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol. 2017;19:4460–79.PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Bhuiyan M, Tucker D, Watson K. Gas chromatography–mass spectrometry analysis of fatty acid profiles of Antarctic and non-Antarctic yeasts. Anton Leeuw. 2014;106:381–9.CAS 
    Article 

    Google Scholar 
    52.López-Malo M, Chiva R, Rozes N, Guillamon JM. Phenotypic analysis of mutant and overexpressing strains of lipid metabolism genes in Saccharomyces cerevisiae: implication in growth at low temperatures. Int J Food Microbiol. 2013;162:26–36.PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, et al. Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol. 2009;69:363–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Micro Biot. 2015;31:517–26.CAS 
    Article 

    Google Scholar 
    55.Libkind D, Arts M, Van Broock M. Fatty acid composition of cold-adapted carotenogenic basidiomycetous yeasts. Rev Argent Microbiol. 2008;40:193–7.CAS 
    PubMed 

    Google Scholar 
    56.Thomas-Hall S, Watson K. Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Micr. 2002;52:1033–8.CAS 

    Google Scholar 
    57.López-Malo M, García-Ríos E, Chiva R, Guillamon JM. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature. Micro Cell. 2014;1:365.Article 
    CAS 

    Google Scholar 
    58.Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, Daran J-M. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell. 2007;18:5100–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Mao C, Wadleigh M, Jenkins GM, Hannun YA, Obeid LM. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem. 1997;272:28690–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Micro Cell Fact. 2014;13:12.Article 
    CAS 

    Google Scholar 
    61.Moliné M, Flores MR, Libkind D. del Carmen Diéguez M, Farías ME, van Broock M. Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photoch Photobio Sci. 2010;9:1145–51.Article 
    CAS 

    Google Scholar 
    62.Liu GY, Nizet V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 2009;17:406–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Rodrigues DF, Tiedje JM. Coping with our cold planet. Appl Environ Micro. 2008;74:1677–86.CAS 
    Article 

    Google Scholar 
    64.Villarreal P, Carrasco M, Barahona S, Alcaíno J, Cifuentes V, Baeza M. Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Curr Microbiol. 2016;72:94–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Moliné M, Libkind D, del Carmen DiéguezM, van Broock M. Photoprotective role of carotenoids in yeasts: response to UV-B of pigmented and naturally-occurring albino strains. J Photoch Photobio B 2009;95:156–61.Article 
    CAS 

    Google Scholar 
    66.Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, et al. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep. 2012;39:969–87.PubMed 
    Article 
    CAS 

    Google Scholar 
    67.Heino P, Palva ET. Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K, editors. Plant responses to abiotic stress. Berlin: Springer; 2003. p. 151–86.Chapter 

    Google Scholar 
    68.Storey KB, Storey JM. Signal transduction and gene expression in the regulation of natural freezing survival. In: Storey KB, Storey JM, editors. Protein adaptations and signal transduction. London: Elsevier; 2001. p. 1–19.
    Google Scholar 
    69.Li W-H, Yang J, Gu X. Expression divergence between duplicate genes. Trends Genet. 2005;21:602–7.PubMed 
    Article 
    CAS 

    Google Scholar 
    70.Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, et al. Poles apart: arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. Plos One. 2013;8:e63422.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Wagner A. Asymmetric functional divergence of duplicate genes in yeast. Mol Biol Evol. 2002;19:1760–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Varki A, Gagneux P. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    73.Colley K, Varki A, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    74.Pavlova K, Panchev I, Hristozova T. Physico-chemical characterization of exomannan from Rhodotorula acheniorum MC. World J Micro Biot. 2005;21:279–83.CAS 
    Article 

    Google Scholar 
    75.Cho DH, Chae HJ, Kim EY. Synthesis and characterization of a novel extracellular polysaccharide by Rhodotorula glutinis. Appl Biochem Biotech. 2001;95:183–93.CAS 
    Article 

    Google Scholar 
    76.Flemming HC, Neu TR, Wingender J. The perfect slime. Microbial extracellular polymeric substances (EPS). London: IWA Publishing; 2016.Book 

    Google Scholar 
    77.Nichols WW, Evans MJ, Slack MP, Walmsley HL. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. Microbiology. 1989;135:1291–303.CAS 
    Article 

