More stories

  • in

    Healing the land and the academy

    Jennifer Grenz is currently a sessional lecturer at the University of British Columbia and owns a land healing company, Greener This Side. Her recently completed PhD dissertation explores the science of invasive species management and restoration through the lens of an ‘Indigenous ecology’, which she defines as “relationally guided healing of our lands, waters, and relations through intentional shaping of ecosystems by humans to bring a desired balance that meets the fluid needs of communities while respecting and honouring our mutual dependence through reciprocity.” Here we ask about her research and experiences as an Indigenous woman in ecology. More

  • in

    The rates of global bacterial and archaeal dispersal

    1.Kruckeberg AR, Rabinowitz D. Biological aspects of endemism in higher plants. Annu Rev Ecol Syst. 1985;16:447–79.Article 

    Google Scholar 
    2.Ceballos G, Brown JH. Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol. 1995;9:559–68.Article 

    Google Scholar 
    3.Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, et al. Global diversity and distribution of macrofungi. Biodivers Conserv. 2007;16:37–48.Article 

    Google Scholar 
    4.Prideaux GJ, Warburton NM. An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (macropodidae: Marsupialia). Zool J Linn Soc. 2010;159:954–87.Article 

    Google Scholar 
    5.Finlay BJ, Clarke KJ. Ubiquitous dispersal of microbial species. Nature. 1999;400:828.CAS 
    Article 

    Google Scholar 
    6.Whitaker RJ, Grogan DW, Taylor JW. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–978.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Whitfield J. Is everything everywhere? Science. 2005;310:960–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A. Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol. 2006;72:5159–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.DeWit R, Bouvier T. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol. 2006;8:755–8.Article 

    Google Scholar 
    10.van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Whittaker KA, Rynearson TA. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc Natl Acad Sci USA. 2017;114:2651–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Louca S, Shih PM, Pennell MW, Fischer WW, Parfrey LW, Doebeli M. Bacterial diversification through geological time. Nat Ecol Evol. 2018;2:1458–67.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci USA. 2011;108:7850–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 2010;4:191–202.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA. Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA. 2013;110:4651–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc R Soc Lond B Biol Sci. 2014;281:20141988.18.Gonnella G, Böhnke S, Indenbirken D, Garbe-Schönberg D, Seifert R, Mertens C, et al. Endemic hydrothermal vent species identified in the open ocean seed bank. Nat Microbiol. 2016;1:16086 EP.Article 
    CAS 

    Google Scholar 
    19.Louca S, Mazel F, Doebeli M, Parfrey WL. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 2019;17:e3000106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ochman H, Wilson A. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Kuo CH, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct. 2009;4:35–35.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Roberts MS, Cohan FM. Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution. 1995;49:1081–94.PubMed 
    Article 

    Google Scholar 
    23.van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, et al. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE. 2011;6:e19561.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Papke RT, Ramsing NB, Bateson MM, Ward DM. Geographical isolation in hot spring cyanobacteria. Environ Microbiol. 2003;5:650–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hongmei J, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles. 2005;9:325–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Miller SR, Castenholz RW, Pedersen D. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol. 2007;73:4751–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Takacs-Vesbach C, Mitchell K, Jackson-Weaver O, Reysenbach AL. Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. Environ Microbiol. 2008;10:1681–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA. 2009;106:8605–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, et al. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun. 2011;2:163.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Anderson RE, Kouris A, Seward CH, Campbell KM, Whitaker RJ. Structured populations of Sulfolobus acidocaldarius with susceptibility to mobile genetic elements. Genome Biol Evol. 2017;9:1699–710.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Podar PT, Yang Z, Björnsdóttir SH, Podar M. Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Front Microbiol. 2020;11:1625.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. Genbank. Nucleic Acids Res. 2015;44:D67–D72.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA. 2005;102:2567–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.CAS 
    Article 

    Google Scholar 
    35.Olm MR, Crits-Christoph A, Diamond S, Lavy A, Carnevali PBM, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020;5:e00731-19.36.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Shapiro BJ. What microbial population genomics has taught us about speciation. In: Polz MF, Rajora OP, editors. Population Genomics: Microorganisms. Cham, Switzerland: Springer International Publishing; 2019. p. 31–47.38.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–27.CAS 

    Google Scholar 
    40.Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15.Article 

    Google Scholar 
    41.Louca S. Phylogeographic estimation and simulation of global diffusive dispersal. Syst Biol. 2021;70:340–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Denef VJ, Banfield JF. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science. 2012;336:462–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bouckaert R, Cartwright R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ. 2016;4:e2406.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Brillinger DR. A particle migrating randomly on a sphere. In: Selected Works of David Brillinger. Cham, Switzerland: Springer; 2012. p. 73–87.46.Ghosh A, Samuel J, Sinha SA. “Gaussian” for diffusion on the sphere. Europhys Lett. 2012;98:30003.Article 
    CAS 

    Google Scholar 
    47.Castenholz RW. The biogeography of hot spring algae through enrichment cultures. SIL Commun. 1978;21:296–315. 1953-1996
    Google Scholar 
    48.Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Micro. 2007;5:316–23.CAS 
    Article 

    Google Scholar 
    49.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Smith DJ, Jaffe DA, Birmele MN, Griffin DW, Schuerger AC, Hee J, et al. Free tropospheric transport of microorganisms from Asia to North America. Micro Ecol. 2012;64:973–85.CAS 
    Article 

    Google Scholar 
    51.Pagel M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B Biol Sci. 1994;255:37–45.Article 

    Google Scholar 
    52.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Anderson D. The regulation of fishing and related activities in exclusive economic zones. In: Modern Law Sea, Publications on Ocean Development, vol. 59, chap. 11. Leiden, The Netherlands: Brill Nijhoff; 2008. p. 209–27.54.Bullock JM, Clarke RT. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia. 2000;124:506–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Brynjarsdóttir J, O’Hagan A. Learning about physical parameters: the importance of model discrepancy. Inverse Probl. 2014;30:114007.Article 

    Google Scholar 
    56.Bell T. Experimental tests of the bacterial distance-decay relationship. ISME J. 2010;4:1357–65.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    58.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2014;25:1043–55.Article 
    CAS 

    Google Scholar 
    59.Chambat F, Valette B. Mean radius, mass, and inertia for reference Earth models. Phys Earth Planet Inter. 2001;124:237–53.Article 

    Google Scholar 
    60.Data NS, (SEDAC) AC Gridded Population of the World, Version 4 (GPW v4): Population Density, Revision 11. Tech. rep., Palisades, NY: Center for International Earth Science Information Network – CIESIN – Columbia University. 2018. Accessed November 23, 2020.61.Price MN, Dehal PS, Arkin AP. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Britton T, Anderson CL, Jacquet D, Lundqvist S, Bremer K. Estimating divergence times in large phylogenetic trees. Syst Biol. 2007;56:741–52.PubMed 
    Article 

    Google Scholar 
    63.Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nat Commun. 2019;10:5477.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Perrin F. Étude mathématique du movement brownien de rotation. In: Annales scientifiques del’École Normale Supérieure, vol. 45. Paris, France: Elsevier; with 1928. p. 1–51.65.Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34:1053–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Bloomquist EW, Lemey P, Suchard MA. Three roads diverged? routes to phylogeographic inference. Trends Ecol Evol. 2010;25:626–32.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol. 2010;27:1877–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Faria NR, Suchard MA, Rambaut A, Lemey P. Toward a quantitative understanding of viral phylogeography. Curr Opin Virol. 2011;1:423–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Faria NR, Suchard MA, Abecasis A, Sousa JD, Ndembi N, Bonfim I, et al. Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon. Infect Genet Evol. 2012;12:453–60.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lange K. Diffusion processes. In: Applied Probability, chap. 11. New York, NY: Springer New York; 2010. p. 269–95.71.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using minhash. Genome Biol. 2016;17:132.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019;176:649–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Criscuolo A, Gascuel O. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinforma. 2008;9:166.Article 
    CAS 

    Google Scholar 
    74.Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.75.Kinene T, Wainaina J, Maina S, Boykin LM, Kliman RM. Methods for rooting trees, vol. 3. Oxford: Academic Press; 2016. p. 489–93.76.van Rossum G. Python tutorial. Tech. Rep. CS-R9526, Amsterdam: Centrum voor Wiskunde en Informatica (CWI); 1995. More

