Soil texture as a key driver of polycyclic aromatic hydrocarbons (PAHs) distribution in forest topsoils
1.Mahanty, B., Pakshirajan, K. & Dasu, V. V. Understanding the complexity and strategic evolution in PAH remediation research. Crit. Rev. Environ. Sci. Technol. 41, 1697–1746. https://doi.org/10.1080/10643389.2010.481586 (2011).CAS
Article
Google Scholar
2.Meador, J. P. Polycyclic aromatic hydrocarbons. Encyclopedia of Ecology Vol. 4 (eds Jørgensen, S. E. & Fath, B. D.) 2881–2891 (Oxford: Elsevier, 2008).3.Gong, Z., Alef, K., Wilke, B. M. & Li, P. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J. Hazard Mater. 143, 372–378. https://doi.org/10.1016/j.jhazmat.2006.09.037 (2007).CAS
Article
PubMed
Google Scholar
4.Smith, M. J., Flowers, T. H., Duncan, H. J. & Alder, J. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Poll. 141, 519–525. https://doi.org/10.1016/j.envpol.2005.08.061 (2006).CAS
Article
Google Scholar
5.Mackay, D., Shiu, W. Y. & Lee, S. C. Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals (CRC Press, 2006).Book
Google Scholar
6.Zhou, Q., Sun, F. & Liu, R. Joint chemical flushing of soils contaminated with petroleum hydrocarbons. Environ. Int. 31, 835–839. https://doi.org/10.1016/j.envint.2005.05.039 (2005).Article
PubMed
Google Scholar
7.Wang, C. et al. Elemental carbon components and PAHs in soils from different areas of the Yangtze River Delta region, China and their relationship. CATENA 199, 105086. https://doi.org/10.1016/j.catena.2020.105086 (2021).CAS
Article
Google Scholar
8.Hao, R., Wan, H. F., Song, Y. T., Jiang, H. & Peng, S. L. Polycyclic aromatic hydrocarbons in agricultural soils of the southern subtropics, China. Pedosphere 17, 673–680. https://doi.org/10.1016/S1002-0160(07)60081-2 (2007).CAS
Article
Google Scholar
9.Dandie, C. E. et al. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere 81, 1061–1068. https://doi.org/10.1016/j.chemosphere.2010.09.059 (2010).ADS
CAS
Article
PubMed
Google Scholar
10.Liu, S. et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs). Chemosphere 82, 223–228. https://doi.org/10.1016/j.chemosphere.2010.10.017 (2011).ADS
CAS
Article
PubMed
Google Scholar
11.Terytze, K. et al. Detection and determination limits of priority organic pollutants in soil. Chemosphere 31, 3051–3083. https://doi.org/10.1016/0045-6535(95)00166-6 (1995).ADS
CAS
Article
Google Scholar
12.Han, Y. M. et al. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments. Chemosphere 119, 1335–1345. https://doi.org/10.1016/j.chemosphere.2014.02.021 (2015).ADS
CAS
Article
PubMed
Google Scholar
13.Duan, L. et al. Effect of ageing on benzo[a]pyrene extractability in contrasting soils. J. Hazard Mater. 296, 175–184. https://doi.org/10.1016/j.jhazmat.2015.04.050 (2015).CAS
Article
PubMed
Google Scholar
14.Luo, L., Zhang, S. & Ma, Y. Evaluation of impacts of soil fractions on phenanthrene sorption. Chemosphere 72, 891–896. https://doi.org/10.1016/j.chemosphere.2008.03.051 (2008).ADS
CAS
Article
PubMed
Google Scholar
15.Ukalska-Jaruga, A., Debaene, G. & Smreczak, B. Dissipation and sorption processes of polycyclic aromatic hydrocarbons (PAHs) to organic matter in soils amended by exogenous rich-carbon material. J. Soils Sediments 20, 836–849. https://doi.org/10.1007/s11368-019-02455-8 (2020).CAS
Article
Google Scholar
16.Błońska, E., Lasota, J., Szuszkiewicz, M., Łukasik, A. & Klamerus-Iwan, A. Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environ. Earth Sci. 75, 1–15. https://doi.org/10.1007/s12665-016-6005-7 (2016).CAS
