1.Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. 118, e2008478118 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
2.Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).PubMed
Article
Google Scholar
3.Myers, R., Hutchings, J. & Barrowman, N. Hypotheses for the decline of cod in the North Atlantic. Mar. Ecol. Prog. Ser. 138, 293–308 (1996).ADS
Article
Google Scholar
4.Sguotti, C. et al. Catastrophic dynamics limit Atlantic cod recovery. Proc. R. Soc. B Biol. Sci. 286, 20182877 (2019).Article
Google Scholar
5.Levin, P. S. & Möllmann, C. Marine ecosystem regime shifts: Challenges and opportunities for ecosystem-based management. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130275 (2015).Article
Google Scholar
6.King, J. R., Mcfarlane, G. A. & Punt, A. E. Shifts in fisheries management: Adapting to regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130277 (2015).Article
Google Scholar
7.Döring, R., Berkenhagen, J., Hentsch, S. & Kraus, G. Small-Scale Fisheries in Germany: A Disappearing Profession? In Small-Scale Fisheries in Europe: Status, Resilience and Governance (eds. Pascual-Fernández, J. J., Pita, C. & Bavinck, M.) vol. 23 483–502 (Springer International Publishing, 2020).8.Papaioannou, E. A., Vafeidis, A. T., Quaas, M. F., Schmidt, J. O. & Strehlow, H. V. Using indicators based on primary fisheries’ data for assessing the development of the German Baltic small-scale fishery and reviewing its adaptation potential to changes in resource abundance and management during 2000–09. Ocean Coast. Manag. 98, 38–50 (2014).Article
Google Scholar
9.EU. Regulation (EU) 2016/1139 of the European Parliament and of the Council of 6 July 2016 establishing a multiannual plan for the stocks of cod, herring and sprat in the Baltic Sea and the fisheries exploiting those stocks, amending Council Regulation (EC) No 2187/2005 and repealing Council Regulation (EC) No 1098/2007. (2016).10.Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
11.Lenton, T. M. Environmental tipping points. Annu. Rev. Environ. Resour. 38, 1–29 (2013).ADS
Article
Google Scholar
12.Möllmann, C., Folke, C., Edwards, M. & Conversi, A. Marine regime shifts around the globe: Theory, drivers and impacts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130260 (2015).Article
Google Scholar
13.ICES. Advice cod in subdivisions 22–24, western Baltic stock (western Baltic Sea). (2019) https://doi.org/10.17895/ICES.ADVICE.5587.14.Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130279 (2015).Article
Google Scholar
15.Ratajczak, Z. et al. Abrupt change in ecological systems: Inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).PubMed
Article
Google Scholar
16.Turner, M. G. et al. Climate change, ecosystems and abrupt change: Science priorities. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190105 (2020).Article
Google Scholar
17.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).Article
Google Scholar
18.Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).Article
Google Scholar
19.Subbey, S., Devine, J. A., Schaarschmidt, U. & Nash, R. D. Modelling and forecasting stock–recruitment: Current and future perspectives. ICES J. Mar. Sci. 71, 2307–2322 (2014).Article
Google Scholar
20.Grasman, R. P. P. P., Maas, H. L. J. van der & Wagenmakers, E.-J. Fitting the Cusp Catastrophe in r : A cusp Package Primer. J. Stat. Softw. 32, 1-27 (2009).21.Thom, R. Structural Stability and Morphogenesis—An Outline of a General Theory of Models (Benjamin Inc, 1975).MATH
Google Scholar
22.Zeeman, E. Catastrophe theory. Sci. Am. 234, 65–83 (1976).Article
Google Scholar
23.Barunik, J. & Vosvrda, M. Can a stochastic cusp catastrophe model explain stock market crashes?. J. Econ. Dyn. Control 33, 1824–1836 (2009).MathSciNet
MATH
Article
Google Scholar
24.Xiaoping, Z., Jiahui, S. & Yuan, C. Analysis of crowd jam in public buildings based on cusp-catastrophe theory. Build. Environ. 45, 1755–1761 (2010).Article
Google Scholar
25.Guastello, S. J., Boeh, H., Shumaker, C. & Schimmels, M. Catastrophe models for cognitive workload and fatigue. Theor. Issues Ergon. Sci. 13, 586–602 (2012).Article
Google Scholar
