Kinship networks of seed exchange shape spatial patterns of plant virus diversity
1.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).Article
Google Scholar
2.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).PubMed
Article
PubMed Central
Google Scholar
3.McGuire, S. & Sperling, L. Seed systems smallholder farmers use. Food Secur. 8, 179–195 (2016).Article
Google Scholar
4.Almekinders, C. J., Louwaars, N. P. & De Bruijn, G. H. Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 78, 207–216 (1994).Article
Google Scholar
5.McGuire, S. & Sperling, L. Making seed systems more resilient to stress. Global Environ. Chang. 23, 644–653 (2013).Article
Google Scholar
6.Legg, J. et al. Community phytosanitation to manage Cassava Brown Streak Disease. Virus Res. 241, 236–253 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
7.McQuaid, C. F. et al. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput. Biol. 13, e1005654 (2017a).PubMed
PubMed Central
Article
CAS
Google Scholar
8.Chernela, J. M. Os cultivares de mandioca na área do Uaupés (Tukâno). In Suma Etnológica Brasileira (ed Ribeiro, D.) 151–158 (Finep, Petrópolis, 1986).9.Emperaire, L., Pinton, F. & Second, G. Gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. Nat. Sci. Soc. 6, 27–42 (1998).Article
Google Scholar
10.Sirbanchongkran, A., Yimyam, N., Boonma, W. & Rerkasem, K. Varietal turnover and seed exchange: implications for conservation of rice genetic diversity on farm. Int. Rice Res. Notes 29, 12–14 (2004).
Google Scholar
11.Delêtre, M., McKey, D. B. & Hodkinson, T. R. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc. Natl Acad. Sci. USA 108, 18249–18254 (2011).ADS
PubMed
PubMed Central
Article
Google Scholar
12.Labeyrie, V., Thomas, M., Muthamia, Z. K. & Leclerc, C. Seed exchange networks, ethnicity, and sorghum diversity. Proc. Natl Acad. Sci. USA 113, 98–103 (2016).ADS
CAS
PubMed
Article
Google Scholar
13.Brown, J. K. et al. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160, 1593–1619 (2015).CAS
PubMed
Article
Google Scholar
14.Legg, J. P. et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak pandemics in Africa. Virus Res. 159, 161–170 (2011).CAS
PubMed
Article
Google Scholar
15.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
16.Harrison, B. D., Zhou, X., Otim‐Nape, G. W., Liu, Y. & Robinson, D. J. Role of a novel type of double infection in the geminivirus‐induced epidemic of severe cassava mosaic in Uganda. Ann. Appl. Biol. 131, 437–448 (1997).Article
Google Scholar
17.Consultative Group for International Agricultural Research. CGIAR Research Program 3.4: Roots, tubers, and bananas for food security and income. Final revised proposal. September 2011. https://hdl.handle.net/10947/5314.18.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
19.Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).ADS
CAS
Article
Google Scholar
20.Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
21.Fauquet, C. & Fargette, D. African cassava mosaic virus: etiology, epidemiology and control. Plant Dis. 74, 404–411 (1990).Article
Google Scholar
22.Zhou, X. et al. Evidence that DNA A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111 (1997).CAS
PubMed
Article
Google Scholar
23.Pita, J. S. et al. Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82, 655–665 (2001).CAS
PubMed
Article
Google Scholar
24.Lefeuvre, P. & Moriones, E. Recombination as a motor of host switches and virus emergences: geminiviruses as case studies. Curr. Opin. Virol. 10, 14–19 (2015).CAS
PubMed
Article
Google Scholar
25.Tiendrébéogo, F. et al. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. Virol. J. 9, 67 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
26.Syrjala, S. E. A statistical test for a difference between the spatial distributions of two populations. Ecology 77, 75–80 (1996).Article
Google Scholar
27.Chevenet, F., Jung, M., Peeters, M., de Oliveira, T. & Gascuel, O. Searching for virus phylotypes. Bioinformatics 29, 561–570 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
28.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article
Google Scholar
29.Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user‐defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).PubMed
PubMed Central
Article
Google Scholar
30.Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).ADS
MathSciNet
CAS
PubMed
PubMed Central
Article
Google Scholar
31.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. 56, 585–599 (2004).CAS
PubMed
Article
Google Scholar
32.Legg, J. P., Ndjelassili, F. & Okao-Okuja, G. First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathol. 53, 232 (2004).Article
Google Scholar
33.Legg, J. P. Bemisia tabaci: the whitefly vector of cassava mosaic geminiviruses in Africa: an ecological perspective. Afr. Crop Sci. J. 2, 437–448 (1994).
