Madrepora oculata forms large frameworks in hypoxic waters off Angola (SE Atlantic)
1.Roberts, J. M., Wheeler, A. J., Freiwald, A. & Cairns, S. D. Cold-Water Corals. The Biology and Geology of Deep-Sea Coral Habitats. (Cambridge University Press, 2009).2.Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. Plos One 6, e18483 (2011).3.Morato, T. et al. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob. Chang. Biol. 26, 2181–2202. https://doi.org/10.1111/gcb.14996 (2020).ADS
Article
PubMed Central
Google Scholar
4.Arnaud-Haond, S. et al. Two “pillars” of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale. Deep-Sea Res. Pt. II(145), 110–119 (2017).Article
Google Scholar
5.Buhl-Mortensen, L., Olafsdottir, S. H., Buhl-Mortensen, P., Burgos, J. M. & Ragnarsson, S. A. Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic: Effects of bathymetry and hydrography. Hydrobiologia 759, 39–61. https://doi.org/10.1007/s10750-014-2116-x (2015).CAS
Article
Google Scholar
6.Gori, A. et al. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10, 2049–2060. https://doi.org/10.5194/bg-10-2049-2013 (2013).ADS
Article
Google Scholar
7.Orejas, C. et al. Cold-water corals in the Cap de Creus canyon (north-western Mediterranean): Spatial distribution, density and anthropogenic impact. Mar. Ecol. Prog. Ser. 397, 37–51 (2009).ADS
Article
Google Scholar
8.Buhl-Mortensen, P. Coral reefs in the Southern Barents Sea: Habitat description and the effects of bottom fishing. Mar. Biol. Res. 13, 1027–1040. https://doi.org/10.1080/17451000.2017.1331040 (2017).Article
Google Scholar
9.Cairns, S. Antarctic and subantarctic Scleractinia. Antarctic Res. Ser. 34. https://doi.org/10.1029/AR034p0001 (1983).10.Cairns, S. D. & Zibrowius, H. Cnidaria Anthozoa: Azooxanthellate Scleractinia from the Philippine and Indonesian regions. Mém. Mus. Natl. Hist. Nat. 172, 27–243 (1997).
Google Scholar
11.Tracey, D., Rowden, A., Mackay, K. & Compton, T. Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Mar. Ecol. Prog. Ser. 430, 1–22. https://doi.org/10.3354/meps09164 (2011).ADS
Article
Google Scholar
12.Auscavitch, S. R. et al. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands protected area. Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00042 (2020).13.Angeletti, L., Castellan, G., Montagna, P., Remia, A. & Taviani, M. “The Corsica channel cold-water coral province” (Mediterranean Sea). Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00661 (2020).14.Chimienti, G., Bo, M., Taviani, M. & Mastrototaro, F. in Mediterranean Cold-Water Corals: Past, Present and Future, Springer Series: Coral Reefs of the World (eds. Covadonga Orejas Saco del Valle & C. Jiménez) 213–243 (Springer, 2019).15.Corbera, G. et al. Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Prog. Oceanogr. 175, 245–262. https://doi.org/10.1016/j.pocean.2019.04.010 (2019).ADS
Article
Google Scholar
16.Freiwald, A. et al. The White Coral Community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography 22, 58–74 (2009).Article
Google Scholar
17.Fabri, M. C. et al. Megafauna of vulnerable marine ecosystems in French Mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep-Sea Res. Pt. II(104), 184–207. https://doi.org/10.1016/j.dsr2.2013.06.016 (2014).Article
Google Scholar
18.Brooke, S. & Ross, S. W. First observations of the cold-water coral Lophelia pertusa in mid-Atlantic canyons of the USA. Deep-Sea Res. Pt. II(104), 245–251 (2014).Article
Google Scholar
19.Cordes, E. E. et al. Coral communities of the deep Gulf of Mexico. Deep-Sea Res. Pt. II(55), 777–787 (2008).Article
Google Scholar
20.Frederiksen, R., Jensen, A. & Westerberg, H. The distribution of scleratinian coral Lophelia pertusa around the Faroe Islands and the relation to intertidal mixing. Sarsia 77, 157–171 (1992).Article
Google Scholar
21.Hebbeln, D. et al. Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11, 1799–1815. https://doi.org/10.5194/bg-11-1799-2014 (2014).ADS
Article
Google Scholar
22.Wienberg, C. et al. Franken Mound: Facies and biocoenoses on a newly-discovered “carbonate mound” on the western Rockall Bank, NE Atlantic. Facies 54, 1–24. https://doi.org/10.1007/s10347-007-0118-0 (2008).Article
Google Scholar
23.Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51. https://doi.org/10.1016/j.csr.2012.12.013 (2013).ADS
Article
Google Scholar
24.Fanelli, E. et al. Cold-water coral Madrepora oculata in the eastern Ligurian Sea (NW Mediterranean): Historical and recent findings. Aquat. Conserv. 27, 965–975. https://doi.org/10.1002/aqc.2751 (2017).Article
Google Scholar
25.Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res. Pt. II(99), 36–41. https://doi.org/10.1016/j.dsr2.2013.05.025 (2014).CAS
Article
Google Scholar
26.Movilla, J. et al. Resistance of two mediterranean cold-water coral species to low-pH conditions. Water 6, 59–67 (2014).ADS
Article
Google Scholar
27.Dodds, L. A., Roberts, J. M., Taylor, A. C. & Marubini, F. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxgen change. J. Exp. Mar. Biol. Ecol. 349, 205–214 (2007).CAS