26.Angelis, V., Angelis-Dimakis, A. & Dimaki, K. The Cusp Catastrophe model in describing a bank’s attractiveness as measured by its image. Proc. Econ. Finance 19, 261–277 (2015).Article
Google Scholar
27.Sideridis, G. D., Simos, P., Mouzaki, A. & Stamovlasis, D. Efficient word reading: Automaticity of print-related skills indexed by rapid automatized naming through cusp-catastrophe modeling. Sci. Stud. Read. 20, 6–19 (2016).Article
Google Scholar
28.Diks, C. & Wang, J. Can a stochastic cusp catastrophe model explain housing market crashes?. J. Econ. Dyn. Control 69, 68–88 (2016).Article
Google Scholar
29.Xu, Y. & Chen, X. Protection motivation theory and cigarette smoking among vocational high school students in China: A cusp catastrophe modeling analysis. Glob. Health Res. Policy 1, 3 (2016).PubMed
PubMed Central
Article
Google Scholar
30.Chen, D.-G., Lin, F., Chen, X., Tang, W. & Kitzman, H. Cusp Catastrophe Model: A nonlinear model for health outcomes in nursing research. Nurs. Res. 63, 211–220 (2014).PubMed
PubMed Central
Article
Google Scholar
31.Mostafa, M. M. Catastrophe theory predicts international concern for global warming. J. Quant. Econ. https://doi.org/10.1007/s40953-020-00199-8 (2020).Article
Google Scholar
32.Sguotti, C. et al. Non-linearity in stock–recruitment relationships of Atlantic cod: Insights from a multi-model approach. ICES J. Mar. Sci. 77, 1492–1502 (2020).Article
Google Scholar
33.Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).ADS
Article
Google Scholar
34.Gröger, M., Arneborg, L., Dieterich, C., Höglund, A. & Meier, H. E. M. Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean–sea ice–atmosphere model. Clim. Dyn. 53, 5945–5966 (2019).Article
Google Scholar
35.Litzow, M. A., Mueter, F. J. & Hobday, A. J. Reassessing regime shifts in the North Pacific: Incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability. Glob. Change Biol. 20, 38–50 (2014).ADS
Article
Google Scholar
36.Auber, A., Travers-Trolet, M., Villanueva, M. C. & Ernande, B. Regime shift in an exploited fish community related to natural climate oscillations. PLoS One 10, e0129883 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
37.Karnauskas, M. et al. Evidence of climate-driven ecosystem reorganization in the Gulf of Mexico. Glob. Change Biol. 21, 2554–2568 (2015).ADS
Article
Google Scholar
38.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS
CAS
PubMed
Article
Google Scholar
39.Kotta, J. et al. Novel crab predator causes marine ecosystem regime shift. Sci. Rep. 8, 4956 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
40.Vert-pre, K. A., Amoroso, R. O., Jensen, O. P. & Hilborn, R. Frequency and intensity of productivity regime shifts in marine fish stocks. Proc. Natl. Acad. Sci. 110, 1779–1784 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
41.Perretti, C. et al. Regime shifts in fish recruitment on the Northeast US Continental Shelf. Mar. Ecol. Prog. Ser. 574, 1–11 (2017).ADS
Article
Google Scholar
42.Litzow, M. A., Ciannelli, L., Cunningham, C. J., Johnson, B. & Puerta, P. Nonstationary effects of ocean temperature on Pacific salmon productivity. Can. J. Fish. Aquat. Sci. 76, 1923–1928 (2019).Article
Google Scholar
43.van der Maas, H. L. J., Kolstein, R. & van der Pligt, J. Sudden transitions in attitudes. Sociol. Methods Res. 32, 125–152 (2003).MathSciNet
Article
Google Scholar
44.Griffith, G. P. Closing the gap between causality, prediction, emergence, and applied marine management. ICES J. Mar. Sci. 77, 1456–1462 (2020).Article
Google Scholar
45.Hutchings, J. A. Collapse and recovery of marine fishes. Nature 406, 882–885 (2000).ADS
CAS
PubMed
Article
Google Scholar
46.Hilborn, R., Hively, D. J., Jensen, O. P. & Branch, T. A. The dynamics of fish populations at low abundance and prospects for rebuilding and recovery. ICES J. Mar. Sci. 71, 2141–2151 (2014).Article
Google Scholar
47.Köster, F. Trophodynamic control by clupeid predators on recruitment success in Baltic cod?. ICES J. Mar. Sci. 57, 310–323 (2000).Article
Google Scholar
48.Rowe, S., Hutchings, J. A., Bekkevold, D. & Rakitin, A. Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 1144–1150 (2004).Article
Google Scholar
