Antixenosis in Glycine max (L.) Merr against Acyrthosiphon pisum (Harris)
1.Pagano, M. C. & Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production Vol. 1 (ed. Miransari, M.) 1–26 (Academic Press, 2016).
Google Scholar
2.FAOSTAT. Food and Agriculture Organisation Statistical Database http://www.apps.fao.org/faostat. Accessed 23 May 2021.3.MacDonald, R. S. et al. Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J. Nutr. 135, 1239–1242 (2005).CAS
PubMed
Article
Google Scholar
4.Tidke, S. A. et al. Assessment of anticancer, anti-inflammatory and antioxidant properties of isoflavones present in soybean. Res. J. Phytochem. 12, 35–42 (2018).ADS
CAS
Article
Google Scholar
5.Hill, J. H. & Whitham, S. A. Control of virus diseases in soybeans. Adv. Virus Res. 90, 355–390 (2014).PubMed
Article
Google Scholar
6.Tian, B. et al. Host adaptation of soybean dwarf virus following serial passages on pea (Pisum sativum) and soybean (Glycine max). Viruses 9, 155 (2017).PubMed Central
Article
CAS
PubMed
Google Scholar
7.Wang, R. Y., Kritzman, A., Hershman, D. E. & Ghabrial, S. A. Aphis glycines as a vector of persistently and nonpersistently transmitted viruses and potential risks for soybean and other crops. Plant Dis. 90, 920–926 (2006).CAS
PubMed
Article
Google Scholar
8.Hesler, L. S., Dashiell, E., Jonathan, A. E. & Lundgren, G. Characterization of resistance to Aphis glycines in soybean accessions. Euphytica 154, 91–99 (2007).Article
Google Scholar
9.Baldin, E. L. L. et al. Feeding behavior of Aphis glycines (Hemiptera: Aphididae) on soybeans exhibiting antibiosis, antixenosis, and tolerance resistance. Fla. Entomol. 101, 223–228 (2018).Article
Google Scholar
10.Chang, H.-X. & Hartman, G. L. Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Front. Plant Sci. 8, 670. https://doi.org/10.3389/fpls.2017.00670 (2017).Article
PubMed
PubMed Central
Google Scholar
11.Bansal, R., Mian, M. A. R. & Michel, A. Characterizing resistance to soybean aphid (Hemiptera: Aphididae): Antibiosis and antixenosis assessment. J. Econ. Entomol. https://doi.org/10.1093/jee/toab038 (2021).Article
PubMed
Google Scholar
12.Klein, A. T. et al. Investigation of the chemical interface in the soybean−aphid and rice−bacteria interactions using MALDI-Mass Spectrometry Imaging. Anal. Chem. 87, 5294–5301 (2015).CAS
PubMed
Article
Google Scholar
13.Hohenstein, J. D. et al. Transcriptional and chemical changes in soybean leaves in response to long-term aphid colonization. Front. Plant Sci. 10, 310 (2019).PubMed
PubMed Central
Article
Google Scholar
14.Blackman, R. L. & Eastop, V. F. Taxonomic issues. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 1–36 (CABI, 2017).
Google Scholar
15.Wale, M., Jembere, B. & Seyoum, E. Occurrence of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on wild leguminous plants in West Gojam, Ethiopia, Sinet. Ethiopian J. Sci. 26, 83–87 (2003).
Google Scholar
16.Chan, C. K., Forbes, A. R. & Raworth, D. A. Aphid-transmitted viruses and their vectors of the world. Agric. Can. Tech. Bull. 3E, 1–216 (1991).
Google Scholar
17.Rashed, A. et al. Vector-borne viruses of pulse crops, with a particular emphasis on North American cropping system. Ann. Entomol. Soc. Am. 111, 205–227 (2018).CAS
Article
Google Scholar
18.Stavrinides, J., McCloskey, J. K. & Ochman, H. Pea Aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl. Environ. Microbiol. 75, 2230–2235 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
19.Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J.-C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. PNAS 106, 7495–7500 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
20.Caillaud, M. C. & Via, S. Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am. Nat. 156, 606–621 (2000).PubMed
Article
Google Scholar
21.Ferrari, J., Godfray, H. C., Faulconbridge, A. S., Prior, K. & Via, S. Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution 60, 1574–1584 (2006).PubMed
Article
Google Scholar
22.Mitku, G. & Damte, T. Development, reproduction, and host preference of Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on selected lentil genotypes and resistance index of these selected lentil genotypes to pea aphid. Int. J. Entomol. Res. 4, 16–22 (2019).
