More stories

  • in

    Study on environmental behaviour of fluopyram in different banana planting soil

    Chemicals and reagentsThe fluopyram standard was purchased from the Environmental Protection Monitoring Institute of the Ministry of Agriculture of China at a concentration of 1000 mg/L. Analytical grade acetonitrile, acetone, dichloromethane, and sodium chloride were purchased from the Guangzhou Chemical Reagent Factory. Chromatographic grade Methanol and n-hexane were available from Thermo Fisher Scientific. Purified water was prepared using a Milli-Q reverse osmosis system (Millipore, Milford, MA, USA). Strata Florisil (FL-PR) 500 mg/6 mL SPE manufactured by Strata™ (5.0 mL n-hexane–acetone (9:1, V/V) solution pre-rinsing cartridge).A standard solution of 1000 μg/mL fluopyram was diluted in n-hexane, and the matrix extract of the blank sample was obtained by the extraction method. The matrix standard solutions of 0.025, 0.05, 0.10, 0.15 and 0.50 μg/mL were obtained by the step dilution. All prepared solutions were stored at temperature of 4 °C until further use.Soil sample collectionHainan latosol was collected from the Bailian banana experimental base in Chengmai (Hainan), Yunnan sandy soil was collected from Taoyuan banana experimental base in Longtou Street, Kunming (Yunnan) and Fujian plain alluvial soil was collected from the Zhangzhou banana experimental base (Fujian). 5–10 soil sampling points were randomly selected in each banana experimental base; the soil samples were collected from depths of 0–10 cm, and debris such as gravel, weeds, and plant roots were removed from each sample. The soil samples were obtained by the quarter method after mixing, dried, and stored after 20 mesh screening.Extraction and purification of flupyramSoil sample extraction was conducted as follows: in a 200 mL conical flask, 20.0 g of the drying soil sample and 40.0 mL acetonitrile was added. After shaking on a reciprocating shaker for 2 h, the mixture was filtered through filter paper. The filtrate was transferred to a stoppered measuring cylinder with 6.0 g NaCl. The stopper was inserted, and the mixture was vigorously shaken for 2 min. The mixture was left at 25 ± 2 °C for more than 30 min to separate the acetonitrile and aqueous solutions. Meanwhile, 10.0 mL of the supernatant were accurately transferred into a 100 mL round-bottom flask and concentrated by a rotatory evaporator at 40 °C to near dryness, which was dissolved in a 5.0 mL n-hexane–acetone (9:1, v/v) solution, vortexed, and mixed well for purification.Water sample extraction is shown below. A 20 mL water sample was transferred to a separatory funnel with 40.0 mL dichloromethane. After vigorously shaking it for 2 min and then letting it stand for 30 min, the lower layer solution was collected in a 100 mL round-bottom flask. The collected fluid was concentrated by a rotatory evaporator at 40 °C to near dryness and dissolved in 5.0 mL n-hexane–acetone (9:1, v/v) solution, vortexed, and mixed well for purification.Sample purification is described below. A 5.0 mL n-hexane–acetone (9:1, v/v) was used to preach the Strata Florisil (FL-PR) 500 mg/6 mL extraction column. When the leaching solvent level reached the surface of the column adsorption layer, the solution sample was immediately poured into the column be purified. Then, the purified solution was collected in a 100 mL round-bottom flask. A 5.0 mL n-hexane–acetone (9:1, v/v) solution was used to rinse the round-bottom flask residuum, after which the rinse solution was applied to elute the Florisil column. The rinsing and elution steps were repeated three times. The collected fluid was concentrated by a rotatory evaporator at 40 °C to near dryness and dissolved in 2.5 mL n-hexane for analysis.Instrumental conditionThe test was performed using the Theomer DSQII gas chromatography-mass spectrometer (GC–MS) with Xcalibur 2.0, software for data acquisition and analysis. A SLB-5MS analytical column (30 m × 0.25 mm × 0.25 μm) was used as chromatographic column. The injection volume was 1 μL without split injection, the carrier gas was helium (He, ≥ 99.999% purity), and the carrier gas flow rate was set to 1.0 mL/min. The protective gas was nitrogen (N2, ≥ 99.999% purity), and the injection port temperature was 250 °C. The chromatographic column temperature program was set as follows: the initial temperature at 80 °C was maintained for 1 min; then it was raised to 240 °C at a speed of 20 °C/min and maintained for 3 min; finally, the temperature was raised at a rate of 50 °C/min until 280 °C, where it was maintained for 7 min.The MS was operated in electron ionisation (EI) mode with an ionising energy of 70 eV. MS data were acquired in both full scan (m/z 50–500) mode for identification and selected ion monitoring (SIM) mode for quantification. The temperatures of the ion source and transfer line were 250 °C and 280 °C, respectively. The retention time of fluopyram was 10.59 min. The quantifier ions were m/z 223, and the qualifier ions were m/z 195 and m/z 173.Analytical method validationFirst, we addressed the linearity. The matrix standard of fluopyram was prepared in the range of 0.025–0.50 μg/mL and the determination was carried out, with the concentration of fluopyram matrix standard solution as the abscissa and the peak area obtained from the GC–MS as the ordinate. Linearity was calculated by plotting the relationship between the concentration and the peak area.The sensitivity analysis relied on the LOD and the limit of quantitation (LOQ). To evaluate the sensitivity of the method, they were obtained by adding the standard solution of fluopyram at the lowest concentration level in line with the requirements of the analytical method for blank samples. The LOD was the corresponding concentration when the signal-to-noise ratio (S/N) was 3, and S/N = 10 corresponds to the LOQ.Accuracy and precision were estimated as well. To determine the reliability of the method, fluopyram standard solutions with different concentrations were added to the blank sample for the recovery experiment. Fluopyram standard solutions with concentrations of 0.008, 0.600, and 1.000 mg/kg were added to the blank samples. This procedure was repeated five times for each concentration. The samples were subjected to extract, purify and analysis under the method the same conditions as described above. The recovery was calculated for the accuracy of the method, and the RSD was calculated for the precision.Soil dissipation experimentIn a number of 100 mL clean and sterilized conical flasks with covers, 20.0 g of soil was added (net weight converted by water content); then, 0.1 mL 1000 μg/mL fluopyram standard solution was pipetted into the conical flasks. Ultrapure water was added. The water was controlled to occupy 60% of the total volume. The flasks were shaken on a constant temperature oscillator for 2 min to mix the fluopyram evenly. Then, they were placed in an artificial climate incubator and exposed to light at 25 ± 2 °C for 12 h per day. According to the different soil types, they were divided into three treatment groups: Hainan, Yunnan, and Fujian. Each treatment group had three parallels and three blanks. The detection intervals were 2 h, 1, 3, 7, 14, 21, 28, 42 and 60 day, while the detection of fluopyram was performed based on the interval according to the shown methods. The dissipation kinetics of fluopyram in banana planting soil conformed to the first-order kinetic equation Ct = C0e−kt, where Ct is a pesticide concentration (mg/kg) at different times (day), C0 is an initial concentration (mg/kg), and k is the dissipation rate constant. The half-life of fluopyram is determined using Eq. (1).$$T_{1/2} = , ln 2/k$$
    (1)
    Soil adsorption experimentUsing the oscillation balance method, 5.0 g of soil was put into the 250 mL conical flasks with cover, which contained 25 mL fluopyram aqueous solutions with mass concentrations of 0.02, 0.1, 0.5, 2.5 and 4.0 mg/L (containing 0.01 mol/L CaCl2), respectively. The soils were divided into three treatment groups: Hainan, Yunnan, and Fujian (based on the different soil types). The fluopyram aqueous solution and the blank soil aqueous solution (both containing 0.01 mol/L CaCl2) were used as controls. Each treatment group had three replicates. The conical flasks were then placed in a constant temperature oscillator at 25 ± 2 °C for 24 h to prepare the suspension. The suspension was transferred to a centrifuge tube for high-speed centrifugation, and 80% of the total volume of the supernatant was used for determination. The fluopyram in the supernatant was extracted and determined under the methods as described above, and the Freundlich equation model (see Eq. 2) was used to describe the adsorption law for fluopyram in soil.$${text{Freundlich: }}C_{s} = K_{f} times C_{e}^{1/n}$$
    (2)
    where Cs is adsorption content of pesticide in soil (mg/kg), Ce is concentration of the pesticide in aqueous solution at adsorption equilibrium (mg/L), Kf is the soil adsorption coefficient of the Freundlich model (L/kg), indicating the pesticide adsorption capacity of the soil and 1/n is a slope rate of the curve between Cs and Ce, reflecting the heterogeneity of the adsorbent surface.The relationship between the adsorption free energy of soil to pesticides (ΔG, kJ/mol) and the soil adsorption coefficient Koc is expressed using Eq. (3).$$Delta G , = – RTln K_{oc}$$
    (3)
    where Koc is the soil adsorption coefficient (Koc = Kf/OC × 100) expressed by organic carbon content (L/kg), OC is soil organic carbon content (%), R is the molar gas constant (J/K mol), and T is absolute temperature (K).Soil leaching experimentA plexiglass tube with an inner diameter of 5 cm and a length of 40 cm was used as a packed column. A layer of cotton, a 1 cm thick quartz sand layer, and a layer of filter paper were added at the bottom of the column. Dry soil (700–800.0 g) was weighed for filling, and the column was fully wetted with ultrapure water to prepare a 30 ± 0.2 cm high leaching soil column. 0.1 mL of 1000 μg/mL fluopyram solution was further added to 5.0 g of soil. After the solution completely volatilized, it was evenly spread on the top of the soil column, and a layer of filter paper and a layer of 1 cm thick quartz sand were added to the top of the soil. During the test, ultrapure water was used for washing the soil column for 10 h at a speed of 30 mL/h, and the leaching solution was collected. After washing, the soil column was removed and was cut into four sections of 1–5, 5–10, 10–20 and 20–30 cm. The residues of fluopyram in the soil samples and leaching solutions were extracted and determined under the methods as described above. According to the three soil types, they were divided into Hainan, Yunnan and Fujian treatment groups, where each group received another parallel treatment. More

  • in

    The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host

    1.Arbour, J. H. & Santana, S. E. A major shift in diversification rate helps explain macroevolutionary patterns in primate species diversity. Evolution 71, 1600–1613 (2017).PubMed 
    Article 

    Google Scholar 
    2.Groves, C. Primates (Taxonomy) in The International Encyclopedia of Primatology (ed Augustin Fuentes) (John Wiley & Sons, Inc., 2016).3.Cotton, A., Clark, F., Boubli, J. & Schwitzer, C. IUCN red list of threatened primate species in An Introduction to Primate Conservation 31–18 (Oxford University Press, 2016).
    Google Scholar 
    4.Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    5.West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85–98 (2019).Article 

    Google Scholar 
    6.Cunningham, A. A., Daszak, P. & Wood, J. L. N. One Health, emerging infectious diseases and wildlife: two decades of progress?. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160167 (2017).Article 

    Google Scholar 
    7.Ramey, A. M. & Ahlstrom, C. A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 56, 1–15 (2020).PubMed 
    Article 

    Google Scholar 
    8.Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys. Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).CAS 
    PubMed 

    Google Scholar 
    10.Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34–40 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Mahnert, A. et al. Man-made microbial resistances in built environments. Nat. Commun. 10, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    12.Amato, K. R. et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Glob. Ecol. Conserv. 7, 225–237 (2016).Article 

    Google Scholar 
    13.Zhu, H. et al. Diarrhea-associated intestinal microbiota in captive Sichuan golden snub-nosed monkeys (Rhinopithecus roxellana). Microbes Environ. ME17163 (2018).14.Campbell, T. P. et al. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 14, 1584–1599 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Buzzard, P. J. Ecological partitioning of Cercopithecus campbelli, C. petaurista, and C. diana in the Taï Forest. Int. J. Primatol. 27, 529–558 (2006).Article 