49.Keith, D. M. & Hutchings, J. A. Population dynamics of marine fishes at low abundance. Can. J. Fish. Aquat. Sci. 69, 1150–1163 (2012).Article
Google Scholar
50.Kuparinen, A., Keith, D. M. & Hutchings, J. A. Allee effect and the uncertainty of population recovery: Allee effect and population recovery. Conserv. Biol. 28, 790–798 (2014).PubMed
Article
Google Scholar
51.Neuenhoff, R. D. et al. Continued decline of a collapsed population of Atlantic cod (Gadus morhua) due to predation-driven Allee effects. Can. J. Fish. Aquat. Sci. 76, 168–184 (2019).Article
Google Scholar
52.Vergnon, R., Shin, Y.-J. & Cury, P. Cultivation, Allee effect and resilience of large demersal fish populations. Aquat. Living Resour. 21, 287–295 (2008).Article
Google Scholar
53.Saha, B., Bhowmick, A. R., Chattopadhyay, J. & Bhattacharya, S. On the evidence of an Allee effect in herring populations and consequences for population survival: A model-based study. Ecol. Model. 250, 72–80 (2013).Article
Google Scholar
54.Perälä, T. & Kuparinen, A. Detection of Allee effects in marine fishes: Analytical biases generated by data availability and model selection. Proc. R. Soc. B Biol. Sci. 284, 20171284 (2017).Article
Google Scholar
55.Lundquist, C. J. & Botsford, L. W. Estimating larval production of a broadcast spawner: The influence of density, aggregation, and the fertilization Allee effect. Can. J. Fish. Aquat. Sci. 68, 30–42 (2011).Article
Google Scholar
56.Sæther, B.-E., Engen, S., Lande, R. & Saether, B.-E. Density-dependence and optimal harvesting of fluctuating populations. Oikos 76, 40 (1996).MATH
Article
Google Scholar
57.Rowe, S. & Hutchings, J. A. Mating systems and the conservation of commercially exploited marine fish. Trends Ecol. Evol. 18, 567–572 (2003).Article
Google Scholar
58.Swain, D. P. & Chouinard, G. A. Predicted extirpation of the dominant demersal fish in a large marine ecosystem: Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 65, 2315–2319 (2008).Article
Google Scholar
59.Kuparinen, A. & Hutchings, J. A. Increased natural mortality at low abundance can generate an Allee effect in a marine fish. R. Soc. Open Sci. 1, 140075 (2014).ADS
PubMed
PubMed Central
Article
Google Scholar
60.Swain, D. & Benoît, H. Extreme increases in natural mortality prevent recovery of collapsed fish populations in a Northwest Atlantic ecosystem. Mar. Ecol. Prog. Ser. 519, 165–182 (2015).ADS
Article
Google Scholar
61.Walters, C. & Kitchell, J. F. Cultivation/depensation effects on juvenile survival and recruitment: Implications for the theory of fishing. Can. J. Fish. Aquat. Sci. 58, 39–50 (2001).Article
Google Scholar
62.Andreasen, H. et al. Diet composition and food consumption rate of harbor porpoises (Phocoena phocoena) in the western Baltic Sea. Mar. Mamm. Sci. 33, 1053–1079 (2017).Article
Google Scholar
63.Hüssy, K. Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES J. Mar. Sci. 68, 1459–1471 (2011).Article
Google Scholar
64.Winter, A., Richter, A. & Eikeset, A. M. Implications of Allee effects for fisheries management in a changing climate: Evidence from Atlantic cod. Ecol. Appl. 30, 1–14 (2020).65.Munch, S. B., Giron-Nava, A. & Sugihara, G. Nonlinear dynamics and noise in fisheries recruitment: A global meta-analysis. Fish Fish. 19, 964–973 (2018).Article
Google Scholar
66.Szuwalski, C. S., Vert-Pre, K. A., Punt, A. E., Branch, T. A. & Hilborn, R. Examining common assumptions about recruitment: A meta-analysis of recruitment dynamics for worldwide marine fisheries. Fish Fish. 16, 633–648 (2015).Article
Google Scholar
67.Funk, S., Krumme, U., Temming, A. & Möllmann, C. Gillnet fishers’ knowledge reveals seasonality in depth and habitat use of cod (Gadus morhua) in the Western Baltic Sea. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa071 (2020).Article
Google Scholar
68.Hüssy, K., Hinrichsen, H.-H. & Huwer, B. Hydrographic influence on the spawning habitat suitability of western Baltic cod (Gadus morhua). ICES J. Mar. Sci. 69, 1736–1743 (2012).Article
Google Scholar
69.Hinrichsen, H.-H., Hüssy, K. & Huwer, B. Spatio-temporal variability in western Baltic cod early life stage survival mediated by egg buoyancy, hydrography and hydrodynamics. ICES J. Mar. Sci. 69, 1744–1752 (2012).Article