  • in

    Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules

    1.Cheverud, J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 (1996).Article 

    Google Scholar 
    2.Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nat. Rev. Genet. 8, 921–931 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).Article 

    Google Scholar 
    5.Klingenberg, C. P. Studying morphological integration and modularity at multiple levels: concepts and analysis. Phil. Trans. R. Soc. B 369, 20130249 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hallgrímsson, B. et al. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36, 355–376 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Olson, E. & Miller, R. Morphological Integration (Univ. of Chicago Press, 1958).8.Pigliucci, M. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. 6, 265–272 (2003).Article 

    Google Scholar 
    9.Eble, G. J. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 253–273 (Oxford Univ. Press, 2004).10.Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Phil. Trans. R. Soc. B 369, 20130254 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Goswami, A., Binder, W. J., Meachen, J. & O’Keefe, F. R. The fossil record of phenotypic integration and modularity: a deep-time perspective on developmental and evolutionary dynamics. Proc. Natl Acad. Sci. USA 112, 4891–4896 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Wagner, G. P. & Schwenk, K. Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. Evol. Biol. 31, 155–217 (2000).
    Google Scholar 
    13.Hallgrímsson, B., Willmore, K. & Hall, B. K. Canalization, developmental stability, and morphological integration in primate limbs. Am. J. Phys. Anthropol. 119, 131–158 (2002).Article 

    Google Scholar 
    14.Gould, S. J. A developmental constraint in cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43, 516–539 (1989).PubMed 

    Google Scholar 
    15.Arthur, W. Developmental drive: an important determinant of the direction of phenotypic evolution. Evol. Dev. 3, 271–278 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Klingenberg, C. P. in Variation: A Central Concept in Biology (eds Hallgrímsson, B. & Hall, B.) 219–247 (Elsevier, 2005).17.Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bell, E., Andres, B. & Goswami, A. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. J. Evol. Biol. 24, 2586–2599 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gatesy, S. M. & Dial, K. P. Locomotor modules and the evolution of avian flight. Evolution 50, 331–340 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebr. Paleontol. 17, 308–329 (1997).Article 

    Google Scholar 
    21.Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S. & Bairlein, F. Functional morphology and integration of corvid skulls—a 3D geometric morphometric approach. Front. Zool. 6, 2 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Bright, J. A., Marugán-Lobón, J., Rayfield, E. J. & Cobb, S. N. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evol. Biol. 19, 104 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Navalón, G., Marugán-Lobón, J., Bright, J. A., Cooney, C. R. & Rayfield, E. J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 4, 270–278 (2020).PubMed 
    Article 

    Google Scholar 
    25.Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Shatkovska, O. V. & Ghazali, M. Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J. Anat. 236, 274–287 (2020).PubMed 
    Article 

    Google Scholar 
    27.Hieronymus, T. L. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves). BMC Evol. Biol. 15, 30 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Felice, R. N., Tobias, J. A., Pigot, A. L. & Goswami, A. Dietary niche and the evolution of cranial morphology in birds. Proc. R. Soc. B 286, 20182677 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Grant, R. B. & Grant, P. R. What Darwin’s finches can teach us about the evolutionary origin and regulation of biodiversity. BioScience 53, 965–975 (2003).Article 

    Google Scholar 
    32.Van de Ven, T., Martin, R., Vink, T., McKechnie, E. & Cunningham, S. Regulation of heat exchange across the hornbill beak: functional similarities with toucans? PLoS ONE 11, e0154768 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Dececchi, T. A. & Larsson, H. C. Body and limb size dissociation at the origin of birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution 67, 2741–2752 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Nudds, R., Dyke, G. & Rayner, J. Forelimb proportions and the evolutionary radiation of Neornithes. Proc. R. Soc. Lond. B 271, S324–S327 (2004).
    Google Scholar 
    37.Benson, R. B. & Choiniere, J. N. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B 280, 20131780 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Videler, J. J. Avian Flight (Oxford Univ. Press, 2006).39.Carrano, M. T. & Sidor, C. A. Theropod hind limb disparity revisited: comments on Gatesy and Middleton (1997). J. Vertebr. Paleontol. 19, 602–605 (1999).Article 

    Google Scholar 
    40.Middleton, K. M. & Gatesy, S. M. Theropod forelimb design and evolution. Zool. J. Linn. Soc. 128, 149–187 (2000).Article 

    Google Scholar 
    41.Young, N. M., Linde-Medina, M., Fondon, J. W., Hallgrímsson, B. & Marcucio, R. S. Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. Nat. Ecol. Evol. 1, 0095 (2017).Article 

    Google Scholar 
    42.Martín-Serra, A. & Benson, R. B. Developmental constraints do not influence long-term phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and integration patterns. Am. Nat. 195, 547–560 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Dumont, E. R. et al. Selection for mechanical advantage underlies multiple cranial optima in New World leaf-nosed bats. Evolution 68, 1436–1449 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).Article 

    Google Scholar 
    45.Rossoni, D. M., Costa, B. M., Giannini, N. P. & Marroig, G. A multiple peak adaptive landscape based on feeding strategies and roosting ecology shaped the evolution of cranial covariance structure and morphological differentiation in phyllostomid bats. Evolution 73, 961–981 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).CAS 
    Article 

    Google Scholar 
    47.Bjarnason, A. & Benson, R. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM 7, e125 (2021).Article 

    Google Scholar 
    48.Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    49.R Core Team R: A Language and Environment for Statistical Computing v.3.6.3 (R Foundation for Statistical Computing, 2020).50.Birds of the World (The Cornell Lab of Ornithology, 2021); https://birdsoftheworld.org/bow/home51.Dunning, J. B. Jr CRC Handbook of Avian Body Masses (CRC, 1992).52.The IUCN Red List of Threatened Species (IUCN, 2019); https://www.iucnredlist.org/53.Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    54.Taylor, G. & Thomas, A. Evolutionary Biomechanics (Oxford Univ. Press, 2014).55.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extensions. R package version 2.1.0 (2019).56.Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157 (1989).CAS 
    Article 

    Google Scholar 
    57.Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).PubMed 
    Article 

    Google Scholar 
    58.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and nonlinear mixed effects models. R package version 3.1-145 (2020).59.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 
    CAS 

    Google Scholar 
    60.Goodall, C. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. B 53, 285–321 (1991).
    Google Scholar 
    61.Adams, D., Collyer, M. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.2.1 (2020).62.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    63.Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS ONE 9, e94335 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Melo, D., Garcia, G., Hubbe, A., Assis, A. P. & Marroig, G. Evolqg—an R package for evolutionary quantitative genetics [version 3; referees: 2 approved, 1 approved with reservations]. F1000Research 4, 925 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Goswami, A. & Polly, P. D. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 16, 213–243 (2010).Article 

    Google Scholar 
    68.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 (2019). More

  • in

    Lethal coalitionary attacks of chimpanzees (Pan troglodytes troglodytes) on gorillas (Gorilla gorilla gorilla) in the wild

    1.Gómez, J. M., Verdú, M., González-Megías, A. & Méndez, M. The phylogenetic roots of human lethal violence. Nature 538, 233–237. https://doi.org/10.1038/nature19758 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Darwin, C. The Descent of Man, and Selection in Relation to Sex. (Appleton, 1872).3.Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Smith, J. M. & Price, G. R. The logic of animal conflict. Nature 246, 15–18. https://doi.org/10.1038/246015a0 (1973).ADS 
    MATH 
    Article 

    Google Scholar 
    5.Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, 507–508. https://doi.org/10.1016/j.cub.2010.04.021 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Wrangham, R. W. Evolution of coalitionary killing. Yearb. Phys. Anthropol. 42, 1–30 (1999).Article 

    Google Scholar 
    7.Boesch, C. et al. Intergroup conflicts among chimpanzees in Taı National Park: Lethal violence and the female perspective. Am. J. Primatol. 70, 519–532. https://doi.org/10.1002/ajp.20524 (2008).Article 
    PubMed 

