Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators
1.Bhattacharya, A., Bhaumik, A., Pathipati, U., Mandel, S. & Epidi, T. T. Nano-particles: A recent approach to insect pest control. Afr. J. Biotechnol. 9, 3489–3493 (2010).
Google Scholar
2.Barik, T. K., Sahu, B. & Swain, V. Nanosilica- from medicine to pest control. Parasitol. Res. 103, 253–258 (2008).CAS
PubMed
Article
Google Scholar
3.Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A. & Rai, M. Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine 5, 382–386 (2009).CAS
PubMed
Article
Google Scholar
4.Goswami, A., Roy, I., Sengupta, S. & Debnath, N. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519, 1252–1257 (2010).ADS
CAS
Article
Google Scholar
5.Abbasi, A., Sufyan, M., Arif, M. J. & Sahi, S. T. Effect of silicon on tritrophic interaction of cotton, Gossypium hirsutum (Linnaeus), Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and the predator, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Arthropod. Plant Interect. 14, 717–725 (2020).Article
Google Scholar
6.Croissant, J. G. et al. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater. 5, 886–909 (2020).ADS
Article
CAS
Google Scholar
7.Zhang, H. et al. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat. Nanotechnol. 3, 506–511 (2008).ADS
CAS
PubMed
Article
Google Scholar
8.Ayoub, H. A., Khairy, M., Rashwan, F. A. & Abdel-Hafez, H. F. Synthesis and characterization of silica nanostructures for cotton leaf worm control. J. Nanostruct. Chem. 7, 91–100 (2017).CAS
Article
Google Scholar
9.Shoaib, A. et al. Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol. Environ. Chem. 100, 80–91 (2018).CAS
Article
Google Scholar
10.Rastogi, A. et al. Application of silicon nanoparticles in agriculture. 3 Biotech 9, 90 (2019).PubMed
PubMed Central
Article
Google Scholar
11.Galal, O. A. & El Samahy, M. F. M. Genetical effects of using silica nanoparticles as biopesticide on Drosophila melanogaster. Egypt. J. Genet. Cytol 41, 87–106 (2012).Article
Google Scholar
12.Smith, B. C. Effects of silica on the survival of Coleomegilla maculata lengi (Coleoptera: Coccinellidae) and Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Can. Entomol. 101, 460–462 (1969).Article
Google Scholar
13.Mousa, K. M., Elsharkawy, M. M., Khodeir, I. A., El-Dakhakhni, T. N. & Youssef, A. E. Growth perturbation, abnormalities and mortality of oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) caused by silica nanoparticles and Bacillus thuringiensis toxin. Egypt. J. Biol. Pest Control 24, 283–287 (2014).
Google Scholar
14.El-Samahy, M. F. M., Khafagy, I. F. & El-Ghobary, A. M. A. Efficiency of silica nanoparticles, two bioinsecticides, peppermint extract and insecticide in controlling cotton leafworm, Spodoptera littoralis Boisd. and their effects on some associated natural enemies in sugar beet fields. J. Plant Prot. Pathol. Mansoura Univ. 6, 1221–1230 (2015).
Google Scholar
15.El-Samahy, M. F. M. & Galal, O. A. Evaluation of silica nanoparticles as a new approach to control faba bean (Vicia faba L.) insects and its genotoxic effect on M2 plants. Egypt. J. Agric. Res. 90, 869–888 (2012).
Google Scholar
16.Hodson, M. J., White, P. J., Mead, A. & Broadley, M. R. Phylogenetic variation in the silicon composition of plants. Ann. Bot. 96, 1027–1046 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
17.Cooke, J. & Leishman, M. R. Consistent alleviation of abiotic stress with silicon addition: A meta-analysis. Funct. Ecol. 30, 1340–1357 (2016).Article
Google Scholar
18.Sangster, A. G. & Hodson, M. J. Silica in higher plants, in Evered, D. & O’Connor, M. (eds.) 90–111, Silicon Biochemistry, Ciba Found. Symp. 121 (Wiley, Chichester, U. K., 1986).19.Johnson, S. N., Hartley, S. E., Ryalls, J. M. W., Frew, A. & Hall, C. R. Targeted plant defense: Silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores. Ecology https://doi.org/10.1002/ecy.3250 (2021).Article
PubMed
Google Scholar
20.Painter, R. H. Insect resistance in crop plants 520 (MacMillan, 1951).