Google Scholar
70.Petereit, C., Hinrichsen, H.-H., Franke, A. & Köster, F. Floating along buoyancy levels: Dispersal and survival of western Baltic fish eggs. Prog. Oceanogr. 122, 131–152 (2014).ADS
Article
Google Scholar
71.Stiasny, M. H. et al. Ocean acidification effects on Atlantic Cod larval survival and recruitment to the fished population. PLoS One 11, e0155448 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
72.Voss, R. et al. Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification. J. Environ. Manag. 238, 110–118 (2019).Article
Google Scholar
73.Lindegren, M., Möllmann, C., Nielsen, A. & Stenseth, N. C. Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach. Proc. Natl. Acad. Sci. 106, 14722–14727 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
74.Lindegren, M. et al. Ecological forecasting under climate change: The case of Baltic cod. Proc. R. Soc. B Biol. Sci. 277, 2121–2130 (2010).Article
Google Scholar
75.Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nat. Commun. 11, 4579 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
76.Levin, P. S. et al. Building effective fishery ecosystem plans. Mar. Policy 92, 48–57 (2018).Article
Google Scholar
77.Dawson, C. & Levin, P. S. Moving the ecosystem-based fisheries management mountain begins by shifting small stones: A critical analysis of EBFM on the U.S. West Coast. Mar. Policy 100, 58–65 (2019).Article
Google Scholar
78.Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).Article
Google Scholar
79.Townsend, H. et al. Progress on implementing ecosystem-based fisheries management in the United States through the use of ecosystem models and analysis. Front. Mar. Sci. 6, 641 (2019).Article
Google Scholar
80.Koehn, L. E. et al. Case studies demonstrate capacity for a structured planning process for ecosystem-based fisheries management. Can. J. Fish. Aquat. Sci. 77, 1256–1274 (2020).Article
Google Scholar
81.Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).Article
Google Scholar
82.Marshall, K. N., Koehn, L. E., Levin, P. S., Essington, T. E. & Jensen, O. P. Inclusion of ecosystem information in US fish stock assessments suggests progress toward ecosystem-based fisheries management. ICES J. Mar. Sci. 76, 1–9 (2019).Article
Google Scholar
83.Otto, S. A., Kadin, M., Casini, M., Torres, M. A. & Blenckner, T. A quantitative framework for selecting and validating food web indicators. Ecol. Ind. 84, 619–631 (2018).Article
Google Scholar
84.Kadin, M. et al. Trophic interactions, management trade-offs and climate change: The need for adaptive thresholds to operationalize ecosystem indicators. Front. Mar. Sci. 6, 249 (2019).ADS
Article
Google Scholar
85.Samhouri, J. F. et al. Defining ecosystem thresholds for human activities and environmental pressures in the California Current. Ecosphere 8, 1–21 (2017).86.Payne, M. R. et al. Lessons from the first generation of marine ecological forecast products. Front. Mar. Sci. 4, 289 (2017).Article
Google Scholar
87.Tommasi, D. et al. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017).ADS
Article
Google Scholar
88.Haltuch, M. et al. Unraveling the recruitment problem: A review of environmentally-informed forecasting and management strategy evaluation. Fish. Res. 217, 198–216 (2019).Article
Google Scholar
89.Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018).Article
Google Scholar
90.Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsy210 (2019).Article
Google Scholar
91.Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334 (2016).Article
Google Scholar
92.Grüss, A. et al. Recommendations on the use of ecosystem modeling for informing ecosystem-based fisheries management and restoration outcomes in the Gulf of Mexico. Mar. Coast. Fish. 9, 281–295 (2017).Article
Google Scholar
93.Hollowed, A. B. et al. Integrated modeling to evaluate climate change impacts on coupled social-ecological systems in Alaska. Front. Mar. Sci. 6, 775 (2020).Article
Google Scholar
94.Okamoto, D. K. et al. Attending to spatial social–ecological sensitivities to improve trade-off analysis in natural resource management. Fish Fish. 21, 1–12 (2020).Article