    Google Scholar 
    8.Robbins, M. M. & Robbins, A. M. Simulation of the population dynamics and social structure of the Virunga Mountain gorillas. Am. J. Primatol. 63, 201–223. https://doi.org/10.1002/ajp.20052 (2004).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    9.Watts, D. P. Infanticide in Mountain gorillas: New cases and a reconsideration of evidence. Ethology 81, 1–18 (1989).ADS 
    Article 

    Google Scholar 
    10.Yamagiwa, J., Kahekwa, J. & Basabose, A. K. Infanticide and social flexibility in the genus Gorilla. Primates 50, 293–303. https://doi.org/10.1007/s10329-009-0163-0 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417. https://doi.org/10.1038/nature13727 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Marzec, A. M. et al. The dark side of the red ape: Male-mediated lethal female competition in Bornean orangutans. Behav. Ecol. Sociobiol. 70, 459–466. https://doi.org/10.1007/s00265-015-2053-3 (2016).Article 

    Google Scholar 
    13.Goodall, J. The Chimpanzees of Gombe: Patterns of Behaviour. (Belknap Press of Harvard University Press, 1986).14.Nishida, T., Hiraiwa-Hasegawa, M., Hasegawa, T. & Takahata, Y. Group extinction and female transfer in wild chimpanzees in the Mahale National Park, Tanzania. Z. Tierpsychol. 67, 284–301 (1985).Article 

    Google Scholar 
    15.Mitani, J. C. & Watts, D. P. Correlates of territorial boundary patrol behaviour in wild chimpanzees. Anim. Behav. 70, 1079–1086. https://doi.org/10.1016/j.anbehav.2005.02.012 (2005).Article 

    Google Scholar 
    16.Wrangham, R. The Goodness Paradox: The Strange Relationship Between Virtue and Violence in Human Evolution. (Pantheon, 2019).17.Boehm, C. In Us Against Them: Coalitions and Alliances in Humans and Other Animals (eds Harcourt, A. & De Waal, F. B. M.) 37–173 (Oxford University Press, 1992).18.Bermejo, M. Home-range use and intergroup encounters in western gorillas (Gorilla g. gorilla) at Lossi Forest, North Congo. Am. J. Primatol. 64, 223–232. https://doi.org/10.1002/ajp.20073 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Kaessmann, H. & Pääbo, S. The genetical history of humans and the great apes. J. Intern. Med. 251, 1–18. https://doi.org/10.1046/j.1365-2796.2002.00907.x (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Robbins, M. M. & Robbins, A. M. Variation in the social organization of gorillas: Life history and socioecological perspectives. Evol. Anthropol. Issues News Rev. 27, 218–233. https://doi.org/10.1002/evan.21721 (2018).Article 

    Google Scholar 
    21.Yamagiwa, J., Basabose, K., Kaleme, K. & Yumoto, T. In Gorilla Biology: A Multidisciplinary Perspective (eds Taylor, A. B. & Goldsmith, M. L.) 328–356 (Cambridge University Press, 2003).22.Robbins, M. M. et al. Social structure and life-history patterns in western gorillas (Gorilla gorilla gorilla). Am. J. Primatol. 64, 145–159. https://doi.org/10.1002/ajp.20069 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Bradley, B. J., Doran-Sheehy, D. M., Lukas, D., Boesch, C. & Vigilant, L. Dispersed male networks in western gorillas. Curr. Biol. 14, 510–513. https://doi.org/10.1016/j.cub.2004.02.062 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Sicotte, P. Inter-group encounters and female transfer in mountain gorillas: Influence of group composition on male behavior. Am. J. Primatol. 30, 21–36. https://doi.org/10.1002/ajp.1350300103 (1993).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Rosenbaum, S., Vecellio, V. & Stoinski, T. Observations of severe and lethal coalitionary attacks in wild mountain gorillas. Sci. Rep. 6, 37018. https://doi.org/10.1038/srep37018 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Morrison, R. E., Dunn, J. C., Illera, G., Walsh, P. D. & Bermejo, M. Western gorilla space use suggests territoriality. Sci. Rep. 10, 3692. https://doi.org/10.1038/s41598-020-60504-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508. https://doi.org/10.1086/303189 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dayan, T. & Simberloff, D. Size patterns among competitors: Ecological character displacement and character release in mammals, with special reference to island populations. Mammal Rev. 28, 99–124. https://doi.org/10.1046/j.1365-2907.1998.00029.x (1998).Article 

    Google Scholar 
    29.Taylor, R. J. Predation. 166 (Springer Science & Business Media, 2013).30.Methion, S. & Díaz López, B. Spatial segregation and interspecific killing of common dolphins (Delphinus delphis) by bottlenose dolphins (Tursiops truncatus). Acta Ethol. https://doi.org/10.1007/s10211-021-00363-0 (2021).Article 

    Google Scholar 
    31.Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330. https://doi.org/10.1146/annurev.es.20.110189.001501 (1989).Article 

    Google Scholar 
    32.Polis, G. A. & Holt, R. D. Intraguild predation: The dynamics of complex trophic interactions. Trends Ecol. Evol. 7, 151–154. https://doi.org/10.1016/0169-5347(92)90208-S (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.de Oliveira, T. & Pereira, J. Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J. Mamm. Evol. https://doi.org/10.1007/s10914-013-9251-4 (2014).Article 

    Google Scholar 
    34.Surbeck, M. & Hohmann, G. Primate hunting by bonobos at LuiKotale, Salonga National Park. Curr. Biol. 18, 906–907. https://doi.org/10.1016/j.cub.2008.08.040 (2008).Article 
    CAS 

    Google Scholar 
    35.Hohmann, G. & Fruth, B. New records on prey capture and meat eating by bonobos at Lui Kotale, Salonga National Park, Democratic Republic of Congo. Folia Primatol. 79, 103–110. https://doi.org/10.1159/000110679 (2008).Article 

    Google Scholar 
    36.Stanford, C. B. Chimpanzee hunting behavior and human evolution. Am. Sci. 83, 256–261 (1995).ADS 

    Google Scholar 
    37.Newton-Fisher, N. E. In Handbook of Paleoanthropology (eds Winfried, H. & Ian, T.) 1295–1320 (Springer, 2007).38.Mitani, J. C. & Watts, D. P. Demographic influences on the hunting behavior of chimpanzees. Am. J. Phys. Anthropol. 109, 439–454. https://doi.org/10.1002/(SICI)1096-8644(199908)109:43.0.CO;2-3 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Mitani, J. C. & Watts, D. P. Why do chimpanzees hunt and share meat?. Anim. Behav. 61, 915–924. https://doi.org/10.1006/anbe.2000.1681 (2001).Article 

    Google Scholar 
    40.Nishida, T., Uehara, S. & Nyundo, R. Predatory behavior among wild chimpanzees of the Mahale mountains. Primates 20, 1–20. https://doi.org/10.1007/BF02373826 (1979).Article 

    Google Scholar 
    41.Boesch, C. & Boesch, H. Hunting behavior of wild chimpanzees in the Tai National Park. Am. J. Phys. Anthropol. 78, 547–573. https://doi.org/10.1002/ajpa.1330780410 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Watts, D. P. & Mitani, J. C. Hunting behavior of chimpanzees at Ngogo, Kibale National Park, Uganda. Int. J. Primatol. 23, 1–28. https://doi.org/10.1023/A:1013270606320 (2002).Article 

    Google Scholar 
    43.Pika, S. et al. Wild chimpanzees (Pan troglodytes troglodytes) exploit tortoises (Kinixys erosa) via percussive technology. Sci. Rep. 9, 7. https://doi.org/10.1038/s41598-019-43301-8 (2019).CAS 
    Article 

    Google Scholar 
    44.Basabose, K. & Yamagiwa, J. Predation on mammals by chimpanzees in the montane forest of Kahuzi, Zaire. Primates 38, 45–55. https://doi.org/10.1007/BF02385921 (1997).Article 

    Google Scholar 
    45.Klein, H. et al. Hunting of mammals by central chimpanzees (Pan troglodytes troglodytes) in the Loango National Park, Gabon. Primates 62, 267–278. https://doi.org/10.1007/s10329-020-00885-4 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Sanz, C., Morgan, D., Strindberg, S. & Onononga, J. R. Distinguishing between the nests of sympatric chimpanzees and gorillas. J. Appl. Ecol. 44, 263–272. https://doi.org/10.1111/j.1365-2664.2007.01278.x (2007).Article 

