1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS
CAS
PubMed
Article
Google Scholar
2.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article
Google Scholar
3.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).ADS
CAS
PubMed
Article
Google Scholar
5.Bessler, H. et al. Nitrogen uptake by grassland communities: contribution of N2 fixation, facilitation, complementarity, and species dominance. Plant Soil 358, 301–322 (2012).CAS
Article
Google Scholar
6.Karanika, E. D., Alifragis, D. A., Mamolos, A. P. & Veresoglou, D. S. Differentiation between responses of primary productivity and phosphorus exploitation to species richness. Plant Soil 297, 69–81 (2007).CAS
Article
Google Scholar
7.Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. Adv. Ecol. Res. 61, 185–219 (2019).Article
Google Scholar
8.Oelmann, Y. et al. Does plant diversity influence phosphorus cycling in experimental grasslands? Geoderma 167-68, 178–187 (2011).ADS
Article
CAS
Google Scholar
9.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).ADS
CAS
Article
Google Scholar
10.Leimer, S., Oelmann, Y., Wirth, C. & Wilcke, W. Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agric Ecosyst. Environ. 211, 155–163 (2015).CAS
Article
Google Scholar
11.Scherer-Lorenzen, M., Palmborg, C., Prinz, A. & Schulze, E.-D. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84, 1539–1552 (2003).Article
Google Scholar
12.Elser, J. & Bennett, E. A broken biogeochemical cycle. Nature 478, 29–31 (2011).ADS
CAS
PubMed
Article
Google Scholar
13.Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321, 83–115 (2009).CAS
Article
Google Scholar
14.Wassen, M. J., Olde Venterink, H., Lapshina, E. D. & Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 437, 547–550 (2005).ADS
CAS
PubMed
Article
Google Scholar
15.Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change-Hum. Policy Dimens. 19, 292–305 (2009).Article
Google Scholar
16.van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).Article
CAS
Google Scholar
17.van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).ADS
Article
CAS
Google Scholar
18.Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156, 989–996 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
19.Hacker, N. et al. Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil. Ecol. Lett. 18, 1356–1365 (2015).PubMed
Article
Google Scholar
20.Hacker, N., Wilcke, W. & Oelmann, Y. The oxygen isotope composition of bioavailable phosphate in soil reflects the oxygen isotope composition in soil water driven by plant diversity effects on evaporation. Geochim. Cosmochim. Acta 248, 387–399 (2019).ADS
CAS
Article
Google Scholar
21.Craven, D. et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos. Trans. R. Soc. B 371, 8 (2016).Article
Google Scholar
22.Fridley, J. D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271–277 (2002).ADS
PubMed
Article
Google Scholar
23.Weigelt, A., Weisser, W. W., Buchmann, N. & Scherer-Lorenzen, M. Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 6, 1695–1706 (2009).ADS
CAS
Article
Google Scholar
24.Nyfeler, D. et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl Ecol. 46, 683–691 (2009).Article
Google Scholar
25.Oelmann, Y., Vogel, A., Wegener, F., Weigelt, A. & Scherer-Lorenzen, M. Management intensity modifies plant diversity effects on N yield and mineral N in soil. Soil Sci. Soc. Am. J. 79, 559–568 (2015).ADS
CAS
Article
Google Scholar
26.Manning P., et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. In: Mechanisms Underlying the Relationship between Biodiversity and Ecosystem Function (ed^(eds Eisenhauer N., Bohan D. A., Dumbrell A. J.). Academic Press Ltd-Elsevier Science Ltd (2019).27.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article
Google Scholar
28.Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).PubMed
PubMed Central
Article
Google Scholar
29.Collins, C. D. & Foster, B. L. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology 90, 2567–2576 (2009).PubMed
Article
Google Scholar
30.Klironomos, J. N., McCune, J., Hart, M. & Neville, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3, 137–141 (2000).Article