Google Scholar
95.Möllmann, C. et al. Implementing ecosystem-based fisheries management: From single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES J. Mar. Sci. 71, 1187–1197 (2014).Article
Google Scholar
96.Voss, R. et al. Assessing social—ecological trade-offs to advance ecosystem-based fisheries management. PLoS One 9, e107811 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
97.Schmidt, J. O. et al. Future ocean observations to connect climate, fisheries and marine ecosystems. Front. Mar. Sci. 6, 550 (2019).Article
Google Scholar
98.Hicks, C. C. et al. Engage key social concepts for sustainability. Science 352, 38–40 (2016).ADS
CAS
PubMed
Article
Google Scholar
99.Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).Article
Google Scholar
100.Levin, P. S. et al. Conceptualization of social-ecological systems of the california current: An examination of interdisciplinary science supporting ecosystem-based management. Coast. Manag. 44, 397–408 (2016).Article
Google Scholar
101.ICES. Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic). https://doi.org/10.17895/ICES.ADVICE.4715 (2019).102.Quentin Grafton, R. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).Article
Google Scholar
103.Lindegren, M. & Brander, K. Adapting fisheries and their management to climate change: A review of concepts, tools, frameworks, and current progress toward implementation. Rev. Fish. Sci. Aquac. 26, 400–415 (2018).Article
Google Scholar
104.Holsman, K. K. et al. Towards climate resiliency in fisheries management. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsz031 (2019).Article
Google Scholar
105.Bell, R. J., Odell, J., Kirchner, G. & Lomonico, S. Actions to promote and achieve climate-ready fisheries: Summary of current practice. Mar. Coast. Fish. 12, 166–190 (2020).Article
Google Scholar
106.Gaichas, S. K., Link, J. S. & Hare, J. A. A risk-based approach to evaluating northeast US fish community vulnerability to climate change. ICES J. Mar. Sci. 71, 2323–2342 (2014).Article
Google Scholar
107.Pecl, G. T. et al. Rapid assessment of fisheries species sensitivity to climate change. Clim. Change 127, 505–520 (2014).ADS
Article
Google Scholar
108.Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the Northeast U.S. Continental Shelf. PLoS One 11, e0146756 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
109.Johnson, J. E. et al. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 74, 220–229 (2016).Article
Google Scholar
110.Whitney, C. K. et al. Adaptive capacity: From assessment to action in coastal social-ecological systems. Ecol. Soc. 22, art22 (2017).Article
Google Scholar
111.Johnson, F. A., Eaton, M. J., Mikels-Carrasco, J. & Case, D. Building adaptive capacity in a coastal region experiencing global change. Ecol. Soc. 25, art9 (2020).Article
Google Scholar
112.ICES. Baltic Fisheries Assessemant Working Group. (2019). https://doi.org/10.17895/ICES.PUB.5949.113.ICES. Baltic Fisheries Assessemant Working Group. ICES CM 2014/ACOM:10 (2014).114.Hüssy, K. et al. Spatio-temporal trends in stock mixing of eastern and western Baltic cod in the Arkona Basin and the implications for recruitment. ICES J. Mar. Sci. J. Conseil 73, 293–303 (2016).Article
Google Scholar
115.Weist, P. et al. Assessing SNP-markers to study population mixing and ecological adaptation in Baltic cod. PLoS One 14, e0218127 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
116.R Core Team. R: A Language and Environment for Statistical Computing. (Accessed 2 July 2021); https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).117.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS
Article
Google Scholar
118.Killick, R. & Eckley, I. A. Changepoint: An R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).119.Zeileis, A., Kleiber, C., Krämer, W. & Hornik, K. Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44, 109–123 (2003).MathSciNet
MATH
Article
Google Scholar
120.Otto, S. A. Comparison of change point detection methods. (Accessed 2 July 2021); https://www.marinedatascience.co/blog/2019/09/28/comparison-of-change-point-detection-methods/. (2019). More