More stories

  • in

    Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef

    1.Bell P. Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon. Water Res. 1992;26:553–68.CAS 
    Article 

    Google Scholar 
    2.Odum HT, Odum EP. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr. 1955;25:291–320.Article 

    Google Scholar 
    3.Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.CAS 
    Article 

    Google Scholar 
    4.Ceh J, Kilburn MR, Cliff JB, Raina JB, van Keulen M, Bourne DG. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol Evol. 2013;3:2393–400.Article 

    Google Scholar 
    5.Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B. 2002;269:1205–10.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Benavides M, Bednarz VN, Ferrier-Pagès C. Diazotrophs: overlooked key players within the coral symbiosis and tropical reef ecosystems? Front Mar Sci. 2017;4:2261–17.Article 

    Google Scholar 
    7.Cardini U, Bednarz VN, van Hoytema N, Rovere A, Naumann MS, Al-Rshaidat MMD, et al. Budget of primary production and dinitrogen fixation in a highly seasonal Red Sea coral reef. Ecosystems. 2016;19:771–85.Article 

    Google Scholar 
    8.Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bednarz VN, van de Water JAJM, Rabouille S, Maguer JF, Grover R, Ferrier-Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2018;21:480–95.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Davey M, Holmes G, Johnstone R. High rates of nitrogen fixation (acetylene reduction) on coral skeletons following bleaching mortality. Coral Reefs. 2007;27:227–36.Article 

    Google Scholar 
    12.Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser. 2007;346:143–52.CAS 
    Article 

    Google Scholar 
    13.Olson ND, Ainsworth TD, Gates RD, Takabayashi M. Diazotrophic bacteria associated with Hawaiian Montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates. J Exp Mar Biol Ecol. 2009;371:140–6.CAS 
    Article 

    Google Scholar 
    14.Benavides M, Houlbrèque F, Camps M, Lorrain A, Grosso O, Bonnet S. Diazotrophs: a non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J Exp Biol. 2016;219:2608–12.PubMed 
    PubMed Central 

    Google Scholar 
    15.Cardini U, Bednarz V, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Grover R, Ferrier-Pagès C, Maguer JF, Ezzat L, Fine M. Nitrogen fixation in the mucus of Red Sea corals. J Exp Biol. 2014;217:3962–3.PubMed 
    PubMed Central 

    Google Scholar 
    17.Mohr W, Großkopf T, Wallace DWR, LaRoche J. Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE. 2010;5:e12583.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol. 1996;62:986–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Bednarz VN, Grover R, Maguer JF, Fine M, Ferrier-Pagès C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their betabolic status. MBio. 2017;8:e02058-16.20.Meunier V, Bonnet S, Pernice M, Benavides M, Lorrain A, Grosso O, et al. Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus. ISME J. 2019;13:2882–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMD, et al. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ Microbiol. 2016;18:2620–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science. 2010;327:1512–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Sangsawang L, Casareto BE, Ohba H, Vu HM, Meekaew A, Suzuki T, et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R Soc Open Sci. 2017;4:171201.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.D’Angelo C, Wiedenmann J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain. 2014;7:82–93.Article 

    Google Scholar 
    26.Capone DG, O’Neil JM, Zehr J, Carpenter EJ. Basis for diel variation in nitrogenase activity in the marine planktonic Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 1990;56:3532–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Mulholland MR, Ohki K, Capone DG. Nutrient controls on nitrogen uptake and metabolism by natural populations and cultures of Trichodesmium (Cyanobacteria). J Phycol. 2001;37:1001–9.CAS 
    Article 

    Google Scholar 
    28.Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy. Global Biogeochem Cycles. 2019;33:826–40.CAS 
    Article 

    Google Scholar 
    29.Wen Z, Lin W, Shen R, Hong H, Kao SJ, Shi D. Nitrogen fixation in two coastal upwelling regions of the Taiwan Strait. Sci Rep. 2017;7:1–10.Article 
    CAS 

    Google Scholar 
    30.Grosse J, Bombar D, Doan HN, Nguyen LN, Voss M. The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low and high discharge season. Limnol Oceanogr. 2010;55:1668–80.CAS 
    Article 

    Google Scholar 
    31.Mills MM, Turk-Kubo KA, Dijken GL, Henke BA, Harding K, Wilson ST, et al. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 2020;14:2395–406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Henke BA, Turk-Kubo KA, Bonnet S, Zehr JP. Distributions and abundances of sublineages of the N2fixing cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian coral lagoon. Front Microbiol. 2018;9:554.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.CAS 
    Article 

    Google Scholar 
    34.Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:374.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:1490–7.Article 
    CAS 

    Google Scholar 
    36.Erler DV, Shepherd BO, Linsley BK, Nothdurft LD, Hua Q, Lough JM. Has nitrogen supply to coral reefs in the South Pacific Ocean changed over the past 50 thousand years? Paleoceanogr Paleoclimatol. 2019;34:567–79.Article 

    Google Scholar 
    37.Pratte ZA, Richardson LL, Mills DK. Microbiota shifts in the surface mucopolysaccharide layer of corals transferred from natural to aquaria settings. J Invertebr Pathol. 2015;125:42–4.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Kooperman N, Ben-Dov E, Kramarsky-Winter E, Barak Z, Kushmaro A. Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol Lett. 2007;276:106–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:285–309.Article 

    Google Scholar 
    40.Hu SK, Campbell V, Connell P, Gellene AG, Liu Z, Terrado R, et al. Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the eastern North Pacific. FEMS Microbiol Ecol. 2016;92:fiw050.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Campbell BJ, Kirchman DL. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 2013;7:210–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17:4035–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bauman AG, Hoey AS, Dunshea G, Feary DA, Low J, Todd PA. Macroalgal browsing on a heavily degraded, urbanized equatorial reef system. Sci Rep. 2017;7:1–8.CAS 
    Article 

    Google Scholar 
    45.Januchowski-Hartley FA, Bauman AG, Morgan KM, Seah JCL, Huang D, Todd PA. Accreting coral reefs in a highly urbanized environment. Coral Reefs. 2020;39:717–31.Article 

    Google Scholar 
    46.Klawonn I, Lavik G, Böning P, Marchant HK, Dekaezemacker J, Mohr W, et al. Simple approach for the preparation of 15−15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations. Front Microbiol. 2015;6:769.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Pupier CA, Bednarz VN, Grover R, Fine M, Maguer JF, Ferrier-Pagès C. Divergent capacity of scleractinian and soft corals to assimilate and transfer diazotrophically derived nitrogen to the reef environment. Front Microbiol. 2019;10:1860.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Bombar D, Paerl RW, Anderson R, Riemann L. Filtration via conventional glass fiber filters in 15N2 tracer assays fails to capture all nitrogen-fixing prokaryotes. Front Mar Sci. 2018;5:e00929–11.Article 

    Google Scholar 
    49.R Core Team. R: a language and environment for statistical computing. 2019. https://www.R-project.org/.50.Hansen HP, Koroleff F. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M, editors. Methods of seawater analysis. Weinheim, Germany: Wiley; 1999. p. 159–228.51.Morgan KM, Moynihan MA, Sanwlani N, Switzer AD. Light limitation and depth-variable sedimentation drives vertical reef compression on turbid coral reefs. Front Mar Sci. 2020;7:571256.Article 

    Google Scholar 
    52.Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE. 2011;6:e27492.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature. 2019;568:103–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Comeau AM, Douglas GM, Langille MGI. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127-16.55.Weiler BA. Bacterial Communities in tissues and surficial mucus of the cold-water coral Paragorgia arborea. Front Mar Sci. 2018;5:378.Article 

    Google Scholar 
    56.Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE. 2012;7:e42149.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Bower SM, Carnegie RB, Goh B, Jones SRM, Lowe GJ, Mak MWS. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J Eukaryot Microbiol. 2004;51:325–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Piredda R, Tomasino MP, D’Erchia AM, Manzari C, Pesole G, Montresor M, et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean long term ecological research site. FEMS Microbiol Ecol. 2016;93:fiw200.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research. 2016;5:1492.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.McLaren MR. Silva SSU taxonomic training data formatted for DADA2 (Silva version 138) [Data set]. Zenodo; 2020. https://doi.org/10.5281/zenodo.3731176.63.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Heller P, Tripp JH, Turk-Kubo K, Zehr JP. ARBitrator: a software pipeline for on-demand retrieval of auto-curated nifH sequences from GenBank. Bioinformatics. 2014;30:2883–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Moynihan MA. moyn413/nifHdada2: nifH dada2 reference database, v1.1.0. Zenodo; 2020. https://doi.org/10.5281/zenodo.3964214.66.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:1–11.Article 
    CAS 

    Google Scholar 
    67.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 
    CAS 

    Google Scholar 
    68.Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Bell PRF, Elmetri I, Lapointe BE. Evidence of large-scale chronic eutrophication in the Great Barrier Reef: quantification of chlorophyll a thresholds for sustaining coral reef communities. Ambio. 2013;43:361–76.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Conti-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA, et al. Trophic strategy and bleaching resistance in reef-building corals. Sci Adv. 2020;6:eaaz5443.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs. 2003;22:229–40.Article 

    Google Scholar 
    72.Ferrier-Pagès C, Hoogenboom M, Houlbrèque F. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Dordrecht, The Netherlands: Springer; 2011. p. 215–29.73.Pernice M, Raina JB, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.PubMed 
    Article 

    Google Scholar 
    74.Huggett MJ, Apprill A. Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85.PubMed 
    Article 