    Google Scholar 
    78.Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol. 2002;153:585–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Rini JM, Esko JD. Glycosyltransferases and glycan-processing enzymes. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    80.Strassburg K, Walther D, Takahashi H, Kanaya S, Kopka J. Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress. Omics. 2010;14:249–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Becerra M, Lombardia L, Gonzalez-Siso M, Rodriguez-Belmonte E, Hauser N, Cerdán M. Genome-wide analysis of the yeast transcriptome upon heat and cold shock. Int J Genomics. 2003;4:366–75.CAS 

    Google Scholar 
    82.Homma T, Iwahashi H, Komatsu Y. Yeast gene expression during growth at low temperature. Cryobiology. 2003;46:230–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Sahara T, Goda T, Ohgiya S. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem. 2002;277:50015–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY. Cold adaptation in budding yeast. Mol Biol Cell. 2004;15:5492–502.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Mikami K, Kanesaki Y, Suzuki I, Murata N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol. 2002;46:905–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Tsuji M. Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci. 2016;3:160106.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Sarkar D, Bhowmik PC, Kwon Y-I, Shetty K. Clonal response to cold tolerance in creeping bentgrass and role of proline-associated pentose phosphate pathway. Bioresour Technol. 2009;100:5332–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Bura R, Vajzovic A, Doty SL. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol. J Ind Microbiol Biot. 2012;39:1003–11.CAS 
    Article 

    Google Scholar 
    89.da Silva TL, Feijão D, Roseiro JC, Reis A. Monitoring Rhodotorula glutinis CCMI 145 physiological response and oil production growing on xylose and glucose using multi-parameter flow cytometry. Bioresour Technol. 2011;102:2998–3006.PubMed 
    Article 
    CAS 

    Google Scholar 
    90.Johansson B, Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2002;2:277–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Eliasson A, Boles E, Johansson B, Österberg M, Thevelein J, Spencer-Martins I, et al. Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biot. 2000;53:376–82.CAS 
    Article 

    Google Scholar 
    92.Mohamad N, Mustapa Kamal S, Mokhtar M. Xylitol biological production: a review of recent studies. Food Rev Int. 2015;31:74–89.CAS 
    Article 

    Google Scholar 
    93.Shetty K, Wahlqvist M. A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pac J Clin Nutr. 2004;13:1–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Fonseca P, Moreno R, Rojo F. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environ Microbiol Rep. 2011;3:329–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Rao R, Bhadra B, Shivaji S. Isolation and characterization of ethanol‐producing yeasts from fruits and tree barks. Lett Appl Microbiol. 2008;47:19–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Kourkoutas Y, Komaitis M, Koutinas A, Kaliafas A, Kanellaki M, Marchant R, et al. Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and 0 C. Food Chem. 2003;82:353–60.CAS 
    Article 

    Google Scholar 
    97.Kanellaki M, Koutinas AA. Low temperature fermentation of wine and beer by cold-adapted and immobilized yeast cells. In: Margesin R, Schinner F, editors. Biotechnological applications of cold-adapted organisms. Berlin: Springer; 1999. p. 117–45.Chapter 

    Google Scholar 
    98.Bakoyianis V, Kanellaki M, Kaliafas A, Koutinas A. Low-temperature wine making by immobilized cells on mineral kissiris. J Agr Food Chem. 1992;40:1293–6.CAS 
    Article 

    Google Scholar 
    99.Tiwari R, Singh S, Shukla P, Nain L. Novel cold temperature active β-glucosidase from Pseudomonas lutea BG8 suitable for simultaneous saccharification and fermentation. RSC Adv. 2014;4:58108–15.CAS 
    Article 

    Google Scholar 
    100.Tang W, Wang Y, Zhang J, Cai Y, He Z. Biosynthetic pathway of carotenoids in Rhodotorula and strategies for enhanced their production. J Microbiol Biotechn. 2019;29:507–17.CAS 
    Article 

    Google Scholar 
    101.Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol. 2007;59:513–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Dozmorov MG, Giles CB, Koelsch KA, Wren JD. Systematic classification of non-coding RNAs by epigenomic similarity. BMC Bioinforma. 2013;14:S2.Article 

    Google Scholar 
    103.Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Lau SK, Chow W-N, Wong AY, Yeung JM, Bao J, Zhang N, et al. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. Plos Negl Trop D. 2013;7:e2398.Article 
    CAS 

    Google Scholar 
    106.Zhou Q, Wang Z, Zhang J, Meng H, Huang B. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol UK. 2012;116:1156–62.CAS 
    Article 

    Google Scholar 
    107.Lambert M, Benmoussa A, Provost P. Small non-coding RNAs derived from eukaryotic ribosomal RNA. Noncoding RNA 2019;5:16.CAS 
    PubMed Central 