Article
Google Scholar
17.Lasota, J. & Błońska, E. Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus types. Water Air Soil Poll. 229, 204. https://doi.org/10.1007/s11270-018-3857-3 (2018).ADS
CAS
Article
Google Scholar
18.Pająk, M. et al. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air Soil Poll. 229, 392. https://doi.org/10.1007/s11270-018-4040-6 (2018).ADS
CAS
Article
Google Scholar
19.Lasota, J., Błońska, E., Łyszczarz, S. & Tibbett, M. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water Air Soil Poll. 231, 80. https://doi.org/10.1007/s11270-020-4450-0 (2020).ADS
CAS
Article
Google Scholar
20.Pająk, M., Błońska, E., Frąc, M. & Oszust, K. Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water Air Soil Poll. 227, 348. https://doi.org/10.1007/s11270-016-3051-4 (2016).ADS
CAS
Article
Google Scholar
21.Chaudhary, P., Singh, S. B., Chaudhry, S. & Nain, L. Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area—A case study. Environ. Monit. Assess. 184, 1145–1156. https://doi.org/10.1007/s10661-011-2029-3 (2012).CAS
Article
PubMed
Google Scholar
22.Łukasik, A., Szuszkiewicz, M., Wanic, T. & Gruba, P. Three-dimensional model of magnetic susceptibility in forest topsoil: An indirect method to discriminate contaminant migration. Environ. Pollut. 273, 116491. https://doi.org/10.1016/j.envpol.2021.116491 (2021).CAS
Article
PubMed
Google Scholar
23.Magiera, T., Jabłońska, M., Strzyszcz, Z. & Rachwal, M. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos. Environ. 45, 4281–4290. https://doi.org/10.1016/j.atmosenv.2011.04.076 (2011).ADS
CAS
Article
Google Scholar
24.Hulett, L. D., Weinberger, A. J., Northcutt, K. J. & Ferguson, M. Chemical species in fly ash from coal-burning power plants. Science 210, 1356–1358. https://doi.org/10.1126/science.210.4476.1356 (1980).ADS
CAS
Article
PubMed
Google Scholar
25.Chaparro, M. A. E., Gogorza, C. S. G., Lavat, A., Pazos, S. & Sinito, A. M. Preliminary results of magnetic characterisation of different soils in the Tandil region (Argentina) affected by pollution by a metallurgical factory. Eur. J. Environ. Eng. Geophys. 7, 35–38 (2002).
Google Scholar
26.Fabijańczyk, P., Zawadzki, J., Magiera, T. & Szuszkiewicz, M. A methodology of integration of magnetometric and geochemical soil contamination measurements. Geoderma 277, 51–60. https://doi.org/10.1016/j.geoderma.2016.05.009 (2016).ADS
CAS
Article
Google Scholar
27.Łukasik, A., Magiera, T., Lasota, J. & Błońska, E. Background value of magnetic susceptibility in forest topsoil: Assessment on the basis of studies conducted in forest preserves of Poland. Geoderma 264, 140–149. https://doi.org/10.1016/j.geoderma.2015.10.009 (2016).ADS
CAS
Article
Google Scholar
28.Yu, X., Wang, Y. & Lu, S. Tracking the magnetic carriers of heavy metals in contaminated soils based on X-ray microprobe techniques and wavelet transformation. J. Hazard Mater. 381, 121114. https://doi.org/10.1016/j.jhazmat.2019.121114 (2020).CAS
Article
Google Scholar
29.Jordanova, N., Jordanova, D. & Tsacheva, T. Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma 144, 557–571. https://doi.org/10.1016/j.geoderma.2008.01.021 (2008).ADS
CAS
Article
Google Scholar
30.Petrovský, E. et al. Magnetic mapping of distribution of wood ash used for fertilization of forest soil. Sci. Total Environ. 626, 228–234. https://doi.org/10.1016/j.scitotenv.2018.01.095 (2018).ADS
CAS
Article
PubMed
Google Scholar