    Google Scholar 
    75.Méheust R, Castelle CJ, Carnevali PBM, Farag IF, He C, Chen LX, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Nomata J, Mizoguchi T, Tamiaki H, Fujita Y. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem. 2006;281:15021–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Suzuki JY, Bauer CE. Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell. 1992;4:929–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Bednarz VN, Naumann MS, Cardini U, van Hoytema N, Rix L, Al-Rshaidat MMD, et al. Contrasting seasonal responses in dinitrogen fixation between shallow and deep-water colonies of the model coral Stylophora pistillata in the northern Red Sea. PLoS ONE. 2018;13:e0199022.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Weber L, González Díaz P, Armenteros M, Apprill A. The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol Oceanogr. 2019;64:2373–88.CAS 
    Article 

    Google Scholar 
    80.Bourne DG, Munn CB. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol. 2005;7:1162–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 2012;6:1314–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kopp C, Pernice M, Domart-Coulon I, Djediat C, Spangenberg JE, Alexander D, et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio. 2013;4:e00052-13.83.Magnusson SH, Fine M, Kühl M. Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol Prog Ser. 2007;332:119–28.Article 

    Google Scholar 
    84.Schlichter D, Zscharnack B, Krisch H. Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften. 1995;82:561–4.CAS 
    Article 

    Google Scholar 
    85.Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK. Life after cold death: reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere. 2016;7:e01373.86.Fine M, Roff G, Ainsworth TD, Hoegh-Guldberg O. Phototrophic microendoliths bloom during coral “white syndrome”. Coral Reefs. 2006;25:577–81.Article 

    Google Scholar 
    87.Fine M, Oren U, Loya Y. Bleaching effect on regeneration and resource translocation in the coral Oculina patagonica. Mar Ecol Prog Ser. 2002;234:119–25.Article 

    Google Scholar 
    88.Littman RA, Willis BL, Pfeffer C, Bourne DG. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol. 2009;68:152–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Rep. 2019;9:1–13.
    Google Scholar 
    90.Le Campion-Alsumard T, Golubic S, Hutchings P. Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser. 1955;117:149–57.Article 

    Google Scholar 
    91.Yang SH, Tandon K, Lu CY, Wada N, Shih CJ, Hsiao SSY, et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome. 2019;7:1–13.Article 

    Google Scholar 
    92.Yost DM, Wang LH, Fan TY, Chen CS, Lee RW, Sogin E, et al. Diversity in skeletal architecture influences biological heterogeneity and Symbiodinium habitat in corals. Zoology. 2013;116:262–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Jacques TG, Pilson MEQ. Experimental ecology of the temperate scleractinian coral Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol. 1983;60:167–78.Article 

    Google Scholar 
    95.Shashar N, Stambler N. Endolithic algae within corals-life in an extreme environment. J Exp Mar Biol Ecol. 1992;163:277–86.CAS 
    Article 

    Google Scholar 
    96.Risk MJ, Muller HR. Porewater in coral heads: evidence for nutrient regeneration. Limnol Oceanogr. 1983;28:1004–8.Article 

    Google Scholar 
    97.Ferrer LM, Szmant AM. Nutrient regeneration by the endolithic community in coral skeletons. In: Proceedings of the 6th International Coral Reef Symposium. 2. Townsville, Australia: AIMS; 1988. p. 1–4.98.Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.CAS 
    Article 

    Google Scholar 
    99.Gaby JC, Buckley DH. A global census of nitrogenase diversity. Environ Microbiol. 2011;13:1790–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Gaby JC, Rishishwar L, Valderrama-Aguirre LC, Green SJ, Valderrama-Aguirre A, Jordan IK, et al. Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Appl Environ Microbiol. 2018;84:e01512-17.101.Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, et al. Diazotroph diversity associated with scleractinian corals and its relationships with environmental variables in the South China Sea. Front Physiol. 2020;11:615.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Marcelino VR, Morrow KM, van Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Molecular Ecology. 2017;26:5344–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ, Gardner S, et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr Biol. 2019;29:2723–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Chen YH, Yang SH, Tandon K, Lu CY, Chen HJ, Shih CJ, et al. A genomic view of coral-associated Prosthecochloris and a companion sulfate-reducing bacterium. bioRxiv. 2019. https://doi.org/10.1101/2019.12.20.883736.105.Weiler BA, Verhoeven JTP, Dufour SC. Bacterial communities in tissues and surficial mucus of the cold-water coral Paragorgia arborea. Front Mar Sci. 2018;5:378.Article 

    Google Scholar 
    106.Tiedje J. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder J, editor. Environmental microbiology of anaerobes. NY: John Wiley and Sons; 1988. p. 179–244.107.Becker CC, Brandt M, Miller C, Apprill A. Stony coral tissue loss disease biomarker bacteria identified in corals and overlying waters using a rapid field-based sequencing approach. bioRxiv. 2021. https://doi.org/10.1101/2021.02.17.431614.108.Parker KE, Ward JO, Eggleston EM, Fedorov E, Parkinson JE, Dahlgren CP, et al. Characterization of a thermally tolerant Orbicella faveolata reef in Abaco, The Bahamas. Coral Reefs. 2020;39:675–85.Article 

    Google Scholar 
    109.Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:1–9.Article 
    CAS 

    Google Scholar 
    110.Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg. 2014;69:95–105.CAS 
    Article 

    Google Scholar 
    111.Wu Z, Yang X, Lin S, Lee WH, Lam PKS. Isolation and characterization of a Rhizobium bacterium associated with the toxic dinoflagellate Gambierdiscus balechii. bioRxiv. 2019. https://doi.org/10.1101/789107.112.Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogenfixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Shashar N, Cohen Y, Loya Y, Sar N. Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar Ecol Prog Ser. 1994;111:259–64.CAS 
    Article 

    Google Scholar 
    115.Bednarz VN, Cardini U, van Hoytema N, Al-Rshaidat M, Wild C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar Ecol Prog Ser. 2015;519:141–52.Article 

    Google Scholar  More

  • in

    Distribution of deadwood and other forest structural indicators relevant for bird conservation in Natura 2000 special protection areas in Poland

    1.Sundseth, K. & Creed, P. Natura 2000: Protecting Europe’s Biodiversity (Office for Official Publications of the European Communities, 2008).
    Google Scholar 
    2.Wilk, T., Jujka, M., Krogulec, J. & Chylarecki, P. Important Bird Areas of International Importance in Poland (OTOP, 2010).
    Google Scholar 
    3.European Commission. Report on the Status of and Trends for Habitat Types and Species Covered by the Birds and Habitats Directives for the 2007–2012 Period as Required Under Article 17 of the Habitats Directive and Article 12 of the Birds Directive (European Commission DG Environment, 2015).
    Google Scholar 
    4.Birds Directive. Council Directive 79/409/EEC on the Conservation of Wild Birds. http://www.jncc.gov.uk/page-1373 (1979).5.Butler, S. J., Boccaccio, L., Gregory, R. D., Vorisek, P. & Norris, K. Quantifying the impact of land-use change to European farmland bird populations. Agric. Ecosyst. Environ. 137, 348–357. https://doi.org/10.1016/j.agee.2010.03.005 (2010).Article 

    Google Scholar 
    6.Gregory, R. D., Skorpilova, J., Vorisek, P. & Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103, 676–687. https://doi.org/10.1016/j.ecolind.2019.04.064 (2019).Article 

    Google Scholar 
    7.European Commission. The Interpretation Manual of European Union Habitats (European Commission DG Environment, 2007).
    Google Scholar 
    8.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x (2004).Article 

    Google Scholar 
    9.Bujoczek, M., Rybicka, J. & Bujoczek, L. Effects of disturbances in a subalpine forest on its structural indicators and bird diversity. Ecol. Indic. 112, 106126. https://doi.org/10.1016/j.ecolind.2020.106126 (2020).Article 

    Google Scholar 
    10.van Galen, L. G., Jordan, G. J. & Baker, S. C. Relationships between coarse woody debris habitat quality and forest maturity attributes. Conserv. Sci. Pract. 1, e55. https://doi.org/10.1111/csp2.55 (2019).Article 

    Google Scholar 
    11.Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 55, 2147–2159. https://doi.org/10.1111/1365-2664.13181 (2018).Article 

    Google Scholar 
    12.Basile, M. et al. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects?. J. Environ. Manag. 264, 110401. https://doi.org/10.1016/j.jenvman.2020.110401 (2020).Article 

    Google Scholar 
    13.Wesołowski, T. Lessons from long-term hole-nester studies in a primeval temperate forest. J. Ornithol. 148, 395–405. https://doi.org/10.1007/s10336-007-0198-1 (2007).Article 

    Google Scholar 
    14.Maziarz, M. & Broughton, R. K. Breeding microhabitat selection by Great Tits Parus major in a deciduous primeval forest (Białowieża National Park, Poland). Bird Study 62, 358–367. https://doi.org/10.1080/00063657.2015.1050994 (2015).Article 

    Google Scholar 
    15.Van der Hoek, Y., Gaona, G. V. & Martin, K. The diversity, distribution and conservation status of the tree-cavity nesting birds of the world. Divers. Distrib. 23, 1120–1131. https://doi.org/10.1111/ddi.12601 (2017).Article 

    Google Scholar 
    16.McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).Article 

    Google Scholar 
    17.Holmes, R. T., Bonney, R. E. & Pacala, S. W. Guild structure of the Hubbard Brook bird community: A multivariate approach. Ecology 60, 512–520. https://doi.org/10.2307/1936071 (1979).Article 

    Google Scholar 
    18.Lain, E. J., Haney, A., Burris, J. M. & Burton, J. Response of vegetation and birds to severe wind disturbance and salvage logging in a southern boreal forest. For. Ecol. Manag. 256, 863–871. https://doi.org/10.1016/j.foreco.2008.05.018 (2008).Article 

    Google Scholar 
    19.Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forest: A hierarchical typology for inventory standarization. Ecol. Indic. 83, 194–207. https://doi.org/10.1016/j.ecolind.2017.08.051 (2018).Article 

