More stories

  • in

    Year-round high abundances of the world’s smallest marine vertebrate (Schindleria) in the Red Sea and worldwide associations with lunar phases

    1.Giltay, L. Les larves de Schindler sont-elles des Hemirhamphidae?. Notes Ichthyol. Mus. Roy. d’Hist. Nat Belgique 10, 1–10 (1934).
    Google Scholar 
    2.Johnson, G. D. & Brothers, E. B. Schindleria: a paedomorphic goby (Teleostei: Gobioidei). Bull. Mar. Sci. 52, 441–471 (1993).
    Google Scholar 
    3.Kon, T. & Yoshino, T. Diversity and evolution of life histories of gobioid fishes from the viewpoint of heterochrony. Mar. Freshw. Res. 53, 377–402 (2002).Article 

    Google Scholar 
    4.Randall, J. E. & Cea, A. Shore fishes of Easter Island. (University of Hawaii Press, 2011).5.Kon, T., Yoshino, T., Mukai, T. & Nishida, M. DNA sequences identify numerous cryptic species of the vertebrate: a lesson from the gobioid fish Schindleria. Mol. Phylogenet. Evol. 44, 53–62 (2007).CAS 
    Article 

    Google Scholar 
    6.Robitzch, V., Schröder, M. & Ahnelt, H. Morphometrics reveal inter- and intraspecific sexual dimorphisms in two Hawaiian Schindleria, the long dorsal finned S. praematura and the short dorsal finned S. pietschmanni. Zool. Anz. 292, 197–206 (2021).Article 

    Google Scholar 
    7.Schindler, O. Ein neuer Hemirhamphus aus dem Pazifischen Ozean. Anzeiger der Akad. der Wissenschaften Wien 67, 79–80 (1930).
    Google Scholar 
    8.Schindler, O. Sexually mature larval Hemiramphidae from the Hawaiian Islands. Bull. Bernice P. Bish. Museum 1–28 (1932).9.Landaeta, M. F., Veas, R. & Castro, L. R. First record of the paedomorphic goby Schindleria praematura, Easter Island, South Pacific. J. Fish Biol. 61, 289–292 (2002).Article 

    Google Scholar 
    10.Watson, W. & Walker, H. J. J. The world’s smallest vertebrate, Schindleria brevipinguis, a new paedomorphic species in the family Schindleriidae (Perciformes: Gobioidei). Rec. Aust. Museum 56, 139–142 (2004).Article 

    Google Scholar 
    11.Kon, T., Yoshino, T. & Nishida, M. Cryptic species of the gobioid paedomorphic genus Schindleria from Palau, Western Pacific Ocean. Ichthyol. Res. https://doi.org/10.1007/s10228-010-0178-y (2010).Article 

    Google Scholar 
    12.Ahnelt, H. & Sauberer, M. Deep-water, offshore, and new records of Schindler’s fishes, Schindleria (Teleostei, Gobiidae), from the Indo-west Pacific collected during the Dana-Expedition, 1928–1930. Zootaxa 4731, 451–470 (2020).Article 

    Google Scholar 
    13.Bruun, A. F. A study of a collection of the fish Schindleria from South Pacific waters. Dana Rep. 21, 1–12 (1940).
    Google Scholar 
    14.Jones, S. & Kumaran, M. On the fishes of the genus Schindleria (Giltay) from the Indian Ocean. J. Mar. Biol. 6, 257–264 (1964).
    Google Scholar 
    15.Leis, J. M. Coral Sea atoll lagoons: closed nurseries for the larvae of a few coral reef fishes. Bull. Mar. Sci. 54, 206–227 (1994).ADS 

    Google Scholar 
    16.Belyanina, T. P. Ichthyoplankton in the regions of the Nazca and Salas y Gomez submarine ridges. J. Ichthyol. 29, 84–90 (1989).
    Google Scholar 
    17.Parin, N. V., Mironov, A. N. & Nesis, K. N. Biology of the Nazca and Salas y Gomez submarine ridges, an outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean: composition and distribution of the fauna, its communities and history. Adv. Mar. Biol. 32, 147–242 (1997).
    Google Scholar 
    18.Ahnelt, H. & Sauberer, M. A new species of Schindler’s fish (Teleostei: Gobiidae: Schindleria) from the Malay archipelago (Southeast Asia), with notes on the caudal fin complex of Schindleria. Zootaxa 4531, 95–108 (2018).Article 