Article
Google Scholar
28.Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci. 1. https://doi.org/10.3389/fmars.2014.00078 (2014).29.Ramos, A., Sanz, J. L., Ramil, F., Agudo, L. M. & Presas-Navarro, C. in Deep-Sea Ecosystems Off Mauritania: Research of Marine Biodiversity and Habitats in the Northwest African Margin (eds. Ramos, A., Ramil, F., & Sanz, J.L.) 481–525 (Springer, 2017).30.Wienberg, C. et al. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation. Quat. Sci. Rev. 185, 135–152. https://doi.org/10.1016/j.quascirev.2018.02.012 (2018).ADS
Article
Google Scholar
31.Hanz, U. et al. Environmental factors influencing cold-water coral ecosystems in the oxygen minimum zones on the Angolan and Namibian margins. Biogeosciences 16, 4337–4356 (2019).ADS
CAS
Article
Google Scholar
32.Hebbeln, D. et al. Cold-water coral reefs thriving under hypoxia. Coral Reefs 39, 853–859. https://doi.org/10.1007/s00338-020-01934-6 (2020).Article
Google Scholar
33.Montero-Serrano, J.-C. et al. Decadal changes in the mid-depth water mass dynamic of the Northeastern Atlantic margin (Bay of Biscay). Earth Planet. Sci. Lett. 364, 134–144. https://doi.org/10.1016/j.epsl.2013.01.012 (2013).ADS
CAS
Article
Google Scholar
34.Orejas, C., Gori, A. & Gili, J. M. Growth rates of live Lophelia pertusa and Madrepora oculata cold-water coral species maintained in aquaria. Coral Reefs 27, 255 (2008).ADS
Article
Google Scholar
35.Sabatier, P. et al. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences 9, 1253–1265. https://doi.org/10.5194/bg-9-1253-2012 (2012).ADS
CAS
Article
Google Scholar
36.Sweetman, A. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa-Sci. Anthrop. 5, 4. https://doi.org/10.1525/elementa.203 (2017).Article
Google Scholar
37.Lexerød, N. L. Recruitment models for different tree species in Norway. For. Ecol. Manag. 206, 91–108. https://doi.org/10.1016/j.foreco.2004.11.001 (2005).Article
Google Scholar
38.Georgian, S. et al. Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar. Ecol. 37. https://doi.org/10.1111/maec.12373 (2016).39.Tamborrino, L. et al. Mid-Holocene extinction of cold-water corals on the Namibian shelf steered by the Benguela oxygen minimum zone. Geology 47, 1185–1188. https://doi.org/10.1130/g46672.1 (2019).ADS
Article
Google Scholar
40.Büscher, J., Form, A. & Riebesell, U. Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities. Front. Mar. Sci. 4. https://doi.org/10.3389/fmars.2017.00101 (2017).41.Connolly, S., Lopez-Yglesias, M. & Anthony, K. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31. https://doi.org/10.1007/s00338-012-0925-9 (2012).42.Middelburg, J. J. et al. Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci. Rep. 5, 17962. https://doi.org/10.1038/srep17962 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
43.Wienberg, C. & Titschack, J. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S., Bramanti, L., Gori, A., & del Valle, C.O.S.) 699–732 (Springer, 2017).44.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS
CAS
Article
Google Scholar
45.Levitus, S. & Mishonov, A. World Ocean Atlas 2013 (Vers. 2). NOAA Atlas NESDIS 73. National Oceanographic Data Center, Ocean Climate Laboratory United States, National Environmental Satellite Data Information Service (2013).46.Mienis, F. et al. Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep-Sea Res. Pt. I(54), 1655–1674 (2007).Article
Google Scholar
47.Sanfilippo, R. et al. Serpula aggregates and their role in deep-sea coral communities in the southern Adriatic Sea. Facies 59. https://doi.org/10.1007/s10347-012-0356-7 (2013).48.Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747. https://doi.org/10.1111/eva.12676 (2018).CAS
Article
Google Scholar
49.Boavida, J., Becheler, R., Addamo, A. M., Sylvestre, F. & Arnaud-Haond, S. in Mediterranean Cold-Water Corals: Past, Present and Future, Springer Series: Coral Reefs of the World (eds. Covadonga Orejas Saco del Valle & C. Jiménez) (Springer, 2019).50.Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535. https://doi.org/10.1146/annurev-marine-120709-142756 (2011).Article
PubMed
Google Scholar
51.Frank, N. et al. Northeastern Atlantic cold-water coral reefs and climate. Geology 39, 743–746. https://doi.org/10.1130/g31825.1 (2011).ADS
Article
Google Scholar
52.Hebbeln, D. et al. ANNA cold-water coral ecosystems off Angola and Namibia. Cruise No. M122, December 30, 2015–January 31, 2016, Walvis Bay (Namibia) – Walvis Bay (Namibia). METEOR-Berichte, M122. DFG-Senatskommission Ozeanogr. 74. https://doi.org/10.2312/cr_m122 (2017).53.Vad, J., Orejas, C., Moreno-Navas, J., Findlay, H. S. & Roberts, J. M. Assessing the living and dead proportions of cold-water coral colonies: Implications for deep-water marine protected area monitoring in a changing ocean. PeerJ 5, e3705. https://doi.org/10.7717/peerj.3705 (2017).Article
PubMed
PubMed Central
Google Scholar More