    Google Scholar 
    20.Zielewska-Büttner, K., Heurich, M., Müller, J. & Braunisch, V. Remotely sensed single tree data enable the determination of habitat thresholds for the three-toed woodpecker (Picoides tridactylus). Remote Sens. 10, 1972. https://doi.org/10.3390/rs10121972 (2018).ADS 
    Article 

    Google Scholar 
    21.Mikusiński, G., Gromadzki, M. & Chylarecki, P. Woodpeckers as indicators of forest bird diversity. Conserv. Biol. 15, 208–217 (2001).Article 

    Google Scholar 
    22.Wesołowski, T. & Rowiński, P. The breeding behaviour of the Nuthatch Sitta europaea in relation to natural hole attributes in a primeval forest. Bird Study 51, 143–155. https://doi.org/10.1080/00063650409461346 (2004).Article 

    Google Scholar 
    23.Barbaro, L. et al. Hierarchical habitat selection by Eurasian Pygmy Owls Glaucidium passerinum in oldgrowth forests of the southern French Prealps. J. Ornithol. 157, 333–342. https://doi.org/10.1007/s10336-015-1285-3 (2016).Article 

    Google Scholar 
    24.Basile, M., Balestrieri, R., de Groot, M., Flajšman, K. & Posillico, M. Conservation of birds as a function of forestry. Ital. J. Agron. 11, 42–48 (2016).
    Google Scholar 
    25.Harestad, A. S. & Keisker, D. G. Nest tree use by primary cavity-nesting birds in south central British Columbia. Can. J. Zool. 67, 1067–1073. https://doi.org/10.1139/z89-148 (1989).Article 

    Google Scholar 
    26.Walankiewicz, W., Czeszczewik, D., Mitrus, C. & Bida, E. Znaczenie martwych drzew dla zespołu dzięciołów w lasach liściastych Puszczy Białowieskiej. Notatki Ornitol. 43, 61–71 (2002).
    Google Scholar 
    27.Czeszczewik, D. & Walankiewicz, W. Natural nest sites of the Pied Flycatcher Ficedula hypoleuca in a primeval forest. Ardea 91, 221–230 (2003).
    Google Scholar 
    28.Kosiński, Z. & Kempa, M. Density distribution and nest−sites selection of woodpeckers Picidae in managed forest of western Poland. Pol. J. Ecol. 55, 519–533 (2007).
    Google Scholar 
    29.Zawadzka, D. & Zawadzki, G. Charakterystyka drzew gniazdowych dzięcioła czarnego w Puszczy Augustowskiej. Sylwan 161, 1002–1009 (2017).
    Google Scholar 
    30.Urban, D. L. & Smith, T. M. Microhabitat pattern and the structure of forest bird communities. Am. Nat. 133, 811–829. https://doi.org/10.1086/284954 (1989).Article 

    Google Scholar 
    31.Piechnik, Ł, Kurek, P., Ledwoń, M. & Holeksa, J. Both natural and anthropogenic microhabitats and fine-scale habitat features of managed forest can affect the abundance of the Eurasian Wren. For. Ecol. Manag. 456, 117695. https://doi.org/10.1016/j.foreco.2019.117695 (2020).Article 

    Google Scholar 
    32.Sefidi, K., EsfandiaryDarabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. iForest 9, 658. https://doi.org/10.3832/ifor1080-008 (2016).Article 

    Google Scholar 
    33.Oettel, J. et al. Patterns and drivers of deadwood volume and composition in different forest types of the Austrian natural forest reserves. For. Ecol. Manag. 463, 118016. https://doi.org/10.1016/j.foreco.2020.118016 (2020).Article 

    Google Scholar 
    34.Bashta, A. T. V. Biotope distribution and habitat preference of breeding bird communities in alpine and subalpine belts in the Tatra and Babia Gora Mts. (Southern Poland). Berkut 14, 145–161 (2005).
    Google Scholar 
    35.Bouvet, A. et al. Effects of forest structure, management and landscape on bird and bat communities. Environ. Conserv. 43, 148–160. https://doi.org/10.1017/S0376892915000363 (2016).Article 

    Google Scholar 
    36.Dellinger, R. L., Wood, P. B., Keyser, P. D. & Seidel, G. Habitat partitioning of four sympatric thrush species at three spatial scales on a managed forest in West Virginia. Auk 124, 1425–1438. https://doi.org/10.1093/auk/124.4.1425 (2007).Article 

    Google Scholar 
    37.Leidinger, J. et al. Formerly managed forest reserves complement integrative management for biodiversity conservation in temperate European forests. Biol. Conserv. 242, 108437. https://doi.org/10.1016/j.biocon.2020.108437 (2020).Article 

    Google Scholar 
    38.Basile, M., Mikusiński, G. & Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 18, e00615. https://doi.org/10.1016/j.gecco.2019.e00615 (2019).Article 

    Google Scholar 
    39.Müller, J. & Bütler, R. A review of habitat thresholds for dead wood: A baseline for management recommendations in European forests. Eur. J. For. Res. 129, 981–992. https://doi.org/10.1007/s10342-010-0400-5 (2010).Article 

    Google Scholar 
    40.Kajtoch, Ł, Figarski, T. & Pełka, J. The role of forest structural elements in determining the occurrence of two specialist woodpecker species in the Carpathians, Poland. Ornis Fenn. 90, 23–40 (2013).
    Google Scholar 
    41.Rodrigues, A. S. & Brooks, T. M. Shortcuts for biodiversity conservation planning: The effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article 

    Google Scholar 
    42.Hunter, M. Jr. et al. Two roles for ecological surrogacy: Indicator surrogates and management surrogates. Ecol. Indic. 63, 121–125. https://doi.org/10.1016/j.ecolind.2015.11.049 (2016).Article 

    Google Scholar 
    43.NFI. Wielkoobszarowa inwentaryzacja stanu lasu. Wyniki za okres 2009–2013 (Biuro Urządzania Lasu i Geodezji Leśnej, 2014).
    Google Scholar 
    44.CRFOP. Centralny Rejestr Form Ochrony Przyrody. http://crfop.gdos.gov.pl/CRFOP/ (2020).45.GDOS. Generalna Dyrekcja Ochrony Środowiska. https://www.gdos.gov.pl/dane-i-metadane (2020).46.BDL. Bank Danych o Lasach. https://www.bdl.lasy.gov.pl/portal (2020).47.Qgis 3.10. QGIS Geographic Information System. http://www.qgis.org (QGIS Association, 2020).48.ME. Instrukcja wykonywania wielkoobszarowej inwentaryzacji stanu lasu (Typescript of the Ministry of the Environment, 2010).
    Google Scholar 
    49.Talarczyk, A. National forest inventory in Poland. Balt. For. 20, 333–341 (2014).
    Google Scholar 
    50.Standard Data Form. Instrukcja wypełniania Standardowych Formularzy Danych. http://natura2000.gdos.gov.pl (2012).51.Balestrieri, R. et al. A guild-based approach to assessing the influence of beech forest structure on bird communities. For. Ecol. Manag. 356, 216–223. https://doi.org/10.1016/j.foreco.2015.07.011 (2015).Article 

    Google Scholar 
    52.Ameztegui, A. et al. Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. For. Ecol. Manag. 407, 95–105. https://doi.org/10.1016/j.foreco.2017.09.002 (2017).Article 

    Google Scholar 
    53.Czeszczewik, D. et al. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. iForest Biogeosci. For. 8, 377–385. https://doi.org/10.3832/ifor1212-007 (2015).Article 

    Google Scholar 
    54.Czuraj, M. Tablice miąższości kłód odziomkowych i drzew stojących (PWRiL, 1990).
    Google Scholar 
    55.Oramus, M. Breeding habitat of wren (Troglodytes troglodytes) in lower mountain zone forests in Gorce National Park. Master thesis (University of Agriculture in Krakow, Faculty of Forestry, Department of Forest Biodiversity 2017).56.Statistica 13 software. Dell Statistica (data analysis software system), version 13. software.dell.com (2016).57.Ćosović, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 11, 343. https://doi.org/10.3390/f11030343 (2020).Article 

    Google Scholar 
    58.Morán-López, R., Cortés Gañán, E., Uceda Tolosa, O. & Sánchez Guzmán, J. M. The umbrella effect of Natura 2000 annex species spreads over multiple taxonomic groups, conservation attributes and organizational levels. Anim. Conserv. https://doi.org/10.1111/acv.12551 (2019).Article 

    Google Scholar 
    59.Lindenmayer, D. B., Franklin, J. F. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445. https://doi.org/10.1016/j.biocon.2006.02.019 (2006).Article 

    Google Scholar 
    60.Gruber, B. et al. “Mind the gap!”—How well does Natura 2000 cover species of European interest?. Nat. Conserv. 3, 45–62. https://doi.org/10.3897/natureconservation.3.3732 (2012).Article 

    Google Scholar 
    61.Kukkala, A. S. et al. Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biol. Conserv. 198, 193–201. https://doi.org/10.1016/j.biocon.2016.04.016 (2016).Article 

    Google Scholar 
    62.Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813. https://doi.org/10.1126/science.1146002 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Nilsson, L., Bunnefeldb, N., Perssonc, J., Žydelisd, R. & Månssona, J. Conservation success or increased crop damage risk? The Natura 2000 network for a thriving migratory and protected bird. Biol. Conserv. 236, 1–7. https://doi.org/10.1016/j.biocon.2019.05.006 (2019).Article 

    Google Scholar 
    64.Winter, S. et al. The impact of Natura 2000 on forest management: A socio-ecological analysis in the continental region of the European Union. Biodivers. Conserv. 23, 3451–3482. https://doi.org/10.1007/s10531-014-0822-3 (2014).Article 