    Google Scholar 
    47.Harcourt, A. H. Is the gorilla a threatened species? How should we judge? Biol. Conserv. 75, 165–176. https://doi.org/10.1016/0006-3207(95)00059-3 (1996).Article 

    Google Scholar 
    48.Matthews, A. & Matthews, A. Survey of gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in Southwestern Cameroon. Primates 45, 15–24. https://doi.org/10.1007/s10329-003-0058-4 (2004).PubMed 
    Article 

    Google Scholar 
    49.Arandjelovic, M. et al. Effective non-invasive genetic monitoring of multiple wild western gorilla groups. Biol. Conserv. 143, 1780–1791. https://doi.org/10.1016/j.biocon.2010.04.030 (2010).Article 

    Google Scholar 
    50.Arandjelovic, M., Head, J., Rabanal, L. I., Schubert, G., Mettke, E., Boesch, C., Robbins, M. M. & Vigilant, L. Non-invasive genetic monitoring of wild central chimpanzees. PLoS One 6(3) (2011).51.Martínez-Íñigo, L., Baas, P., Klein, H., Pika, S. & Deschner, T. Intercommunity interactions and killings in central chimpanzees (Pan troglodytes troglodytes) from Loango National Park, Gabon. Primates, 1–14 https://doi.org/10.1007/s10329-021-00921-x (2021).52.Furuichi, T., Inagaki, H. & Angoue-Ovono, S. Population density of chimpanzees and gorillas in the Petit Loango Reserve, Gabon: Employing a new method to distinguish between nests of the two species. Int. J. Primatol. 18, 1029–1046. https://doi.org/10.1023/A:1026356432486 (1997).Article 

    Google Scholar 
    53.Poulsen, J. R. & Clark, C. J. Densities, distributions, and seasonal movements of gorillas and chimpanzees in swamp forest in Northern Congo. Int. J. Primatol. 25, 285–306. https://doi.org/10.1023/B:IJOP.0000019153.50161.58 (2004).Article 

    Google Scholar 
    54.Morgan, D., Sanz, C., Onononga, J. R. & Strindberg, S. Ape abundance and habitat use in the Goualougo Triangle, Republic of Congo. Int. J. Primatol. 27, 147–179. https://doi.org/10.1007/s10764-005-9013-0 (2006).Article 

    Google Scholar 
    55.Vieira, W. F., Kerry, C. & Hockings, K. J. A comparison of methods to determine chimpanzee home-range size in a forest–farm mosaic at Madina in Cantanhez National Park, Guinea-Bissau. Primates 60, 355–365. https://doi.org/10.1007/s10329-019-00724-1 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.r-project.org/.57.Calenge, C. The package adehabitat for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035 (2006).Article 

    Google Scholar 
    58.Fossey, D. Vocalizations of the mountain gorilla (Gorilla gorilla beringei). Anim. Behav. 20, 36–53. https://doi.org/10.1016/S0003-3472(72)80171-4 (1972).Article 

    Google Scholar 
    59.Hagemann, L. et al. Long-term inference of population size and habitat use in a socially dynamic population of wild western lowland gorillas. Conserv. Genet. 20, 1303–1314. https://doi.org/10.1007/s10592-019-01209-w (2019).Article 

    Google Scholar 
    60.Boesch, C. Cooperative hunting roles among taï chimpanzees. Hum. Nat. 13, 27–46. https://doi.org/10.1007/s12110-002-1013-6 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Wilkinson, R., Leudar, I. & Pika, S. In Developments in Primate Gesture Research (eds Simone, P. & Katja, L.) 199–221 (John Benjamins Publishing Company, 2012).62.Yamagiwa, J. & Basabose, A. K. Diet and seasonal changes in sympatric gorillas and chimpanzees at Kahuzi-Biega National Park. Primates 47, 74–90. https://doi.org/10.1007/s10329-005-0147-7 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Stanford, C. B. & Nkurunungi, J. B. Behavioral ecology of sympatric chimpanzees and gorillas in Bwindi Impenetrable National Park, Uganda: Diet. Int. J. Primatol. 24, 901–918. https://doi.org/10.1023/A:1024689008159 (2003).Article 

    Google Scholar 
    64.Morgan, D. & Sanz, C. In Feeding Ecology in Apes and Other Primates (eds Hohmann, G., Robbins, M. M., & Boesch, C.) 97–122 (Cambridge University Press, 2006).65.Yamagiwa, J. & Basabose, A. K. In Feeding Ecology in Apes and Other Primates. 73–96 (Cambridge University Press, 2006).66.Tutin, C. E. & Fernandez, M. Composition of the diet of chimpanzees and comparisons with that of sympatric lowland gorillas in the Lopé Reserve, Gabon. Am. J. Primatol. 30, 195–211 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Jones, C. & Sabater Pi, J. Comparative Ecology of Gorilla gorilla (Savage & Wyman) and Pan troglodytes (Blumenbuch) in Rio Muni, West Africa. (S. Karger, 1971).68.Basabose, A. K. & Yamagiwa, J. Factors affecting nesting site choice in chimpanzees at Tshibati, Kahuzi-Biega National Park: Influence of sympatric gorillas. Int. J. Primatol. 23, 263–282 (2002).Article 

    Google Scholar 
    69.Walsh, P. D., Breuer, T., Sanz, C., Morgan, D. & Doran-Sheehy, D. Potential for Ebola transmission between gorilla and chimpanzee social groups. Am. Nat. 169, 684–689. https://doi.org/10.1086/513494 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Stanford, C. B. The behavioral ecology of sympatric African apes: Implications for understanding fossil hominoid ecology. Primates 47, 91–101. https://doi.org/10.1007/s10329-005-0148-6 (2006).PubMed 
    Article 

    Google Scholar 
    71.Eckardt, W. & Zuberbühler, K. Cooperation and competition in two forest monkeys. Behav. Ecol. 15, 400–411. https://doi.org/10.1093/beheco/arh032 (2004).Article 

    Google Scholar 
    72.Rimbach, R., Pardo-Martinze, A., Montes-Rojas, A., Di Fiore, A. & Link, A. Interspecific infanticide and infant-directed aggression by spider monkeys (Ateles hybridus) in a fragmented forest in Colombia. Am. J. Primatol. 74, 990–997. https://doi.org/10.1002/ajp.22052 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536. https://doi.org/10.1086/501033 (2006).PubMed 
    Article 

    Google Scholar 
    74.Head, J., Boesch, C., Makaga, L. & Robbins, M. Sympatric Chimpanzees (Pan troglodytes troglodytes) and Gorillas (Gorilla gorilla gorilla) in Loango National Park, Gabon: Dietary composition, seasonality, and intersite comparisons. Int. J. Primatol. 32, 755–775. https://doi.org/10.1007/s10764-011-9499-6 (2011).Article 

    Google Scholar 
    75.Yamagiwa, J., Mwanza, N., Yumoto, T. & Maruhashi, T. Seasonal change in the composition of the diet of eastern lowland gorillas. Primates 35, 1–14. https://doi.org/10.1007/BF02381481 (1994).Article 

    Google Scholar 
    76.Kuroda, S. J., Nishihara, T., Suzuki, S. & Oko, R. A. In Great Ape Societies (eds McGrew, W. C., Marchant, L. F., & Nishida, T.) 71–81 (Cambridge University Press, 1996).77.Rogers, L. L. & Mech, L. D. Interactions of wolves and black bears in Northeastern Minnesota. J. Mammal. 62, 434–436. https://doi.org/10.2307/1380735 (1981).Article 

    Google Scholar 
    78.Eaton, R. Interference competition among carnivores: A model for the evolution of social behavior. Carnivore 2, 82–90 (1979).
    Google Scholar 
    79.Arim, M. & Marquet, P. A. Intraguild predation: A widespread interaction related to species biology. Ecol. Lett. 7, 557–564. https://doi.org/10.1111/j.1461-0248.2004.00613.x (2004).Article 

    Google Scholar 
    80.Watts, D. P., Potts, K. B., Lwanga, J. S. & Mitani, J. C. Diet of chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 1. Diet composition and diversity. Am. J. Primatol. 74, 114–129. https://doi.org/10.1002/ajp.21016 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Remis, M. J., Dierenfeld, E., Mowry, C. & Carroll, R. Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central African Republic. Int. J. Primatol. 22, 807–836. https://doi.org/10.1023/A:1012021617737 (2001).Article 