    Google Scholar 
    108.Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA. 2008;14:2095–103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Gebetsberger J, Wyss L, Mleczko AM, Reuther J, Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 2017;14:1364–73.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Bąkowska-Żywicka K, Kasprzyk M, Twardowski T. tRNA-derived short RNAs bind to Saccharomyces cerevisiae ribosomes in a stress-dependent manner and inhibit protein synthesis in vitro. FEMS Yeast Res. 2016;16:fow077.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    111.McCool MA, Bryant CJ, Baserga SJ. MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc T. 2020;48:595–612.CAS 
    Article 

    Google Scholar 
    112.Wei H, Zhou B, Zhang F, Tu Y, Hu Y, Zhang B, et al. Profiling and identification of small rDNA-derived RNAs and their potential biological functions. Plos One. 2013;8:e56842.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Lee H-C, Chang S-S, Choudhary S, Aalto AP, Maiti M, Bamford DH, et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature. 2009;459:274–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Zhu C, Yan Q, Weng C, Hou X, Mao H, Liu D, et al. Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA. P Natl Acad Sci USA. 2018;115:10082–7.CAS 
    Article 

    Google Scholar 
    115.Zhou X, Chen X, Wang Y, Feng X, Guang S. A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biol. 2017;14:1492–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Zhou X, Feng X, Mao H, Li M, Xu F, Hu K, et al. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol. 2017;24:258.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Alpha and beta diversity patterns of macro-moths reveal a breakpoint along a latitudinal gradient in Mongolia

    1.Díaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    3.Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Valtonen, A. et al. Long-term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    6.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Thomas, C., Jones, T. H. & Hartley, S. E. “Insectageddon”: A call for more robust data and rigorous analyses. Glob. Change Biol. 25,1891–1892 (2019).ADS 
    Article 

    Google Scholar 
    8.Enkhtur, K., Boldgiv, B. & Pfeiffer, M. Diversity and distribution patterns of geometrid moths (Geometridae, Lepidoptera) in Mongolia. Diversity 12, 186 (2020).Article 

    Google Scholar 
    9.Pullaiah, T. Global Biodiversity: Volume 1: Selected Countries in Asia (CRC Press, 2018).Book 

    Google Scholar 
    10.Knyazev, S. A., Makhov, I. A., Matov, A. Y. & Yakovlev, R. V. Check-list of Macroheterocera (Insecta, Lepidoptera) collected in 2019 in Mongolia by Russian entomological expeditions. Ecol. Montenegrina 38, 186–204 (2020).Article 

    Google Scholar 
    11.Ustjuzhanin, P., Kovtunovich, V. & Yakovlev, R. Alucitidae (Lepidoptera), a new family for the Mongolian fauna. Nota Lepidopterol. 39, 61 (2016).Article 

    Google Scholar 
    12.Volynkin, A. V. & Gyulai, P. A new species of Athaumasta Hampson, 1906 (Lepidoptera, Noctuidae, Bryophilinae) from the Altai Mountains of Mongolia and China. Zootaxa 4508, 594–600 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Saldaitis, A. Review of the genus Kerzhnerocossus Yakovlev, 2011 (Lepidoptera: Cossidae) with descriptions of two new species from Russia and Mongolia. Zootaxa 4294, 389–394 (2017).Article 

    Google Scholar 
    14.Yakovlev, R. V. & Doroshkin, V. V. Hyles svetlana Shovkoon, 2010 (Lepidoptera: Sphingidae)—new species for Mongolian fauna and new records of Hawk-moths in Western Mongolia. Russian Entomological Journal. 26(3), 263–266 (2017).Article 

    Google Scholar 
    15.Volynkin, A. V., Titov, S. V. & Černila, M. Anarta insolita umay, a new subspecies from Russian Altai and Mongolia, with re-characterization of Anarta insolita uigurica (Hacker, 1998) (Lepidoptera, Noctuidae, Noctuinae). Ecol. Montenegrina 35, 115–122 (2020).Article 

    Google Scholar 
    16.Gershenson, Z. S. New Records of Yponomeutoid Moths (Lepidoptera, Yponomeutidae, Argyrestiidae Ypsolophidae, Plutelliidae) from the Palaearctic Region. Vestnik  Zoologii 50(1), 23–30 (2016).17.GBIF.org. GBIF Occurrence Download data. https://doi.org/10.15468/dl.h5ebh7 (2021).18.Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    19.Daniel, B., Francois, G. & Legendre, P. Numerical Ecology with R (Springer, 2011).MATH 