    Google Scholar 
    19.Leis, J. M., Goldman, B. & Read, S. E. Epibenthic fish larvae in the Great Barrier Reef Lagoon near Lizard Island, Australia. Japanese J. Ichthyol. 35, 428–433 (1989).
    Google Scholar 
    20.Thacker, C. & Grier, H. Unusual gonad structure in the paedomorphic teleost Schindleria praematura (Teleostei Gobioidei): a comparison with other gobioid fishes. J. Fish Biol. 66, 378–391 (2005).Article 

    Google Scholar 
    21.Young, S.-S. & Chiu, T.-S. New records of a paedomorphic fish Schindleria praematura (Pisces: Schindleriidae), from Waters of Taiwan. Acta Zool. Taiwanica 11, 127–137 (2000).
    Google Scholar 
    22.Watson, W. & Leis, J. M. Ichthyoplankton of Kaneohe Bay, Hawaii. A one-year study of fish eggs and larvae. 1–178 (University of Hawaiʻi Sea Grant Program, 1974).23.Leis, J. M. & Trnski, T. The larvae of Indo-Pacific shorefishes. (New South Wales Univ. Press, Sydney & Univ. of Hawaii Press, 1989).24.Fricke, R. & Abu El-Regal, M. A. Schindleria nigropunctata, a new species of paedomorphic gobioid fish from the Red Sea (Teleostei: Schindleriidae). Mar. Biodivers. https://doi.org/10.1007/s12526-017-0831-z (2017).Article 

    Google Scholar 
    25.Fricke, R. & Abu El-Regal, M. A. Schindleria elongata, a new species of paedomorphic gobioid from the Red Sea (Teleostei: Schindleriidae). J Fish Biol 2, 1–8. https://doi.org/10.1111/jfb.13280 (2017).Article 

    Google Scholar 
    26.Abu El-Regal, M. A. & Kon, T. First record of the Schindler’s fish, Schindleria praematura (Actinopterygii: Perciformes: Schindleriidae), from the Red Sea. Acta Ichthyol. Piscat. 49, 75–78 (2019).Article 

    Google Scholar 
    27.EAbu El-Regal, M. & Kon, T. First record of the paedomorphic fish Schindleria (Gobioidei, Schindleriidae) from the Red Sea. J. Fish Biol. 72, 1539–1543 (2008).Article 

    Google Scholar 
    28.Ahnelt, H. Redescription of the paedomorphic goby Schindleria nigropunctata Fricke & El-Regal 2017 (Teleostei: Gobiidae) from the Red Sea. Zootaxa 4615, 450–456 (2019).Article 

    Google Scholar 
    29.Contreras, J. E., Landaeta, M. F., Plaza, G., Ojeda, F. P. & Bustos, C. A. The contrasting hatching patterns and larval growth of two sympatric clingfishes inferred by otolith microstructure analysis. Mar. Freshw. Res. 64, 157–167 (2013).Article 

    Google Scholar 
    30.Team, R. C. R: a language and environment for statistical computing (version 3.6). https://www.R-project.org (2020).31.Kleiber, C. & Zeileis, A. Applied econometrics with R. (Springer Science & Business Media, 2008).32.Kleiber, C. & Zeileis, A. AER: applied econometrics with R. R package version 1.1. (2009).33.Batschelet, E. Circular statistics in biology. (Academic Press, New York, 1981).34.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    35.Robitzch, V. & Berumen, M. L. Recruitment of coral reef fishes along a cross-shelf gradient in the Red Sea peaks outside the hottest season. Coral Reefs 39, 1565–1579 (2020).Article 

    Google Scholar 
    36.Whittle, A. G. Ecology, abundance, diversity, and distribution of larval fishes and Schindleriidae (Teleostei: Gobioidei) at two sites on O’ahu, Hawai’i. (University of Hawaiʻi, 2003).37.Depczynski, M. & Bellwood, D. R. Shortest recorded vertebrate lifespan found in a coral reef fish. Curr. Biol. 15, 10 (2005).Article 

    Google Scholar 
    38.Isari, S. et al. Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach. PLoS ONE 12, 1–24 (2017).Article 

    Google Scholar 
    39.Depczynski, M. & Bellwood, D. R. Extremes, plasticity, and invariance in vertebrate life history traits: insights from coral reef fishes. Ecology 87, 3119–3127 (2006).Article 

    Google Scholar 
    40.Nanninga, G. B., Saenz-Agudelo, P., Zhan, P., Hoteit, I. & Berumen, M. L. Not finding Nemo: limited reef-scale retention in a coral reef fish. Coral Reefs 34, 383–392 (2015).ADS 
    Article 

    Google Scholar 
    41.Hernaman, V. & Munday, P. L. Life-history characteristics of coral reef gobies. I. Growth and life-span. Mar. Ecol. Prog. Ser. 290, 207–221 (2005).ADS 
    Article 