Google Scholar
23.Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).CAS
PubMed
Article
Google Scholar
24.Kordan, B. et al. European yellow lupine Lupinus luteus and narrow-leaf lupine Lupinus angustifolius as hosts for the pea aphid Acyrthosiphon pisum. Entomol. Exp. Appl. 128, 139–146 (2008).Article
Google Scholar
25.Kordan, B. et al. Susceptibility of forage legumes to infestation by the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Crop Pasture Sci. 69, 775–784 (2018).Article
Google Scholar
26.Kordan, B. et al. Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). J. Econ. Entomol. 112, 465–474 (2019).PubMed
Article
Google Scholar
27.Pettersson, J., Tjallingii, W. F. & Hardie, J. Host-plant selection and feeding. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 173–195 (CABI, 2017).Chapter
Google Scholar
28.Martin, B., Collar, J. L., Tjallingi, W. F. & Fereres, A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78, 2701–2705 (1997).CAS
PubMed
Article
Google Scholar
29.Garzo, E., Moreno, A., Plaza, M. & Fereres, A. Feeding behavior and virus-transmission ability of insect vectors exposed to systemic insecticides. Plants 9, 895. https://doi.org/10.3390/plants9070895 (2020).CAS
Article
PubMed Central
PubMed
Google Scholar
30.Onstad, D. W. & Knolhoff, L. Arthropod resistance to crops. In Insect Resistance Management (ed. Onstad, D. W.) 293–326 (Academic Press, 2014).Chapter
Google Scholar
31.Smith, C. M. & Clement, S. L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 57, 309–328 (2012).CAS
PubMed
Article
Google Scholar
32.Stout, M. J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 20, 263–272 (2013).PubMed
Article
Google Scholar
33.Smith, C. M. & Chuang, W. P. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag. Sci. 70, 528–540 (2014).PubMed
Article
CAS
Google Scholar
34.Dogimont, C., Bendahmane, A., Chovelon, V. & Boissot, N. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. C. R. Biol 333, 566–573 (2010).CAS
PubMed
Article
Google Scholar
35.Chandran, P. et al. Feeding behavior comparison of soybean aphid (Hemiptera: Aphididae) biotypes on different soybean genotypes. J. Econ. Entomol. 106, 2234–2240 (2013).PubMed
Article
Google Scholar
36.Simmonds, M. S. J. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry 64, 21–30 (2003).CAS
Article
Google Scholar
37.Mai, V. C. et al. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 221–222, 1–12 (2014).PubMed
Article
CAS
Google Scholar
38.Morkunas, I. et al. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma 253, 1063–1079 (2016).CAS
PubMed
Article
Google Scholar
39.Woźniak, A. et al. The dynamics of the defense strategy of pea induced by exogenous nitric oxide in response to aphid infestation. Int. J. Mol. Sci. 18, 329. https://doi.org/10.3390/ijms18020329 (2017).CAS
Article
PubMed Central
Google Scholar
40.Buer, C. S., Muday, G. K. & Djordjevic, M. A. Implications of long-distance flavonoid movement in Arabidopsis thaliana. Plant Signal. Behav. 3, 415–417 (2008).PubMed
PubMed Central
Article
Google Scholar
41.Petrussa, E. et al. Plant flavonoids: Biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 14, 14950–14973 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
42.Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 20, 576–585 (2015).CAS
PubMed
Article
Google Scholar
43.Alseekh, S., de Souza, L. P., Benina, M. & Fernie, A. L. The style and substance of plant flavonoid decoration; Towards defining both structure and function. Phytochemistry 174, 112347. https://doi.org/10.1016/j.phytochem.2020.112347 (2020).CAS
Article
PubMed
Google Scholar
44.Klingauf, F. A. Host plant finding and acceptance. In Aphids, Their Biology, Natural Enemies and Control Vol. 2 (eds Minks, A. K. & Harrewijn, P.) 209–223 (Elsevier, 1987).