    Google Scholar 
    20.Jurasinski, G., Retzer, V. & Beierkuhnlein, C. Inventory, differentiation, and proportional diversity: A consistent terminology for quantifying species diversity. Oecologia 159, 15–26 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    21.Bachand, M. et al. Species indicators of ecosystem recovery after reducing large herbivore density: Comparing taxa and testing species combinations. Ecol. Indic. 38, 12–19 (2014).Article 

    Google Scholar 
    22.Enkhtur, K., Pfeiffer, M., Lkhagva, A. & Boldgiv, B. Response of moths (Lepidoptera: Heterocera) to livestock grazing in Mongolian rangelands. Ecol. Indic. 72, 667–674 (2017).Article 

    Google Scholar 
    23.Baselga, A., Gómez-Rodríguez, C. & Lobo, J. M. Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLoS ONE 7, e32341 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).Article 

    Google Scholar 
    25.Whittaker, R. J., Nogués-Bravo, D. & Araújo, M. B. Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob. Ecol. Biogeogr. 16, 76–89 (2007).Article 

    Google Scholar 
    26.Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ahlborn, J. et al. Climate–grazing interactions in Mongolian rangelands: Effects of grazing change along a large-scale environmental gradient. J. Arid Environ. 173, 104043 (2020).ADS 
    Article 

    Google Scholar 
    28.Bai, Y. et al. Positive linear relationship between productivity and diversity: Evidence from the Eurasian Steppe. J. Appl. Ecol. 44, 1023–1034 (2007).Article 

    Google Scholar 
    29.Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).Article 

    Google Scholar 
    32.Hoffmann, S. et al. Remote sensing of β-diversity: Evidence from plant communities in a semi-natural system. Appl. Veg. Sci. 22, 13–26 (2019).Article 

    Google Scholar 
    33.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    34.Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    35.Pfeiffer, M., Dulamsuren, C., Jäschke, Y. & Wesche, K. Grasslands of China and Mongolia:Spatial Extent, Land Use and Conservation. In Grasslands of the World: Diversity, Management and Conservation. (CRC Press, 2018).36.Pfeiffer, M., Dulamsuren, C. & Wesche, K. Grasslands and Shrublands of Mongolia. In Reference Module in Earth Systems and Environmental Sciences. 759–772 (Elsevier, 2019).37.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 

    Google Scholar 
    38.Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. 28, 65–82 (1986).Article 

    Google Scholar 
    40.Wang, Y., Ding, P., Chen, S. & Zheng, G. Nestedness of bird assemblages on urban woodlots: Implications for conservation. Landsc. Urban Plan. 111, 59–67 (2013).Article 

    Google Scholar 
    41.Hylander, K., Nilsson, C., Gunnar Jonsson, B. & Göthner, T. Differences in habitat quality explain nestedness in a land snail meta-community. Oikos 108, 351–361 (2005).Article 

    Google Scholar 
    42.Osório, N. C., Cunha, E. R., Tramonte, R. P., Mormul, R. P. & Rodrigues, L. Habitat complexity drives the turnover and nestedness patterns in a periphytic algae community. Limnology 20, 297–307 (2019).Article 
    CAS 

    Google Scholar 
    43.St. Pierre, J. I. & Kovalenko, K. E. Effect of habitat complexity attributes on species richness. Ecosphere 5, 1–10 (2014).Article 

    Google Scholar 
    44.Wright, D. H. & Reeves, J. H. On the meaning and measurement of nestedness of species assemblages. Oecologia 92, 416–428 (1992).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Paknia, O., Grundler, M. & Pfeiffer, M. Species richness and niche differentiation of darkling beetles (Coleoptera: Tenebrionidae) in Mongolian steppe ecosystems. In Steppe Ecosyst. Biol. Divers. Manag. Restor. 47–72 (Nova Sci. Publ.,2013).46.Rabl, D., Gottsberger, B., Brehm, G., Hofhansl, F. & Fiedler, K. Moth assemblages in Costa Rica rain forest mirror small-scale topographic heterogeneity. Biotropica 52, 288–301 (2020).Article 

    Google Scholar 
    47.McGeachie, W. J. The effects of moonlight illuminance, temperature and wind speed on light-trap catches of moths. Bull. Entomol. Res. 79, 185–192 (1989).Article 

    Google Scholar 
    48.Antão, L. H., Pöyry, J., Leinonen, R. & Roslin, T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 29, 896–907 (2020).Article 