    Google Scholar 
    42.Lefèvre, C. D., Nash, K. L., González-Cabello, A. & Bellwood, D. R. Consequences of extreme life history traits on population persistence: do short-lived gobies face demographic bottlenecks?. Coral Reefs 35, 399–409 (2016).ADS 
    Article 

    Google Scholar  More

  • in

    Tipping point realized in cod fishery

    1.Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. 118, e2008478118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).PubMed 
    Article 

    Google Scholar 
    3.Myers, R., Hutchings, J. & Barrowman, N. Hypotheses for the decline of cod in the North Atlantic. Mar. Ecol. Prog. Ser. 138, 293–308 (1996).ADS 
    Article 

    Google Scholar 
    4.Sguotti, C. et al. Catastrophic dynamics limit Atlantic cod recovery. Proc. R. Soc. B Biol. Sci. 286, 20182877 (2019).Article 

    Google Scholar 
    5.Levin, P. S. & Möllmann, C. Marine ecosystem regime shifts: Challenges and opportunities for ecosystem-based management. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130275 (2015).Article 

    Google Scholar 
    6.King, J. R., Mcfarlane, G. A. & Punt, A. E. Shifts in fisheries management: Adapting to regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130277 (2015).Article 

    Google Scholar 
    7.Döring, R., Berkenhagen, J., Hentsch, S. & Kraus, G. Small-Scale Fisheries in Germany: A Disappearing Profession? In Small-Scale Fisheries in Europe: Status, Resilience and Governance (eds. Pascual-Fernández, J. J., Pita, C. & Bavinck, M.) vol. 23 483–502 (Springer International Publishing, 2020).8.Papaioannou, E. A., Vafeidis, A. T., Quaas, M. F., Schmidt, J. O. & Strehlow, H. V. Using indicators based on primary fisheries’ data for assessing the development of the German Baltic small-scale fishery and reviewing its adaptation potential to changes in resource abundance and management during 2000–09. Ocean Coast. Manag. 98, 38–50 (2014).Article 

    Google Scholar 
    9.EU. Regulation (EU) 2016/1139 of the European Parliament and of the Council of 6 July 2016 establishing a multiannual plan for the stocks of cod, herring and sprat in the Baltic Sea and the fisheries exploiting those stocks, amending Council Regulation (EC) No 2187/2005 and repealing Council Regulation (EC) No 1098/2007. (2016).10.Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Lenton, T. M. Environmental tipping points. Annu. Rev. Environ. Resour. 38, 1–29 (2013).ADS 
    Article 

    Google Scholar 
    12.Möllmann, C., Folke, C., Edwards, M. & Conversi, A. Marine regime shifts around the globe: Theory, drivers and impacts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130260 (2015).Article 

    Google Scholar 
    13.ICES. Advice cod in subdivisions 22–24, western Baltic stock (western Baltic Sea). (2019) https://doi.org/10.17895/ICES.ADVICE.5587.14.Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130279 (2015).Article 

    Google Scholar 
    15.Ratajczak, Z. et al. Abrupt change in ecological systems: Inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).PubMed 
    Article 

    Google Scholar 
    16.Turner, M. G. et al. Climate change, ecosystems and abrupt change: Science priorities. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190105 (2020).Article 

    Google Scholar 
    17.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).Article 

    Google Scholar 
    18.Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).Article 

    Google Scholar 
    19.Subbey, S., Devine, J. A., Schaarschmidt, U. & Nash, R. D. Modelling and forecasting stock–recruitment: Current and future perspectives. ICES J. Mar. Sci. 71, 2307–2322 (2014).Article 

    Google Scholar 
    20.Grasman, R. P. P. P., Maas, H. L. J. van der & Wagenmakers, E.-J. Fitting the Cusp Catastrophe in r : A cusp Package Primer. J. Stat. Softw. 32, 1-27 (2009).21.Thom, R. Structural Stability and Morphogenesis—An Outline of a General Theory of Models (Benjamin Inc, 1975).MATH 

    Google Scholar 
    22.Zeeman, E. Catastrophe theory. Sci. Am. 234, 65–83 (1976).Article 

    Google Scholar 
    23.Barunik, J. & Vosvrda, M. Can a stochastic cusp catastrophe model explain stock market crashes?. J. Econ. Dyn. Control 33, 1824–1836 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    24.Xiaoping, Z., Jiahui, S. & Yuan, C. Analysis of crowd jam in public buildings based on cusp-catastrophe theory. Build. Environ. 45, 1755–1761 (2010).Article 

    Google Scholar 
    25.Guastello, S. J., Boeh, H., Shumaker, C. & Schimmels, M. Catastrophe models for cognitive workload and fatigue. Theor. Issues Ergon. Sci. 13, 586–602 (2012).Article 