    Google Scholar 
    16.Chapman, C. A. et al. The guenons: diversity and adaptation in African monkeys. 325–350 (Springer, 2004).17.Krishnadas, M., Chandrasekhara, K. & Kumar, A. The response of the frugivorous lion-tailed macaque (Macaca silenus) to a period of fruit scarcity. Am. J. Primatol. 73, 1250–1260 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Swedell, L., Hailemeskel, G. & Schreier, A. Composition and seasonality of diet in wild hamadryas baboons: preliminary findings from Filoha. Folia Primatol. 79, 476–490 (2008).Article 

    Google Scholar 
    19.Basabose, A. K. Diet composition of chimpanzees inhabiting the montane forest of Kahuzi, Democratic Republic of Congo. Am. J. Primatol. 58, 1–21 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.McLennan, M. R. & Ganzhorn, J. U. Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. Int. J. Primatol. 38, 122–150 (2017).Article 

    Google Scholar 
    21.Newton-Fisher, N. E. The diet of chimpanzees in the Budongo Forest Reserve Uganda. Afr. J. Ecol. 37, 344–354 (1999).Article 

    Google Scholar 
    22.Bach, T. H., Chen, J., Hoang, M. D., Beng, K. C. & Nguyen, V. T. Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. Am. J. Primatol. 79, e22667 (2017).Article 

    Google Scholar 
    23.Fan, P.-F., Fei, H.-L., Scott, M. B., Zhang, W. & Ma, C.-Y. Habitat and food choice of the critically endangered cao vit gibbon (Nomascus nasutus) in China: implications for conservation. Biol. Conserv. 144, 2247–2254 (2011).Article 

    Google Scholar 
    24.Fan, P. F., Fei, H. L. & Ma, C. Y. Behavioral responses of cao vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi China. Am. J. Primatol. 74, 632–641 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.McConkey, K. R., Ario, A., Aldy, F. & Chivers, D. J. Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu Central Kalimantan. Int. J. Primatol. 24, 19–32 (2003).Article 

    Google Scholar 
    26.Amora, T. D., BeltrÃO-Mendes, R. & Ferrari, S. F. Use of alternative plant resources by common marmosets (Callithrix jacchus) in the semi-arid Caatinga scrub forests of northeastern Brazil. Am. J. Primatol. 75, 333–341 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Dietz, J. M., Peres, C. A. & Pinder, L. Foraging ecology and use of space in wild golden lion tamarins (Leontopithecus rosalia). Am. J. Primatol. 41, 289–305 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Garber, P. A. Feeding ecology and behaviour of the genus Saguinus. Marmosets and tamarins: systematics behaviour and ecology (1993).29.Heymann, E. W., Knogge, C. & Tirado Herrera, E. R. Vertebrate predation by sympatric tamarins, Saguinus mystax and Saguinus fuscicollis. Am. J. Primatol. 51, 153–158 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Porter, L. M. Dietary differences among sympatric Callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22, 961–992 (2001).Article 

    Google Scholar 
    31.Anapol, F. & Lee, S. Morphological adaptation to diet in platyrrhine primates. Am. J. Phys. Anthropol. 94, 239–261 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Nash, L. T. Dietary, behavioral, and morphological aspects of gummivory in primates. Am. J. Phys. Anthropol. 29, 113–137 (1986).Article 

    Google Scholar 
    33.Abreu, F., De la Fuente, M. F. C., Schiel, N. & Souto, A. Feeding ecology and behavioral adjustments: flexibility of a small neotropical primate (Callithrix jacchus) to survive in a semiarid environment. Mammal Res. 61, 221–229 (2016).Article 

    Google Scholar 
    34.Cunha, A. A., Vieira, M. V. & Grelle, C. E. V. Preliminary observations on habitat, support use and diet in two non-native primates in an urban Atlantic forest fragment: the capuchin monkey (Cebus sp.) and the common marmoset (Callithrix jacchus) in the Tijuca forest Rio de Janeiro. Urban Ecosyst. 9, 351–359 (2006).Article 

    Google Scholar 
    35.Passamani, M. & Rylands, A. B. Feeding behavior of Geoffroy’s marmoset (Callithrix geoffroyi) in an Atlantic forest fragment of south-eastern Brazil. Primates 41, 27–38 (2000).PubMed 
    Article 

    Google Scholar 
    36.Veracini, C. Habitat use and ranging behavior of the silvery marmoset (Mico argentatus) at Caxiuanã National Forest (eastern Brazilian Amazonia) in The smallest anthropoids 221–240 (Springer, 2009).37.Yépez, P., De La Torre, S. & Snowdon, C. T. Interpopulation differences in exudate feeding of pygmy marmosets in Ecuadorian Amazonia. Am. J. Primatol. 66, 145–158 (2005).PubMed 
    Article 

    Google Scholar 
    38.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed 
    Article 

    Google Scholar 
    39.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R. & Amato, K. R. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 81, e23061 (2019).PubMed 
    Article 

    Google Scholar 
    41.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Lugli, G. A. et al. Evolutionary development and co‐phylogeny of primate‐associated bifidobacteria. Environ. Microbiol. (2020).43.Milani, C. et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 11, 2834–2847 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Lugli, G. A. et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genom. 18, 568 (2017).Article 
    CAS 

    Google Scholar 
    45.Pokusaeva, K., Fitzgerald, G. F. & van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6, 285–306 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Neuzil-Bunesova, V. et al. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int. J. Syst. Evol. Microbiol. (2020).49.Duranti, S. et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. Nov. and Bifidobacterium leontopitheci sp. nov.. Int. J. Syst. Evol. Microbiol. 70, 2288–2297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Modesto, M. et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst. Appl. Microbiol. (2018).51.Neuzil-Bunesova, V. et al. Bifidobacterium canis sp nov a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris). Int. J. Syst. Evol. Microbiol. 70, 5040–5047 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Vlková, E. et al. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 34, 27–33 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).
    Google Scholar 
    54.WagnerMackenzie, B. et al. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 19, 381–392 (2017).CAS 
    Article 

    Google Scholar 
    55.Arboleya, S., Watkins, C., Stanton, C. & Ross, R. P. Gut bifidobacteria populations in human health and aging. Front. Microbiol. 7 (2016).56.Binda, C. et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 50, 421–428 (2018).MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Tojo, R. et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Rodriguez, C. I. & Martiny, J. B. H. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genom. 21, 1–12 (2020).Article 

    Google Scholar 
    59.Sharma, V., Mobeen, F. & Prakash, T. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes 9, 477 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Sun, Z. et al. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium. a snapshot of its genetic diversity and evolution. PLoS One 10, 0117912 (2015).
    Google Scholar 
    61.Frey, J. C. et al. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 72, 3788–3792 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Makovska, M., Modrackova, N., Bolechova, P., Drnkova, B. & Neuzil-Bunesova, V. Antibiotic susceptibility screening of primate-associated Clostridium ventriculi. Anaerobe, 102347 (2021).63.Ushida, K. et al. Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Genome announcements 4 (2016).64.Owens, L. A. et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat. Commun. 12, 1–16 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    65.Vlková, E., Rada, V., Šmehilová, M. & Killer, J. Auto-aggregation and co-aggregation ability in bifidobacteria and clostridia. Folia Microbiol. 53, 263–269 (2008).Article 
    CAS 

    Google Scholar 
    66.Wang, L. et al. Adhesive Bifidobacterium induced changes in cecal microbiome alleviated constipation in mice. Front. Microbiol. 10, 1721 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Wei, Y. et al. Protective effects of bifidobacterial strains against toxigenic Clostridium difficile. Front. Microbiol. 9, 888 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nature Commun. 10, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    69.Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. Open Biol. 9, 190128 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Korpela, K. et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 6, 1–11 (2018).Article 

    Google Scholar 
    71.Timperio, A. M., Gorrasi, S., Zolla, L. & Fenice, M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PloS One 12, 0181860 (2017).Article 
    CAS 

    Google Scholar 
    72.Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Brown, C. J. et al. Comparative genomics of Bifidobacterium species isolated from marmosets and humans. Am. J. Primatol. 81, e983 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Killer, J. et al. Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. MicrobiologyOpen 7, e00579 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Milani, C. et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol. Ecol. 90, 493–503 (2014).CAS 
    PubMed 

    Google Scholar 
    76.Srinivasan, R. et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS One 10, e0117617 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Maiden, M. C. J. et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Rev. Microbiol. 11, 728–736 (2013).CAS 
    Article 

    Google Scholar 
    78.Lugli, G. A. et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst. Appl. Microbiol. 41, 173–183 (2018).PubMed 
    Article 

    Google Scholar 
    79.Malukiewicz, J. et al. The effects of host taxon, hybridization, and environment on the gut microbiome of Callithrix marmosets. BioRxiv, 708255 (2019).80.Amato, K. R. et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia 180, 717–733 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Hernández‐Rodríguez, D., Vásquez‐Aguilar, A. A., Serio‐Silva, J. C., Rebollar, E. A. & Azaola‐Espinosa, A. Molecular detection of Bifidobacterium spp. in faeces of black howler monkeys (Alouatta pigra). J. Med. Primatol. 48, 99–105 (2019).82.Zhu, L. et al. Sex bias in gut microbiome transmission in newly paired marmosets (Callithrix jacchus). Msystems 5, e00910-00919 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Kap, Y. S. et al. Targeted diet modification reduces multiple sclerosis–like disease in adult marmoset monkeys from an outbred colony. J. Immunol. 201, 3229–3243 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Ren, T., Grieneisen, L. E., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016).PubMed 
    Article 

    Google Scholar 
    85.Xu, B. et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genom. 16, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    86.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Killer, J. et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int. J. Syst. Evol. Microbiol. 61, 1315–1321 (2011).88.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Garber, P. A., Mallott, E. K., Porter, L. M. & Gomez, A. The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small‐bodied primate. Am. J. Primatol. 81, e23003 (2019).90.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 1–16 (2018).CAS 
    Article 

    Google Scholar 
    92.Koo, B. S. et al. Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis). J. Med. Primatol. 49, 56–59 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Krynak, K. L., Burke, D. J., Martin, R. A. & Dennis, P. M. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). FEMS Microbiol. Lett. 364 (2017).94.Modrackova, N. et al. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact. Carbohydr. Diet. Fibre 20, 100199 (2019).95.McKenzie, V. J., Kueneman, J. G. & Harris, R. N. Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann. N. Y. Acad. Sci. 1429, 18–30 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1–18 (2018).CAS 
    Article 

    Google Scholar 
    97.Hungate, R. E. & Macy, J. The roll-tube method for cultivation of strict anaerobes. Bulletins from the ecological research committee, 123–126 (1973).98.Rada, V. & Petr, J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods 43, 127–132 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Orban, J. I. & Patterson, J. A. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J. Microbiol. Methods 40, 221–224 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Kim, B. J., Kim, H.-Y., Yun, Y.-J., Kim, B.-J. & Kook, Y.-H. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int. J. Syst. Evol. Microbiol. 60, 2697–2704 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 41 edn 95–98 ([London]: Information Retrieval Ltd., c1979-c2000.).102.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Ress 41, D590–D596 (2012).Article 
    CAS 

    Google Scholar 
    105.Shannon, C. E. & Weaver, W. The mathematical theory of information. Urbana: University of Illinois Press 97 (1949).106.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    107.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    108.fundamental algorithms for scientific computing in Python. Virtanen, P. et al. SciPy 1.0. Nat. Methods 17, 261–272 (2020).Article 
    CAS 