Google Scholar
45.Tjallingii, W. F. & Mayoral, A. M. Criteria for host plant acceptance by aphids. In Proceeding 8th International Symposium Insect–Plant Relationships (eds Menken, S. B. J. et al.) 280–282 (Kluwer Academic Publishers, 1992).Chapter
Google Scholar
46.Wensler, R. J. & Filshie, B. K. Gustatory sense organs in the food canal of aphids. J. Morph. 129, 473–492 (1969).Article
Google Scholar
47.Gabryś, B. & Tjallingii, W. F. The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol. Exp. Appl. 104, 89–93 (2002).Article
Google Scholar
48.Philippi, J. et al. Correlation of the alkaloid content and composition of narrow-leafed lupins (Lupinus angustifolius L.) to aphid susceptibility. J. Pest Sci. 89, 359–373 (2016).Article
Google Scholar
49.Van Hoof, H. A. An investigation of the biological transmission of a non-persistent virus. Doctoral thesis (Van Putten and Oortmijer, 1958).50.Dancewicz, K., Szumny, A., Wawrzeńczyk, C. & Gabryś, B. Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. Int. J. Mol. Sci. 21, 8029. https://doi.org/10.3390/ijms21218029 (2020).CAS
Article
PubMed Central
PubMed
Google Scholar
51.Kordan, B. et al. Variation in susceptibility of rapeseed cultivars to the peach potato aphid. J. Pest. Sci. 94, 435–449 (2021).Article
Google Scholar
52.Pritchard, J. & Vickers, L. H. Aphids and stress. In Aphids as Crop Pests (eds Van Emden, H. F. & Harrington, R.) 132–147 (CABI, 2017).Chapter
Google Scholar
53.Pompon, J. & Pelletier, Y. Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bull. Entomol. Res. 102, 550–557 (2012).CAS
PubMed
Article
Google Scholar
54.van Emden, H. F. Host-plant resistance. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 515–532 (CABI, 2017).Chapter
Google Scholar
55.Gould, K. S. & Lister, C. Flavonoid functions in plants. In Flavonoids, Chemistry, Biochemistry and Applications (eds Andersen, Ø. M. & Markham, K. R.) 397–442 (CRC Press, 2006).
Google Scholar
56.Goławska, S., Kapusta, I., Łukasik, I. & Wójcicka, A. Effect of phenolics on the pea aphid, Acyrthosiphon pisum (Harris) population on Pisum sativum L. (Fabaceae). Pestycydy. 3–4, 71–77 (2008).
Google Scholar
57.Goławska, S. & Łukasik, I. Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. J. Pest Sci. 85, 443–450 (2012).Article
Google Scholar
58.Goławska, S. et al. Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Polish J. Environ. Stud. 19, 913–919 (2010).
Google Scholar
59.Johnson, A. D. & Singh, A. Larvicidal activity and biochemical effects of apigenin against filarial vector Culex quinquefasciatus. Int. J. Life. Sci. Sci. Res. 3, 1315–1321 (2017).
Google Scholar
60.Boué, S. M. & Raina, A. K. Effects of plant flavonoids on fecundity, survival, and feeding of the formosan subterranean termite. J. Chem. Ecol. 29, 2575–2584 (2003).PubMed
Article
Google Scholar
61.Xu, D. et al. Antifeedant activities of secondary metabolites from Ajuga nipponensis against adult of striped flea beetles, Phyllotreta striolata. J. Pest Sci. 82, 195–202 (2009).Article
Google Scholar
62.Goławska, S., Sprawka, I. & Łukasik, I. Effect of saponins and apigenin mixtures on feeding behavior of the pea aphid, Acyrthosiphon pisum Harris. Biochem. Syst. Ecol. 55, 137–144 (2014).Article
CAS
Google Scholar
63.Zavala, J. A., Scopel, A. L. & Ballaré, C. L. Effects of ambient UV-B radiation on soybean crops: Impact on leaf herbivory by Anticarsia gemmatalis. Plant Ecol. 156, 121–130 (2001).Article
Google Scholar
64.Bentivenha, J. P. F. et al. Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod Plant Interact. 12, 311–320 (2018).Article
Google Scholar
65.Hoffmann-Campo, C. B., Harborne, J. B. & McCaffery, A. R. Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol. Exp. Appl. 98, 181–194 (2001).Article
Google Scholar
66.Yuan, E. et al. Increases in genistein in Medicago sativa confer resistance against the Pisum host race of Acyrthosiphon pisum. Insects. 10, 97. https://doi.org/10.3390/insects10040097 (2019).Article
PubMed Central
PubMed
Google Scholar
67.Meng, F. et al. QTL underlying the resistance to soybean aphid (Aphis glycines Matsumura) through isoflavone-mediated antibiosis in soybean cultivar ‘Zhongdou 27’. Theor Appl. Genet. 123, 1459–1465 (2011).CAS
PubMed
Article
Google Scholar
68.Murakami, S. et al. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 4, 532–546 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
69.Lattanzio, V. et al. Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J. Agric. Food Chem. 48, 5316–5320 (2000).CAS
PubMed
Article
Google Scholar
70.Delgado-Núñez, E. J. et al. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 10, 773 (2020).PubMed Central
Article
CAS
PubMed
Google Scholar
71.Gómez, J. D., Vital, C. E., Oliveira, M. G. A. & Ramos, H. J. O. Broad range flavonoid profiling by LC/MS of soybean genotypes contrasting for resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLoS ONE https://doi.org/10.1371/journal.pone.0205010 (2018).Article
PubMed
PubMed Central
Google Scholar
72.Khan, M. A. M., Ulrichs, C. & Mewis, I. Effect of water stress and aphid herbivory on flavonoids in broccoli (Brassica oleracea var. italica Plenck). J. Appl. Bot. Food Qual. 84, 178–182 (2011).CAS
Google Scholar
73.Bale, J. S., Ponder, K. L. & Pritchard, J. Coping with stress. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 287–309 (CABI, 2007).Chapter
Google Scholar
74.Atteyat, M., Abu-Romman, S., Abu-Darwish, M. & Ghabeish, I. Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald). J. Agric. Sci. 4, 227–236 (2012).