    Google Scholar 
    26.Angelis, V., Angelis-Dimakis, A. & Dimaki, K. The Cusp Catastrophe model in describing a bank’s attractiveness as measured by its image. Proc. Econ. Finance 19, 261–277 (2015).Article 

    Google Scholar 
    27.Sideridis, G. D., Simos, P., Mouzaki, A. & Stamovlasis, D. Efficient word reading: Automaticity of print-related skills indexed by rapid automatized naming through cusp-catastrophe modeling. Sci. Stud. Read. 20, 6–19 (2016).Article 

    Google Scholar 
    28.Diks, C. & Wang, J. Can a stochastic cusp catastrophe model explain housing market crashes?. J. Econ. Dyn. Control 69, 68–88 (2016).Article 

    Google Scholar 
    29.Xu, Y. & Chen, X. Protection motivation theory and cigarette smoking among vocational high school students in China: A cusp catastrophe modeling analysis. Glob. Health Res. Policy 1, 3 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Chen, D.-G., Lin, F., Chen, X., Tang, W. & Kitzman, H. Cusp Catastrophe Model: A nonlinear model for health outcomes in nursing research. Nurs. Res. 63, 211–220 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Mostafa, M. M. Catastrophe theory predicts international concern for global warming. J. Quant. Econ. https://doi.org/10.1007/s40953-020-00199-8 (2020).Article 

    Google Scholar 
    32.Sguotti, C. et al. Non-linearity in stock–recruitment relationships of Atlantic cod: Insights from a multi-model approach. ICES J. Mar. Sci. 77, 1492–1502 (2020).Article 

    Google Scholar 
    33.Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).ADS 
    Article 

    Google Scholar 
    34.Gröger, M., Arneborg, L., Dieterich, C., Höglund, A. & Meier, H. E. M. Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean–sea ice–atmosphere model. Clim. Dyn. 53, 5945–5966 (2019).Article 

    Google Scholar 
    35.Litzow, M. A., Mueter, F. J. & Hobday, A. J. Reassessing regime shifts in the North Pacific: Incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability. Glob. Change Biol. 20, 38–50 (2014).ADS 
    Article 

    Google Scholar 
    36.Auber, A., Travers-Trolet, M., Villanueva, M. C. & Ernande, B. Regime shift in an exploited fish community related to natural climate oscillations. PLoS One 10, e0129883 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Karnauskas, M. et al. Evidence of climate-driven ecosystem reorganization in the Gulf of Mexico. Glob. Change Biol. 21, 2554–2568 (2015).ADS 
    Article 

    Google Scholar 
    38.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Kotta, J. et al. Novel crab predator causes marine ecosystem regime shift. Sci. Rep. 8, 4956 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Vert-pre, K. A., Amoroso, R. O., Jensen, O. P. & Hilborn, R. Frequency and intensity of productivity regime shifts in marine fish stocks. Proc. Natl. Acad. Sci. 110, 1779–1784 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Perretti, C. et al. Regime shifts in fish recruitment on the Northeast US Continental Shelf. Mar. Ecol. Prog. Ser. 574, 1–11 (2017).ADS 
    Article 

    Google Scholar 
    42.Litzow, M. A., Ciannelli, L., Cunningham, C. J., Johnson, B. & Puerta, P. Nonstationary effects of ocean temperature on Pacific salmon productivity. Can. J. Fish. Aquat. Sci. 76, 1923–1928 (2019).Article 

    Google Scholar 
    43.van der Maas, H. L. J., Kolstein, R. & van der Pligt, J. Sudden transitions in attitudes. Sociol. Methods Res. 32, 125–152 (2003).MathSciNet 
    Article 

    Google Scholar 
    44.Griffith, G. P. Closing the gap between causality, prediction, emergence, and applied marine management. ICES J. Mar. Sci. 77, 1456–1462 (2020).Article 

    Google Scholar 
    45.Hutchings, J. A. Collapse and recovery of marine fishes. Nature 406, 882–885 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Hilborn, R., Hively, D. J., Jensen, O. P. & Branch, T. A. The dynamics of fish populations at low abundance and prospects for rebuilding and recovery. ICES J. Mar. Sci. 71, 2141–2151 (2014).Article 

    Google Scholar 
    47.Köster, F. Trophodynamic control by clupeid predators on recruitment success in Baltic cod?. ICES J. Mar. Sci. 57, 310–323 (2000).Article 

    Google Scholar 
    48.Rowe, S., Hutchings, J. A., Bekkevold, D. & Rakitin, A. Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 1144–1150 (2004).Article 