    Google Scholar 
    49.Steiner, A. Die Nachtfalter Deutschlands: ein Feldführer: sämtliche nachtaktiven Großschmetterlinge in Lebendfotos und auf Farbtafeln (Bugbook Publishing, 2014).
    Google Scholar 
    50.Spalding, A., Young, M. & Dennis, R. L. The importance of host plant-habitat substrate in the maintenance of a unique isolate of the Sandhill Rustic: Disturbance, shingle matrix and bare ground indicators. J. Insect Conserv. 16, 839–846 (2012).Article 

    Google Scholar 
    51.Betzholtz, P.-E. & Franzen, M. Mobility is related to species traits in noctuid moths. Ecol. Entomol. 36, 369–376 (2011).Article 

    Google Scholar 
    52.Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article 

    Google Scholar 
    53.Holt, R. D. & Hoopes, M. F. Food web dynamics in a metacommunity context. In Metacommunities. Spat. Dyn. Ecol. Communities (ed. Holyoak, M.) 68–94 (Univ. of Chicago Press, 2005).54.Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernández LM. HOSTS—a database of the World’s Lepidopteran hostplants https://www.nhm.ac.uk/our-science/data/hostplants (2010).55.Moreno, C., Cianciaruso, M. V., Sgarbi, L. F. & Ferro, V. G. Richness and composition of tiger moths (Erebidae: Arctiinae) in a Neotropical savanna: Are heterogeneous habitats richer in species?. Nat. Conserv. 12, 138–143 (2014).Article 

    Google Scholar 
    56.von Wehrden, H., Hanspach, J., Kaczensky, P., Fischer, J. & Wesche, K. Global assessment of the non-equilibrium concept in rangelands. Ecol. Appl. 22, 393–399 (2012).Article 

    Google Scholar 
    57.Ashton, L. A. et al. Altitudinal patterns of moth diversity in tropical and subtropical Australian rainforests. Austral. Ecol. 41, 197–208 (2016).Article 

    Google Scholar 
    58.Liu, Y. Y. et al. Changing climate and overgrazing are decimating Mongolian steppes. PLoS ONE 8, e57599 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lang, B. et al. Grazing effects on intraspecific trait variability vary with changing precipitation patterns in Mongolian rangelands. Ecol. Evol. 10(2),678-691 (2020).60.Brehm, G. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. Nota Lepidopterol. 40, 87 (2017).Article 

    Google Scholar 
    61.Brehm, G. & Axmacher, J. C. A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. Environ. Entomol. 35, 757–764 (2006).Article 

    Google Scholar 
    62.Rennwald, E. & Rodeland, E. Lepiforum: Bestimmung von Schmetterlingen (Lepidoptera) und ihren Präimaginalstadien. http://www.lepiforum.de (2002).63.Knyazev, S. A. Electronic atlas of Lepidoptera in Omsk region. http://omflies.ru/ (2017).64.Yang, M. et al. The first mitochondrial genome of the family Epicopeiidae and higher-level phylogeny of Macroheterocera (Lepidoptera: Ditrysia). Int. J. Biol. Macromol. 136, 123–132 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    66.Mongolian Statistical Information Service. Livestock. http://1212.mn/stat.aspx?LIST_ID=976_L10_1 (2020).67.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).68.Linlin Yan. ggvenn: Draw Venn Diagram by ‘ggplot2’. R package version 0.1.8. https://CRAN.R-project.org/package=ggvenn (2021).69.Baselga, A. et al. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.2. https://CRAN.R-project.org/package=betapart (2020).70.Crawley, M. J. The R Book (Wiley, 2012).MATH 
    Book 

    Google Scholar 
    71.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar  More