    Google Scholar 
    82.Watts, D. P., Muller, M., Amsler, S. J., Mbabazi, G. & Mitani, J. C. Lethal intergroup aggression by chimpanzees in Kibale National Park, Uganda. Am. J. Primatol. 68, 161–180. https://doi.org/10.1002/ajp.20214 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Watts, D. P. & Mitani, J. C. Infanticide and cannibalism by male chimpanzees at Ngogo, Kibale National Park, Uganda. Primates 41, 357–365. https://doi.org/10.1007/BF02557646 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Furuichi, T. Variation in intergroup relationships among species and among and within local populations of African Apes. Int. J. Primatol. 41, 1–21. https://doi.org/10.1007/s10764-020-00134-x (2020).Article 

    Google Scholar 
    85.Williams, J. M., Oehlert, G., Carlis, J. & Pusey, A. E. Why do male chimpanzees defend a group range? Reassessing male territoriality. Anim. Behav. 68, 523–532. https://doi.org/10.1016/j.anbehav.2003.09.015 (2004).Article 

    Google Scholar 
    86.Bush, E. R. et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 370, 1219–1222. https://doi.org/10.1126/science.abc7791 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    87.Plavcan, J. M. Social behavior of early hominins. Int. J. Primatol. 33, 1247–1250. https://doi.org/10.1007/s10764-012-9641-0 (2012).Article 

    Google Scholar 
    88.Kissel, M. & Kim, N. C. The emergence of human warfare: Current perspectives. Am. J. Phys. Anthropol. 168, 141–163. https://doi.org/10.1002/ajpa.23751 (2019).Article 
    PubMed 

    Google Scholar 
    89.Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3. https://doi.org/10.1126/sciadv.1600946 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Altmann, J. Observational study of behaviour: Sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.CyberTracker Conservation NPC. CyberTracker Conservation. (2021).92.Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264. https://doi.org/10.1016/j.cub.2008.01.012 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    93.Leendertz, F. H. et al. Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430, 451–452. https://doi.org/10.1038/nature02722 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    A global dataset of inland fisheries expert knowledge

    Freshwater fish are important contributors to human livelihoods, food and nutrition, recreation, ecosystem services, and biological diversity. Yet, they inhabit some of the most threatened ecosystems globally1, face higher declines relative to marine and terrestrial species2, and are disproportionally understudied3,4. Inland fisheries are subjected to a suite of anthropogenic stressors across aquatic-terrestrial landscapes5, including flow alterations, dams, invasive species, sedimentation, drought, and pollution6,7,8. Evaluating stressors and their impacts on global inland fisheries is essential for effective management, monitoring, and conservation6, but unlike marine fisheries, there is no standardized method to assess inland fisheries9.Data inputs for a fisheries threat assessment typically include baseline information, such as species-specific landings or in situ population data (volume and composition), size (population and landings), and biomass. In addition, multi-stressor interactions (e.g., synergistic, additive) across complex habitats often warrant cross-ecosystem and cross-sector evaluations at multiple scales10,11. However, in the case of inland fisheries, these data inputs are severely deficient and often disparate in many regions12,13, which challenges the development of a global assessment. Thus, evaluating stressors and their impacts on inland fisheries necessitates the use of additional data sources (e.g., expert knowledge) beyond those typically derived directly from fish or fish habitats12,14. Local and subject-matter expertise can provide contextualized insights where spatial data are limited or unattainable (e.g., emerging threats15) and where empirical evidence is incomplete (e.g., multi-stressor interactions).Expert elicitation (i.e., expert opinion synthesis, where opinion is the preliminary state of knowledge of an individual) is increasingly used to inform ecological evaluations and guide water infrastructure, development, food security, and conservation decision-making and assessments, especially in data-poor scenarios14,16. While spatial data can be integrated as a suite of individual stressors (i.e., input variables) within ranking systems for the development of vulnerability or habitat assessments for conservation purposes14,17, the utilization of spatial variables is limited by the method for determining relative impacts (i.e., value judgment)18. Cumulate impact scores and systematic weighted ranking of threats are often based on geographically biased, small sized, or non-representative subsets of experts’ opinions (e.g., global weight determination from eight experts5). Thus, data collection for this study was motivated by the development of a global assessment of threats to major inland fisheries, and the overarching need for tractable freshwater indicators. The data generated contribute essential relative influence scores for the assessment and provide a timely snapshot of inland fisheries as perceived by fisheries professionals. Threat composition and influence have broader potential applications to inform vulnerability and adaptation components of freshwater conservation and management targets (e.g., United Nations (UN) Sustainable Development Goals, UN International Decade “Water for Sustainable Development,” Convention on Biological Diversity, Ramsar Convention on Wetlands).This paper introduces a dataset that can help address a knowledge gap in understanding natural and human influences on inland fisheries with local, contextualized fishery evaluations. Derived from an electronic survey, data comprise perceptions from fisheries professionals (n = 536) on the relative influence and spatial associations of fishery threats, recent successes, and adaptive capacity measures within the respondent’s fishery of expertise.In the context of the survey, we use the term “threat” as a proximate human activity or process (“direct threat”) causing degradation or impairment (“stress”; e.g., reduced population size, fragmented riparian habitat) to ecological targets (e.g., species, communities, ecosystems; in this case, fishery)19. We considered only the threats most proximate and direct to the target (fishery) and excluded stresses (i.e., symptoms, degraded key attributes) and contributing factors (i.e., root causes, underlying factors). For example, we considered pollutants (direct threat) rather than the pollution source (contributing factor) or the resulting contaminated water (stress, effect). We addressed the ambiguity of the term ‘fishery’20 by allowing respondents to indicate a geographic location (specific point) within their fishery area. This allows for spatial attribution with an inclusive use of ‘fishery’ as it pertains to threats (e.g., threats to a fish population of fishery-targeted species, catch characteristics, or the habitat in which the fishery operates).We structured survey questions about the occurrence and relative influence of threats to the production and health of inland fisheries using 29 specified individual threats derived from well-studied pressures to inland fisheries in addition to pressures emerging as threats to fisheries (e.g., climate change, plastics15). We categorized individual threats into five well-established categories: habitat degradation, pollution, overexploitation, species invasion, and climate change1,7 for organizational context in the survey. We also designed survey questions specifically to understand the social adaptive capacity of fishers using five major community-level domains: fisher access to assets (e.g., financial, technological, service), fisher and institutional flexibility to adapt to changing conditions (e.g., livelihood alternatives, adaptive management), social capital and organization to enable cooperation and collective action (e.g., co-management), learning and problem-solving for responding to threats, and fishers’ sense of agency to influence and shape actions and outcomes21.This dataset can be useful as an overview assessment, on which future assessments may expand for specific temporal or spatial interests. Some data in this dataset (e.g., microplastics, invasive species disturbances) are otherwise unattainable at relevant scales from geospatial information and therefore provide novel information. Potential uses include demographic influences on threat perceptions, spatial distribution of adaptive capacity measures paired with climate change or other threats, external factors driving multi-stressor interactions, and paired geospatial and expert-derived threat analysis. These data can provide insights on fisheries as a coupled human-natural system and inform regional and global freshwater assessments. More

  • in

    Wood-inhabiting fungal responses to forest naturalness vary among morpho-groups

    1.Keenan, R. J. et al. Forest ecology and management dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).Article 

    Google Scholar 
    2.Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 49, 11–41 (2001).
    Google Scholar 
    3.Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge University Press, 2012).Book 

    Google Scholar 
    4.Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E. & Ovaskainen, O. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J. Ecol. 101, 701–712 (2013).Article 

    Google Scholar 
    5.Tikkanen, O.-P., Martikainen, P., Hyvärinen, E., Junninen, K. & Kouki, J. Red-listed boreal forest species of Finland: Associations with forst structure, tree species, and decaying wood. Ann. Zool. Fennici 43, 373–383 (2006).
    Google Scholar 
    6.Sippola, A.-L., Lehesvirta, T. & Renvall, P. Effect of selective logging on coarse woody debris and diversity of wood-decaying polypores in eastern Finland. Ecol. Bull. 49, 243–254 (2001).
    Google Scholar 
    7.Axelsson, A. L., Östlund, L. & Hellberg, E. Changes in mixed deciduous forests of boreal Sweden 1866–1999 based on interpretation of historical records. Landsc. Ecol. 17, 403–418 (2002).Article 