    Google Scholar 
    65.Zisenis, M. Is the Natura 2000 network of the European Union the key land use policy tool for preserving Europe’s biodiversity heritage?. Land Use Policy 69, 408–416. https://doi.org/10.1016/j.landusepol.2017.09.045 (2017).Article 

    Google Scholar 
    66.Bashta, A. T. V. Breeding bird community of monocultural spruce plantation in the Skolivski Beskids (the Ukrainian Carpathians). Berkut 8, 9–14 (1999).
    Google Scholar 
    67.Baláž, M. & Balážová, M. Diversity and abundance of bird communities in three mountain forest stands: Effect of the habitat heterogeneity. Pol. J. Ecol. 60, 629–634 (2012).
    Google Scholar 
    68.Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68. https://doi.org/10.1007/s13595-019-0832-0 (2019).Article 

    Google Scholar 
    69.Nappi, A., Drapeau, P. & Leduc, A. How important is dead wood for woodpeckers foraging in eastern North American boreal forests?. For. Ecol. Manag. 346, 10–21. https://doi.org/10.1016/j.foreco.2015.02.028 (2015).Article 

    Google Scholar 
    70.Raphael, M. & White, M. Use of snags by cavity-nesting birds in the Sierra Nevada. Wildl. Monogr. 86, 3–66 (1984).
    Google Scholar 
    71.Bujoczek, L., Bujoczek, M. & Zięba, S. How much, why and where? Deadwood in forest ecosystems: The case of Poland. Ecol. Indic. 121, 107027. https://doi.org/10.1016/j.ecolind.2020.107027 (2021).Article 

    Google Scholar 
    72.Lešo, P., Kropil, R. & Kajtoch, Ł. Effects of forest management on bird assemblages in oak-dominated stands of the Western Carpathians-Refuges for rare species. For. Ecol. Manag. 453, 117620. https://doi.org/10.1016/j.foreco.2019.117620 (2019).Article 

    Google Scholar 
    73.De Zan, L. R., de Gasperis, S. R., Fiore, L., Battisti, C. & Carpaneto, G. M. The importance of dead wood for hole-nesting birds: A two years study in three beech forests of central Italy. Isr. J. Ecol. Evol. 63(1), 19–27. https://doi.org/10.1080/15659801.2016.1191168 (2017).Article 

    Google Scholar 
    74.Wilk, T., Bobrek, R., Pępkowska-Krol, A., Neubauer, G. & Kosicki, J. Z. The Birds of the Polish Carpathians—Status, Threats, Conservation (OTOP, 2016).
    Google Scholar 
    75.Jonsson, B. G. et al. Dead wood availability in managed Swedish forests–Policy outcomes and implications for biodiversity. For. Ecol. Manag. 376, 174–182. https://doi.org/10.1016/j.foreco.2016.06.017 (2016).Article 

    Google Scholar 
    76.Lõhmus, A. Do Ural owls (Strix uralensis) suffer from the lack of nest sites in managed forests?. Biol. Conserv. 110, 1–9. https://doi.org/10.1016/S0006-3207(02)00167-2 (2003).Article 

    Google Scholar 
    77.Tanona, M. & Czarnota, P. Natural disturbances of the structure of Norway spruce forests in Europe and their impact on the preservation of epixylic lichen diversity: A review. Ecol. Quest. 30, 1–17. https://doi.org/10.12775/EQ.2019.024 (2019).Article 

    Google Scholar 
    78.Repel, M., Zámečník, M. & Jarčuška, B. Temporal changes in bird communities of wind-affected coniferous mountain forest in differently disturbed stands (High Tatra Mts., Slovakia). Biologia 75, 1931–1943. https://doi.org/10.2478/s11756-020-00455-5 (2020).Article 

    Google Scholar 
    79.Přívětivý, T. et al. How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)?. For. Ecol. Manag. 381, 177–187. https://doi.org/10.1016/j.foreco.2016.09.033 (2016).Article 

    Google Scholar 
    80.Wichmann, G. Habitat use of nightjar (Caprimulgus europaeus) in an Austrian pine forest. J. Ornithol. 145, 69–73. https://doi.org/10.1007/s10336-003-0013-6 (2004).Article 

    Google Scholar 
    81.Müller, D., Schröder, B. & Müller, J. Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J. Ornithol. 150, 717–732. https://doi.org/10.1007/s10336-009-0390-6 (2009).Article 

    Google Scholar 
    82.Storch, I. Habitat and survival of capercaillie Tetrao urogallus nests and broods in the Bavarian Alps. Biol. Conserv. 70, 237–243. https://doi.org/10.1016/0006-3207(94)90168-6 (1994).Article 

    Google Scholar 
    83.Swenson, J. E. The ecology of Hazel Grouse and management of its habitat. Naturschutzreport 10, 227–238 (1995).
    Google Scholar 
    84.Drapeau, P., Nappi, A., Imbeau, L. & Saint-Germain, M. Standing deadwood for keystone bird species in the eastern boreal forest: Managing for snag dynamics. For. Chron. 85, 227–234. https://doi.org/10.5558/tfc85227-2 (2009).Article 

    Google Scholar 
    85.Mikusiński, G. et al. Is the impact of loggings in the last primeval lowland forest in Europe underestimated? The conservation issues of Białowieża Forest. Biol. Conserv. 227, 266–274. https://doi.org/10.1016/j.biocon.2018.09.001 (2018).Article 

    Google Scholar 
    86.Dufour-Pelletier, S., Tremblay, J. A., Hébert, C., Lachat, T. & Ibarzabal, J. Testing the effect of snag and cavity supply on deadwood-associated species in a managed boreal forest. Forests 11, 424. https://doi.org/10.3390/f11040424 (2020).Article 

    Google Scholar 
    87.Pirovano, A. R. & Zecca, G. Black Woodpecker Dryocopus martius habitat selection in the Italian Alps: Implications for conservation in Natura 2000 network. Bird Conserv. Int. 24, 299–315. https://doi.org/10.1017/S0959270913000439 (2014).Article 

    Google Scholar  More

  • in

    Ecological effects on female bill colour explain plastic sexual dichromatism in a mutually-ornamented bird

    1.Darwin, C. The Descent of Man, and Selection in Relation to Sex (Jon Murray, 1871).Book 

    Google Scholar 
    2.Andersson, M. Sexual Selection (Princeton University Press, 1994).Book 

    Google Scholar 
    3.McGraw, K. J. & Ardia, D. R. Carotenoids, immunocompetence, and the information content of sexual colors: An experimental test. Am. Nat. 162, 704–712 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Clutton-Brock, T. Sexual selection in females. Anim. Behav. 77, 3–11 (2009).Article 

    Google Scholar 
    5.Amundsen, T. Why are female birds ornamented?. TREE 15, 149–155 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Coyne, J. A., Kay, E. H. & Pruett-Jones, S. The genetic basis of sexual dimorphism in birds. Evolution 62, 214–219 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    7.Gazda, M. et al. A genetic mechanism for sexual dichromatism in birds. Science 368, 1270–1274 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    8.Kraaijeveld, K. Genetic architecture of novel ornamental traits and the establishment of sexual dimorphism: Insights from domestic birds. J. Ornithol. 160, 861–868 (2019).Article 

    Google Scholar 
    9.Kimball, R. T. & Ligon, J. D. Evolution of avian plumage dichromatism from a proximate perspective. Am. Nat. 154, 182–193 (1999).Article 

    Google Scholar 
    10.West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).Article 

    Google Scholar 
    11.Lyon, B. E. & Montgomerie, R. Sexual selection is a form of social selection. Philos. Trans. R. Soc. B 367, 2266–2273 (2012).Article 

    Google Scholar 
    12.Faivre, B., Grégoire, A., Préault, M., Cézilly, F. & Sorci, G. Immune activation rapidly mirrored in a secondary sexual trait. Science 300, 103 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Gautier, P. et al. The presence of females modulates the expression of a carotenoid-based sexual signal. Behav. Ecol. Sociobiol. 62, 1159–1166 (2008).Article 

    Google Scholar 
    14.Hill, G. E., Hood, W. R. & Huggins, K. A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches. J. Exp. Biol. 212, 1225–1233 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rosenthal, M. F., Murphy, T. G., Darling, N. & Tarvin, K. A. Ornamental bill color rapidly signals changing condition. J. Avian Biol. 43, 553–564 (2012).Article 

    Google Scholar 
    16.Eraud, C. et al. Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches. J. Exp. Biol. 210, 3571–3578 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Kelly, R. J., Murphy, T. G., Tarvin, K. A. & Burness, G. Carotenoid-based ornaments of female and male American goldfinches (Spinus tristis) show sex-specific correlations with immune function and metabolic rate. Physiol. Biochem. Zool. 85, 348–363 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Funghi, C., Trigo, S., Gomes, A. C. R., Soares, M. C. & Cardoso, G. C. Release from ecological constraint erases sex difference in social ornamentation. Behav. Ecol. Sociobiol. 72, 67 (2018).Article 

    Google Scholar 
    19.DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. TREE 13, 77–81 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    21.Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    22.von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. Biol. Sci. 266, 1–12 (1999).Article 

    Google Scholar 
    23.Møller, A. P. et al. Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability?. Avian Poult. Biol. Rev. 11, 137–159 (2000).
    Google Scholar 
    24.Garratt, M. & Brooks, R. C. Oxidative stress and condition-dependent sexual signals: More than just seeing red. Proc. Biol. Sci. 279, 3121–3130 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    25.Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7, e43088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    26.Hõrak, P., Ots, I., Vellau, H., Spottiswoode, C. & Møller, A. P. Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126, 166–173 (2001).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    27.Clement, P., Harris, A. & Davies, J. Finches and Sparrows: An Identification Guide (Princeton University Press, 1993).
    Google Scholar 
    28.Cardoso, G. C., Batalha, H. R., Reis, S. & Lopes, R. J. Increasing sexual ornamentation during a biological invasion. Behav. Ecol. 25, 916–923 (2014).Article 