    Google Scholar 
    49.Keith, D. M. & Hutchings, J. A. Population dynamics of marine fishes at low abundance. Can. J. Fish. Aquat. Sci. 69, 1150–1163 (2012).Article 

    Google Scholar 
    50.Kuparinen, A., Keith, D. M. & Hutchings, J. A. Allee effect and the uncertainty of population recovery: Allee effect and population recovery. Conserv. Biol. 28, 790–798 (2014).PubMed 
    Article 

    Google Scholar 
    51.Neuenhoff, R. D. et al. Continued decline of a collapsed population of Atlantic cod (Gadus morhua) due to predation-driven Allee effects. Can. J. Fish. Aquat. Sci. 76, 168–184 (2019).Article 

    Google Scholar 
    52.Vergnon, R., Shin, Y.-J. & Cury, P. Cultivation, Allee effect and resilience of large demersal fish populations. Aquat. Living Resour. 21, 287–295 (2008).Article 

    Google Scholar 
    53.Saha, B., Bhowmick, A. R., Chattopadhyay, J. & Bhattacharya, S. On the evidence of an Allee effect in herring populations and consequences for population survival: A model-based study. Ecol. Model. 250, 72–80 (2013).Article 

    Google Scholar 
    54.Perälä, T. & Kuparinen, A. Detection of Allee effects in marine fishes: Analytical biases generated by data availability and model selection. Proc. R. Soc. B Biol. Sci. 284, 20171284 (2017).Article 

    Google Scholar 
    55.Lundquist, C. J. & Botsford, L. W. Estimating larval production of a broadcast spawner: The influence of density, aggregation, and the fertilization Allee effect. Can. J. Fish. Aquat. Sci. 68, 30–42 (2011).Article 

    Google Scholar 
    56.Sæther, B.-E., Engen, S., Lande, R. & Saether, B.-E. Density-dependence and optimal harvesting of fluctuating populations. Oikos 76, 40 (1996).MATH 
    Article 

    Google Scholar 
    57.Rowe, S. & Hutchings, J. A. Mating systems and the conservation of commercially exploited marine fish. Trends Ecol. Evol. 18, 567–572 (2003).Article 

    Google Scholar 
    58.Swain, D. P. & Chouinard, G. A. Predicted extirpation of the dominant demersal fish in a large marine ecosystem: Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 65, 2315–2319 (2008).Article 

    Google Scholar 
    59.Kuparinen, A. & Hutchings, J. A. Increased natural mortality at low abundance can generate an Allee effect in a marine fish. R. Soc. Open Sci. 1, 140075 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Swain, D. & Benoît, H. Extreme increases in natural mortality prevent recovery of collapsed fish populations in a Northwest Atlantic ecosystem. Mar. Ecol. Prog. Ser. 519, 165–182 (2015).ADS 
    Article 

    Google Scholar 
    61.Walters, C. & Kitchell, J. F. Cultivation/depensation effects on juvenile survival and recruitment: Implications for the theory of fishing. Can. J. Fish. Aquat. Sci. 58, 39–50 (2001).Article 

    Google Scholar 
    62.Andreasen, H. et al. Diet composition and food consumption rate of harbor porpoises (Phocoena phocoena) in the western Baltic Sea. Mar. Mamm. Sci. 33, 1053–1079 (2017).Article 

    Google Scholar 
    63.Hüssy, K. Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES J. Mar. Sci. 68, 1459–1471 (2011).Article 

    Google Scholar 
    64.Winter, A., Richter, A. & Eikeset, A. M. Implications of Allee effects for fisheries management in a changing climate: Evidence from Atlantic cod. Ecol. Appl. 30, 1–14 (2020).65.Munch, S. B., Giron-Nava, A. & Sugihara, G. Nonlinear dynamics and noise in fisheries recruitment: A global meta-analysis. Fish Fish. 19, 964–973 (2018).Article 

    Google Scholar 
    66.Szuwalski, C. S., Vert-Pre, K. A., Punt, A. E., Branch, T. A. & Hilborn, R. Examining common assumptions about recruitment: A meta-analysis of recruitment dynamics for worldwide marine fisheries. Fish Fish. 16, 633–648 (2015).Article 

    Google Scholar 
    67.Funk, S., Krumme, U., Temming, A. & Möllmann, C. Gillnet fishers’ knowledge reveals seasonality in depth and habitat use of cod (Gadus morhua) in the Western Baltic Sea. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa071 (2020).Article 

    Google Scholar 
    68.Hüssy, K., Hinrichsen, H.-H. & Huwer, B. Hydrographic influence on the spawning habitat suitability of western Baltic cod (Gadus morhua). ICES J. Mar. Sci. 69, 1736–1743 (2012).Article 