Google Scholar
31.Busch, V. et al. Will I stay or will I go? Plant species-specific response and tolerance to high land-use intensity in temperate grassland ecosystems. J. Veg. Sci. 30, 674–686 (2019).Article
Google Scholar
32.Sorkau, E. et al. The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. J. Plant Nutr. Soil Sci. 181, 185–197 (2018).CAS
Article
Google Scholar
33.Wardle, D. A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Camb. Philos. Soc. 67, 321–358 (1992).Article
Google Scholar
34.Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).ADS
CAS
PubMed
Article
Google Scholar
35.Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).CAS
PubMed
Article
Google Scholar
36.Cleveland, C. C. & Liptzin, D. C. N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252 (2007).Article
Google Scholar
37.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
38.Marquard, E. et al. Plant species richness and functional composition drive overyielding in a 6-year grassland experiment. Ecology 90, 3290–3302 (2009).PubMed
Article
Google Scholar
39.Liebisch, F. et al. Seasonal dynamics and turnover of microbial phosphorus in a permanent grassland. Biol. Fertil. Soils 50, 465–475 (2014).CAS
Article
Google Scholar
40.Boeddinghaus, R. S. et al. Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. J. Ecol. 107, 2197–2210 (2019).CAS
Article
Google Scholar
41.Soussana, J. F. et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 20, 219–230 (2004).Article
Google Scholar
42.Waldrop, M. P., Zak, D. R., Blackwood, C. B., Curtis, C. D. & Tilman, D. Resource availability controls fungal diversity across a plant diversity gradient. Ecol. Lett. 9, 1127–1135 (2006).PubMed
Article
Google Scholar
43.Kour, D. et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31, 43–75 (2021).Article
Google Scholar
44.Dijkstra, F. A., He, M. Z., Johansen, M. P., Harrison, J. J. & Keitel, C. Plant and microbial uptake of nitrogen and phosphorus affected by drought using N-15 and P-32 tracers. Soil Biol. Biochem. 82, 135–142 (2015).CAS
Article
Google Scholar
45.Hiiesalu, I. et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. N. Phytol. 203, 233–244 (2014).CAS
Article
Google Scholar
46.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).ADS
CAS
PubMed
Article
Google Scholar
47.Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Bas Appl. Ecol. 5, 107–121 (2004).Article
Google Scholar
48.Hoffmann K., Bivour W., Früh B., Koßmann M., Voß P.-H. Climate studies in Jena for adaption to climate change and ist expected consequences. (In German). Selbstverlag des Deutschen Wetterdienstes (2014).49.IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. FAO (2015).50.Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Bas Appl Ecol. 11, 473–485 (2010).Article
Google Scholar
51.Alt, F., Oelmann, Y., Herold, N., Schrumpf, M. & Wilcke, W. Phosphorus partitioning in grassland and forest soils of Germany as related to land-use type, management intensity, and land use-related pH. J. Plant Nutr. Soil Sci. 174, 195–209 (2011).CAS
Article
Google Scholar
52.Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodiver Data J. 7, 38 (2019).Article
Google Scholar
53.Alt, F., Oelmann, Y., Schöning, I. & Wilcke, W. Phosphate release kinetics at stable pH in calcareous grassland and forest soils. Soil Sci. Soc. Am. J. 77, 2060–2070 (2013).ADS
CAS
Article
Google Scholar
54.Jones J. B., Wolf B., Mills H. A. Plant analysis handbook. Micro Macro Publishing (1991).55.Marina, M. A. & Lopez, M. C. B. Determination of phosphorus in raw materials for ceramics: comparison between X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta 432, 157–163 (2001).CAS
Article
Google Scholar
56.Hedley, M. J., Stewart, J. W. B. & Chauhan, B. S. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970–976 (1982).ADS
CAS
Article
Google Scholar
57.Kuo S. Phosphorus. In: Methods of Soil Analysis – Part 3 Chemical Methods (eds Sparks D. L., et al.). SSSA (1996).58.Cross, A. F. & Schlesinger, W. H. A literature review and evaluation of the Hedley fractionation – applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64, 197–214 (1995).ADS