Google Scholar
21.Sasamoto, K. Studies on the relation between insect pests and silica content in rice plant (III). On the relation between some physical properties of silicified rice plant and injuries by rice stem borer, rice plant skipper and rice stem maggot. Oyo Kontyu 11, 66–69 (1955).
Google Scholar
22.Takahashi, E. Uptake mode and physiological functions of silica. Science of the Rice Plant: Physiology, 420–433 (Food and Agriculture Policy Resource Center, Tokyo, 1995).23.Keeping, M. G. & Meyer, J. H. Calcium silicate enhances resistance of sugarcane to the African stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). Agric. For. Entomol. 4, 265–274 (2002).Article
Google Scholar
24.Reynolds, O. L., Keeping, M. G. & Meyer, J. H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 155, 171–186 (2009).CAS
Article
Google Scholar
25.Massey, F. P. & Hartley, S. E. Physical defences wear you down: Progressive and irreversible impacts of silica on insect herbivores. J. Anim. Ecol. 78, 281–291 (2009).PubMed
Article
Google Scholar
26.Agarie, S. et al. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1, 96–103 (1998).Article
Google Scholar
27.Ye, M. et al. Priming of jasmonate mediated antiherbivore defence responses in rice by silicon. Proc. Natl. Acad. Sci. USA 110, E3631–E3639 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
28.Mumm, R. & Dicke, M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 88, 628–667 (2010).CAS
Article
Google Scholar
29.Dudareva, N., Negre, F., Nagegowda, D. A. & Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 25, 417–440 (2006).CAS
Article
Google Scholar
30.Leroy, N., de Tombeur, F., Walgraffe, Y., Cornélis, J.-T. & Verheggen, F. J. Silicon and plant natural defenses against insect pests: Impact on plant volatile organic compounds and cascade effects on multitrophic interactions. Plants 8, 444 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
31.Gurr, G. M. & Kvedaras, O. L. Synergizing biological control: Scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol. Control 52, 198–207 (2010).Article
Google Scholar
32.Reynolds, O. L., Padula, M. P., Zeng, R. & Gurr, G. M. Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front. Plant Sci. 7, 744 (2016).PubMed
PubMed Central
Article
Google Scholar
33.Hall, C. R., Waterman, J. M., Vandegeer, R. K., Hartley, S. E. & Johnson, S. N. The role of silicon in antiherbivore phytohormonal signalling. Front. Plant Sci. 10, 1132 (2019).PubMed
PubMed Central
Article
Google Scholar
34.Liu, J. et al. Silicon supplementation alters the composition of herbivore-induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front. Plant Sci. 8, 1–8 (2017).