    Google Scholar 
    109.Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python in Proceedings of the 9th Python in Science Conference 57 (Austin, TX, 2010).110.MacKinnon, J. G. & White, H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. J. Econom. 29, 305–325 (1985).Article 

    Google Scholar  More

  • in

    Data sharing practices and data availability upon request differ across scientific disciplines

    Our study uniquely points to differences among scientific disciplines in data availability as published along with the article and upon request from the authors. We demonstrate that in several disciplines such as forestry, materials for energy and catalysis and psychology, critical data are still unavailable for re-analysis or meta-analysis for more than half of the papers published in Nature and Science in the last decade. These overall figures roughly match those reported for other journals in various research fields8,11,13,22, but exceed the lowest reported values of around 10% available data13,23,24. Fortunately, data availability tends to improve, albeit slowly, in nearly all disciplines (Figs. 3, 7), which confirms recent implications from psychological and ecological journals13,31. Furthermore, the reverse trend we observed in microbiology corroborates the declining metagenomics sequence data availability22. Typically, such large DNA sequence data sets are used to publish tens of articles over many years by the teams producing these data; hence releasing both raw data and datasets may jeopardise their expectations of priority publishing. The weak discipline-specific differences among Nature and Science (Fig. 2) may be related to how certain subject editors implemented and enforced stringent data sharing policies.After rigorous attempts to contact the authors, data availability increased by one third on average across disciplines, with full and at least partial availability reaching 70% and 83%, respectively. These figures are in the top end of studies conducted thus far8,22 and indicate the relatively superior overall data availability in Science and Nature compared with other journals. However, the relative rates of data retrieval upon request, decline sharing data and ignoring the requests were on par with studies covering other journals and specific research fields10,12,25,26,28. Across 20 years, we identified the overall loss of data at an estimated rate of 3.5% and 5.9% for initially available data and data effectively available upon request, respectively. This rate of data decay is much less than 17% year−1 previously reported in plant and animal sciences based on a comparable approach24.While the majority of data are eventually available, it is alarming that less than a half of the data clearly stated to be available upon request could be effectively obtained from the authors. Although there may be objective reasons such as force majeure, these results suggest that many authors declaring data availability upon contacting may have abused the publishers’ or funders’ policy that allows statements of data availability upon request as the only means of data sharing. We find that this infringes research ethics and disables fair competition among research groups. Researchers hiding their own data may be in a power position compared with fair players in situations of big data analysis, when they can access all data (including their own), while others have more limited opportunities. Data sharing is also important for securing a possibility to re-analyse and re-interpret unexpected results9,32 and detect scientific misconduct25,33. More rigorous control of data release would prevent manuscripts with serious issues in sampling design or analytical procedures from being prepared, reviewed and eventually accepted for publication.Our study uniquely recorded the authors’ concerns and specific requests when negotiating data sharing. Concerns and hesitations about data sharing are understandable because of potential drawbacks and misunderstandings related to data interpretation and priority of publishing17,34 that may outweigh the benefits of recognition and passive participation in broader meta-studies. Nearly one quarter of researchers expressed various concerns or had specific requests depending on the discipline, especially about the specific objectives of our study. Previous studies with questionnaires about hypothetical data sharing unrelated to actual data sharing reveal that financial interests, priority of additional publishing and fear of challenging the interpretations after data re-analysis constitute the authors’ major concerns12,35,36. Another study indicated that two thirds of researchers sharing biomedical data expected to be invited as co-authors upon use of their data37 although this does not fulfil the authorship criteria6,38. At least partly related to these issues, the reasons for declining data sharing differed among disciplines: while social scientists usually referred to the loss of data, psychologists most commonly pointed out ethical/legal issues. Recently published data were, however, more commonly declined due to ethical/legal issues, which indicates rising concerns about data protection and potential misuse. Although we offered a possibility to share anonymised data sets, such trimmed data sets were never obtained from the authors, suggesting that ethical issues were not the only reason for data decline. Because research fields strongly differed in the frequency of no response to data requests, most unanswered requests can be considered declines that avoid official replies, which may harm the authors’ reputation.Because we did not sample randomly across journals, our interpretations are limited to the journals Nature and Science. Our study across disciplines did not account for the particular academic editor, which may have partly contributed to the differences among research fields and journals. Not all combinations of disciplines, journals and time periods received the intended 25 replicate articles because of the poor representation of certain research fields in the 2000–2009 period. This may have reduced our ability to detect statistically significant differences among the disciplines. We also obtained estimates for the final data availability for seven out of nine disciplines. Although we excluded the remaining two disciplines from comparisons of initial and final data availability, it may have slightly altered the overall estimates. The process of screening the potentially relevant articles chronologically backwards resulted in overrepresentation of more recent articles in certain relatively popular disciplines, which may have biased comparisons across disciplines. However, the paucity of residual year effect and year x discipline interaction in overall models and residual time effect in separate analyses within research fields indicate a minimal bias (Figure S1).We recorded the concerns and requests of authors that had issues with initial data sharing. Therefore, these responses may be relatively more sceptic than the opinions of the majority of the scientific community publishing in these journals. It is likely that the authors who did not respond may have concerns and reasons for declining similar to those who refused data sharing.Our experience shows that receiving data typically required long email exchanges with the authors, contacting other referred authors or sending a reminder. Obtaining data took on average 15 days, representing a substantial effort to both parties39. This could have been easily avoided by releasing data upon article acceptance. On the other hand, we received tips for analysis, caution against potential pitfalls and the authors’ informed consent upon contacting. According to our experience, more than two thirds of the authors need to be contacted for retrieving important metadata, variance estimates or specifying methods for meta-analyses40. Thus, contacting the authors may be commonly required to fill gaps in the data, but such extra specifications are easier to provide compared with searching and converting old datasets into a universally understandable format.Due to various concerns and tedious data re-formatting and uploading, the authors should be better motivated for data sharing41. Data formatting and releasing certainly benefits from clear instructions and support from funders, institutions and publishers. In certain cases, public recognition such as badges of open data for articles following the best data sharing practices and increasing numbers of citations may promote data release by an order of magnitude42. Citable data papers are certainly another way forward43,44, because these provide access to a well-organised dataset and add to the authors’ publication record. Encouraging enlisting published data sets with download and citation metrics in grant and job applications alongside with other bibliometric indicators should promote data sharing. Relating released data in publicly available research accounts such as ORCID, ResearcherID and Google Scholar would benefit both authors, other researchers and evaluators. To account for many authors’ fear of data theft17 and to prioritise the publishing options of data owners, setting a reasonable embargo period for third-party publishing may be needed in specific cases such as immediate data release following data generation45 and dissertations.All funders, research institutions, researchers, editors and publishers should collectively contribute to turn data sharing into a win-win situation for all parties and the scientific endeavour in general. Funding agencies may have a key role here due to the lack of conflicting interests and a possibility of exclusive allocation to depositing and publishing huge data files46. Funders have efficient enforcing mechanisms during reports periods, with an option to refuse extensions or approving forthcoming grant applications. We advocate that funders should include published data sets, if relevant, as an evaluation criterion besides other bibliometric information. Research institutions may follow the same principles when issuing institutional grants and employing research staff. Institutions should also insist their employees on following open data policies45.Academic publishers also have a major role in shaping data sharing policies. Although deposition and maintenance of data incur extra costs to commercial publishers, they should promote data deposition in their servers or public repositories. An option is to hire specific data editors for evaluating data availability in supplementary materials or online repositories and refusing final publishing before the data are fully available in a relevant format47. For efficient handling, clear instructions and a machine-readable data availability statement option (with a QR code or link to the data) should be provided. In non-open access journals, the data should be accessible free of charge or at reduced price to unsubscribed users. Creating specific data journals or ‘data paper’ formats may promote publishing and sharing data that would otherwise pile up in the drawer because of disappointing results or the lack of time for preparing a regular article. The leading scientometrics platforms Clarivate Analytics, Google Scholar and Scopus should index data journals equally with regular journals to motivate researchers publishing their data. There should be a possibility of article withdrawal by the publisher, if the data availability statements are incorrect or the data have been removed post-acceptance30. Much of the workload should stay on the editors who are paid by the supporting association, institution or publisher in most cases. The editors should grant the referees access to these data during the reviewing process48, requesting them a second opinion about data availability and reasons for declining to do so. Similar stringent data sharing policies are increasingly implemented by various journals26,30,47.In conclusion, data availability in top scientific journals differs strongly by discipline, but it is improving in most research fields. As our study exemplifies, the ‘data availability upon request’ model is insufficient to ensure access to datasets and other critical materials. Considering the overall data availability patterns, authors’ concerns and reasons for declining data sharing, we advocate that (a) data releasing costs ought to be covered by funders; (b) shared data and the associated bibliometric records should be included in the evaluation of job and grant applications; and (c) data sharing enforcement should be led by both funding agencies and academic publishers. More

  • in

    Comparative assessment of amino acids composition in two types of marine fish silage

    Degree of hydrolysisOrganic silages prepared from fat fish (FFS) and lean fish (LFS) had a characteristic tawny brown colour which was accompanied with a strong characteristic salty-fishy odour. At the end of 5 DoF, both FFS and LFS exhibited sluggish liquefaction which increased progressively concomitant with the DoF (Table S1). Liquefaction is an indicator of tissue hydrolysis due to the action of acid. During 35 DoF, the degree of hydrolysis (measured in terms of liquefaction volume) increased progressively with the DoF in both types of ensilages and was relatively higher in LFS compared to FFS on all sampled DoF (Table S1). In general, lipolysis supersedes the proteolysis in all major biochemical processes23. A relatively higher degree of hydrolysis recorded in LFS may be attributed to the presence of a greater proportion of light muscles compared to dark muscles. Relatively greater susceptibility of light muscles to hydrolysis compared to dark muscles might be due to lower lipid content in the former23.Irrespective of fish type, the measured pH values in both types of ensilages (FFS and LFS) were similar (data not shown) and the values showed a progressive increase from 1.0 ± 0.03 (0 DoF) to 6.0 ± 0.03 (35 DoF). Such an increasing trend in pH with the advancement in DoF could be attributable to gradual solubilisation of boney material with the advancement fermentation time24,25,26.Changes in principal biochemical constituentsDuring the 35 DoF, the concentrations of total protein (TP) in both FFS and LFS progressively increased with the DoF and showed significant differences with the advancement of DoF (p  phenylalanine (2.6 ± 0.033)  > serine (2.4 ± 0.033)  > aspartic acid (2.3 ± 0.033)  > alanine (2.1 ± 0.033)  > histidine (1.8 ± 0.033)  > valine (1.6 ± 0.033)  > methionine (1.5 ± 0.033)  > isoleucine (1.5 ± 0.033)  > threonine (1.4 ± 0.033)  > cysteine (0.946 ± 0.033).Figure 1Composition of total amino acids (mg/g) in two types of fish ensilages (FFS—fat fish silage; LFS—lean fish silage) during 35 days of fermentation (DoF). Data are mean ± SD. * p  glutamic acid (4.97 ± 0.033)  > arginine (4.5 ± 0.033)  > phenylalanine (3.38 ± 0.033)  > aspartic acid (2.92 ± 0.033)  > alanine (2.23 ± 0.033)  > methionine (2.19 ± 0.033)  > lysine (1.882 ± 0.033)  > serine (1.881 ± 0.033)  > tyrosine (1.410 ± 0.033)  > glycine (1.219 ± 0.033)  > threonine (0.953 ± 0.033)  > valine (0.945 ± 0.033)  > isoleucine (0.864 ± 0.033)  > histidine (0.417 ± 0.033).A comparative assessment of profiles of TAA in both FSS and LFS during all DoF revealed a similar pattern, albeit with obvious differences in the concentration of few amino acids (Fig. 1). It has been hypothesised that the occurrence of decarboxylation that follows transamination of amino acids as a consequence of increase in pH during fermentation is known to cause a decrement in the concentration of few amino acids, especially valine and isoleucine34. During the present study, the concentrations of histidine, valine, isoleucine, glycine and lysine were significantly higher (p  leucine (3.09 ± 0.003)  > glutamic acid (2.61 ± 0.003)  > alanine (1.83 ± 0.003)  > phenylalanine (1.79 ± 0.003)  > cysteine (1.67 ± 0.003)  > histidine (1.56 ± 0.003)  > aspartic acid (1.54 ± 0.003)  > serine (1.32 ± 0.003)  > lysine (1.16 ± 0.003)  > threonine (1.09 ± 0.003)  > valine (1.07 ± 0.003)  > isoleucine (1.06 ± 0.003) followed by methionine (0.93 ± 0.003)  > tyrosine (0.92 ± 0.003)  > tryptophan (0.72 ± 0.003)  > asparagine (0.57 ± 0.003)  > glutamine (0.15 ± 0.003).Figure 2Composition of free amino acids (mg/g) in two types of fish ensilages (FFS—fat fish silage; LFS—lean fish silage) during 35 days of fermentation (DoF). Data are mean ± SD. * p  More