    Google Scholar 
    29.Cardoso, G. C. et al. Similar preferences for ornamentation in opposite- and same-sex choice experiments. J. Evol. Biol. 27, 2798–2806 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Marques, C. I. J., Batalha, H. R. & Cardoso, G. C. Signalling with a cryptic trait: The regularity of barred plumage in common waxbills. R. Soc. Open. Sci. 3, 160195 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    31.Funghi, C., Leitão, A. V., Ferreira, A. C., Mota, P. G. & Cardoso, G. C. Social dominance in a gregarious bird is related to body size but not to standard personality assays. Ethology 121, 84–93 (2015).
    Article 

    Google Scholar 
    32.Navara, K. J. & Hill, G. E. Dietary carotenoid pigments and immune function in a songbird with extensive carotenoid-based plumage coloration. Behav. Ecol. 14, 909–916 (2003).Article 

    Google Scholar 
    33.McGraw, K. J. & Schuetz, J. G. The evolution of carotenoid coloration in estrildid finches: A biochemical analysis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 45–51 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Karu, U., Saks, L. & Hõrak, P. Carotenoid-based plumage coloration is not affected by vitamin E supplementation in male greenfinches. Ecol. Res. 23, 931–935 (2008).CAS 
    Article 

    Google Scholar 
    35.Pérez, C., Lores, M. & Velando, A. Availability of nonpigmentary antioxidant affects red coloration in gulls. Behav. Ecol. 19, 967–973 (2008).Article 

    Google Scholar 
    36.Hartley, R. C. & Kennedy, M. W. Are carotenoids a red herring in sexual display?. TREE 19, 353–354 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    37.Alonso-Alvarez, C. et al. An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am. Nat. 164, 651–659 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Jouventin, P., McGraw, K. J., Morel, M. & Célerier, A. Dietary carotenoid supplementation affects orange beak but not foot coloration in gentoo penguins Pygoscelis papua. Waterbirds 30, 573–578 (2007).Article 

    Google Scholar 
    39.Saino, N. et al. Better red than dead: Carotenoid-based mouth coloration reveals infection in barn swallow nestlings. Proc. Biol. Sci. 267, 57–61 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Thorogood, R., Kilner, R. M., Karadaş, F. & Ewen, J. G. Spectral mouth color of nestlings changes with carotenoid availability. Funct. Ecol. 22, 1044–1051 (2008).Article 

    Google Scholar 
    41.Koch, R., Wilson, A. & Hill, G. The importance of carotenoid dose in supplementation studies with songbirds. Physiol. Biochem. Zool. 89, 61–71 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hill, G. E. Proximate basis of variation in carotenoid pigmentation in male House Finches. Auk 109, 1–12 (1992).Article 

    Google Scholar 
    43.Biard, C., Surai, P. F. & Møller, A. P. Carotenoid availability in diet and phenotype of blue and great tit nestlings. J. Exp. Biol. 209, 1004–1015 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Giraudeau, M., Sweazea, K., Butler, M. W. & McGraw, K. J. Effects of carotenoid and vitamin E supplementation on oxidative stress and plumage coloration in house finches (Haemorhous mexicanus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 166, 406–413 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Goodwin, T. W. Distribution of carotenoids. Method Enzymol. 213, 167–172 (1992).CAS 
    Article 

    Google Scholar 
    46.Hill, G. E. Female house finches prefer colourful males: Sexual selection for a condition-dependent trait. Anim. Behav. 40, 563–572 (1990).Article 

    Google Scholar 
    47.Olson, V. A. & Owens, I. P. F. Costly sexual signals: Are carotenoids rare, risky or required?. TREE 13, 510–514 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Koch, R. E. & Hill, G. E. Do carotenoid-based ornaments entail resource trade-offs? An evaluation of theory and data. Funct. Ecol. 32, 1908–1920 (2018).Article 

    Google Scholar 
    49.Krinsky, N. I. Carotenoids as antioxidants. Nutrition 17, 815–817 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.El-Agamey, A. et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 430, 37–48 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Costantini, D. & Møller, A. P. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2007).Article 

    Google Scholar 
    52.Leclaire, S. et al. Carotenoids increase immunity and sex specifically affect color and redox homeostasis in a monochromatic seabird. Behav. Ecol. Sociobiol. 69, 1097–1111 (2015).Article 

    Google Scholar 
    53.Benito, M., González-Solís, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Surai, P. F. Natural Antioxidants in Avian Nutrition and Reproduction (Nottingham University Press, 2002).
    Google Scholar 
    55.Bertrand, S., Faivre, B. & Sorci, G. Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?. J. Exp. Biol. 209, 4414–4419 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Marri, V. & Richner, H. Differential effects of vitamins E and C and carotenoids on growth, resistance to oxidative stress, fledging success and plumage colouration in wild great tits. J. Exp. Biol. 217, 1478–1484 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    57.Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).Article 

    Google Scholar 
    58.Pike, T. W., Blount, J. D., Lindström, J. & Metcalfe, N. B. Availability of non-carotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biol. Lett. 3, 353–356 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Stiels, D., Schidelko, K., Engler, J. & Rödder, D. Predicting the potential distribution of the invasive Common Waxbill Estrilda astrild (Passeriformes: Estrildidae). J. Ornithol. 152, 769–780 (2011).Article 

    Google Scholar 
    60.Beltrão, P. et al. European breeding phenology of the common waxbill, a sub-Saharan opportunistic breeder. Acta Ethol. https://doi.org/10.1007/s10211-021-00376-9 (2021).Article 

    Google Scholar 
    61.Pan, J. Q., Tan, X., Li, J. C., Sun, W. D. & Wang, X. L. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodelling and ascites morbidity in broilers under normal and cold temperature. Br. Poultry Sci. 46, 374–381 (2005).CAS 
    Article 

    Google Scholar 
    62.Zhang, Z. W. et al. Effects of cold stress on nitric oxide in duodenum of chicks. Poultry Sci. 90, 1555–1561 (2011).CAS 
    Article 

    Google Scholar 
    63.Beaulieu, M., Haas, A. & Schaefer, M. H. Self-supplementation and effects of dietary antioxidants during acute thermal stress. J. Exp. Biol. 217, 370–375 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    64.Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B 184, 1021–1029 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Beamonte-Barrientos, R. & Verhulst, S. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches. J. Comp. Physiol. B 183, 675–683 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Moreno, J., Cantarero, A., Plaza, M. & López-Arrabé, J. Phenotypic plasticity in breeding plumage signals in both sexes of a migratory bird: Responses to breeding conditions. J. Avian Biol. 50, e01855 (2019).Article 

    Google Scholar 
    67.del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 15: Weavers to New World Warblers (Lynx Edicions, 2010).68.Larcombe, S. D., Mullen, W., Alexander, L. & Arnold, K. E. Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus. Naturwissenschaften 97, 903–913 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    69.Hudon, J. Showiness, carotenoids, and captivity: A comment on Hill (1992). Auk 111, 218–221 (1994).Article 

    Google Scholar 
    70.Dykes, L. & Rooney, L. W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44, 236–251 (2006).CAS 
    Article 

    Google Scholar 
    71.Cardoso, G. C. & Gomes, A. C. R. Using reflectance ratios to study animal coloration. Evol. Biol. 42, 387–394 (2015).Article 

    Google Scholar 
    72.Montgomerie, R. Analyzing colors. Analyzing colors. In Bird Coloration, Vol. 1. Mechanisms and Measurements (eds Hill, G. E. & McGraw, K. J.) 90–147 (Harvard University Press, 2006).
    Google Scholar  More

  • in

    Pelagic organisms avoid white, blue, and red artificial light from scientific instruments

    1.Berge, J. et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 3, 102. https://doi.org/10.1038/s42003-020-0807-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Davies, T. W., McKee, D., Fishwick, J., Tidau, S. & Smyth, T. Biologically important artificial light at night on the seafloor. Sci. Rep. 10, 12545. https://doi.org/10.1038/s41598-020-69461-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Ludvigsen, M. et al. Use of an autonomous surface vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4, eaap9887. https://doi.org/10.1126/sciadv.aap9887 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Utne-Palm, A. C., Breen, M., Løkkeborg, S. & Humborstad, O. B. Behavioural responses of krill and cod to artificial light in laboratory experiments. PLoS One https://doi.org/10.1371/journal.pone.0190918 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Marchesan, M., Spoto, M., Verginella, L. & Ferrero, E. A. Behavioural effects of artificial light on fish species of commercial interest. Fish. Res. 73, 171–185. https://doi.org/10.1016/j.fishres.2004.12.009 (2005).Article 

    Google Scholar 
    6.Stickney, A. P. Factors influencing the attraction of Atlantic Herring. Fish. Bull. 68, 73–85 (1969).
    Google Scholar 
    7.Nguyen, K. Q. et al. Application of luminescent netting in traps to improve the catchability of the snow crab Chionoecetes opilio. Mar. Coast. Fish. 11, 295–304. https://doi.org/10.1002/mcf2.10084 (2019).Article 

    Google Scholar 
    8.Wiebe, P. H. et al. Using a high-powered strobe light to increase the catch of Antarctic krill. Mar. Biol. 144, 493–502. https://doi.org/10.1007/s00227-003-1228-z (2004).Article 

    Google Scholar 
    9.Nguyen, T. T. et al. Artificial light pollution increases the sensitivity of tropical zooplankton to extreme warming. Environ. Technol. Innov. 20, 101179. https://doi.org/10.1016/j.eti.2020.101179 (2020).Article 

    Google Scholar 
    10.Kaartvedt, S., Røstad, A., Opdal, A. F. & Aksnes, D. L. Herding mesopelagic fish by light. Mar. Ecol. Prog. Ser. 625, 225–231 (2019).ADS 
    Article 