  • in

    Vulnerability of the North Water ecosystem to climate change

    Marine sediment recordThe Calypso Square gravity core AMD15-CASQ1 (77°15.035′ N, 74°25.500′ W, 692 m water depth) and accompanying box core (BC; same location) were retrieved aboard the CCGS Amundsen during the ArcticNet 2015 Leg 4a expedition in 2015, in accordance with relevant permits and local laws. The CASQ corer recovered a sequence 543 cm long, while the box core was 40 cm long. Sediment material from these cores is stored at the Geological Survey of Denmark and Greenland and available upon reasonable request to the first and corresponding author (SRI).Computed Tomography (CT) scanning of the core was performed using a Siemens SOMATOM Definition AS + 128 at the Institut National de la Recherche Scientifique (INRS), Quebec, Canada. The tomograms were converted into digital DICOM format using a standard Hounsfield scale (HU scale) from −1024 to 3071, where −1024 corresponds to the density of air, 0 to the density of water and 2500 to the density of calcite.The age control on the marine sediment record was provided by 11 accelerator mass spectrometry (AMS) radiocarbon dates on mollusc shells (Supplementary. Table 1) at the Keck Carbon Cycle AMS Facility, University of California, Irvine, US, and 210Pb/137Cs measurements conducted on 20 samples at the Gamma Dating Center, Copenhagen University, Denmark. In the box core, the content of unsupported 210Pb showed a clear exponential decline with depth (Supplementary Fig. 1). A clear 137Cs peak was not detected, but the 210Pb-based chronology dates the earliest sample with 137Cs to 1969 ± 2 years, which is close to the expected date, 1963, for the global 137Cs peak induced by nuclear weapons testing in the atmosphere. This, and the very uniform exponential decline in unsupported 210Pb with depth, gives confidence in the calculated chronology. A mixed age-depth model, using both 210Pb and 14C dates, was constructed using BACON, an open-source package of ‘R’54. This Bayesian accumulation model code allows for greater flexibility in sedimentation rates between dated intervals than traditional linear age-depth models54. The AMS radiocarbon dates were calibrated with the Marine13 IntCal1355, and the regional marine reservoir offset was estimated based on existing 14C data from marine specimens collected before the mid-1950s. Distinct regional offset values have been proposed for Arctic Canada, but do not include the Smith Sound region56. Existing data from NW Greenland show local reservoir correction (ΔR) values ranging from -40 years in the Inglefield Fjord to +320 years in Ellesmere Island (the latter consistent with the proposed 335 ± 85 years for the Canadian Arctic Archipelago56). However, these samples have been retrieved from shallow sites ( More

  • in

    Ecological effects on female bill colour explain plastic sexual dichromatism in a mutually-ornamented bird

    1.Darwin, C. The Descent of Man, and Selection in Relation to Sex (Jon Murray, 1871).Book 

    Google Scholar 
    2.Andersson, M. Sexual Selection (Princeton University Press, 1994).Book 

    Google Scholar 
    3.McGraw, K. J. & Ardia, D. R. Carotenoids, immunocompetence, and the information content of sexual colors: An experimental test. Am. Nat. 162, 704–712 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Clutton-Brock, T. Sexual selection in females. Anim. Behav. 77, 3–11 (2009).Article 

    Google Scholar 
    5.Amundsen, T. Why are female birds ornamented?. TREE 15, 149–155 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Coyne, J. A., Kay, E. H. & Pruett-Jones, S. The genetic basis of sexual dimorphism in birds. Evolution 62, 214–219 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    7.Gazda, M. et al. A genetic mechanism for sexual dichromatism in birds. Science 368, 1270–1274 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    8.Kraaijeveld, K. Genetic architecture of novel ornamental traits and the establishment of sexual dimorphism: Insights from domestic birds. J. Ornithol. 160, 861–868 (2019).Article 

    Google Scholar 
    9.Kimball, R. T. & Ligon, J. D. Evolution of avian plumage dichromatism from a proximate perspective. Am. Nat. 154, 182–193 (1999).Article 

    Google Scholar 
    10.West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).Article 

    Google Scholar 
    11.Lyon, B. E. & Montgomerie, R. Sexual selection is a form of social selection. Philos. Trans. R. Soc. B 367, 2266–2273 (2012).Article 

    Google Scholar 
    12.Faivre, B., Grégoire, A., Préault, M., Cézilly, F. & Sorci, G. Immune activation rapidly mirrored in a secondary sexual trait. Science 300, 103 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Gautier, P. et al. The presence of females modulates the expression of a carotenoid-based sexual signal. Behav. Ecol. Sociobiol. 62, 1159–1166 (2008).Article 

    Google Scholar 
    14.Hill, G. E., Hood, W. R. & Huggins, K. A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches. J. Exp. Biol. 212, 1225–1233 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rosenthal, M. F., Murphy, T. G., Darling, N. & Tarvin, K. A. Ornamental bill color rapidly signals changing condition. J. Avian Biol. 43, 553–564 (2012).Article 

    Google Scholar 
    16.Eraud, C. et al. Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches. J. Exp. Biol. 210, 3571–3578 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Kelly, R. J., Murphy, T. G., Tarvin, K. A. & Burness, G. Carotenoid-based ornaments of female and male American goldfinches (Spinus tristis) show sex-specific correlations with immune function and metabolic rate. Physiol. Biochem. Zool. 85, 348–363 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Funghi, C., Trigo, S., Gomes, A. C. R., Soares, M. C. & Cardoso, G. C. Release from ecological constraint erases sex difference in social ornamentation. Behav. Ecol. Sociobiol. 72, 67 (2018).Article 