31.Asgari, N., Ayoubi, S. & Demattê, J. A. M. Soil drainage assessment by magnetic susceptibility measures in western Iran. Geoderma Reg. 13, 35–42. https://doi.org/10.1016/j.geodrs.2018.03.003 (2018).Article
Google Scholar
32.Menshov, O. et al. Soil and dust magnetism in semi-urban area Truskavets, Ukraine. Environ. Earth Sci. 79, 1–10. https://doi.org/10.1007/s12665-020-08924-5 (2020).CAS
Article
Google Scholar
33.Xu, S. et al. Contents of heavy metals and PAHs and their relationships with magnetic susceptibility in soils of vegetable base in Fuzhou City. Chin. J. Environ. Eng. 11, 4861–4867. https://doi.org/10.12030/j.cjee.201607118 (2017).Article
Google Scholar
34.IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. https://doi.org/10.1017/S0014479706394902 (2014).35.Sanaullah, M., Razavi, B. S., Blagodatskaya, E. & Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fertil. Soils 52, 505–514. https://doi.org/10.1007/s00374-016-1094-8 (2016).CAS
Article
Google Scholar
36.Pritsch, K. et al. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microb. Met. 58, 233–241. https://doi.org/10.1016/j.mimet.2004.04.001 (2004).CAS
Article
Google Scholar
37.Turner, B. L. Variation in ph optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493. https://doi.org/10.1128/AEM.00560-10 (2010).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
38.Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil-I. Fumigation with chloroform. Soil Biol. Biochem. 8, 167–177. https://doi.org/10.1016/0038-0717(76)90001-8 (1976).CAS
Article
Google Scholar
39.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6 (1987).CAS
Article
Google Scholar
40.Dearing, J. A. Environmental Magnetic Susceptibility. Using the Bartington MS2 System 2nd edn. (Chi Publishing, 1999).
Google Scholar
41.Quenea, K., Lamy, I., Winterton, P., Bermond, A. & Dumat, C. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 1, 217–223. https://doi.org/10.1016/j.geoderma.2008.11.037 (2009).ADS
CAS
Article
Google Scholar
42.Yu, H., Xiao, H. & Wang, D. Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environ. Syst. Res. 3, 6. https://doi.org/10.1186/2193-2697-3-6 (2014).Article
Google Scholar
43.Singh, S. K. & Haritash, A. K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Inter. J. Environ. Sci. Technol. 16, 6489–6512. https://doi.org/10.1007/s13762-019-02414-3 (2019).CAS
Article
Google Scholar
44.Banach-Szott, M., Debska, B., Wisniewska, A. & Pakula, J. Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types. Environ. Sci. Pollut. Res. 22, 5059–5069. https://doi.org/10.1007/s11356-014-3901-9 (2015).CAS
Article
Google Scholar
45.Han, B., Ding, X., Bai, Z., Kong, S. & Guo, G. Source analysis of particulate matter associated polycyclic aromatic hydrocarbons (PAHs) in an industrial city in northeastern China. J. Environ. Monit. 13, 2597–2604. https://doi.org/10.1039/c1em10251f (2011).CAS
Article
PubMed
Google Scholar
46.Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 5, 169–195. https://doi.org/10.1007/s10311-007-0095-0 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
47.Fu, G., Kan, A. T. & Tomson, M. Adsorption and desorption hysteresis of pahs in surface sediment. Environ. Toxicol. Chem. 13, 1559–1567. https://doi.org/10.1002/etc.5620131003 (1994).CAS
Article
Google Scholar
48.Maliszewska-Kordybach, B. & Smreczak, B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ. Inter. 28, 719–728. https://doi.org/10.1016/S0160-4120(02)00117-4 (2003).CAS
Article
Google Scholar