Google Scholar
35.Johnson, S. N., Rowe, R. C. & Hall, C. R. Silicon is an inducible and effective herbivore defence against Helicoverpa punctigera (Lepidoptera: Noctuidae) in soybean. Bull. Entomol. Res. 110, 417–422 (2019).PubMed
Article
CAS
Google Scholar
36.Kvedaras, O. L., An, M., Choi, Y. S. & Gurr, G. M. Silicon enhances natural enemy attraction and biological control through induced plant defences. Bull. Entomol. Res. 100, 367–371 (2010).CAS
PubMed
Article
Google Scholar
37.Connick, V. J. The impact of silicon fertilisation on the chemical ecology of grapevine, Vitis vinifera constitutive and induced chemical defences against arthropod pests and their natural enemies. Ph.D. Thesis, Charles Sturt University, Albury-Wodonga, NSW, Australia (2011).38.Moraes, J. C. et al. Silicon influence on the tritrophic interaction: Wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotrop. Entomol. 33, 619–624 (2004).Article
Google Scholar
39.Bao-shan, L., Chun-hui, L., Li-jun, F., Shu-chun, Q. & Min, Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. For. Res. (Harbin) 15, 138–140 (2004).Article
Google Scholar
40.Azimi, R., Borzelabad, M. J., Feizi, H. & Azimi, A. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol. J. Chem. Technol. 16, 25–29 (2014).CAS
Article
Google Scholar
41.Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V. & Kannan, N. Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Synth. React. Inorgan. Met. Org. Nano-Met. Chem. 44, 1128–1131 (2014).CAS
Article
Google Scholar
42.Alsaeedi, A. H., Elgarawany, M. M., El-Ramady, H., Alshaal, T. & AL-Otaibi A. O. A. Application of silica nanoparticles induces seed germination and growth of cucumber (Cucumis sativus). Met. Environ. Arid. Land Agric. Sci. 28, 57–68 (2019).43.Roohizadeh, G., Majd, A. & Arbabian, S. The effect of sodium silicate and silica nanoparticles on seed germination and some of growth indices in the Vicia faba L. Trop. Plant Res. 2, 85–89 (2015).
Google Scholar
44.Thabet, A. F., Galal, O. A., El-Samahy, M. F. M. & Tuda, M. Higher toxicity of nano-scale TiO2 and dose-dependent genotoxicity of nano-scale SiO2 on the cytology and seedling development of broad bean Vicia faba. Appl. Sci. 1, 956 (2019).CAS
Google Scholar
45.Yang, Z. et al. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int. J. Environ. Res. Public Health 12, 15100–15109 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
46.Sharifi-Rad, J., Sharifi-Rad, M. & Teixeira da Silva, J. A. Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale F. H. Wigg) exposed to SiO2 nanoparticles. J. Agric. Sci. Technol. 18, 1027–1040 (2016).
Google Scholar
47.Silva, G. H. & Monteiro, R. T. Toxicity assessment of silica nanoparticles on Allium cepa. Ecotox. Environ. Contam. 12, 25–31 (2017).
Google Scholar
48.Khan, Z. & Ansari, M. Y. K. Impact of engineered Si nanoparticles on seed germination, vigour index and genotoxicity assessment via DNA damage of root tip cells in Lens culinaris. J. Plant. Biochem. Physiol. 6, 5243–5246 (2018).Article
Google Scholar
49.Galal, O. A., Thabet, A. F., Tuda, M. & El-Samahy, M. F. M. RAPD analysis of genotoxic effects of nano-scale SiO2 and TiO2 on broad bean (Vicia faba L.). J. Fac. Agric. Kyushu Univ. 65, 57–63 (2020).CAS
Article
Google Scholar
50.Elsadany, M. F. I., Aboulila, A. A., Abo-Sein, T. M. & Magouz, R. I. E. Effect of silica nano-particles in control of mite Tetranychus cucurbitacearum (Sayed) and agronomic traits of soybean plants and qualitative assessment of its genotoxicity using total protein and RAPD analysis. J. Agric. Chem. Biotechnol. Mansoura Univ. 6, 529–544 (2015).
Google Scholar
51.Salama, H. S., Dimetry, N. Z. & Salem, S. A. On the host preference and biology of the cotton leaf worm Spodoptera littoralis Bois. Zeitung Angew Entomol. 67, 261–266 (1971).Article
Google Scholar
52.Anonymous,. Data sheets on quarantine organisms. EPPO list A2 (European and Mediterranean Plant Protection Organization, 1981).
Google Scholar
53.Hassan, A. S., Moussa, M. A. & Nasr, E. A. Behaviour of larvae and adults of the cotton leaf worm, Prodenia litura. Bull. Soc. Ent. Egypt 44, 337–343 (1960).