    Google Scholar 
    69.Hinrichsen, H.-H., Hüssy, K. & Huwer, B. Spatio-temporal variability in western Baltic cod early life stage survival mediated by egg buoyancy, hydrography and hydrodynamics. ICES J. Mar. Sci. 69, 1744–1752 (2012).Article 

    Google Scholar 
    70.Petereit, C., Hinrichsen, H.-H., Franke, A. & Köster, F. Floating along buoyancy levels: Dispersal and survival of western Baltic fish eggs. Prog. Oceanogr. 122, 131–152 (2014).ADS 
    Article 

    Google Scholar 
    71.Stiasny, M. H. et al. Ocean acidification effects on Atlantic Cod larval survival and recruitment to the fished population. PLoS One 11, e0155448 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Voss, R. et al. Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification. J. Environ. Manag. 238, 110–118 (2019).Article 

    Google Scholar 
    73.Lindegren, M., Möllmann, C., Nielsen, A. & Stenseth, N. C. Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach. Proc. Natl. Acad. Sci. 106, 14722–14727 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Lindegren, M. et al. Ecological forecasting under climate change: The case of Baltic cod. Proc. R. Soc. B Biol. Sci. 277, 2121–2130 (2010).Article 

    Google Scholar 
    75.Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nat. Commun. 11, 4579 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Levin, P. S. et al. Building effective fishery ecosystem plans. Mar. Policy 92, 48–57 (2018).Article 

    Google Scholar 
    77.Dawson, C. & Levin, P. S. Moving the ecosystem-based fisheries management mountain begins by shifting small stones: A critical analysis of EBFM on the U.S. West Coast. Mar. Policy 100, 58–65 (2019).Article 

    Google Scholar 
    78.Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).Article 

    Google Scholar 
    79.Townsend, H. et al. Progress on implementing ecosystem-based fisheries management in the United States through the use of ecosystem models and analysis. Front. Mar. Sci. 6, 641 (2019).Article 

    Google Scholar 
    80.Koehn, L. E. et al. Case studies demonstrate capacity for a structured planning process for ecosystem-based fisheries management. Can. J. Fish. Aquat. Sci. 77, 1256–1274 (2020).Article 

    Google Scholar 
    81.Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).Article 

    Google Scholar 
    82.Marshall, K. N., Koehn, L. E., Levin, P. S., Essington, T. E. & Jensen, O. P. Inclusion of ecosystem information in US fish stock assessments suggests progress toward ecosystem-based fisheries management. ICES J. Mar. Sci. 76, 1–9 (2019).Article 

    Google Scholar 
    83.Otto, S. A., Kadin, M., Casini, M., Torres, M. A. & Blenckner, T. A quantitative framework for selecting and validating food web indicators. Ecol. Ind. 84, 619–631 (2018).Article 

    Google Scholar 
    84.Kadin, M. et al. Trophic interactions, management trade-offs and climate change: The need for adaptive thresholds to operationalize ecosystem indicators. Front. Mar. Sci. 6, 249 (2019).ADS 
    Article 

    Google Scholar 
    85.Samhouri, J. F. et al. Defining ecosystem thresholds for human activities and environmental pressures in the California Current. Ecosphere 8, 1–21 (2017).86.Payne, M. R. et al. Lessons from the first generation of marine ecological forecast products. Front. Mar. Sci. 4, 289 (2017).Article 

    Google Scholar 
    87.Tommasi, D. et al. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017).ADS 
    Article 

    Google Scholar 
    88.Haltuch, M. et al. Unraveling the recruitment problem: A review of environmentally-informed forecasting and management strategy evaluation. Fish. Res. 217, 198–216 (2019).Article 

    Google Scholar 
    89.Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018).Article 

    Google Scholar 
    90.Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsy210 (2019).Article 

    Google Scholar 
    91.Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334 (2016).Article 

    Google Scholar 
    92.Grüss, A. et al. Recommendations on the use of ecosystem modeling for informing ecosystem-based fisheries management and restoration outcomes in the Gulf of Mexico. Mar. Coast. Fish. 9, 281–295 (2017).Article 

    Google Scholar 
    93.Hollowed, A. B. et al. Integrated modeling to evaluate climate change impacts on coupled social-ecological systems in Alaska. Front. Mar. Sci. 6, 775 (2020).Article 

    Google Scholar 
    94.Okamoto, D. K. et al. Attending to spatial social–ecological sensitivities to improve trade-off analysis in natural resource management. Fish Fish. 21, 1–12 (2020).Article 

    Google Scholar 
    95.Möllmann, C. et al. Implementing ecosystem-based fisheries management: From single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES J. Mar. Sci. 71, 1187–1197 (2014).Article 