  • in

    Early life neonicotinoid exposure results in proximal benefits and ultimate carryover effects

    1.Mineau, P. & Palmer, C. Neonicotinoid Insecticides and Birds: The Impact of the Nation’s Most Widely Used Insecticides on Birds. (American Bird Conservancy, USA, 2013).2.Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34. https://doi.org/10.1007/s11356-014-3470-y (2015).CAS 
    Article 

    Google Scholar 
    3.Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59, 2897–2908. https://doi.org/10.1021/jf101303g (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Tomizawa, M. & Casida, J. E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotining receptors. Annu. Rev. Entomol. 48, 339–364. https://doi.org/10.1146/annurev.ento.48.091801.112731 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 1–8. https://doi.org/10.1038/ncomms12459 (2016).CAS 
    Article 

    Google Scholar 
    6.Pisa, L. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. 28, 1–49. https://doi.org/10.1007/s11356-017-0341-3 (2017).CAS 
    Article 

    Google Scholar 
    7.Li, Y., Miao, R. & Khanna, M. Neonicotinoids and decline in bird biodiversity in the United States. Nat. Sustain. 3, 1027–1035. https://doi.org/10.1038/s41893-020-0582-x (2020).Article 

    Google Scholar 
    8.Eng, M. L., Stutchbury, B. J. & Morrissey, C. A. Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci. Rep. 7, 1. https://doi.org/10.1038/s41598-017-15446-x (2017).CAS 
    Article 

    Google Scholar 
    9.Eng, M. L., Stutchbury, B. J. & Morrissey, C. A. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 80(365), 1177–1180. https://doi.org/10.1126/science.aaw9419 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Lopez-Antia, A., Ortiz-Santaliestra, M. E., Mougeot, F. & Mateo, R. Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ. Res. 136, 97–107. https://doi.org/10.1016/j.envres.2014.10.023 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Pandey, S. P. & Mohanty, B. The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary-thyroid axis of a wildlife bird. Chemosphere 122, 227–234. https://doi.org/10.1016/j.chemosphere.2014.11.061 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Tokumoto, J. et al. Effects of exposure to clothianidin on the reproductive system of male quails. J. Vet. Med. Sci. 75, 755–760. https://doi.org/10.1292/jvms.12-0544 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Addy-Orduna, L. M., Brodeur, J. C. & Mateo, R. Oral acute toxicity of imidacloprid, thiamethoxam and clothianidin in eared doves: A contribution for the risk assessment of neonicotinoids in birds. Sci. Total Environ. 650, 1216–1223. https://doi.org/10.1016/j.scitotenv.2018.09.112 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Berheim, E. H. et al. Effects of Neonicotinoid Insecticides on Physiology and Reproductive Characteristics of Captive Female and Fawn White-tailed Deer. Sci. Rep. 9, 1–10. https://doi.org/10.1038/s41598-019-40994-9 (2019).CAS 
    Article 

    Google Scholar 
    15.Wang, Y. et al. Unraveling the toxic effects of neonicotinoid insecticides on the thyroid endocrine system of lizards. Environ. Pollut. 258, 113731. https://doi.org/10.1016/j.envpol.2019.113731 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Khalil, S. R., Awad, A., Mohammed, H. H. & Nassan, M. A. Imidacloprid insecticide exposure induces stress and disrupts glucose homeostasis in male rats. Environ. Toxicol. Pharmacol. 55, 165–174. https://doi.org/10.1016/j.etap.2017.08.017 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Abou-Donia, M. B. et al. Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J. Toxicol. Environ. Heal. – Part A Curr. Issues 71, 119–130. https://doi.org/10.1080/15287390701613140 (2008).CAS 
    Article 

    Google Scholar 
    18.Gawade, L., Dadarkar, S. S., Husain, R. & Gatne, M. A detailed study of developmental immunotoxicity of imidacloprid in Wistar rats. Food Chem. Toxicol. 51, 61–70. https://doi.org/10.1016/j.fct.2012.09.009 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Mohanty, B., Pandey, S. P. & Tsutsui, K. Thyroid disrupting pesticides impair the hypothalamic-pituitary-testicular axis of a wildlife bird. Amandava amandava. Reprod. Toxicol. 71, 32–41. https://doi.org/10.1016/j.reprotox.2017.04.006 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Sun, Q. et al. Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPK(alpha)-Mediated Pathway. J. Agric. Food Chem. 65, 6572–6581. https://doi.org/10.1021/acs.jafc.7b02584 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J. Agric. Food Chem. 64, 9293–9306. https://doi.org/10.1021/acs.jafc.6b04322 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Park, Y. et al. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 61, 255–259. https://doi.org/10.1021/jf3039814 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Ricklefs, R. E., Stark, J. M. & Konarzewski, M. Internal constraints on growth in birds. in Avian Growth and Development. Evolution within the Altricial-Precocial Spectrum (eds Starck, J. M. & Ricklefs, R.E.) 266–287 (Oxford Ornithology Series, Oxford, 1998).
    Google Scholar 
    24.Bobek, S., Jastrzebski, M. & Pietras, M. Age-related changes in oxygen consumption and plasma thyroid hormone concentration in the young chicken. Gen. Comput. Endocrinol. 31, 169–174. https://doi.org/10.1016/0016-6480(77)90014-4 (1977).CAS 
    Article 

    Google Scholar 
    25.Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: Grow now, pay later?. Trends Ecol. Evol. 16, 254–260. https://doi.org/10.1016/S0169-5347(01)02124-3 (2001).Article 
    PubMed 

    Google Scholar 
    26.Criscuolo, F., Monaghan, P., Nasir, L. & Metcalfe, N. B. Early nutrition and phenotypic development: “catch-up” growth leads to elevated metabolic rate in adulthood. Proc. Biol. Sci. 275(1642), 1565–1570. https://doi.org/10.1098/rspb.2008.0148 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B Biol. Sci. 363, 1635–1645. https://doi.org/10.1098/rstb.2007.0011 (2008).Article 

    Google Scholar 
    28.Lee, W. S., Monaghan, P. & Metcalfe, N. B. The pattern of early growth trajectories affects adult breeding performance. Ecology 93, 902–912. https://doi.org/10.1890/11-0890.1 (2012).Article 
    PubMed 

    Google Scholar 
    29.Zera, A. J. & Harshman, L. G. The Physiology of Life History Trade-Offs in Animals. Annu. Rev. Ecol. Syst. 32, 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006 (2001).Article 

    Google Scholar 
    30.Botías, C., David, A., Hill, E. M. & Goulson, D. Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ. Pollut. 222, 73–82. https://doi.org/10.1016/j.envpol.2017.01.001 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Hladik, M. L. & Kolpin, D. W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ. Chem. 13, 12. https://doi.org/10.1071/EN15061 (2016).CAS 
    Article 

    Google Scholar 
    32.Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.McNabb, F. M. A. The hypothalamic-pituitary-thyroid (HPT) axis in birds and its role in bird development and reproduction. Crit. Rev. Toxicol. 37(1–2), 163–193. https://doi.org/10.1080/10408440601123552 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Gobeli, A., Crossley, D., Johnson, J. & Reyna, K. The effects of neonicotinoid exposure on embryonic development and organ mass in northern bobwhite quail (Colinus virginianus). Comp. Biochem. Physiol. Part – C Toxicol. Pharmacol. 195, 9–15. https://doi.org/10.1016/j.cbpc.2017.02.001 (2017).CAS 
    Article 

    Google Scholar 
    35.Mineau, P. & Callaghan, C. Neonicotinoid insecticides and bats: an assessment of the direct and indirect risks. (Canadian Wildlife Federation, 2018).36.Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 75, 13–30. https://doi.org/10.1016/S0167-8809(99)00064-X (1999).Article 

    Google Scholar 
    37.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).Article 

    Google Scholar 
    38.Spencer, K., Buchanan, K., Goldsmith, A. & Catchpole, C. Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm. Behav. 44, 132–139. https://doi.org/10.1016/S0018-506X(03)00124-7 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Ayyanath, M.-M., Cutler, G. C., Scott-Dupree, C. D. & Sibley, P. K. Transgenerational Shifts in Reproduction Hormesis in Green Peach Aphid Exposed to Low Concentrations of Imidacloprid. PLoS One 8, e74532. https://doi.org/10.1371/journal.pone.0074532 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Calabrese, E. J. & Baldwin, L. A. Toxicology rethinks its central belief. Nature 421, 691–692. https://doi.org/10.1038/421691a (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Lopez-Antia, A., Ortiz-Santaliestra, M. E., Mougeot, F. & Mateo, R. Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole. Ecotoxicology 22, 125–138. https://doi.org/10.1007/s10646-012-1009-x (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Rix, R. R., Ayyanath, M. M. & Christopher Cutler, G. Sublethal concentrations of imidacloprid increase reproduction, alter expression of detoxification genes, and prime Myzus persicae for subsequent stress. J. Pest Sci. (2004) 89, 581–589. https://doi.org/10.1007/s10340-015-0716-5 (2016).Article 

    Google Scholar 
    43.von Engelhardt, N. & Groothuis, T. G. G. Maternal hormones in avian eggs. in Hormones and Reproduction of Vertebrates: Birds, 1st edn. (eds Norris, D. & Lopez, K.) 91–127. https://doi.org/10.1016/C2009-0-01697-3 (Academic Press, 2011).Chapter 

    Google Scholar 
    44.Hulbert, A. J. Thyroid hormones and their effects: A new perspective. Biol. Rev. Camb. Philos. Soc. 75, 519–631. https://doi.org/10.1017/s146479310000556x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Darras, V. M. et al. Partial Food Restriction Increases Hepatic Inner Ring Deiodinating Activity in the Chicken and the Rat. Gen. Comp. Endocrinol. 100, 334–338. https://doi.org/10.1006/gcen.1995.1164 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Klandorf, H. & Harvey, S. Food intake regulation of circulating thyroid hormones in domestic fowl. Gen. Comp. Endocrinol. 60, 162–170. https://doi.org/10.1016/0016-6480(85)90310-7 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Reyns, G. E., Janssens, K. A., Buyse, J., Kühn, E. R. & Darras, V. M. Changes in thyroid hormone levels in chicken liver during fasting and refeeding. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132(1), 239–245. https://doi.org/10.1016/s1096-4959(01)00528-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Harvey, S. & Klandorf, H. Reduced adrenocortical function and increased thyroid function in fasted and refed chickens. J. Endocrinol. 98, 129–135. https://doi.org/10.1677/joe.0.0980129 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Rimbach, R., Pillay, N. & Schradin, C. Both thyroid hormone levels and resting metabolic rate decrease in African striped mice when food availability decreases. J. Exp. Biol. 220, 837–843. https://doi.org/10.1242/jeb.151449 (2017).Article 
    PubMed 