CAS
Article
Google Scholar
59.Negassa, W. & Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J. Plant Nutr. Soil Sci. 172, 305–325 (2009).CAS
Article
Google Scholar
60.Murphy, J. & Riley, J. P. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 26, 31–36 (1962).Article
Google Scholar
61.McLaughlin, M. J., Alston, A. M. & Martin, J. K. Measurement of phosphorus in the soil microbial biomass – a modified procedure for field soils. Soil Biol. Biochem. 18, 437–443 (1986).CAS
Article
Google Scholar
62.Kouno, K., Tuchiya, Y. & Ando, T. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol. Biochem. 27, 1353–1357 (1995).CAS
Article
Google Scholar
63.Bünemann, E. K., Marschner, P., Smernik, R. J., Conyers, M. & McNeill, A. M. Soil organic phosphorus and microbial community composition as affected by 26 years of different management strategies. Biol. Fertil. Soils 44, 717–726 (2008).Article
Google Scholar
64.Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem 14, 319–329 (1982).CAS
Article
Google Scholar
65.Eivazi, F. & Tabatabai, M. A. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172 (1977).CAS
Article
Google Scholar
66.Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).CAS
Article
Google Scholar
67.Berner, D. et al. Land-use intensity modifies spatial distribution and function of soil microorganisms in grasslands. Pedobiologia 54, 341–351 (2011).ADS
Article
Google Scholar
68.White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40, 51–62 (1979).ADS
CAS
PubMed
Article
Google Scholar
69.Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).CAS
PubMed
Article
Google Scholar
70.Kramer, C. & Gleixner, G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 38, 3267–3278 (2006).CAS
Article
Google Scholar
71.Frostegard, A. & Baath, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).Article
Google Scholar
72.Zelles, L. Identification of single cultured micro-organisms based on their whole-community fatty acid profiles, using an extended extraction procedure. Chemosphere 39, 665–682 (1999).ADS
CAS
PubMed
Article
Google Scholar
73.Dassen, S. et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol. Ecol. 26, 4085–4098 (2017).CAS
PubMed
Article
Google Scholar
74.Kuramae, E. E. et al. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing. PLoS ONE 8, 8 (2013).Article
CAS
Google Scholar
75.Wubet, T., Weiss, M., Kottke, I. & Oberwinkler, F. Two threatened coexisting indigenous conifer species in the dry Afromontane forests of Ethiopia are associated with distinct arbuscular mycorrhizal fungal communities. Can. J. Bot.-Rev. Canadienne De. Botanique 84, 1617–1627 (2006).CAS
Google Scholar
76.Lee, J., Lee, S. & Young, J. P. W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 65, 339–349 (2008).CAS
PubMed
Article
Google Scholar
77.Simon, L., Lalonde, M. & Bruns, T. D. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291–295 (1992).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
78.Lefcheck, J. S. PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article
Google Scholar
79.van der Heijden, M. G. A. et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. N. Phytol. 172, 739–752 (2006).Article
Google Scholar
80.Frew, A. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C-3 and C-4 crop plants. Soil Biol. Biochem. 135, 248–250 (2019).CAS
Article
Google Scholar
81.Hedlund, K. et al. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103, 45–58 (2003).Article
Google Scholar
82.Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).CAS
Article
Google Scholar
83.Köhl, L., Oehl, F. & van der Heijden, M. G. A. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol. Appl. 24, 1842–1853 (2014).PubMed
Article
Google Scholar
84.Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).CAS
Article
Google Scholar
85.Steinbeiss, S. et al. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Change Biol. 14, 2937–2949 (2008).ADS
Article
Google Scholar
86.Hacker N. Phosphorus Release Mechanisms in an Experimental Grassland of Varying Biodiversity. Doctoral thesis, University of Tübingen, Germany (2017). More