    Google Scholar 
    11.Underwood, M. J., Utne Palm, A. C., Øvredal, J. T. & Bjordal, Å. The response of mesopelagic organisms to artificial lights. Aquac. Fish. https://doi.org/10.1016/j.aaf.2020.05.002 (2020).Article 

    Google Scholar 
    12.Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Ryer, C. H., Stoner, A. W., Iseri, P. J. & Spencer, M. L. Effects of simulated underwater vehicle lighting on fish behavior. Mar. Ecol. Prog. Ser. 391, 97–106 (2009).ADS 
    Article 

    Google Scholar 
    14.Bicknell, A. W. J., Godley, B. J., Sheehan, E. V., Votier, S. C. & Witt, M. J. Camera technology for monitoring marine biodiversity and human impact. Front. Ecol. Environ. 14, 424–432. https://doi.org/10.1002/fee.1322 (2016).Article 

    Google Scholar 
    15.Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Meth. 8, 462–547. https://doi.org/10.4319/lom.2010.8.462 (2010).Article 

    Google Scholar 
    16.Herman, A. W. & Harvey, M. Application of normalized biomass size spectra to laser optical plankton counter net intercomparisons of zooplankton distributions. J. Geophys. Res. Oceans. https://doi.org/10.1029/2005JC002948 (2006).Article 

    Google Scholar 
    17.Basedow, S. L., Tande, K. S., Norrbin, M. F. & Kristiansen, S. A. Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation. Prog. Oceanogr. 108, 72–80. https://doi.org/10.1016/j.pocean.2012.10.005 (2013).ADS 
    Article 

    Google Scholar 
    18.Sainmont, J. et al. Inter- and intra-specific diurnal habitat selection of zooplankton during the spring bloom observed by Video Plankton Recorder. Mar. Biol. 161, 1931–1941. https://doi.org/10.1007/s00227-014-2475-x (2014).Article 

    Google Scholar 
    19.Schulz, J. et al. Imaging of plankton specimens with the lightframe on-sight key species investigation (LOKI) system. J. Eur. Opt. Soc. 5, 10017s (2010).Article 

    Google Scholar 
    20.Schmid, M. S., Aubry, C., Grigor, J. & Fortier, L. The LOKI underwater imaging system and an automatic identification model for the detection of zooplankton taxa in the Arctic Ocean. Meth. Oceanogr. 15–16, 129–160. https://doi.org/10.1016/j.mio.2016.03.003 (2016).Article 

    Google Scholar 
    21.Williams, K., Rooper, C. N. & Towler, R. Use of stereo camera systems for assessment of rockfish abundance in untrawlable areas and for recording pollock behavior during midwater trawls. Fish. Bull. 108, 352–362 (2010).
    Google Scholar 
    22.Boldt, J. L., Williams, K., Rooper, C. N., Towler, R. H. & Gauthier, S. Development of stereo camera methodologies to improve pelagic fish biomass estimates and inform ecosystem management in marine waters. Fish. Res. 198, 66–77. https://doi.org/10.1016/j.fishres.2017.10.013 (2018).Article 

    Google Scholar 
    23.Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62. https://doi.org/10.1016/j.fishres.2014.01.019 (2014).Article 

    Google Scholar 
    24.Easton, R. R., Heppell, S. S. & Hannah, R. W. Quantification of habitat and community relationships among nearshore temperate fishes through analysis of drop camera video. Mar. Coast. Fish. 7, 87–102. https://doi.org/10.1080/19425120.2015.1007184 (2015).Article 

    Google Scholar 
    25.McLean, D. L. et al. Using industry ROV videos to assess fish associations with subsea pipelines. Cont. Shelf Res. 141, 76–97. https://doi.org/10.1016/j.csr.2017.05.006 (2017).ADS 
    Article 

    Google Scholar 
    26.Devine, B. M., Wheeland, L. J., de Moura Neves, B. & Fisher, J. A. D. Baited remote underwater video estimates of benthic fish and invertebrate diversity within the eastern Canadian Arctic. Polar Biol. 42, 1323–1341. https://doi.org/10.1007/s00300-019-02520-5 (2019).Article 

    Google Scholar 
    27.Trenkel, V. M., Lorance, P. & Mahévas, S. Do visual transects provide true population density estimates for deepwater fish?. ICES J. Mar. Sci. 61, 1050–1056. https://doi.org/10.1016/j.icesjms.2004.06.002 (2004).Article 

    Google Scholar 
    28.Widder, E. A., Robison, B. H., Reisenbichler, K. R. & Haddock, S. H. D. Using red light for in situ observations of deep-sea fishes. Deep-Sea Res. Part I(52), 2077–2085. https://doi.org/10.1016/j.dsr.2005.06.007 (2005).ADS 
    Article 

    Google Scholar 
    29.Benoit-Bird, K. J., Moline, M. A., Schofield, O. M., Robbins, I. C. & Waluk, C. M. Zooplankton avoidance of a profiled open-path fluorometer. J. Plankton Res. 32, 1413–1419. https://doi.org/10.1093/plankt/fbq053 (2010).Article 

    Google Scholar 
    30.Doya, C. et al. Diel behavioral rhythms in sablefish (Anoplopoma fimbria) and other benthic species, as recorded by the Deep-sea cabled observatories in Barkley canyon (NEPTUNE-Canada). J. Mar. Syst. 130, 69–78. https://doi.org/10.1016/j.jmarsys.2013.04.003 (2014).Article 

    Google Scholar 
    31.Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243. https://doi.org/10.1139/f08-032 (2008).Article 

    Google Scholar 
    32.Rooper, C. N., Williams, K., De Robertis, A. & Tuttle, V. Effect of underwater lighting on observations of density and behavior of rockfish during camera surveys. Fish. Res. 172, 157–167. https://doi.org/10.1016/j.fishres.2015.07.012 (2015).Article 

    Google Scholar 
    33.Hop, H. et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167–208 (2002).Article 

    Google Scholar 
    34.Bandara, K. et al. Seasonal vertical strategies in a high-Arctic coastal zooplankton community. Mar. Ecol. Prog. Ser. 555, 49–64 (2016).ADS 
    Article 

    Google Scholar 
    35.Hop, H. et al. In The Ecosystem of Kongsfjorden, Svalbard (eds Hop, H. & Wiencke, C.) 229–300 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    36.Cusa, M., Berge, J. & Varpe, Ø. Seasonal shifts in feeding patterns: Individual and population realized specialization in a high Arctic fish. Ecol. Evol. 9, 11112–11121. https://doi.org/10.1002/ece3.5615 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Sakshaug, E., Johnsen, G. & Volent, Z. In Ecosystem Barents Sea (eds Sakshaug, E. et al.) 117–138 (Tapir Academic Press, 2009).
    Google Scholar 
    38.Gordon, H. R. Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water?. Limnol. Oceanogr. 34, 1389–1409. https://doi.org/10.4319/lo.1989.34.8.1389 (1989).ADS 
    Article 

    Google Scholar 
    39.McKee, D., Cunningham, A. & Craig, S. Estimation of absorption and backscattering coefficients from in situ radiometric measurements: Theory and validation in case II waters. App. Opt. 42, 2804–2810. https://doi.org/10.1364/AO.42.002804 (2003).ADS 
    Article 

    Google Scholar 
    40.Demer, D. A. et al. Calibration of acoustic instruments. ICES Cooperative Research Report No. 326. 133 (2015).41.Mackenzie, K. V. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am. 70, 807 (1981).ADS 
    Article 

    Google Scholar 
    42.François, R. E. & Garrison, G. R. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 72, 1879–1890 (1982).ADS 
    Article 

    Google Scholar 
    43.De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291. https://doi.org/10.1093/icesjms/fsm112 (2007).Article 

    Google Scholar 
    44.Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493. https://doi.org/10.1093/icesjms/fsv121 (2015).Article 

    Google Scholar 
    45.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    46.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. TREE 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008 (2009).Article 
    PubMed 

    Google Scholar 
    47.Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561. https://doi.org/10.1016/j.cub.2015.08.024 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Dalpadado, P. et al. Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biol. 39, 1765–1784. https://doi.org/10.1007/s00300-015-1874-x (2016).Article 

    Google Scholar 
    49.Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619. https://doi.org/10.1007/s00300-018-2368-4 (2018).Article 

    Google Scholar 
    50.Jarms, G., Tiemann, H. & Båmstedt, U. Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar. Biol. 141, 647–657. https://doi.org/10.1007/s00227-002-0858-x (2002).Article 

    Google Scholar 
    51.Pepin, P., Colbourne, E. & Maillet, G. Seasonal patterns in zooplankton community structure on the Newfoundland and Labrador Shelf. Prog. Oceanogr. 91, 273–285. https://doi.org/10.1016/j.pocean.2011.01.003 (2011).ADS 
    Article 

    Google Scholar 
    52.Cohen, J. H. & Epifanio, C. E. In Developmental Biology and Larval Ecology, Ch. 12 (eds Anger, K. et al.) 332–359 (Oxford University Press, 2020).
    Google Scholar 
    53.Orr, M. H. Remote acoustic detection of zooplankton response to field processes, oceanographic instrumentation, and predators. Can. J. Fish. Aquat. Sci. 38, 1096–1105. https://doi.org/10.1139/f81-149 (1981).Article 

    Google Scholar 
    54.Farmer, D. D., Crawford, G. B. & Osborn, T. R. Temperature and velocity microstructure caused by swimming fish1. Limnol. Oceanogr. 32, 978–983. https://doi.org/10.4319/lo.1987.32.4.0978 (1987).ADS 
    Article 

    Google Scholar 
    55.Koslow, J. A., Kloser, R. & Stanley, C. A. Avoidance of a camera system by a deepwater fish, the orange roughy (Hoplostethus atlanticus). Deep-Sea Res Part I 42, 233–244. https://doi.org/10.1016/0967-0637(95)93714-P (1995).Article 