    Google Scholar 
    50.Scott, I. & Evans, P. R. The metabolic output of avian (Sturnus vulgaris, Calidris alpina) adipose tissue liver and skeletal muscle: Implications for BMR/body mass relationships. Comp. Biochem. Physiol. Comp. Physiol. 103(2), 329–332. https://doi.org/10.1016/0300-9629(92)90589-I (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Mesnage, R., Biserni, M., Genkova, D., Wesolowski, L. & Antoniou, M. N. Evaluation of neonicotinoid insecticides for oestrogenic, thyroidogenic and adipogenic activity reveals imidacloprid causes lipid accumulation. J. Appl. Toxicol. 38, 1483–1491. https://doi.org/10.1002/jat.3651 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14(9), 343–348. https://doi.org/10.1016/S0169-5347(99)01639-0 (1999).Article 
    PubMed 

    Google Scholar 
    53.Vézina, F., Love, O. P., Lessard, M. & Williams, T. D. Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol. Biochem. Zool. 82, 248–257. https://doi.org/10.1086/597548 (2009).Article 
    PubMed 

    Google Scholar 
    54.Swanson, D. L., Mckechnie, A. E. & Vézina, F. How low can you go ? An adaptive energetic framew ork for interpreting basal metabolic rate variation in endotherms. J. Comp. Physiol. B 187, 1039–1056. https://doi.org/10.1007/s00360-017-1096-3 (2017).Article 
    PubMed 

    Google Scholar 
    55.Hao, C., Eng, M. L., Sun, F. & Morrissey, C. A. Part-per-trillion LC-MS/MS determination of neonicotinoids in small volumes of songbird plasma. Sci. Total Environ. 644, 1080–1087. https://doi.org/10.1016/j.scitotenv.2018.06.317 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Taliansky-Chamudis, A., Gómez-Ramírez, P., León-Ortega, M. & García-Fernández, A. J. Validation of a QuECheRS method for analysis of neonicotinoids in small volumes of blood and assessment of exposure in Eurasian eagle owl (Bubo bubo) nestlings. Sci. Total Environ. 595, 93–100. https://doi.org/10.1016/j.scitotenv.2017.03.246 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Lemon, W. C. The energetics of lifetime reproductive success in the zebra finch Taeniopygia guttata. Physiol. Zool. 66, 946–963. https://doi.org/10.1086/physzool.66.6.30163748 (1993).Article 

    Google Scholar 
    58.Chastel, O., Lacroix, A. & Kersten, M. Pre-breeding energy requirements: thyroid hormone, metabolism and the timing of reproduction in house sparrows (Passer domesticus). J. Avian Biol. 34, 298–306. https://doi.org/10.1034/j.1600-048X.2003.02528.x (2003).Article 

    Google Scholar 
    59.Hicks, O. et al. The role of parasitism in the energy management of a free-ranging bird. J. Exp. Biol. 221(24), jeb190066. https://doi.org/10.1242/jeb.190066 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Guglielmo, C. G., McGuire, L. P., Gerson, A. R. & Seewagen, C. L. Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J. Ornithol. 152, 75–85. https://doi.org/10.1007/s10336-011-0724-z (2011).Article 

    Google Scholar 
    61.Le Pogam, A. et al. Wintering snow buntings elevate cold hardiness to extreme levels but show no changes in maintenance costs. Physiol. Biochem. Zool. 93, 417–433. https://doi.org/10.1086/711370 (2020).Article 
    PubMed 

    Google Scholar 
    62.Lighton, J. R. B. Measuring Metabolic Rates, 2nd edn. https://doi.org/10.1093/oso/9780198830399.001.0001 (Oxford University Press, Oxford, 2018).Book 

    Google Scholar 
    63.Gessaman, J. A. & Nagy, K. A. Energy metabolism: Errors in gas-exchange conversion factors. Physiol. Zool. 61, 507–513. https://doi.org/10.1086/physzool.61.6.30156159 (1988).Article 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical  Computing, Vienna, Austria, 2017).65.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article 

    Google Scholar  More

  • in

    Warming Arctic summers unlikely to increase productivity of shorebirds through renesting

    1.Smith, P. A. et al. Status and trends of tundra birds across the circumpolar Arctic. Ambio 49, 732–748 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Callaghan, T. V. et al. Arctic tundra and polar desert ecosystems. In Arctic Climate Impact Assessment (eds Symon, C. et al.) 243–352 (Cambridge University Press, 2005).
    Google Scholar 
    3.Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241–264 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Hodgkins, R. The twenty-first-century Arctic environment: Accelerating change in the atmospheric, oceanic and terrestrial spheres. Geogr. J. 180, 429–436 (2014).Article 

    Google Scholar 
    5.Meltofte, H. et al. Effects of climate variation on the breeding ecology of Arctic shorebirds. Medd. Grønl. Biosci. 59, 1–48 (2007).
    Google Scholar 
    6.Saalfeld, S. T. et al. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol. Evol. 9, 6693–6707 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McKinnon, L., Picotin, M., Bolduc, E., Juillet, C. & Bêty, J. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can. J. Zool. 90, 961–971 (2012).Article 

    Google Scholar 
    8.Kwon, E. et al. Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecol. Monogr. https://doi.org/10.1002/ecm.1383 (2019).Article 

    Google Scholar 
    9.Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Senner, N. R., Stager, M. & Sandercock, B. K. Ecological mismatches are moderated by local conditions for two populations of a long-distance migratory bird. Oikos 126, 61–72 (2017).Article 

    Google Scholar 
    11.Grabowski, M. M., Doyle, F. I., Reid, D. G., Mossop, D. & Talarico, D. Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol. 36, 1097–1105 (2013).Article 

    Google Scholar 
    12.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. Biol. Sci. Ser. B https://doi.org/10.1098/rspb.2013.2161 (2014).Article 

    Google Scholar 
    13.Liebezeit, J. R., Gurney, K. E. B., Budde, M., Zack, S. & Ward, D. Phenological advancement in Arctic bird species: Relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014).Article 

    Google Scholar 
    14.Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: A role for life- history characteristics?. Ecol. Evol. 7, 10492–10502 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Tulp, I. & Schekkerman, H. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 48–60 (2008).Article 

    Google Scholar 
    16.Braegelman, S. D. Seasonality of Some Arctic Alaskan Chironomids (North Dakota State University, 2016).
    Google Scholar 
    17.Piersma, T., Brugge, M., Spaans, B. & Battley, P. F. Endogenous circannual rhythmicity in body mass, molt, and plumage of Great Knots (Calidris tenuirostris). Auk 125, 140–148 (2008).Article 

    Google Scholar 
    18.Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 31, 509–521 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Danks, H. V. Life cycles in polar arthropods—Flexible or programmed?. Eur. J. Entomol. 96, 83–102 (1999).
    Google Scholar 
    20.Bolduc, E. et al. Terrestrial arthropod abundance and phenology in the Canadian Arctic: Modelling resource availability for Arctic-nesting insectivorous birds. Can. Entomol. 145, 155–170 (2013).Article 

    Google Scholar 
    21.McKinnon, L., Nol, E. & Juillet, C. Arctic-nesting birds find physiological relief in the face of trophic constraints. Sci. Rep. https://doi.org/10.1038/srep01816 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ruthrauff, D. R. & McCaffery, B. J. Survival of Western Sandpiper broods on the Yukon-Kuskokwim Delta, Alaska. Condor 107, 597–604 (2005).Article 

    Google Scholar 
    23.Pearce-Higgins, J. W. & Yalden, D. W. Variation in the growth and survival of Golden Plover Pluvialis apricaria chicks. Ibis 144, 200–209 (2002).Article 

    Google Scholar 
    24.Holmes, R. T. Breeding ecology and annual cycle adaptations of the Red-backed Sandpiper (Calidris alpina) in northern Alaska. Condor 68, 3–46 (1966).Article 

    Google Scholar 
    25.Lanctot, R. B. Blood sampling in juvenile Buff-breasted Sandpipers: Movement, mass change and survival. J. Field Ornithol. 65, 534–542 (1994).
    Google Scholar 
    26.Jamieson, S. E. Pacific Dunlin Calidris alpina pacifica show a high propensity for second clutch production. J. Ornithol. 152, 1013–1021 (2011).Article 

    Google Scholar 
    27.Colwell, M. A. Shorebird Ecology, Conservation, and Management (University of California Press, 2010).Book 

    Google Scholar 
    28.Machín, P., Fernández-Elipe, J. & Klaassen, R. H. G. The relative importance of food abundance and weather on the growth of a sub-arctic shorebird chick. Behav. Ecol. Sociobiol. 72, 42. https://doi.org/10.1007/s00265-018-2457-y (2018).Article 

    Google Scholar 
    29.Corkery, C. A., Nol, E. & McKinnon, L. No effects of asynchrony between hatching and peak food availability on chick growth in Semipalmated Plovers (Charadrius semipalmatus) near Churchill, Manitoba. Polar Biol. 42, 593–601 (2019).Article 

    Google Scholar 
    30.Naves, L. C., Lanctot, R. B., Taylor, A. R. & Coutsoubos, N. P. How often do Arctic shorebirds lay replacement clutches?. Wader Study Gr. Bull. 115, 2–9 (2008).
    Google Scholar 
    31.Swift, R. J., Anteau, M. J., Ring, M. M., Toy, D. L. & Sherfy, M. H. Low renesting propensity and reproductive success make renesting unproductive for the threatened Piping Plover (Charadrius melodus). Condor https://doi.org/10.1093/condor/duz066 (2020).Article 

    Google Scholar 
    32.Gates, H. R., Lanctot, R. B. & Powell, A. N. High renesting rates in Arctic-breeding Dunlin (Calidris alpina): A clutch-removal experiment. Auk 130, 372–380 (2013).Article 

    Google Scholar 
    33.Richter-Menge, J., Druckenmiller, M. L. & Jeffries, M. (eds.) Arctic Report Card 2019. https://www.arctic.noaa.gov/Report-Card. (2019).34.Weiser, E. L. et al. Annual adult survival drives trends in Arctic-breeding shorebirds but knowledge gaps in other vital rates remain. Condor https://doi.org/10.1093/condor/duaa026 (2020).Article 

    Google Scholar 
    35.Sandercock, B. K. Estimation of survival rates for wader populations: A review of mark-recapture methods. Wader Study Gr. Bull. 100, 163–174 (2003).
    Google Scholar 
    36.Ottvall, R. & Härdling, R. Sensitivity analysis of a migratory population of Redshanks Tringa totanus: A forewarning of a population decline?. Wader Study Gr. Bull. 107, 40–45 (2005).
    Google Scholar 
    37.Hitchcock, C. L. & Gratto-Trevor, C. Diagnosing a shorebird local population decline with a stage-structured population model. Ecology 78, 522–534 (1997).Article 

    Google Scholar 
    38.Weiser, E. L. et al. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. Auk 135, 29–43 (2018).Article 

    Google Scholar 
    39.Studds, C. E. et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8, 14895 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Piersma, T. et al. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 53, 479–490 (2016).Article 

    Google Scholar 
    41.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway. Biol. Conserv. 143, 2238–2247 (2010).Article 

    Google Scholar 
    42.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. Addendum to “A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway”. Biological Conservation, 143, 2238–2247. Biol. Conserv. 145, 278–295 (2012).Article 