Google Scholar
75.Tjallingii, W. F. & Hogen Esch, T. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 18, 317–328 (1993).Article
Google Scholar
76.Cherqui, A. & Tjallingii, W. F. Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J. Insect Physiol. 46, 1177–1186 (2000).CAS
PubMed
Article
Google Scholar
77.Silva-Sanzana, C., Estevez, J. M. & Blanco-Herrera, F. Influence of cell wall polymers and their modifying enzymes during plant–aphid interactions. J. Exp. Bot. 71, 3854–3864 (2020).CAS
PubMed
Article
Google Scholar
78.Alvarez, A. E. et al. Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to aphid Myzus persicae. Entomol. Exp. Appl. 121, 145–157 (2006).Article
Google Scholar
79.Alvarez, A. E. et al. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomol. Exp. Appl. 125, 135–144 (2007).Article
Google Scholar
80.Machado-Assefh, C. R. & Alvarez, A. E. Probing behavior of aposymbiotic green peach aphid (Myzus persicae) on susceptible Solanum tuberosum and resistant Solanum stoloniferum plants. Insect Sci. 25, 127–136 (2018).CAS
PubMed
Article
Google Scholar
81.Common Catalogue of Varieties of Agricultural Plant Species [CCA]. 37th complete edition. Official Journal of the European Union C 13/1 (2019). Accessed 23 May 2021.82.Porejestrowe doświadczalnictwo odmianowe. Charakterystyka odmian. http://www.coboru.gov.pl/Polska/Rejestr/odm_w_rej.aspx?kodgatunku=SOS. Accessed 23 May 2021.83.Meier, U. Growth stages of mono- and dicotyledonous plants: BBCH. Monograph (Julius Kühn-Institut, 2018).84.Beer, K., Joschinski, J., Sastre, A. A., Kraus, J. & Helfrich-Forster, C. A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). Sci. Rep. 7, 1–5. https://doi.org/10.1038/s41598-017-15014-3 (2017).CAS
Article
Google Scholar
85.Joschinski, J., Beer, K., Helfrich-Forster, C. & Krauss, J. Pea aphids (Hemiptera: Aphididae) have diurnal rhythms when raised independently of a host plant. J. Insect. Sci. 16, 1–5 (2016).Article
Google Scholar
86.Graham, T. L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95, 594–603 (1991).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Lee, J. H. et al. Characterization of isoflavones accumulation in developing leaves of soybean (Glycine max) cultivars. J. Korean Soc. Appl. Biol. Chem. 52(2), 139–143 (2009).CAS
Article
Google Scholar
88.Magarelli, G. et al. Rutin and total isoflavone determination in soybean at different growth stages by using voltammetric methods. Microchem. J. 117, 149–155 (2014).CAS
Article
Google Scholar
89.Perlatti, B. et al. Application of a quantitative HPLC-ESI-MS/MS method for flavonoids in different vegetables matrices. J. Braz. Chem. Soc. 27(3), 475–483 (2016).CAS
Google Scholar
90.Biesaga, M. & Pyrzyńska, K. Stability of bioactive polyphenols from honey during different extraction methods. Food Chem. 136, 46–54 (2013).CAS
PubMed
Article
Google Scholar
91.Sergiel, I., Pohl, P. & Biesaga, M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem. 145, 404–408 (2014).CAS
PubMed
Article
Google Scholar More