    Google Scholar 
    8.Eriksson, S., Skånes, H., Hammer, M. & Lönn, M. Current distribution of older and deciduous forests as legacies from historical use patterns in a Swedish boreal landscape (1725–2007). For. Ecol. Manag. 260, 1095–1103 (2010).Article 

    Google Scholar 
    9.Wallenius, T. H., Lilja, S. & Kuuluvainen, T. Fire history and tree species composition in managed Picea abies stands in southern Finland: Implications for restoration. For. Ecol. Manag. 250, 89–95 (2007).Article 

    Google Scholar 
    10.Stokland, J. N. Host-tree associattions. In Biodiversity in Dead Wood (eds Stokland, J. N. et al.) 82–109 (Cambridge University Press, 2012).Chapter 

    Google Scholar 
    11.Kouki, J., Arnold, K. & Martikainen, P. Long-term persistence of aspen – A key host for many threatened species—Is endangered in old-growth conservation areas in Finland. J. Nat. Conserv. 12, 41–52 (2004).Article 

    Google Scholar 
    12.Komonen, A., Tuominen, L., Purhonen, J. & Halme, P. Landscape structure influences browsing on a keystone tree species in conservation areas. For. Ecol. Manag. 457, 117724 (2020).Article 

    Google Scholar 
    13.Purhonen, J. et al. Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecol. 46, 100863 (2020).Article 

    Google Scholar 
    14.Dowding, P. Nutrient uptake and allocation during substrate exploitation by fungi. In The Fungal Community. Its Organization and Role in the Ecosystems (eds Wicklow, D. T. & Carroll, G. C.) 612–636 (Marcel Dekker Inc, 1981).
    Google Scholar 
    15.Boddy, L., Frankland, J. & van West, P. Ecology of Saprotrophic Basidiomycetes (Elsevier Ltd, 2008).
    Google Scholar 
    16.Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).Article 

    Google Scholar 
    17.Abrego, N. & Salcedo, I. Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: Is it a question of quantity or quality?. For. Ecol. Manag. 291, 377–385 (2013).Article 

    Google Scholar 
    18.Lindblad, I. Wood-inhabiting fungi on fallen logs of Norway spruce: Relations to forest management and substrate quality. Nord. J. Bot. 18, 243–255 (1998).Article 

    Google Scholar 
    19.Tomao, A., Antonio Bonet, J., Castaño, C. & de-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 457, 1176 (2020).Article 

    Google Scholar 
    20.Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995).Article 

    Google Scholar 
    21.Heilmann-Clausen, J. & Christensen, M. Does size matter?. For. Ecol. Manag. 201, 105–117 (2004).Article 

    Google Scholar 
    22.Nordén, B., Götmark, F., Tönnberg, M. & Ryberg, M. Dead wood in semi-natural temperate broadleaved woodland: Contribution of coarse and fine dead wood, attached dead wood and stumps. For. Ecol. Manag. 194, 235–248 (2004).Article 

    Google Scholar 
    23.Ottosson, E. et al. Diverse ecological roles within fungal communities in decomposing logs of Picea abies. FEMS Microbiol. Ecol. 91, 1–13 (2015).Article 
    CAS 

    Google Scholar 
    24.Juutilainen, K., Mönkkönen, M., Kotiranta, H. & Halme, P. The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. For. Ecol. Manag. 313, 283–291 (2014).Article 

    Google Scholar 
    25.Jönsson, M., Ruete, A., Kellner, O., Gunnarsson, U. & Snäll, T. Will forest conservation areas protect functionally important diversity of fungi and lichens over time?. Biodivers. Conserv. https://doi.org/10.1007/s10531-015-1035-0 (2016).Article 

    Google Scholar 
    26.Abrego, N., Norberg, A. & Ovaskainen, O. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. https://doi.org/10.1111/1365-2745.12722 (2017).Article 

    Google Scholar 
    27.Bässler, C. et al. Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecol. Indic. 65, 149–160 (2016).Article 

    Google Scholar 
    28.Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).Article 

    Google Scholar 
    29.Sherwood, M. A. Convergent evolution in discomycetes from bark and wood. Bot. J. Linn. Soc. 82, 15–34 (1981).Article 

    Google Scholar 
    30.Unterseher, M., Otto, P. & Morawetz, W. Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol. Prog. 4, 117–132 (2005).Article 

    Google Scholar 
    31.Dawson, S. K. & Jönsson, M. Just how big is intraspecific trait variation in basidiomycete wood fungal fruit bodies?. Fungal Ecol. 46, 100865 (2020).Article 

    Google Scholar 
    32.Dawson, S. K. et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct. Ecol. 33, 372–387 (2019).Article 

    Google Scholar 
    33.Zanne, A. E. et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).PubMed 
    Article 

    Google Scholar 
    34.Nordén, B., Ryberg, M., Götmark, F. & Olausson, B. Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol. Conserv. 117, 1–10 (2004).Article 

    Google Scholar 
    35.Stokland, J. N. & Larsson, K. Forest ecology and management legacies from natural forest dynamics : Different effects of forest management on wood-inhabiting fungi in pine and spruce forests. For. Ecol. Manag. 261, 1707–1721 (2011).Article 

    Google Scholar 
    36.Cajander, A. K. Forest types and their significance. Acta For. Fenn. 56, 1–69 (1949).
    Google Scholar 
    37.Ahti, T., Hämet-Ahti, L. & Jalas, J. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5, 169–211 (1968).
    Google Scholar 
    38.Renaud, V., Innes, J. L., Dobbertin, M. & Rebetez, M. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theor. Appl. Climatol. 105, 119–127 (2011).ADS 
    Article 

    Google Scholar 
    39.Renvall, P. Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35, 1–51 (1995).Article 

    Google Scholar 
    40.Abrego, N., Halme, P., Purhonen, J. & Ovaskainen, O. Fruit body based inventories in wood-inhabiting fungi: Should we replicate in space or time?. Fungal Ecol. 20, 225–232 (2016).Article 

    Google Scholar 
    41.Halme, P. & Kotiaho, J. S. The importance of timing and number of surveys in fungal biodiversity research. Biodivers. Conserv. 21, 205–219 (2012).Article 

    Google Scholar 
    42.Purhonen, J., Huhtinen, S., Kotiranta, H. & Kotiaho, J. S. Detailed information on fruiting phenology provides new insights on wood-inhabiting fungal detection. Fungal Ecol. 27, 175–177 (2017).Article 

    Google Scholar 
    43.Royal Botanic Gardens Kew, Landcare Research-NZ & Chinese Academy of Science. Index Fungorum. www.indexfungorum.org 01.03.2017 (2017).44.Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn 15.11.2020 (2019).45.R Core Team. R: A Language and Environment for Statistical Computing. Available at: https://www.r-project.org/ (2017).46.Magnusson, A. et al. glmmTMB: Generalized Linear Mixed Models Using Template Model Builder. https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf 30.08.2018 (2018).47.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4. https://cran.r-project.org/web/packages/vegan/index.html 30.12.2017 (2017).48.Abrego, N., Bässler, C., Christensen, M. & Heilmann-Clausen, J. Implications of reserve size and forest connectivity for the conservation of wood-inhabiting fungi in Europe. Biol. Conserv. 191, 469–477 (2015).Article 

    Google Scholar 
    49.Halme, P. et al. The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests. Biol. Conserv. 168, 24–30 (2013).Article 

    Google Scholar 
    50.Edman, M., Kruys, N. & Jonsson, B. G. Local dispersal sources strongly affect colonization patterns of wood-decaying fungi on spruce logs. Ecol. Appl. 14, 893–901 (2004).Article 

    Google Scholar 
    51.Komonen, A. & Müller, J. Dispersal ecology of deadwood organisms and connectivity conservation. Conserv. Biol. 32, 535–545 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Abrego, N. & Salcedo, I. How does fungal diversity change based on woody debris type? A case study in Northern Spain. Ekologija 57, 109–119 (2011).Article 