Google Scholar
34.Fargette, D. & Thresh, J. M. The ecology of African cassava mosaic geminivirus. In Ecology of Plant Pathogens (eds Blakeman, J. P. & Williamson, B.) 269–282 (CAB International, Oxford, 1994).35.Anderson, P. K. & Morales, F. Whitefly and whitefly borne viruses in the tropics: building a knowledge base for global action (International Center for Tropical Agriculture, Cali, 2005).36.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. 44, 6–12 (2013).Article
Google Scholar
37.Delêtre, M. The ins and outs of manioc diversity in Gabon, Central Africa: a pluridisciplinary approach to the dynamics of genetic diversity of Manihot esculenta Crantz (Euphorbiaceae) (Trinity College Dublin, 2010).38.Messe Mbega, C. Y. Les régions transfrontalières: un exemple d’intégration sociospatiale de la population en Afrique centrale? Éthique publique 17, http://ethiquepublique.revues.org/1724 (2015).39.Akinbade, S. A. et al. First report of the East African cassava mosaic virus-Uganda (EACMV-UG) infecting cassava (Manihot esculenta) in Cameroon. N. Dis. Rep. 22, 2044–0588 (2010).
Google Scholar
40.Valam-Zango, A. et al. First report of cassava mosaic geminiviruses and the Uganda strain of East African cassava mosaic virus (EACMV-UG) associated with cassava mosaic disease in Equatorial Guinea. N. Dis. Rep. 32, 29 (2015).Article
Google Scholar
41.Trovão, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. 1, vev016 (2015).PubMed
PubMed Central
Article
Google Scholar
42.Sallinen, S. et al. Intraspecific host variation plays a key role in virus community assembly. Nat. Commun. 11, 5610 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
43.Patil, B. L., Legg, J. P., Kanju, E. & Fauquet, C. M. Cassava brown streak disease: a threat to food security in Africa. J. Gen. Virol. 96, 956–968 (2015).CAS
PubMed
Article
Google Scholar
44.Maruthi, M. N., Jeremiah, S. C., Mohammed, I. U. & Legg, J. P. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. J. Phytopathol. 165, 707–717 (2017).CAS
Article
Google Scholar
45.McQuaid, C. F., Gilligan, C. A. & van den Bosch, F. Considering behaviour to ensure the success of a disease control strategy. R. Soc. Open Sci. 4, 170721 (2017b).PubMed
PubMed Central
Article
Google Scholar
46.Almekinders, C. J. et al. Understanding the relations between farmers’ seed demand and research methods: the challenge to do better. Outlook Agric. 48, 16–21 (2019a).Article
Google Scholar
47.Almekinders, C. J. et al. Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Secur. 11, 23–42 (2019b).Article
Google Scholar
48.R Foundation for Statistical Computing. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2018).49.Zeileis, A. ineq: Measuring inequality, concentration, and poverty. R package version 0.2-13. https://CRAN.R-project.org/package=ineq (2014).50.Alabi, O. J., Kumar, P. L. & Naidu, R. A. Multiplex PCR method for the detection of African cassava mosaic virus and East African cassava mosaic Cameroon virus in cassava. J. Virol. Methods 154, 111–120 (2008).ADS
CAS
PubMed
Article
Google Scholar
51.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).PubMed
PubMed Central
Article
Google Scholar
53.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
54.Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).PubMed
Article
Google Scholar
55.Rambaut, A., Lam, T. T., de Carvalho, L. M. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst. Virus Evol. 2, vew007 (2016).PubMed
PubMed Central
Article
Google Scholar
56.Ragonnet-Cronin, M. et al. Automated analysis of phylogenetic clusters. BMC Bioinforma. 14, 317 (2013).Article
Google Scholar
57.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article
Google Scholar
58.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article
Google Scholar
59.Scherer, R. & Pallmann, P. Simboot: simultaneous inference for diversity indices. R package version 0.2-6. https://CRAN.R-project.org/package=simboot (2017).60.Oksanen J. et al. vegan: Community Ecology Package. R package version 2.4-1. https://CRAN.R-project.org/package=vegan (2016).61.Prost, S. & Anderson, C. N. K. TempNet: a method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).Article
Google Scholar
62.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. TRENDS Ecol. Evol. 16, 37–45 (2001).CAS
PubMed
Article
Google Scholar
63.Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinforma. 9, 539 (2008).Article
CAS
Google Scholar
64.Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
65.De la Cruz, M. Métodos para analizar datos puntuales. In Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones (eds Maestre, F. T., Escudero, A. & Bonet, A.) 76–127. (Asociación Española de Ecología Terrestre, Universidad Rey Juan Carlos y Caja de Ahorros del Mediterráneo, Madrid, 2008).66.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
67.Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land‐cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).Article
Google Scholar
68.Guthrie, M. The Classification of the Bantu Languages (Oxford Univ. Press for the International African Institute, London, 1948).69.Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19, 153–170 (1983).ADS
CAS
PubMed
Article
Google Scholar
70.Rogers, J. S. Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. Syst. Biol. 35, 297–310 (1986).Article
Google Scholar More