Google Scholar
54.Talati, G. M. & Butani, P. G. Reproduction and population dynamics of groundnut aphid. Guj. Agric. Univ. Res. J. 5, 54–56 (1980).
Google Scholar
55.Dixon, A. F. G. Structure of aphid populations. Annu. Rev. Entomol. 30, 155–174 (1985).Article
Google Scholar
56.Jackai, L. E. N. & Daoust, R. A. Insect pests of cowpeas. Annu. Rev. Entomol. 31, 95–119 (1986).Article
Google Scholar
57.Singh, S. R. Insects damaging cowpeas in Asia. In Cowpea research, production and utilization (eds Singhand, S. R. & Rachie, K. O.) 247–264 (Wiley, 1985).
Google Scholar
58.Atiri, G. I. & Thottappilly, G. Aphis craccivora settling behaviour and acquisition of cowpea aphid borne mosaic virus in aphid-resistant cowpea lines. Entomol. Exp. Appl. 39, 241–245 (1985).Article
Google Scholar
59.Aamer, N. A. & Hegazi, E. M. Parasitoids of the leaf miners Liriomyza spp. (Diptera: Agromyzidae) attacking faba bean in Alexandria, Egypt. Egypt. J. Biol. Pest Control 24, 301–305 (2014).
Google Scholar
60.Bassiony, R. A., Abou-Attia, F. A., Samy, M. A., Youssef, A. E. & Ueno, T. Infestation caused by the agromyzid leafminer Liriomyza trifolii of bean crops in Kafr EL-Shiekh, Egypt. J. Fac. Agric. Kyushu Univ. 62, 435–438 (2017).Article
Google Scholar
61.Borges, I., Soares, A. O., Magro, A. & Hemptinne, J. L. Prey availability in time and space is a driving force in life history evolution of predatory insects. Evol. Ecol. 25, 1307–1319 (2011).Article
Google Scholar
62.Hendawy, M. A., Saleh, A. A. A., Jabbar, A. S. & El-Hadary, A. S. N. Efficacy of some insecticides against the cowpea aphid, Aphis craccivora Koch infesting cowpea plants and their associated predators under laboratory and field conditions. Zagazig J. Agric. Res. 45, 2367–2375 (2018).Article
Google Scholar
63.Jabbar, A. S., Zawrah, M. F. M., Amer, S. A. M. & Saleh, A. A. A. Ecological and biological studies of certain predatory insects of aphid Aphis craccivora (koch.) on cowpea. Res J Parasitol 15, 20–30 (2020).Article
Google Scholar
64.Khodeir, I. A. et al. Population densities of pest aphids and their associated natural enemies on faba bean in Kafr EL–Sheikh, Egypt. J. Fac. Agric. Kyushu Univ. 65, 97–102 (2020).Article
Google Scholar
65.Lattin, J. D. Bionomics of the anthocoridae. Annu. Rev. Entomol. 44, 207–231 (1999).CAS
PubMed
Article
Google Scholar
66.Tuda, M. & Shima, K. Relative importance of weather and density dependence on the dispersal and on-plant activity of the predator Orius minutus. Popul. Ecol. 44, 251–257 (2002).Article
Google Scholar
67.Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brow wheat mite. J. Econ. Entomol. 48, 157–161 (1955).CAS
Article
Google Scholar
68.Kergoat, G. J. et al. A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): new insights into the evolution of a pest-rich genus. Mol. Phylogenet. Evol. 161, 107161 (2021).PubMed
Article
Google Scholar
69.Emrani, S. N., Arzani, A. & Saeidi, G. Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. Afr. J. Biotechnol. 10, 12602–12613 (2011).CAS
Article
Google Scholar
70.Edmond, J. B. & Drapala, W. J. The effects of temperature, sand and soil, and acetone on germination of okra seed. Proc. Am. Soc. Hort. Sci. 71, 428–434 (1958).