    Google Scholar 
    43.Pearce-Higgins, J. W. & Yalden, D. W. Habitat selection, diet, arthropod availability and growth of a moorland wader: The ecology of European Golden Plover Pluvialis apricaria chicks. Ibis 146, 335–346 (2004).Article 

    Google Scholar 
    44.Schekkerman, H., Tulp, I., Piersma, T. & Visser, G. H. Mechanisms promoting higher growth rate in Arctic than in temperate shorebirds. Oecologia 134, 332–342 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Tulp, I. & Schekkerman, H. Studies on Breeding Shorebirds at Medusa Bay, Taimyr, in Summer 2000 (Alterra, Green World Research, 2001).
    Google Scholar 
    46.Schekkerman, H., van Roomen, M. W. J. & Underhill, L. G. Growth, behaviour of broods and weather-related variation in breeding productivity of Curlew Sandpipers Calidris ferruginea. Ardea 86, 153–168 (1998).
    Google Scholar 
    47.Tjørve, K. M. C. et al. Growth and energetics of a small shorebird species in a cold environment: The Little Stint Calidris minuta on the Taimyr Peninsula, Siberia. J. Avian Biol. 38, 552–563 (2007).Article 

    Google Scholar 
    48.Pearce-Higgins, J. W. & Yalden, D. W. Golden Plover Pluvialis apricaria breeding success on a moor managed for shooting Red Grouse Lagopus lagopus. Bird Study 50, 170–177 (2003).Article 

    Google Scholar 
    49.Loonstra, A. H. J., Verhoeven, M. A. & Piersma, T. Sex-specific growth in chicks of the sexually dimorphic Black-tailed Godwit. Ibis 160, 89–100 (2018).Article 

    Google Scholar 
    50.Taylor, A. R., Lanctot, R. B., Powell, A. N., Kendall, S. J. & Nigro, D. A. Residence time and movements of postbreeding shorebirds on the northern coast of Alaska. Condor 113, 779–794 (2011).Article 

    Google Scholar 
    51.Meltofte, H., Høye, T. T., Schmidt, N. M. & Forchhammer, M. C. Differences in food abundance cause inter-annual variation in the breeding phenology of High Arctic waders. Polar Biol. 30, 601–606 (2007).Article 

    Google Scholar 
    52.Visser, G. H. & Ricklefs, R. E. Development of temperature regulation in shorebirds. Physiol. Zool. 66, 771–792 (1993).Article 

    Google Scholar 
    53.Colwell, M. A., Hurley, S. J., Hall, J. N. & Dinsmore, S. J. Age-related survival and behavior of Snowy Plover chicks. Condor 109, 638–647 (2007).Article 

    Google Scholar 
    54.Powell, A. N. The Effects of Early Experience on the Development, Behavior, and Survival of Shorebirds (University of Minnesota, 1992).
    Google Scholar 
    55.Ackerman, J. T., Herzog, M. P., Takekawa, J. Y. & Hartman, C. A. Comparative reproductive biology of sympatric species: Nest and chick survival of American Avocets and Black-necked Stilts. J. Avian Biol. 45, 609–623 (2014).Article 

    Google Scholar 
    56.Catlin, D. H., Fraser, J. D. & Felio, J. H. Demographic responses of Piping Plovers to habitat creation on the Missouri River. Wildl. Monogr. 192, 1–42 (2015).Article 

    Google Scholar 
    57.Dinsmore, S. J., Gaines, E. P., Pearson, S. F., Lauten, D. J. & Castelein, K. A. Factors affecting Snowy Plover chick survival in a managed population. Condor 119, 34–43 (2017).Article 

    Google Scholar 
    58.Dinsmore, S. J. Influence of drought on annual survival of the Mountain Plover in Montana. Condor 110, 45–54 (2008).Article 

    Google Scholar 
    59.Soikkeli, M. Breeding cycle and population dynamics in the Dunlin (Calidris alpina). Ann. Zool. Fenn. 4, 158–198 (1967).
    Google Scholar 
    60.Blomqvist, D. & Johansson, O. C. Distribution, reproductive success, and population trend in the Dunlin Calidris alpina schinzii on the Swedish west coast. Ornis Svec. 1, 39–46 (1991).
    Google Scholar 
    61.Jönsson, P. E. Reproduction and survival in a declining population of the southern Dunlin Calidris alpina schinzii. Wader Study Gr. Bull. 61, 56–68 (1991).
    Google Scholar 
    62.Pienkowski, M. W. Behaviour of young Ringed Plovers Charadrius hiaticula and its relationship to growth and survival to reproductive age. Ibis 126, 133–155 (1984).Article 

    Google Scholar 
    63.Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: Evidence from remote video cameras in Arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
    Google Scholar 
    64.Bentzen, R. et al. Assessing development impacts on Arctic nesting birds using real and artificial nests. Polar Biol. 40, 1527–1536 (2017).Article 

    Google Scholar 
    65.McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).Article 

    Google Scholar 
    66.Bolton, M., Tyler, G., Smith, K. & Bamford, R. The impact of predator control on Lapwing Vanellus vanellus breeding success on wet grassland nature reserves. J. Appl. Ecol. 44, 534–544 (2007).Article 

    Google Scholar 
    67.Fletcher, K., Aebischer, N. J., Baines, D., Foster, R. & Hoodless, A. N. Changes in breeding success and abundance of ground-nesting moorland birds in relation to the experimental deployment of legal predator control. J. Appl. Ecol. 47, 263–272 (2010).Article 

    Google Scholar 
    68.McGuire, R. L., Lanctot, R. B., Saalfeld, S. T., Ruthrauff, D. R. & Liebezeit, J. R. Shorebird reproductive response to exceptionally early and late springs varies across sites in Arctic Alaska. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.577652 (2020).Article 

    Google Scholar 
    69.Lackmann, A. R. Chironomids Then and Now: Climate Change Effects on a Tundra Food Web in the Alaskan Arctic (North Dakota State University, 2019).
    Google Scholar 
    70.McEwen, D. C. & Butler, M. G. Growing-season temperature change across four decades in an Arctic tundra pond. Arctic 71, 281–291 (2018).Article 

    Google Scholar 
    71.Shaftel, R. et al. Predictors of invertebrate biomass and rate of advancement of invertebrate phenology across eight sites in the North American Arctic. Polar Biol. 44, 237–257 (2021).Article 

    Google Scholar 
    72.Butler, M., Miller, M. C. & Mozley, S. Macrobenthos. In Limnology of Tundra Ponds, Barrow, Alaska (ed. Hobbie, J. E.) 297–339 (Dowden, Hutchinson, and Ross, Inc., 1980).
    Google Scholar 
    73.Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 
    74.Schekkerman, H. & Boele, A. Foraging in precocial chicks of the Black-tailed Godwit Limosa limosa: Vulnerability to weather and prey size. J. Avian Biol. 40, 369–379 (2009).Article 

    Google Scholar 
    75.Krijgsveld, K. L., Reneerkens, J. W. H., McNett, G. D. & Ricklefs, R. E. Time budgets and body temperatures of American Golden-Plover chicks in relation to ambient temperature. Condor 105, 268–278 (2003).Article 

    Google Scholar 
    76.Cosgrove, J., Dugger, B. & Lanctot, R. B. No renesting observed after experimental clutch removal in Red Phalaropes breeding near Utqiaģvik, Alaska. Wader Study 127, 236–243 (2020).Article 

    Google Scholar 
    77.Fernández, G., Buchanan, J. B., Gill, R. E. Jr., Lanctot, R. & Warnock, N. Conservation Plan for Dunlin with Breeding Populations in North America (Calidris alpina arcticola, C. a. pacifica, and C. a. hudsonia), Version 1.1 (Manomet Center for Conservation Sciences, 2010).
    Google Scholar 
    78.Lagassé, B. J. et al. Dunlin subspecies exhibit regional segregation and high site fidelity along the East Asian-Australasian flyway. Condor https://doi.org/10.1093/condor/duaa054 (2020).Article 

    Google Scholar 
    79.Andres, B. A. et al. Population estimates of North American shorebirds, 2012. Wader Study Gr. Bull. 119, 178–194 (2012).
    Google Scholar 
    80.Warnock, N. The Alaska WatchList 2017 (Audubon Alaska, 2017).
    Google Scholar 
    81.Alaska Shorebird Group. Alaska Shorebird Conservation Plan. Version III (Alaska Shorebird Group, 2019).
    Google Scholar 
    82.CAFF. Arctic Migratory Birds Initiative (AMBI): Workplan 2019–2023. CAFF Strategies Series No. 30. (Conservation of Arctic Flora and Fauna, ISBN: 978-9935-431-79-0, 2019).83.Warnock, N. D. & Gill, R. E. Dunlin (Calidris alpina), version 1.0. In Birds of the World (ed. Billerman, S. M.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    84.Saalfeld, S. T. & Lanctot, R. B. Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk 132, 212–234 (2015).Article 

    Google Scholar 
    85.Weiser, E. L. et al. Life-history tradeoffs revealed by seasonal declines in reproductive traits of Arctic-breeding shorebirds. J. Avian Biol. https://doi.org/10.1111/jav.01531 (2017).Article 

    Google Scholar 
    86.Villarreal, S. et al. Tundra vegetation change near Barrow, Alaska (1972–2010). Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015508 (2012).Article 

    Google Scholar 
    87.Liebezeit, J. R. et al. Assessing the development of shorebird eggs using the flotation method: Species-specific and generalized regression models. Condor 109, 32–47 (2007).Article 

    Google Scholar 
    88.Priklonsky, S. G. Application of small automatic bows for catching birds. Zool. Zh. 39, 623–624 (1960).
    Google Scholar 
    89.Gates, H. R. et al. Differentiation of subspecies and sexes of Beringian Dunlin using morphometric measures. J. Field Ornithol. 84, 389–402 (2013).Article 

    Google Scholar 
    90.Warnock, N. & Warnock, S. Attachment of radio-transmitters to sandpipers: Review and methods. Wader Study Gr. Bull. 70, 28–30 (1993).
    Google Scholar 
    91.Bart, J., Battaglia, D. & Senner, N. Effects of color bands on Semipalmated Sandpipers banded at hatch. J. Field Ornithol. 72, 521–526 (2001).Article 

    Google Scholar 
    92.Whittier, J. B. & Leslie, D. M. Jr. Efficacy of using radio transmitters to monitor Least Tern chicks. Wilson Bull. 117, 85–91 (2005).Article 

    Google Scholar 
    93.Lees, D. et al. An assessment of radio telemetry for monitoring shorebird chick survival and causes of mortality. Wildl. Res. 46, 622–627 (2019).Article 

    Google Scholar 
    94.Schekkerman, H., Teunissen, W. & Oosterveld, E. Mortality of Black-tailed Godwit Limosa limosa and Northern Lapwing Vanellus vanellus chicks in wet grasslands: Influence of predation and agriculture. J. Ornithol. 150, 133–145 (2009).Article 

    Google Scholar 
    95.Johnson, M., Aref, S. & Walters, J. R. Parent-offspring communication in the Western Sandpiper. Behav. Ecol. 19, 489–501 (2008).Article 

    Google Scholar 
    96.Brown, R. G. B. The aggressive and distraction behavior of the Western Sandpiper Ereunetes mauri. Ibis 104, 1–12 (1962).Article 

    Google Scholar 
    97.Rogers, L. E., Buschbom, R. L. & Watson, C. R. Length-weight relationships of shrub-steppe invertebrates. Ann. Entomol. Soc. Am. 70, 51–53 (1977).Article 