    Google Scholar 
    53.Juutilainen, K., Halme, P., Kotiranta, H. & Mönkkönen, M. Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecol. 4, 342–349 (2011).Article 

    Google Scholar 
    54.Heilmann-Clausen, J. & Christensen, M. Wood-inhabiting macrofungi in Danish beech-forests ? conflicting diversity patterns and their implications in a conservation perspective. Biol. Conserv. 122, 633–642 (2005).Article 

    Google Scholar 
    55.Moore, D., Gange, A. C., Gange, E. G. & Boddy, L. Fruit bodies: Their production and develpoment in relation to environment. In Ecology of Saprotrophic Basidiomycetes (eds Boddy, L. et al.) (Elsevier, 2008).
    Google Scholar 
    56.Junninen, K., Similä, M., Kouki, J. & Kotiranta, H. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography (Cop.) 29, 75–83 (2006).Article 

    Google Scholar 
    57.Agren, J. & Zackrisson, O. Age and size structure of Pinus sylvestris populations on mires in Central and Northern Sweden. J. Ecol. 78, 1049–1062 (1990).Article 

    Google Scholar 
    58.Niemelä, T., Wallenius, T. & Kotiranta, H. The kelo tree, a vanishing substrate of specified wood-inhabiting fungi. Polish Bot. J. 47, 91–101 (2002).
    Google Scholar 
    59.Venugopal, P., Julkunen-Tiitto, R., Junninen, K. & Kouki, J. Phenolic compounds in Scots pine heartwood: Are kelo trees a unique woody substrate?. Can. J. For. Res. 46, 225–233 (2016).CAS 
    Article 

    Google Scholar 
    60.Jonsson, B. G. et al. Dead wood availability in managed Swedish forests – Policy outcomes and implications for biodiversity. For. Ecol. Manag. 376, 174–182 (2016).Article 

    Google Scholar 
    61.Runnel, K. & Lõhmus, A. Deadwood-rich managed forests provide insights into the old-forest association of wood-inhabiting fungi. Fungal Ecol. 27, 155–167 (2017).Article 

    Google Scholar 
    62.Junninen, K. & Komonen, A. Conservation ecology of boreal polypores: A review. Biol. Conserv. 144, 11–20 (2011).Article 

    Google Scholar 
    63.Krah, F. S. et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106, 1428–1442. https://doi.org/10.1111/1365-2745.12939 (2018).Article 

    Google Scholar 
    64.Hoppe, B. et al. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers. 77, 367–379 (2016).Article 

    Google Scholar 
    65.Kubartová, A., Ottosson, E., Dahlberg, A. & Stenlid, J. Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol. Ecol. 21, 4514–4532 (2012).PubMed 
    Article 

    Google Scholar 
    66.Kazartsev, I., Shorohova, E., Kapitsa, E. & Kushnevskaya, H. Decaying Picea abies log bark hosts diverse fungal communities. Fungal Ecol. 33, 1–12 (2018).Article 

    Google Scholar 
    67.von Bonsdorff, T. et al. New national and regional biological records for Finland 8. Contributions to agaricoid, gastroid and ascomycetoid taxa of fungi 5. Memo. Soc. pro Fauna Flora Fenn. 92, 120–128 (2016).
    Google Scholar 
    68.von Bonsdorff, T. et al. New national and regional biological records for Finland 5. Contributions to agaricoid and ascomycetoid taxa of fungi 4. Memo. Soc. pro Fauna Flora Fenn. 91, 56–66 (2015).
    Google Scholar 
    69.Frøslev, T. G. et al. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients?. Biol. Conserv. 233, 201–212 (2019).Article 

    Google Scholar 
    70.Esri. ArcMap, version 10.5.1. http://desktop.arcgis.com/en/arcmap/ 04.09.2017 (2017). Available at: http://desktop.arcgis.com/en/arcmap/. More

  • in

    Towards omics-based predictions of planktonic functional composition from environmental data

    From SSN to PFCsWe analyzed the 1,914,171 proteins from 885 MAGs from marine plankton, recovered from 12 geographically bound assemblies of metagenomic sets corresponding to a total of 93 Tara Oceans samples from the 0.2 to 3 µm and 0.2 to 1.6 µm size fractions21. A flowchart of our bioinformatic pipeline is available in Supplementary Fig. 1. 39.6% of the MAGs’ proteins (757,457) were involved in our SSN, i.e., they had at least one similarity relationship with another protein that satisfied the chosen threshold of 80% similarity and 80% coverage (see “Methods”). In total, 51.1% of the network proteins could be annotated to 4922 unique molecular function IDs in the KEGG database37, associated with 327 distinct metabolic pathways (a full list of these pathways is available in Supplementary Data 1). In total, 85.2% of the network proteins were annotated to 17,009 eggNOG functional descriptions38,39.The SSN involved 233,756 connected components (CCs), i.e., groups of nodes (here proteins) connected together by at least one path and disconnected from the rest of the network. According to KEGG and eggNOG databases, 15.3% and 48.5% of the CCs remained without any functional annotation (i.e., all sequences from the CC were unmatched in the databases, or had a match but were not yet linked to any biological function, Table 1), and 14.8% were functionally unannotated for both databases. We ranked the functional homogeneity of CCs involving at least one functional annotation from 0 (all annotations in the CC are different) to 1 (all annotations in the CC are the same) and found mean homogeneity scores of 0.99 over 1 for KEGG annotations and 0.94 over 1 for eggNOG ones (see “Methods” for score calculation details). Only 88 (0.04%) CCs had a homogeneity score below 0.5 in both annotation databases, all with sizes below five proteins. 177 CCs (0.07%) had a score below 0.8 in both databases, all under 12 proteins in size. These CCs were kept in the analysis while tagged as poorly homogenous. We thereafter considered each CC as a PFC, numbered from #1 to #233,756.Table 1 Metrics computed on the 233,756 protein functional clusters (PFC) from the sequence similarity network of MAGs proteins.Full size tableTo check for the influence of taxonomic relationships between the MAGs on our PFCs, we computed different metrics based on MAGs taxonomic annotations provided by Delmont et al.21. (Table 1). This taxonomic annotation based on 43 single-copy core genes allowed to annotate 100% of the MAGs at the domain level, and 95% of the MAGs at the phylum level, the remaining 5% corresponding to Bacteria MAGs of unidentified phyla21. Only 1330 PFCs (0.6%) mixed proteins from the Archaea and Bacteria domains. PFCs were very homogeneous at the phylum level, then the homogeneity decreased at lower taxonomic rank, meaning that PFCs studied here were generally not specific from a single class, order, family, genus, or MAG (Table 1). In total, 7834 PFCs (3.4%) were only composed of proteins with no functional annotation in KEGG and eggNOG databases, and no taxonomic annotation under the phylum level. Their sizes ranged from 2 to 30 proteins (mean of 2.62). Their 20,552 proteins came from Euryarchaeota MAGs (12,458; 60.6%), Bacteria MAGs of unidentified phylum (2742; 13.3%), Candidatus Marinimicrobia MAGs (2451; 11.9%), Proteobacteria MAGs (1528; 7.4%), Acidobacteria MAGs (1031; 5%), Verrucomicrobia MAGs (103; 0.5%), Planctomycetes MAGs (89; 0.4%), Bacteroidetes MAGs (79; 0.4%), Chloroflexi MAGs (59; 0.3%) and Candidate Phyla Radiation MAGs (12; 0.05%). We hereafter considered these functionally and taxonomically unknown PFCs as “dark” PFCs40,41. Their nucleotidic sequences are available in separate supplementary files (see “Data availability”). The abundance of dark PFCs was significantly different from the abundance of other PFCs in 85 samples over 93 (two-sided Wilcoxon rank-sum test, p-value  More

  • in

    Evidence for use of both capital and income breeding strategies in the mangrove tree crab, Aratus pisonii

    1.Mendo, T., Semmens, J. M., Lyle, J. M., Tracey, S. R. & Moltschaniwskyj, N. Reproductive strategies and energy sources fueling reproductive growth in a protracted spawner. Mar. Biol. 163, 2 (2016).Article 