Google Scholar
71.Ranal, M. A. & de Santana, D. G. How and why to measure the germination process?. Braz. J. Bot. 29, 1–11 (2006).Article
Google Scholar
72.Dahindwal, A. S., Lather, B. P. S. & Singh, J. Efficacy of seed treatment on germination, seedling emergence and vigor of cotton (Gossypium hirsutum) genotypes. Seed Res. 19, 59–61 (1991).
Google Scholar
73.Derbalah, A. S., Morsey, S. Z. & El-Samahy, M. Some recent approaches to control Tuta absoluta in tomato under greenhouse conditions. Afr. Entomol. 20, 27–34 (2012).Article
Google Scholar
74.Borei, H. A., El-Samahy, M. F. M., Galal, O. A. & Thabet, A. F. The efficiency of silica nanoparticles in control cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) in soybean under laboratory conditions. Glob. J. Agric. Food Saf. Sci. 1, 161–168 (2014).
Google Scholar
75.Debnath, N., Mitra, S., Das, S. & Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 221, 252–256 (2012).CAS
Article
Google Scholar
76.El-Bendary, H. M. & El-Helaly, A. A. First record nanotechnology in agricultural: Silica nanoparticles a potential new insecticide for pest control. Appl. Sci. Rep. 4, 241–246 (2013).
Google Scholar
77.Rowen, E. & Kaplan, I. Eco-evolutionary factors drive induced plant volatiles: A meta-analysis. New Phytol. 210, 284–294 (2016).CAS
PubMed
Article
Google Scholar
78.Fawe, A., Abou-Zaid, M., Menzies, J. & Bélanger, R. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88, 396–401 (1998).CAS
PubMed
Article
Google Scholar
79.Coscun, D. et al. The controversies of silicon’s role in plant biology. New Phytol. 221, 67–85 (2019).Article
Google Scholar
80.Murakami, S. et al. Insect-induced Daidzein, Formononetin and their conjugates in soybean leaves. Metabolites 4, 532–546 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
81.Kessler, A. & Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141–2144 (2001).ADS
CAS
PubMed
Article
Google Scholar
82.Horiuchi, J.-I. et al. A comparison of the responses of Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) to volatiles emitted from lima bean leaves with different levels of damage made by T. urticae or Spodoptera exigua (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 38, 109–116 (2003).Article
Google Scholar
83.Yoneya, K., Kugimiya, S. & Takabayashi, J. Can herbivore-induced plant volatiles inform predatory insect about the most suitable stage of its prey?. Physiol. Entomol. 34, 379–386 (2009).CAS
Article
Google Scholar
84.Acevedo, F. E. et al. Quantitative proteomic analysis of the fall armyworm saliva. Insect Biochem. Mol. Biol. 86, 81–92 (2017).CAS
PubMed
Article
Google Scholar
85.Vet, L. E. & Dicke, M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37, 141–172 (1992).Article
Google Scholar
86.Yan, Z. G. & Wang, C. Z. Similar attractiveness of maize volatiles induced by Helicoverpa armigera and Pseudaletia separata to the generalist parasitoid Campoletis chlorideae. Entomol. Exp. Appl. 118, 87–96 (2006).CAS
Article
Google Scholar
87.McCormick, A. C., Unsicker, S. B. & Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17, 303–310 (2012).Article
CAS
Google Scholar
88.Lee, C. W. et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29, 669–675 (2010).CAS
PubMed
Article
Google Scholar
89.Sabaghnia, N. & Janmohammadi, M. Effect of nanosilicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann. UMCS Biol. 69, 39–55 (2014).
Google Scholar
90.Slomberg, D. L. & Schoenfisch, M. H. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol. 46, 10247–10254 (2012).CAS
PubMed
Google Scholar
91.Le, V. N. et al. Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J. Nanobiotechnol. 12, 50 (2014).Article
CAS
Google Scholar More