    Google Scholar 
    98.Cooch, E. G. & White, G. C. (eds.) Program MARK: A Gentle Introduction, 19th ed. http://www.phidot.org/software/mark/docs/book/ (2019).99.Rotella, J. J., Dinsmore, S. J. & Shaffer, T. L. Modeling nest-survival data: A comparison of recently developed methods that can be implemented in MARK and SAS. Anim. Biodivers. Conserv. 27, 187–205 (2004).
    Google Scholar 
    100.Dinsmore, S. J., White, G. C. & Knopf, F. L. Advanced techniques for modeling avian nest survival. Ecology 83, 3476–3488 (2002).Article 

    Google Scholar 
    101.Hill, B. L. Factors Affecting Survival of Arctic-Breeding Dunlin (Calidris alpina arcticola) Adults and Chicks (University of Alaska Fairbanks, 2012).
    Google Scholar 
    102.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    103.Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar  More

  • in

    Individual environmental niches in mobile organisms

    1.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    3.Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B: Biol. Sci. 285, 20180792 (2018).Article 

    Google Scholar 
    4.IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. https://zenodo.org/record/3553579#.XxWzvZ5Kh-U, https://doi.org/10.5281/zenodo.3553579 (2019).5.Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Climate Change 1. https://doi.org/10.1038/s41558-019-0406-z (2019).6.Kendall, B. E. & Fox, G. A. Variation among individuals and reduced demographic stochasticity. Conserv. Biol. 16, 109–116 (2002).Article 

    Google Scholar 
    7.Bonnot, T. W., Cox, W. A., Thompson, F. R. & Millspaugh, J. J. Threat of climate change on a songbird population through its impacts on breeding. Nat. Clim. Change 8, 718–722 (2018).ADS 
    Article 

    Google Scholar 
    8.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 
    Article 

    Google Scholar 
    9.Bestion, E., Clobert, J. & Cote, J. Dispersal response to climate change: scaling down to intraspecific variation. Ecol. Lett. 18, 1226–1233 (2015).Article 

    Google Scholar 
    10.Oney, B., Reineking, B., O’Neill, G. & Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3, 437–449 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Uriarte, M. & Menge, D. Variation between individuals fosters regional species coexistence. Ecol. Lett. 21, 1496–1504 (2018).PubMed 
    Article 

    Google Scholar 
    12.Banitz, T. Spatially structured intraspecific trait variation can foster biodiversity in disturbed, heterogeneous environments. Oikos 128, 1478–1491 (2019).13.Bailey, J. K. Incorporating eco-evolutionary dynamics into global change research. Funct. Ecol. 28, 3–4 (2014).Article 

    Google Scholar 
    14.Cianciaruso, M. V., Batalha, M. A., Gaston, K. J. & Petchey, O. L. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Naturalist 161, 1–28 (2003).MathSciNet 
    Article 

    Google Scholar 
    16.Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 

    Google Scholar 
    18.Van Valen, L. Morphological variation and width of ecological niche. Am. Naturalist 99, 377–390 (1965).Article 

    Google Scholar 
    19.Hocking, M. D., Darimont, C. T., Christie, K. S. & Reimchen, T. E. Niche variation in burying beetles (Nicrophorus spp.) associated with marine and terrestrial carrion. Can. J. Zool. 85, 437–442 (2007).Article 

    Google Scholar 
    20.Iguchi, K., Matsubara, N., Yodo, T. & Maekawa, K. Individual food niche specialization in stream-dwelling charr. Ichthyol. Res. 51, 321–326 (2004).Article 

    Google Scholar 
    21.Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).ADS 
    Article 

    Google Scholar 
    22.Costa, G. C., Mesquita, D. O., Colli, G. R. & Vitt, L. J. Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am. Naturalist 172, 868–877 (2008).Article 

    Google Scholar 
    23.Sheppard, C. E. et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 21, 665–673 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Pol, M. V. D., Brouwer, L., Ens, B. J., Oosterbeek, K. & Tinbergen, J. M. Fluctuating selection and the maintenance of individual and sex-specific diet specialization in free-living oystercatchers. Evolution 64, 836–851 (2010).PubMed 
    Article 

    Google Scholar 
    25.Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).PubMed 
    Article 

    Google Scholar 
    26.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677 (2009).Article 

    Google Scholar 
    27.Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Svanbäck, R. & Bolnick, D. I. Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol. Ecol. Res 7, 993–1012 (2005).
    Google Scholar 
    29.Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R. & Tella, J. L. Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology 96, 1650–1660 (2015).Article 

    Google Scholar 
    30.Orłowski, G. et al. Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci. Total Environ. 646, 491–502 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    31.Teuschl, Y., Taborsky, B. & Taborsky, M. How do cuckoos find their hosts? The role of habitat imprinting. Anim. Behav. 56, 1425–1433 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evolution 19, 411–416 (2004).Article 

    Google Scholar 
    33.Fretwell, S. D. Populations in a Seasonal Environment (Princeton University Press, 1972).34.Ingram, T., Costa‐Pereira, R. & Araújo, M. S. The dimensionality of individual niche variation. Ecology 99, 536–549 (2018).PubMed 
    Article 

    Google Scholar 
    35.Abrahms, B. et al. Climate mediates the success of migration strategies in a marine predator. Ecol. Lett. 21, 63–71 (2018).PubMed 
    Article 

    Google Scholar 
    36.Courbin, N. et al. Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator. Ecol. Lett. 21, 1043–1054 (2018).PubMed 
    Article 

    Google Scholar 
    37.Montgomery, R. A. et al. Evaluating the individuality of animal-habitat relationships. Ecol. Evol. 8, 10893–10901 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Harris, S. M. et al. Personality predicts foraging site fidelity and trip repeatability in a marine predator. J. Anim. Ecol. 89, 68–79 (2020).PubMed 
    Article 

    Google Scholar 
    39.Hutchinson Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    40.Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).41.Lele, S. R., Merrill, E. H., Keim, J. & Boyce, M. S. Selection, use, choice and occupancy: clarifying concepts in resource selection studies. J. Anim. Ecol. 82, 1183–1191 (2013).PubMed 
    Article 

    Google Scholar 
    42.Leclerc, M. et al. Quantifying consistent individual differences in habitat selection. Oecologia 180, 697–705 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    43.Hertel, A. G. et al. Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).Article 

    Google Scholar 
    44.Bastille‐Rousseau, G. & Wittemyer, G. Leveraging multidimensional heterogeneity in resource selection to define movement tactics of animals. Ecol. Lett. 22, 1417–1427 (2019).PubMed 
    Article 

    Google Scholar 
    45.Costa‐Pereira, R., Rudolf, V. H. W., Souza, F. L. & Araújo, M. S. Drivers of individual niche variation in coexisting species. J. Anim. Ecol. 87, 1452–1464 (2018).46.Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).Article 

    Google Scholar 
    47.Araújo, M. S. et al. Nested diets: a novel pattern of individual-level resource use. Oikos 119, 81–88 (2010).Article 

    Google Scholar 
    48.Dunne, J. A. in: Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).49.Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. https://doi.org/10.1111/ele.12618 (2016).50.Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Tinker, M. T. et al. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol. Lett. 15, 475–483 (2012).Article 

    Google Scholar 
    52.Dáttilo, W., Serio‐Silva, J. C., Chapman, C. A. & Rico‐Gray, V. Highly nested diets in intrapopulation monkey–resource food webs. Am. J. Primatol. 76, 670–678 (2014).PubMed 
    Article 

    Google Scholar 
    53.Durell, S. E. A. L. V. D., Goss-Custard, J. D. & Caldow, R. W. G. Sex-related differences in diet and feeding method in the oystercatcher Haematopus ostralegus. J. Anim. Ecol. 62, 205–215 (1993).Article 

    Google Scholar 
    54.Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among-individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).PubMed 

    Google Scholar 
    56.Fortin, D., Morris, D. W. & McLoughlin, P. D. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evolution 54, 311–328 (2008).Article 

    Google Scholar 
    57.Pires, M. M. et al. The nested assembly of individual-resource networks. J. Anim. Ecol. 80, 896–903 (2011).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Cantor, M., Pires, M. M., Longo, G. O., Guimarães, P. R. & Setz, E. Z. F. Individual variation in resource use by opossums leading to nested fruit consumption. Oikos 122, 1085–1093 (2013).Article 

    Google Scholar 
    59.Santamaría, S. et al. Diet composition of the lizard Podarcis lilfordi (Lacertidae) on 2 small islands: an individual-resource network approach. Curr. Zool. 66, 39–49 (2020).PubMed 
    Article 

    Google Scholar 
    60.Carrascal, L. M., Alonso, J. C. & Alonso, J. A. Aggregation size and foraging behaviour of white storks Ciconia ciconia during the breeding season. Ardea 78, 399–404 (1990).
    Google Scholar 
    61.Piper, W. H. In: Current Ornithology (eds. Nolan, V., Ketterson, E. D. & Thompson, C. F.) 125–187 https://doi.org/10.1007/978-1-4757-9915-6_4 (Springer US, 1997).62.Marzlufi, J. M. & Heinrich, B. Foraging by common ravens in the presence and absence of territory holders: an experimental analysis of social foraging. Anim. Behav. 42, 755–770 (1991).Article 

    Google Scholar 
    63.van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Moore, S. A. & Bronte, C. R. Delineation of sympatric morphotypes of Lake Trout in Lake Superior. Trans. Am. Fish. Soc. 130, 1233–1240 (2001).Article 

    Google Scholar 
    65.Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    66.Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).Article 

    Google Scholar 
    67.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.van Toor, M. L. et al. Flexibility of habitat use in novel environments: insights from a translocation experiment with lesser black-backed gulls. R. Soc. Open Sci. 4, 160164 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evolution 33, 790–802 (2018).Article 

    Google Scholar 
    70.ICARUS. Homepage—Animal Sensors Website. https://www.icarus.mpg.de/en (2020).71.Toledo, S. et al. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 369, 188–193 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Wikelski, M. & Kays, R. Movebank: Archive, Analysis and Sharing of Animal Movement Data (World Wide Web Electronic Publication, 2014).73.Leitão, P. J. & Santos, M. J. Improving models of species ecological niches: a remote sensing overview. Front. Ecol. Evol. 7, 9 (2019).74.Oeser, J. et al. Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat. Remote Sens. Ecol. Conserv. 6, 52–69 (2020).Article 

    Google Scholar 
    75.Valerio, F. et al. Predicting microhabitat suitability for an endangered small mammal using sentinel-2 data. Remote Sens. 12, 562 (2020).ADS 
    Article 

    Google Scholar 
    76.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 
    Article 

    Google Scholar 
    77.Werner, T. K. & Sherry, T. W. Behavioral feeding specialization in Pinaroloxias inornata, the “Darwin’s Finch” of Cocos Island, Costa Rica. Proc. Natl Acad. Sci. USA 84, 5506–5510 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Zurell, D. et al. Home range size and resource use of breeding and non-breeding white storks along a land use gradient. Front. Ecol. Evol. 6, 1–11 (2018).79.Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).PubMed 
    Article 

    Google Scholar 
    80.Fleming, C. H. et al. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    82.Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).83.Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evolution 9, 305–319 (2018).Article 

    Google Scholar 
    84.Elliot, A., Garcia, E. F. J. & Boesman, P. F. D. In: Birds of the World (eds. del Hoyo, J. Elliott, A., Sargatal, J. Christie, D. A. & de Juana, E.) (Cornell Lab of Ornithology, 2020).85.Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 1 (2016).Article 

    Google Scholar 
    86.Alonso, J. C., Alonso, J. A. & Carrascal, L. M. Habitat selection by foraging White Storks, Ciconia ciconia, during the breeding season. Can. J. Zool. https://doi.org/10.1139/z91-270 (2011).87.Barbaro, L., Giffard, B., Charbonnier, Y., Halder, Ivan & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: a transcontinental experiment. Diversity Distrib. 20, 149–159 (2014).Article 