    Google Scholar 
    19.DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. TREE 13, 77–81 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    21.Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    22.von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. Biol. Sci. 266, 1–12 (1999).Article 

    Google Scholar 
    23.Møller, A. P. et al. Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability?. Avian Poult. Biol. Rev. 11, 137–159 (2000).
    Google Scholar 
    24.Garratt, M. & Brooks, R. C. Oxidative stress and condition-dependent sexual signals: More than just seeing red. Proc. Biol. Sci. 279, 3121–3130 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    25.Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7, e43088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    26.Hõrak, P., Ots, I., Vellau, H., Spottiswoode, C. & Møller, A. P. Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126, 166–173 (2001).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    27.Clement, P., Harris, A. & Davies, J. Finches and Sparrows: An Identification Guide (Princeton University Press, 1993).
    Google Scholar 
    28.Cardoso, G. C., Batalha, H. R., Reis, S. & Lopes, R. J. Increasing sexual ornamentation during a biological invasion. Behav. Ecol. 25, 916–923 (2014).Article 

    Google Scholar 
    29.Cardoso, G. C. et al. Similar preferences for ornamentation in opposite- and same-sex choice experiments. J. Evol. Biol. 27, 2798–2806 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Marques, C. I. J., Batalha, H. R. & Cardoso, G. C. Signalling with a cryptic trait: The regularity of barred plumage in common waxbills. R. Soc. Open. Sci. 3, 160195 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    31.Funghi, C., Leitão, A. V., Ferreira, A. C., Mota, P. G. & Cardoso, G. C. Social dominance in a gregarious bird is related to body size but not to standard personality assays. Ethology 121, 84–93 (2015).
    Article 

    Google Scholar 
    32.Navara, K. J. & Hill, G. E. Dietary carotenoid pigments and immune function in a songbird with extensive carotenoid-based plumage coloration. Behav. Ecol. 14, 909–916 (2003).Article 

    Google Scholar 
    33.McGraw, K. J. & Schuetz, J. G. The evolution of carotenoid coloration in estrildid finches: A biochemical analysis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 45–51 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Karu, U., Saks, L. & Hõrak, P. Carotenoid-based plumage coloration is not affected by vitamin E supplementation in male greenfinches. Ecol. Res. 23, 931–935 (2008).CAS 
    Article 

    Google Scholar 
    35.Pérez, C., Lores, M. & Velando, A. Availability of nonpigmentary antioxidant affects red coloration in gulls. Behav. Ecol. 19, 967–973 (2008).Article 

    Google Scholar 
    36.Hartley, R. C. & Kennedy, M. W. Are carotenoids a red herring in sexual display?. TREE 19, 353–354 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    37.Alonso-Alvarez, C. et al. An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am. Nat. 164, 651–659 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Jouventin, P., McGraw, K. J., Morel, M. & Célerier, A. Dietary carotenoid supplementation affects orange beak but not foot coloration in gentoo penguins Pygoscelis papua. Waterbirds 30, 573–578 (2007).Article 

    Google Scholar 
    39.Saino, N. et al. Better red than dead: Carotenoid-based mouth coloration reveals infection in barn swallow nestlings. Proc. Biol. Sci. 267, 57–61 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Thorogood, R., Kilner, R. M., Karadaş, F. & Ewen, J. G. Spectral mouth color of nestlings changes with carotenoid availability. Funct. Ecol. 22, 1044–1051 (2008).Article 

    Google Scholar 
    41.Koch, R., Wilson, A. & Hill, G. The importance of carotenoid dose in supplementation studies with songbirds. Physiol. Biochem. Zool. 89, 61–71 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hill, G. E. Proximate basis of variation in carotenoid pigmentation in male House Finches. Auk 109, 1–12 (1992).Article 

    Google Scholar 
    43.Biard, C., Surai, P. F. & Møller, A. P. Carotenoid availability in diet and phenotype of blue and great tit nestlings. J. Exp. Biol. 209, 1004–1015 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Giraudeau, M., Sweazea, K., Butler, M. W. & McGraw, K. J. Effects of carotenoid and vitamin E supplementation on oxidative stress and plumage coloration in house finches (Haemorhous mexicanus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 166, 406–413 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Goodwin, T. W. Distribution of carotenoids. Method Enzymol. 213, 167–172 (1992).CAS 
    Article 