    Google Scholar 
    56.Raymond, E. H. & Widder, E. A. Behavioral responses of two deep-sea fish species to red, far-red, and white light. Mar. Ecol. Prog. Ser. 350, 291–298 (2007).ADS 
    Article 

    Google Scholar 
    57.Bassett, D. K. & Montgomery, J. C. Investigating nocturnal fish populations in situ using baited underwater video: With special reference to their olfactory capabilities. J. Exp. Mar. Biol. Ecol. 409, 194–199. https://doi.org/10.1016/j.jembe.2011.08.019 (2011).Article 

    Google Scholar 
    58.Brill, R., Magel, C., Davis, M., Hannah, R. & Rankin, P. Effects of rapid decompression and exposure to bright light on visual function in black rockfish (Sebastes melanops) and Pacific halibut (Hippoglossus stenolepis). Fish. Bull. 106, 427–437 (2008).
    Google Scholar 
    59.Turner, J. R., White, E. M., Collins, M. A., Partridge, J. C. & Douglas, R. H. Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea. Deep-Sea Res. Part I 56, 1003–1017. https://doi.org/10.1016/j.dsr.2009.01.007 (2009).CAS 
    Article 

    Google Scholar 
    60.de Busserolles, F. & Marshall, N. J. Seeing in the deep-sea: Visual adaptations in lanternfishes. Philos. Trans. R Soc. Lond. B Biol. Sci. 372, 20160070. https://doi.org/10.1098/rstb.2016.0070 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Valen, R., Edvardsen, R. B., Søviknes, A. M., Drivenes, Ø. & Helvik, J. V. Molecular evidence that only two opsin subfamilies, the blue light- (SWS2) and green light-sensitive (RH2), drive colour vision in Atlantic cod (Gadus morhua). PLoS One 9, e115436. https://doi.org/10.1371/journal.pone.0115436 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Anthony, P. D. & Hawkins, A. D. Spectral sensitivity of the cod, Gadus morhua L. Mar. Behav. Physiol. 10, 145–166. https://doi.org/10.1080/10236248309378614 (1983).Article 

    Google Scholar 
    63.Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528. https://doi.org/10.1017/s0952523800174036 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Frank, T. M. & Widder, E. A. Comparative study of the spectral sensitivities of mesopelagic crustaceans. J. Comp. Physiol. A 185, 255–265. https://doi.org/10.1007/s003590050385 (1999).Article 

    Google Scholar 
    65.Båtnes, A. S., Miljeteig, C., Berge, J., Greenacre, M. & Johnsen, G. Quantifying the light sensitivity of Calanus spp. during the polar night: Potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis?. Polar Biol. 38, 1–15. https://doi.org/10.1007/s00300-013-1415-4 (2015).Article 

    Google Scholar 
    66.Cohen, J. H. et al. Is ambient light during the high Arctic polar night sufficient to act as a visual cue for zooplankton?. PLoS ONE https://doi.org/10.1371/journal.pone.0126247 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Jinks, R. N. et al. Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab. Nature 420, 68–70. https://doi.org/10.1038/nature01144 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Aguzzi, J. et al. The potential of video imagery from worldwide cabled observatory networks to provide information supporting fish-stock and biodiversity assessment. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa169 (2020).Article 

    Google Scholar  More

  • in

    Predicting 3D protein structures in light of evolution

    1.Bershtein, S., Serohijos, A. W. & Shakhnovich, E. I. Curr. Opin. Struct. Biol. 42, 31–40 (2017).CAS 
    Article 

    Google Scholar 
    2.Elena, S. F. & Lenski, R. E. Nat. Rev. Genet. 4, 457–469 (2003).CAS 
    Article 

    Google Scholar 
    3.Fowler, D. M. & Fields, S. Nat. Methods 11, 801–807 (2014).CAS 
    Article 

    Google Scholar 
    4.Jasinska, W. et al. Nat. Ecol. Evol. 4, 437–452 (2020).Article 

    Google Scholar 
    5.Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature https://doi.org/10.1038/s41586-021-03819-2 (2021).6.Diss, G. & Lehner, B. eLife 7, e32472 (2018).Article 

    Google Scholar 
    7.Schmiedel, J. M. & Lehner, B. Nat. Genet. 51, 1177–1186 (2019).CAS 
    Article 

    Google Scholar 
    8.Guan, Y., Dunham, M. J. & Troyanskaya, O. G. Genetics 175, 933–943 (2007).CAS 
    Article 

    Google Scholar 
    9.Soria, P. S., McGary, K. L. & Rokas, A. Mol. Biol. Evol. 31, 984–992 (2014).CAS 
    Article 

    Google Scholar 
    10.Gabaldon, T. & Koonin, E. V. Nat. Rev. Genet. 14, 360–366 (2013).CAS 
    Article 

    Google Scholar 
    11.Montelione, G. T. F1000 Biol. Rep. 4, 7 (2012).Article 

    Google Scholar 
    12.Laskowski, R. A., Watson, J. D. & Thornton, J. M. J. Mol. Biol. 351, 614–626 (2005).CAS 
    Article 

    Google Scholar 
    13.Lee, D., Redfern, O. & Orengo, C. Nat. Rev. Mol. Cell Biol. 8, 995–1005 (2007).CAS 
    Article 

    Google Scholar 
    14.Redfern, O. C., Dessailly, B. H., Dallman, T. J., Sillitoe, I. & Orengo, C. A. PLoS Comput. Biol. 5, e1000485 (2009).Article 

    Google Scholar 
    15.Harms, M. J. & Thornton, J. W. Curr. Opin. Struct. Biol. 20, 360–366 (2010).CAS 
    Article 

    Google Scholar 
    16.Levin, L. & Mishmar, D. Nat. Ecol. Evol. 1, 41 (2017).Article 

    Google Scholar 
    17.Aadland, K. & Kolaczkowski, B. Biol. Evol. 12, 1549–1565 (2020).CAS 

    Google Scholar 
    18.Kleiner, D. et al. J. Mol. Biol. 431, 4796–4816 (2019).CAS 
    Article 

    Google Scholar 
    19.Boehr, D. D., Nussinov, R. & Wright, P. E. Nat. Chem. Biol. 5, 789–796 (2009).CAS 
    Article 

    Google Scholar 
    20.Bershtein, S. et al. PLoS Genet. 11, e1005612 (2015).Article 

    Google Scholar 
    21.Senior, A. W. et al. Nature 577, 706–710 (2020).CAS 
    Article 

    Google Scholar 
    22.Gershoni, M. et al. J. Mol. Biol. 404, 158–171 (2010).CAS 
    Article 

    Google Scholar 
    23.Sutto, L., Marsili, S., Valencia, A. & Gervasio, F. L. Proc. Natl Acad. Sci. USA 112, 13567–13572 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Vulnerability of the North Water ecosystem to climate change

    Marine sediment recordThe Calypso Square gravity core AMD15-CASQ1 (77°15.035′ N, 74°25.500′ W, 692 m water depth) and accompanying box core (BC; same location) were retrieved aboard the CCGS Amundsen during the ArcticNet 2015 Leg 4a expedition in 2015, in accordance with relevant permits and local laws. The CASQ corer recovered a sequence 543 cm long, while the box core was 40 cm long. Sediment material from these cores is stored at the Geological Survey of Denmark and Greenland and available upon reasonable request to the first and corresponding author (SRI).Computed Tomography (CT) scanning of the core was performed using a Siemens SOMATOM Definition AS + 128 at the Institut National de la Recherche Scientifique (INRS), Quebec, Canada. The tomograms were converted into digital DICOM format using a standard Hounsfield scale (HU scale) from −1024 to 3071, where −1024 corresponds to the density of air, 0 to the density of water and 2500 to the density of calcite.The age control on the marine sediment record was provided by 11 accelerator mass spectrometry (AMS) radiocarbon dates on mollusc shells (Supplementary. Table 1) at the Keck Carbon Cycle AMS Facility, University of California, Irvine, US, and 210Pb/137Cs measurements conducted on 20 samples at the Gamma Dating Center, Copenhagen University, Denmark. In the box core, the content of unsupported 210Pb showed a clear exponential decline with depth (Supplementary Fig. 1). A clear 137Cs peak was not detected, but the 210Pb-based chronology dates the earliest sample with 137Cs to 1969 ± 2 years, which is close to the expected date, 1963, for the global 137Cs peak induced by nuclear weapons testing in the atmosphere. This, and the very uniform exponential decline in unsupported 210Pb with depth, gives confidence in the calculated chronology. A mixed age-depth model, using both 210Pb and 14C dates, was constructed using BACON, an open-source package of ‘R’54. This Bayesian accumulation model code allows for greater flexibility in sedimentation rates between dated intervals than traditional linear age-depth models54. The AMS radiocarbon dates were calibrated with the Marine13 IntCal1355, and the regional marine reservoir offset was estimated based on existing 14C data from marine specimens collected before the mid-1950s. Distinct regional offset values have been proposed for Arctic Canada, but do not include the Smith Sound region56. Existing data from NW Greenland show local reservoir correction (ΔR) values ranging from -40 years in the Inglefield Fjord to +320 years in Ellesmere Island (the latter consistent with the proposed 335 ± 85 years for the Canadian Arctic Archipelago56). However, these samples have been retrieved from shallow sites ( More

  • in

    Drivers of seedling establishment success in dryland restoration efforts

    1.Hobbs, R. J. et al. Restoration ecology: the challenge of social values and expectations. Front. Ecol. Environ. 2, 43–38 (2004).Article 