49.Baran, S., Bielińska, J. E. & Oleszczuk, P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118, 221–232. https://doi.org/10.1016/S0016-7061(03)00205-2 (2004).ADS
CAS
Article
Google Scholar
50.Wang, C., Sun, H., Li, J., Li, Y. & Zhang, Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77, 733–738. https://doi.org/10.1016/j.chemosphere.2009.08.028 (2009).ADS
CAS
Article
PubMed
Google Scholar
51.Feng, Y. et al. Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol. Biochem. 35, 1693–1703. https://doi.org/10.1016/j.soilbio.2003.08.016 (2003).CAS
Article
Google Scholar
52.Dou, F., Wright, A. L., Mylavarapu, R. S., Jiang, X. & Matocha, J. E. Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping. Pedosphere 25, 618–625. https://doi.org/10.1016/S1002-0160(15)60070-4 (2016).CAS
Article
Google Scholar
53.Błońska, E., Lasota, J. & Gruba, P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. J. Soil Sci. Plant Nutr. 63, 242–247. https://doi.org/10.1080/00380768.2017.1326281 (2017).CAS
Article
Google Scholar
54.Shen, J. P., Zhang, L. M., Guo, J. F., Ray, J. L. & He, J. Z. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 46, 119–124. https://doi.org/10.1016/j.apsoil.2010.06.015 (2010).Article
Google Scholar
55.Li, J. et al. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. J. Integr. Agric. 14, 2500–2511. https://doi.org/10.1016/S2095-3119(15)61229-1 (2015).CAS
Article
Google Scholar
56.Riggs, C. E. & Hobbie, S. E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol. Biochem. 99, 54–65. https://doi.org/10.1016/j.soilbio.2016.04.023 (2016).CAS
Article
Google Scholar
57.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).Article
PubMed
Google Scholar
58.Kabata-Pendias, A. Trace Elements in Soils and Plants 4th Edn. https://doi.org/10.1201/b10158 (2010).59.Verla, E. N., Verla, A. W., Osisi, A. F., Okeke, P. N. & Enyoh, C. E. Finding a relationship between mobility factors of selected heavy metals and soil particle size in soils from children’s playgrounds. Environ. Monit. Assess. 191, 1–11. https://doi.org/10.1007/s10661-019-7937-7 (2019).CAS
Article
Google Scholar
60.Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 11, 121–127. https://doi.org/10.1016/0883-2927(95)00076-3 (1996).Article
Google Scholar
61.Lu, Z., Zeng, F., Xue, N. & Li, F. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site. Sci. Total Environ. 433, 50–57. https://doi.org/10.1016/j.scitotenv.2012.06.036 (2012).ADS
CAS
Article
PubMed
Google Scholar
62.Dearing, J. A. et al. Magnetic susceptibility of soil: An evaluation of conflicting theories using a national data set. Geophys. J. Int. 127, 728–734. https://doi.org/10.1111/j.1365-246X.1996.tb04051.x (1996).ADS
Article
Google Scholar
63.Hanesch, M. & Scholger, R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys. J. Int. 161, 50–56. https://doi.org/10.1111/j.1365-246X.2005.02577.x (2005).ADS
CAS
Article
Google Scholar
64.Blundell, A., Dearing, J. A., Boyle, J. F. & Hannam, J. A. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Sci. Rev. 95, 158–188. https://doi.org/10.1016/j.earscirev.2009.05.001 (2009).ADS
Article
Google Scholar
65.Alekseev, A., Alekseeva, T., Sokołowska, Z. & Hajnos, M. Magnetic and mineralogical properties of different granulometric fractions in the soils of the Lublin Upland Region. Int. Agrophys. 16, 1–6 (2001).
Google Scholar
66.Quijano, L., Chaparro, M. A. E., Marié, D. C., Gaspar, L. & Navas, A. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems. Geophys. J. Int. 198, 1805–1817. https://doi.org/10.1093/gji/ggu239 (2014).ADS
Article
Google Scholar More