    Google Scholar 
    46.Hill, G. E. Female house finches prefer colourful males: Sexual selection for a condition-dependent trait. Anim. Behav. 40, 563–572 (1990).Article 

    Google Scholar 
    47.Olson, V. A. & Owens, I. P. F. Costly sexual signals: Are carotenoids rare, risky or required?. TREE 13, 510–514 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Koch, R. E. & Hill, G. E. Do carotenoid-based ornaments entail resource trade-offs? An evaluation of theory and data. Funct. Ecol. 32, 1908–1920 (2018).Article 

    Google Scholar 
    49.Krinsky, N. I. Carotenoids as antioxidants. Nutrition 17, 815–817 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.El-Agamey, A. et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 430, 37–48 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Costantini, D. & Møller, A. P. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2007).Article 

    Google Scholar 
    52.Leclaire, S. et al. Carotenoids increase immunity and sex specifically affect color and redox homeostasis in a monochromatic seabird. Behav. Ecol. Sociobiol. 69, 1097–1111 (2015).Article 

    Google Scholar 
    53.Benito, M., González-Solís, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Surai, P. F. Natural Antioxidants in Avian Nutrition and Reproduction (Nottingham University Press, 2002).
    Google Scholar 
    55.Bertrand, S., Faivre, B. & Sorci, G. Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?. J. Exp. Biol. 209, 4414–4419 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Marri, V. & Richner, H. Differential effects of vitamins E and C and carotenoids on growth, resistance to oxidative stress, fledging success and plumage colouration in wild great tits. J. Exp. Biol. 217, 1478–1484 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    57.Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).Article 

    Google Scholar 
    58.Pike, T. W., Blount, J. D., Lindström, J. & Metcalfe, N. B. Availability of non-carotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biol. Lett. 3, 353–356 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Stiels, D., Schidelko, K., Engler, J. & Rödder, D. Predicting the potential distribution of the invasive Common Waxbill Estrilda astrild (Passeriformes: Estrildidae). J. Ornithol. 152, 769–780 (2011).Article 

    Google Scholar 
    60.Beltrão, P. et al. European breeding phenology of the common waxbill, a sub-Saharan opportunistic breeder. Acta Ethol. https://doi.org/10.1007/s10211-021-00376-9 (2021).Article 

    Google Scholar 
    61.Pan, J. Q., Tan, X., Li, J. C., Sun, W. D. & Wang, X. L. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodelling and ascites morbidity in broilers under normal and cold temperature. Br. Poultry Sci. 46, 374–381 (2005).CAS 
    Article 

    Google Scholar 
    62.Zhang, Z. W. et al. Effects of cold stress on nitric oxide in duodenum of chicks. Poultry Sci. 90, 1555–1561 (2011).CAS 
    Article 

    Google Scholar 
    63.Beaulieu, M., Haas, A. & Schaefer, M. H. Self-supplementation and effects of dietary antioxidants during acute thermal stress. J. Exp. Biol. 217, 370–375 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    64.Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B 184, 1021–1029 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Beamonte-Barrientos, R. & Verhulst, S. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches. J. Comp. Physiol. B 183, 675–683 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Moreno, J., Cantarero, A., Plaza, M. & López-Arrabé, J. Phenotypic plasticity in breeding plumage signals in both sexes of a migratory bird: Responses to breeding conditions. J. Avian Biol. 50, e01855 (2019).Article 

    Google Scholar 
    67.del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 15: Weavers to New World Warblers (Lynx Edicions, 2010).68.Larcombe, S. D., Mullen, W., Alexander, L. & Arnold, K. E. Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus. Naturwissenschaften 97, 903–913 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    69.Hudon, J. Showiness, carotenoids, and captivity: A comment on Hill (1992). Auk 111, 218–221 (1994).Article 

    Google Scholar 
    70.Dykes, L. & Rooney, L. W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44, 236–251 (2006).CAS 
    Article 

    Google Scholar 
    71.Cardoso, G. C. & Gomes, A. C. R. Using reflectance ratios to study animal coloration. Evol. Biol. 42, 387–394 (2015).Article 

    Google Scholar 
    72.Montgomerie, R. Analyzing colors. Analyzing colors. In Bird Coloration, Vol. 1. Mechanisms and Measurements (eds Hill, G. E. & McGraw, K. J.) 90–147 (Harvard University Press, 2006).
    Google Scholar  More