    Google Scholar 
    96.Voss, R. et al. Assessing social—ecological trade-offs to advance ecosystem-based fisheries management. PLoS One 9, e107811 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.Schmidt, J. O. et al. Future ocean observations to connect climate, fisheries and marine ecosystems. Front. Mar. Sci. 6, 550 (2019).Article 

    Google Scholar 
    98.Hicks, C. C. et al. Engage key social concepts for sustainability. Science 352, 38–40 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).Article 

    Google Scholar 
    100.Levin, P. S. et al. Conceptualization of social-ecological systems of the california current: An examination of interdisciplinary science supporting ecosystem-based management. Coast. Manag. 44, 397–408 (2016).Article 

    Google Scholar 
    101.ICES. Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic). https://doi.org/10.17895/ICES.ADVICE.4715 (2019).102.Quentin Grafton, R. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).Article 

    Google Scholar 
    103.Lindegren, M. & Brander, K. Adapting fisheries and their management to climate change: A review of concepts, tools, frameworks, and current progress toward implementation. Rev. Fish. Sci. Aquac. 26, 400–415 (2018).Article 

    Google Scholar 
    104.Holsman, K. K. et al. Towards climate resiliency in fisheries management. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsz031 (2019).Article 

    Google Scholar 
    105.Bell, R. J., Odell, J., Kirchner, G. & Lomonico, S. Actions to promote and achieve climate-ready fisheries: Summary of current practice. Mar. Coast. Fish. 12, 166–190 (2020).Article 

    Google Scholar 
    106.Gaichas, S. K., Link, J. S. & Hare, J. A. A risk-based approach to evaluating northeast US fish community vulnerability to climate change. ICES J. Mar. Sci. 71, 2323–2342 (2014).Article 

    Google Scholar 
    107.Pecl, G. T. et al. Rapid assessment of fisheries species sensitivity to climate change. Clim. Change 127, 505–520 (2014).ADS 
    Article 

    Google Scholar 
    108.Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the Northeast U.S. Continental Shelf. PLoS One 11, e0146756 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    109.Johnson, J. E. et al. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 74, 220–229 (2016).Article 

    Google Scholar 
    110.Whitney, C. K. et al. Adaptive capacity: From assessment to action in coastal social-ecological systems. Ecol. Soc. 22, art22 (2017).Article 

    Google Scholar 
    111.Johnson, F. A., Eaton, M. J., Mikels-Carrasco, J. & Case, D. Building adaptive capacity in a coastal region experiencing global change. Ecol. Soc. 25, art9 (2020).Article 

    Google Scholar 
    112.ICES. Baltic Fisheries Assessemant Working Group. (2019). https://doi.org/10.17895/ICES.PUB.5949.113.ICES. Baltic Fisheries Assessemant Working Group. ICES CM 2014/ACOM:10 (2014).114.Hüssy, K. et al. Spatio-temporal trends in stock mixing of eastern and western Baltic cod in the Arkona Basin and the implications for recruitment. ICES J. Mar. Sci. J. Conseil 73, 293–303 (2016).Article 

    Google Scholar 
    115.Weist, P. et al. Assessing SNP-markers to study population mixing and ecological adaptation in Baltic cod. PLoS One 14, e0218127 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.R Core Team. R: A Language and Environment for Statistical Computing. (Accessed 2 July 2021); https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).117.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    118.Killick, R. & Eckley, I. A. Changepoint: An R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).119.Zeileis, A., Kleiber, C., Krämer, W. & Hornik, K. Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44, 109–123 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    120.Otto, S. A. Comparison of change point detection methods. (Accessed 2 July 2021); https://www.marinedatascience.co/blog/2019/09/28/comparison-of-change-point-detection-methods/. (2019). More

  • in

    Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs

    1.IPCC. Climate Change 2007: The Physical Science Basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).2.IPCC. Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (WMO, 2019).3.Rogers, J. C. & Mosely-Thompson, E. Atlantic Arctic cyclones and mild Siberian winters of the 1980s. Geophys. Res. Lett. 22, 799–802 (1995).ADS 
    Article 

    Google Scholar 
    4.Davi, N. K., Jacoby, G. C., Curtis, A. E. & Baatarbileg, N. Extension of drought records for central Asia using tree rings: West-central Mongolia. J. Clim. 19, 288–299 (2006).ADS 
    Article 

    Google Scholar 
    5.Kattsov, V. M. & Semenov, S. M. Second Roshydromet Assessment Report on Climate Change and its Consequences in Russian Federation (Roshydromet, 2014).
    Google Scholar 
    6.Savelieva, N. I., Semiletov, I. P., Vasilevskaya, L. N. & Pugach, S. P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Prog. Oceanogr. 47, 279–297 (2000).ADS 
    Article 