    Google Scholar 
    88.Fisher, R. J. & Davis, S. K. From Wiens to Robel: a review of grassland-bird habitat selection. J. Wildl. Manag. 74, 265–273 (2010).Article 

    Google Scholar 
    89.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    90.Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    91.Manly, B. F. L., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer Science & Business Media, 2002).92.Johnson, D. S., Thomas, D. L., Hoef, J. M. V. & Christ, A. A general framework for the analysis of animal resource selection from telemetry data. Biometrics 64, 968–976 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    93.Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Rosenberg, D. K. & McKelvey, K. S. Estimation of habitat selection for central-place foraging animals. J. Wildl. Manag. 63, 1028–1038 (1999).Article 

    Google Scholar 
    95.Roughgarden, J. Evolution of niche width. American Naturalist 106, 683–718 (1972).96.Sargeant, B. L. Individual foraging specialization: niche width versus niche overlap. Oikos 116, 1431–1437 (2007).Article 

    Google Scholar 
    97.Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Soc. Netw. 31, 155–163 (2009).Article 

    Google Scholar 
    98.Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).Article 

    Google Scholar 
    99.Opsahl, T. Structure and Evolution of Weighted Networks (University of London (Queen Mary College), 2009).100.Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 30 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Data from: Individual environmental niches in mobile organisms. Movebank Data Repository. https://doi.org/10.5441/001/1.rj21g1p1 (2021).102.Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Code from: Individual environmental niches in mobile organisms. Zenodo. https://doi.org/10.5281/zenodo.5032460 (2021). More

  • in

    Genetic diversity and population structure analysis of Lateolabrax maculatus from Chinese coastal waters using polymorphic microsatellite markers

    1.Jiang, X., Yang, G. P., Wei, Q. W. & Zou, G. W. Analysis of the genetic structure of spotted sea bass (Lateolabrax maculatus) inhabiting the Chinese Coast. Period. Ocean Univ. China 39, 271–274 (2009) (In Chinese with English abstract).
    Google Scholar 
    2.Clifford, S. L., McGinnity, P. & Ferguson, A. Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Can. J. Fish. Aquat. Sci. 55, 358–363 (1998).Article 

    Google Scholar 
    3.Bourret, V., O’Reilly, P. T., Carr, J. W., Berg, P. R. & Bernatchez, L. Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106, 500–510 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Hutchings, J. A. & Fraser, D. J. The nature of fisheries- and farming-induced evolution. Mol. Ecol. 17, 294–313 (2008).PubMed 
    Article 

    Google Scholar 
    5.Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: Mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).Article 

    Google Scholar 
    6.Giantsis, I. A., Mucci, N., Randi, E., Abatzopoulos, T. J. & Apostolidis, A. P. Microsatellite variation of mussels (Mytius galloprovincialis) in Central and Eastern Mediterranean: Genesc panmixia in the Aegean and the Ionian Sea. J. Mar. Biol. Assoc. U.K. 94, 797–809 (2014).Article 

    Google Scholar 
    7.Liu, J. X., Gao, T. X., Yokogawa, K. & Zhang, Y. P. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol. Phylogenet. Evol. 39(3), 799–811 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Hu, Z. M., Gao, T. X., Han, Z. Q. & Song, L. Studies on genetic differentiation of the spotted sea bass (Lateolabrax maculatus) and Japanese sea bass (Lateolabrax japonicus). Period. Ocean Uni. China 37(3), 413–418 (2007) (In Chinese with English abstract).CAS 

    Google Scholar 
    9.Nakayama, K., Kineshita, I. & Seikai, T. Morphologlcal comparisons during early stage rearing of Chinese and Japanese forms of the temperate bass, Lateolabrax japonicus. Jpn. J. Ichthyol. 43(1), 13–20 (1996).
    Google Scholar 
    10.Lou, D., Gao, T. X. & Zhang, X. M. The advances on germplasm resources study of Lateolabrax. J. Zhejiang Ocean Univ. (Natural Science) 19(2), 162–167 (2000) (Chinese in English abstract).
    Google Scholar 
    11.Lou, D. et al. Study on genetic variation in Chinese and Japanese sea bass. Journal of Ocean University of Qingdao 33(1), 22–28 (2003) (In Chinese in English abstract).
    Google Scholar 
    12.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. The analysis of genetic variation of Lateolabrax japonicus from Rizhao of Shandong and Xiamen of Fujian by isozyme and RAPD methods. Acta Oceanol. Sin. 27(3), 119–123 (2005) (In Chinese with English abstract).CAS 

    Google Scholar 
    13.Liu, M. Y., Jiang, Q. C. & Yang, J. X. Analysis on mitochondrial DNA cytochrome b gene of Lateolabrax japonicas from different seas. J. Nanjing Normal Univ. (Natural Science Edition) 33(1), 102–106 (2010) (In Chinese with English abstract).
    Google Scholar 
    14.Wang, W. et al. Population genetic diversity of Chinese sea bass (Lateolabrax maculatus) from southern coastal regions of China based on mitochondrial COI gene sequences. Biochem. Syst. Ecol. 71, 114–140 (2017).CAS 
    Article 

    Google Scholar 
    15.Wang, G. X. et al. Genetic variability in six Lateolabrax maculatus populations inhabiting the Chinese coast. J. Fish. Sci. China 24(2), 395–402 (2017) (In Chinese with English abstract).
    Google Scholar 
    16.Chapuis, M. P., Loiseau, A., Michalakis, Y., Lecoq, M. & Estoup, A. Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Mol. Ecol. Notes 5(3), 554–557 (2005).CAS 
    Article 

    Google Scholar 
    17.Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Tan, Y., Fang, L., Qiu, M., Huo, Z. M. & Yan, Y. W. Population genetic of the Manila clam (Ruditapes philippinarum) in East Asia. Sci. Rep. 10, 21890 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Agulló, M. et al. Genetic analyses reveal temporal stability and connectivity pattern in blue and red shrimp Aristeus antennatus populations. Sci. Rep. 10, 21505 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.An, H. S., Lee, J. W. & Kim, H. Y. Genetic differences between wild and hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) inferred from microsatellite markers. Genes Genom. 35(5), 671–680 (2013).Article 

    Google Scholar 
    21.An, H. S., Kim, H. Y. & Kim, J. B. Genetic characterization of hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) using multiplex polymerase chain reaction assays. Genet. Mol. Res. 13(3), 6701–6715 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Shaw, P. W., Turan, C., Wright, J. M., O’Connell, M. & Carvalho, G. R. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83, 490–499 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Shao, C. W., Chen, S. L., Xu, G. B., Liao, X. L. & Tian, Y. S. Eighteen novel microsatellite markers for the Chinese sea perch, Lateolabrax maculatus. Conserv. Genet. 10, 623–625 (2009).CAS 
    Article 

    Google Scholar 
    24.Zhang, H. R., Niu, S. F., Wu, R. X., Zhai, Y. & Tian, L. T. Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa. Biochem. Syst. Ecol. 66, 326–330 (2016).CAS 
    Article 

    Google Scholar 
    25.Zhao, Y. et al. Isolation of microsatellite markers for Lateolabrax japonicus and polymorphic analysis. Zool. Res. 32(5), 515–520 (2011) (In Chinese with English abstract).CAS 

    Google Scholar 
    26.Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Wan, N. W., Rolland, J. L., Bonhomme, F. & Phongdara, A. Population genetic structure of Penaeus merguiensis, Thailand based on nuclear DNA variation. J. Exp. Mar. Biol. Ecol. 311(1), 63–78 (2004).Article 
    CAS 

    Google Scholar 
    28.Xiao, Q. Z. et al. Genetic diversity analysis of wild and cultured megalopa population of Eriocheir sinensis from Yangtze River. Genom. Appl. Biol. 36(5), 1935–1945 (2017) (In Chinese with English abstract).
    Google Scholar 
    29.Liu, F. et al. High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis. Aquaculture 297, 51–56 (2009).CAS 
    Article 

    Google Scholar 
    30.Halasz, J., Pedryc, A., Ercisli, S., Yilmaz, K. U. & Hegedus, A. S-genotyping supports the genetic relationships between Turkish and Hungarian apricot germplasm. J. Am. Soc. Hortic. Sci. 135(5), 410–417 (2010).Article 

    Google Scholar 
    31.Wang, S. H., Zhang, C., Shang, M., Wu, X. G. & Cheng, Y. X. Genetic diversity and population structure of native mitten crab (Eriocheir sensu stricto) by microsatellite markers and mitochondrial COI gene sequence. Gene 693, 101–113 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. Comparative analysis of genetic variation by isozymes between two stocks of the sea Bass (Lateolabrax japonicus) from Rizhao & Xiamen sea areas, China. J. Zhejiang Ocean Univ. Nat. Sci. 22(2), 121–124 (2003) (In Chinese with English abstract).CAS 

    Google Scholar 
    33.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. Comparative analysis of RAPD genetic variation between two stocks of sea bass (Lateolabrax aponicus) from Shandong Rizhao and Fujian Xiamen sea areas. Oceanol. Limnol. Sin. 34(6), 618–624 (2003) (In Chinese with English abstract).CAS 

    Google Scholar 
    34.Machado-Schiaffino, G. & Garcia-Vazquez, E. Isolation and characterization of microsatellite loci in Merluccius australis and cross-species amplification. Mol. Ecol. Resour. 9(2), 585–587 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Freeland, J. R. Molecular ecology 112–116 (Wiley, Chichester, 2005).
    Google Scholar 
    36.Li, D. Y., Yin, Q. Q., Hou, N., Sun, X. W. & Liang, L. Q. Genetic diversity of different ecologo-geographical populations of yellow catfish Pelteobagrus eupogon. Oceanol. Limnol. Sin. 40(4), 460–469 (2009) (In Chinese with English abstract).CAS 

    Google Scholar 
    37.Shoji, J. & Tanaka, M. Influence of spring river flow on the recruitment of Japanese sea perch Lateolabrax japonicus into the Chikugo estuary, Japan. . Sci. Mar. 70(2), 159–164 (2006).Article 

    Google Scholar 
    38.Liu, B., Kuang, Y. Y., Tong, G. X. & Yin, J. S. Analysis of genetic diversity on 9 wild stocks of Taimen (Hucho taimen) by microsatellite markers. Zool. Res. 32(6), 597–604 (2011) (In Chinese with English abstract).CAS 

    Google Scholar 
    39.Clegg, S. M. et al. Genetic consequences of sequential founder events by an island-colonizing bird. Proc. Natl. Acad. Sci. USA 99, 8127–8132 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Pruett, C. L. & Winker, K. Northwestern song sparrow populations show genetic effects of sequential colonization. Mol. Ecol. 14, 1421–1434 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.An, H. S. et al. Population genetic structure of the sea bass (Lateolabrax japonicus) in Korea based on multiplex PCR assays with 12 polymorphic microsatellite markers. Genes Genom. 36, 247–259 (2014).CAS 
    Article 

    Google Scholar 
    42.Van Oosterhout, C., Hutchinson, W. F., Willis, D. P. M. & Shipley, P. F. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    43.Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977).MathSciNet 
    MATH 

    Google Scholar 
    44.Raymond, M. & Rousset, F. GENEPOP (version 12): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    45.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    46.Wang, S. H. et al. Identification and genetic diversity analysis of Chinese mitten crab (Eriocheir sinensis) in the Liao river area. J. Northeast. Agric. Univ. 25, 43–53 (2018).
    Google Scholar 
    47.Tamura, K. et al. MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).CAS 
    PubMed 

    Google Scholar 
    49.Maruyama, T. & Fuerst, P. A. Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics 111, 675–689 (1985).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multi locus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Jombart, T. Adegenet: An R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar  More