    Google Scholar 
    2.Harris, J. A., Hobbs, R. J., Higgs, E. & Aronson, J. C. Ecological restoration and global climate change. Restor. Ecol. 14, 170–176 (2006).3.Aronson, J. C. & Vallejo, R. in Restoration Ecology: The New Frontier (eds. van Andel, J. & Aronson, J. C.) (John Wiley & Sons, 2009).4.Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Plaza, C. et al. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 8, 13788 (2018).6.Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C. & Cross, A. T. A world of possibilities: six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 28, 730–736 (2020).Article 

    Google Scholar 
    7.Drylands and Land Degradation (IUCN, 2017).8.Bainbridge, D. A. A Guide for Desert and Dryland Restoration: New Hope for Arid Lands (Island Press, 2012).9.Millennium Ecosystem Assessment Findings (Millennium Ecosystem Assessment, 2005).10.Reynolds, J. F., Maestre, F. T., Kemp, P. R., Stafford-Smith, D. M. & Lambin, E. in Terrestrial Ecosystems in a Changing World (eds. Canadell, J. G., Pataki, D. E. & Pitelka, L. F.) 247–257 (Springer, 2007); https://doi.org/10.1007/978-3-540-32730-1_2011.Hoover, D. L. et al. Traversing the wasteland: a framework for assessing ecological threats to drylands. BioScience 70, 35–47 (2020).Article 

    Google Scholar 
    12.Hardegree, S. P., Jones, T. A., Roundy, B. A., Shaw, N. L. & Monaco, T. A. in Conservation Benefits of Rangeland Practices 171–213 (United States Department of Agriculture, 2011).13.James, J. J., Svejcar, T. J. & Rinella, M. J. Demographic processes limiting seedling recruitment in arid grassland restoration. J. Appl. Ecol. 48, 961–969 (2011).Article 

    Google Scholar 
    14.Okin, G. S. et al. Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front. Ecol. Environ. 13, 20–27 (2015).Article 

    Google Scholar 
    15.Svejcar, L. N. & Kildisheva, O. A. The age of restoration: challenges presented by dryland systems. Plant Ecol. 218, 1–6 (2017).Article 

    Google Scholar 
    16.Safriel, U. et al. Dryland Systems. Ecosystems and Human Well-being: Current State and Trends.: Findings of the Condition and Trends Working Group 623–662 (Millennium Ecosystem Assessment, 2005).17.Ward, D. The Biology of Deserts (Oxford Univ. Press, 2016).18.Li, Y., Chen, Y. & Li, Z. Dry/wet pattern changes in global dryland areas over the past six decades. Glob. Planet. Change 178, 184–192 (2019).Article 

    Google Scholar 
    19.Prăvălie, R., Bandoc, G., Patriche, C. & Sternberg, T. Recent changes in global drylands: evidences from two major aridity databases. Catena 178, 209–231 (2019).Article 

    Google Scholar 
    20.Yao, J. et al. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun. 11, 1665 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Aridity Zones and Dryland Populations: An Assessment of Population Levels in the World’s Drylands with Reference to Africa (UNSO/UNDP, 1997); http://digitallibrary.un.org/record/43231222.van den Berg, L. & Kellner, K. Restoring degraded patches in a semi-arid rangeland of South Africa. J. Arid. Environ. 61, 497–511 (2005).Article 

    Google Scholar 
    23.Valkó, O. et al. Cultural heritage and biodiversity conservation – plant introduction and practical restoration on ancient burial mounds. Nat. Conserv. 24, 65–80 (2018).Article 

    Google Scholar 
    24.Louhaichi, M., Clifton, K. & Hassan, S. Direct seeding of Salsola vermiculata for rehabilitation of degraded arid and semi-arid rangelands. Range Manag. Agrofor. 35, 182–187 (2014).
    Google Scholar 
    25.Pérez, D. R., González, F., Ceballos, C., Oneto, M. E. & Aronson, J. Direct seeding and outplantings in drylands of Argentinean Patagonia: estimated costs, and prospects for large-scale restoration and rehabilitation. Restor. Ecol. 27, 1105–1116 (2019).Article 

    Google Scholar 
    26.Kiehl, K., Kirmer, A., Donath, T. W., Rasran, L. & Hölzel, N. Species introduction in restoration projects: evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl. Ecol. 11, 285–299 (2010).Article 

    Google Scholar 
    27.Miguel, M. F., Butterfield, H. S. & Lortie, C. J. A meta-analysis contrasting active versus passive restoration practices in dryland agricultural ecosystems. PeerJ 8, e10428 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kildisheva, O. A., Erickson, T. E., Merritt, D. J. & Dixon, K. W. Setting the scene for dryland recovery: an overview and key findings from a workshop targeting seed-based restoration. Restor. Ecol. 24, S36–S42 (2016).Article 

    Google Scholar 
    29.Lewandrowski, W., Erickson, T. E., Dixon, K. W. & Stevens, J. C. Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events. J. Appl. Ecol. 54, 997–1007 (2017).CAS 
    Article 

    Google Scholar 
    30.Ladouceur, E. & Shackelford, N. The power of data synthesis to shape the future of the restoration community and capacity. Restor. Ecol. 29, e13251 (2020).
    Google Scholar 
    31.Temperton, V. M., Baasch, A., von Gillhaussen, P. & Kirmer, A. in Foundations of Restoration Ecology (eds. Palmer, M. A., Zedler, J. B. & Falk, D. A.) 245–270 (Island Press/Center for Resource Economics, 2016); https://doi.org/10.5822/978-1-61091-698-1_932.Hulvey, K. B. & Aigner, P. A. Using filter-based community assembly models to improve restoration outcomes. J. Appl. Ecol. 51, 997–1005 (2014).Article 

    Google Scholar 
    33.van Wilgen, B. W. The evolution of fire and invasive alien plant management practices in fynbos. S. Afr. J. Sci. 105, 335–342 (2009).
    Google Scholar 
    34.Arianoutsoua, M. & Vilà, M. Fire and invasive plant species in the Mediterranean Basin. Isr. J. Ecol. Evol. 58, 195–203 (2012).
    Google Scholar 
    35.Leger, E. A. & Baughman, O. W. What seeds to plant in the Great Basin? Comparing traits prioritized in native plant cultivars and releases with those that promote survival in the field. Nat. Areas. J. 35, 54–68 (2015).Article 

    Google Scholar 
    36.Porensky, L. M., Vaughn, K. J. & Young, T. P. Can initial intraspecific spatial aggregation increase multi-year coexistence by creating temporal priority? Ecol. Appl. 22, 927–936 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.FAOSTAT Statistical Database (Food and Agriculture Organization of the United Nations, 1997).38.Balazs, K. R. et al. The right trait in the right place at the right time: matching traits to environment improves restoration outcomes. Ecol. Appl. 30, e02110 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Knutson, K. C. et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 51, 1414–1424 (2014).Article 

    Google Scholar 
    40.Brown, C. S. & Bugg, R. L. Effects of established perennial grasses on introduction of native forbs in California. Restor. Ecol. 9, 38–48 (2001).Article 

    Google Scholar 
    41.Porensky, L. M. et al. Arid old-field restoration: native perennial grasses suppress weeds and erosion, but also suppress native shrubs. Agric. Ecosyst. Environ. 184, 135–144 (2014).Article 

    Google Scholar 
    42.Hardegree, S. P. et al. Hydrothermal assessment of temporal variability in seedbed microclimate. Rangel. Ecol. Manag. 66, 127–135 (2013).Article 

    Google Scholar 
    43.Copeland, S. M. et al. Long-term trends in restoration and associated land treatments in the southwestern United States. Restor. Ecol. 26, 311–322 (2018).Article 

    Google Scholar 
    44.Abella, S. R., Craig, D. J., Smith, S. D. & Newton, A. C. Identifying native vegetation for reducing exotic species during the restoration of desert ecosystems. Restor. Ecol. 20, 781–787 (2012).Article 

    Google Scholar 
    45.Mulroy, T. W. & Rundel, P. W. Annual plants: adaptations to desert environments. BioScience 27, 109–114 (1977).Article 

    Google Scholar 
    46.Leger, E. A., Goergen, E. M. & Forbis de Queiroz, T. Can native annual forbs reduce Bromus tectorum biomass and indirectly facilitate establishment of a native perennial grass? J. Arid. Environ. 102, 9–16 (2014).Article 

    Google Scholar 
    47.Gutiérrez, J. R., Arancio, G. & Jaksic, F. M. Variation in vegetation and seed bank in a Chilean semi-arid community affected by ENSO 1997. J. Veg. Sci. 11, 641–648 (2000).Article 

    Google Scholar 
    48.Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Baskin, C. C. Seed ecology: a diverse and vibrant field of study. Seed Sci. Res. 27, 61–64 (2017).Article 

    Google Scholar 
    50.Padilla, F. M., Ortega, R., Sánchez, J. & Pugnaire, F. I. Rethinking species selection for restoration of arid shrublands. Basic Appl. Ecol. 10, 640–647 (2009).Article 

    Google Scholar 
    51.SER International Primer on Ecological Restoration (SER, 2004).52.The Plant List (WFO, 2013).53.Seed Information Database (Royal Botanic Gardens, Kew, 2019).54.Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    55.USDA, NRCS. The PLANTS Database (National Plant Data Team, 2020).56.Western Australian Herbarium. FloraBase—the Western Australian Flora (Department of Biodiversity, Conservation and Attractions, 1998).57.Fick, S. E. & Hijmans, R. J. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).58.Trabucco, A. & Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database, v3 (CGIAR Consortium for Spatial Information, 2019).59.Barrow, C. J. World atlas of desertification (United Nations Environment Programme). Land Degrad. Dev. 3, 249–249 (1992).Article 

    Google Scholar 
    60.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).62.Crawley, M. J. in The R Book 569–591 (Wiley, 2007).63.Wortley, L., Hero, J.-M. & Howes, M. Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537–543 (2013).Article 

    Google Scholar  More