    Google Scholar 
    2.Stephens, P. A., Boyd, I. L., McNamara, J. M. & Houston, A. I. Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90, 2057–2067 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bonnet, X., Bradshaw, D. & Shine, R. Capital versus income breeding: An ectothermic perspective. Oikos 83, 333–342 (1998).Article 

    Google Scholar 
    4.Johnson, R. A. Capital and income breeding and the evolution of colony founding strategies in ants. Insectes Soc. 53, 316–322 (2006).Article 

    Google Scholar 
    5.Wheatley, K. E., Bradshaw, C. J., Harcourt, R. G. & Hindell, M. A. Feast or famine: Evidence for mixed capital–income breeding strategies in Weddell seals. Oecologia 155, 11–20 (2008).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Tammaru, T. & Haukioja, E. Capital breeders and income breeders among Lepidoptera: Consequences to population dynamics. Oikos 77, 561–564 (1996).Article 

    Google Scholar 
    7.McHuron, E. A., Costa, D. P., Schwarz, L. & Mangel, M. State-dependent behavioural theory for assessing the fitness consequences of anthropogenic disturbance on capital and income breeders. Methods Ecol. Evol. 8, 552–560 (2017).Article 

    Google Scholar 
    8.Williams, C. T. et al. Seasonal reproductive tactics: Annual timing and the capital-to-income breeder continuum. Philos. Trans. R. Soc. B 372, 20160250 (2017).Article 

    Google Scholar 
    9.Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match–mismatch dynamics in large herbivores. Philos. Trans. R. Soc. B 368, 20120484 (2013).Article 

    Google Scholar 
    10.Zeng, Y., McLay, C. & Yeo, D. C. Capital or income breeding crabs: Who are the better invaders?. Crustaceana 87, 1648–1656 (2014).Article 

    Google Scholar 
    11.Griffen, B. D. The timing of energy allocation to reproduction in an important group of marine consumers. PLoS ONE 13, e0199043 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    13.Holland, D. S. & Kasperski, S. The impact of access restrictions on fishery income diversification of US West Coast fishermen. Coast. Manag. 44, 452–463 (2016).Article 

    Google Scholar 
    14.Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Anilkumar, G. Reproductive physiology of female crustaceans. Ph.D. thesis, University of Calicut, India (1980).16.Lovrich, G. A., Romero, M. C., Tapella, F. & Thatje, S. Distribution, reproductive and energetic conditions of decapod crustaceans along the Scotia Arc (Southern Ocean). Sci. Mar. 69, 183–193 (2005).Article 

    Google Scholar 
    17.Sainmont, J., Andersen, K. H., Varpe, Ø. & Visser, A. W. Capital versus income breeding in a seasonal environment. Am. Nat. 184, 466–476 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Griffen, B. D. Metabolic costs of capital energy storage in a small-bodied ectotherm. Ecol. Evol. 7, 2423–2431 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118, 363–370 (2009).Article 

    Google Scholar 
    20.Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. Early is better: Seasonal egg fitness and timing of reproduction in a zooplankton life-history model. Oikos 116, 331–1342 (2007).Article 

    Google Scholar 
    21.Warner, G. F. The life history of the mangrove tree crab, Aratus pisoni. J. Zool. 153, 321–335 (1967).Article 

    Google Scholar 
    22.Díaz, H. & Conde, J. E. Population dynamics and life history of the mangrove crab Aratus pisonii (Brachyura, Grapsidae) in a marine environment. Bull. Mar. Sci. 45, 148–163 (1989).
    Google Scholar 
    23.de Arruda Leme, M. H. & Negreiros-Fransozo, M. L. Reproductive patterns of Aratus pisonii (Decapoda: Grapsidae) from an estuarine area of São Paulo northern coast, Brazil. Rev. Biol. Trop. 46, 673–678 (1998).
    Google Scholar 
    24.Cannizzo, Z. J., Lang, S. Q., Benitez-Nelson, B. & Griffen, B. D. An artificial habitat increases the reproductive fitness of a range-shifting species within a newly colonized ecosystem. Sci. Rep. 10, 554 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Riley, M. E., Vogel, M. & Griffen, B. D. Fitness-associated consequences of an omnivorous diet for the mangrove tree crab Aratus pisonii. Aquat. Biol. 20, 35–43 (2014).Article 

    Google Scholar 
    26.López, B. & Conde, J. E. Dietary variation in the crab Aratus pisonii (H. Milne Edwards, 1837)(Decapoda, Sesarmidae) in a mangrove gradient in northwestern Venezuela. Crustaceana 86, 1051–1069 (2013).Article 

    Google Scholar 
    27.Erickson, A. A., Feller, I. C., Paul, V. J., Kwiatkowski, L. M. & Lee, W. Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments. J. Sea Res. 59, 59–69 (2008).ADS 
    Article 

    Google Scholar 
    28.Beever, J. W., Simberloff, D. & King, L. L. Herbivory and predation by the mangrove tree crab Aratus pisonii. Oecologia 43, 317–328 (1979).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Riley, M. E., Johnston, C. A., Feller, I. C. & Griffen, B. D. Range expansion of Aratus pisonii (mangrove tree crab) into novel vegetative habitats. Southeast. Nat. 13, N43–N48 (2014).Article 

    Google Scholar 
    30.Cannizzo, Z. J. & Griffen, B. D. Changes in spatial behaviour patterns by mangrove tree crabs following climate-induced range shift into novel habitat. Anim. Behav. 121, 79–86 (2016).Article 

    Google Scholar 
    31.Riley, M. E. & Griffen, B. D. Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion. PLoS ONE 12, e0176263 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Cannizzo, Z. J. & Griffen, B. D. An artificial habitat facilitates a climate-mediated range expansion into a suboptimal novel ecosystem. PLoS ONE 14, e0207416 (2019).Article 
    CAS 

    Google Scholar 
    33.Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).Article 

    Google Scholar 
    34.Griffen, B. D., Cannizzo, Z. J., Carver, J. & Meidell, M. Reproductive and energetic costs of injury in the mangrove tree crab. Mar. Ecol. Prog. Ser. 640, 127–137 (2020).ADS 
    Article 

    Google Scholar 
    35.De Arruda Leme, M. H., De Sousa Soares, V. & Pinheiro, M. A. A. Population dynamics of the mangrove tree crab Aratus pisonii (Brachyura: Sesarmidae) in the estuarine complex of Cananéia-Iguape, São Paulo, Brazil. Pan-Am. J. Aquat. Sci. 9, 259–266 (2014).
    Google Scholar 
    36.Skov, M. W. et al. Marching to a different drummer: Crabs synchronize reproduction to a 14-month lunar-tidal cycle. Ecology 86, 1164–1171 (2005).Article 

    Google Scholar 
    37.Schmidt, A. J., Bemvenuti, C. E. & Diele, K. Effects of geophysical cycles on the rhythm of mass mate searching of a harvested mangrove crab. Anim. Behav. 84, 333–340 (2012).Article 

    Google Scholar 
    38.Dronkers, J. J. Tidal Computations in Rivers and Coastal Waters (Wiley, 1964).
    Google Scholar 
    39.Varpe, Ø. Life history adaptations to seasonality. Integr. Comp. Biol. 57, 943–960 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Conde, J. E. et al. Population and life history features of the crab Aratus pisonii (Decapoda: Grapsidae) in a subtropical estuary. Interciencia 25, 151–158 (2000).
    Google Scholar 
    41.Elner, R. W. & Beninger, P. G. Multiple reproductive strategies in snow crab, Chionoecetes opilio: Physiological pathways and behavioral plasticity. J. Exp. Mar. Biol. Ecol. 193, 93–112 (1995).Article 

    Google Scholar 
    42.Tepolt, C. K. & Somero, G. N. Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J. Exp. Biol. 217, 1129–1138 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ruiz, G., Fofonoff, P., Steves, B. & Dahlstrom, A. Marine crustacean invasions in North America: a synthesis of historical records and documented impacts. In In the Wrong Place-Alien Marine Crustaceans: Distribution, Biology and Impacts 215–250. (Springer, 2011).44.Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Cannizzo, Z. J., Dixon, S. R. & Griffen, B. D. An anthropogenic habitat within a suboptimal colonized ecosystem provides improved conditions for a range-shifting species. Ecol. Evol. 8, 1521–1533 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More