    Google Scholar 
    7.Liu, X. et al. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 564, 984–996 (2018).ADS 
    Article 

    Google Scholar 
    8.Cho, D. J. & Kim, K. Y. Role of Ural blocking in Arctic sea ice loss and its connection with Arctic warming in winter. Clim. Dyn. 56, 1571–1588 (2021).Article 

    Google Scholar 
    9.Savkin, V. M. Reservoirs of Siberia: Consequences of their creation to water ecology and water management facilities. Sib. Ecol. J. 2, 109–121 (2000) (in Russian).
    Google Scholar 
    10.Poff, N. L. & Hart, D. D. How dams vary and why it matters for the emerging science of dam removal: An ecological classification of dams is needed to characterize how the tremendous variation in the size, operational mode, age, and number of dams in a river basin influences the potential for restoring regulated rivers via dam removal. Bioscience 52, 659–668 (2002).Article 

    Google Scholar 
    11.Osika, D. G., Otinova, AYu. & Ponomareva, N. L. About the origin of the global warming and the reasons for the formation of climatic anomalies and disasters. Arid Ecosyst. 19, 104–112 (2013) (in Russian).
    Google Scholar 
    12.Aras, E. Effects of multiple dam projects on river ecology and climate change: Çoruh River Basin, Turkey. Adv. Environ. Res. 7, 121 (2018).
    Google Scholar 
    13.Shen, P. & Zhao, S. 1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes. Clim. Change 164, 59. https://doi.org/10.1007/s10584-021-03045-9 (2021).ADS 
    Article 

    Google Scholar 
    14.Ward, J. V. & Stanford, J. A. The Ecology of Regulated Streams (Plenum Press, 1979).Book 

    Google Scholar 
    15.Ligon, F. K., Dietrich, W. E. & Trush, W. J. Downstream ecological effects of dams. Bioscience 45, 183–192 (1995).Article 

    Google Scholar 
    16.Gyau-Boakye, P. Environmental impacts of the Akosombo dam and effects of climate change on the lake levels. Environ. Dev. Sustain. 3, 17–29 (2001).Article 

    Google Scholar 
    17.Muth, R. T. et al. Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam. Final Report, Upper Colorado River Endangered Fish Recovery Program Project FG-53 (UCREFRP, 2000).18.Degu, A. M. et al. The influence of large dams on surrounding climate and precipitation patterns. Geophys. Res. Lett. 38, L04405. https://doi.org/10.1029/2010GL046482 (2011).ADS 
    Article 

    Google Scholar 
    19.Normatov, I. S., Muminov, A. & Normatov, P. I. The impact of water reservoirs on biodiversity and food security. Creation of adaptation mechanisms. Glob. Perspect. Eng. Manag. 1, 21–25 (2012).
    Google Scholar 
    20.Butorin, N. V., Vendrov, S. L., Dyakonov, K. N., Reteyum, A. Y. & Romanenko, V. I. Effect of the Rybinsk reservoir on the surrounding area. In Man-Made Lakes: Their Problems and Environmental Effects (eds Ackerman, W. C. et al.) 246–250 (American Geophysical Union, 1973).
    Google Scholar 
    21.American Society of Civil Engineers. Guidelines for Retirement of Dams and Hydroelectric Facilities (American Society of Civil Engineers, 1997).
    Google Scholar 
    22.Rosenzweig, C. et al. Assessment of observed changes and responses in natural and managed systems. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L. et al.) 79–131 (Cambridge UP, 2007).
    Google Scholar 
    23.Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).ADS 
    Article 

    Google Scholar 
    24.Gill, D. S., Amthor, J. S. & Bormann, F. H. Leaf phenology, photosynthesis, and the persistence of saplings and shrubs in a mature northern hardwood forest. Tree Physiol. 18, 281–289 (1998).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Augspurger, C. K., Cheeseman, J. M. & Salk, C. F. Light gains and physiological capacity of understory woody plants during phenological avoidance of canopy shade. Funct. Ecol. 19, 537–546 (2005).Article 

    Google Scholar 
    26.Zhang, X., Friedl, M. A., Schaaf, C. B. & Strahler, A. H. Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Glob. Chang. Biol. 10, 1133–1145 (2004).ADS 
    Article 

    Google Scholar 
    27.Zeng, H., Jia, G. & Epstein, H. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett. 6, 045508. https://doi.org/10.1088/1748-9326/6/4/045508 (2011).ADS 
    Article 

    Google Scholar 
    28.Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. PNAS 117, 10397–10405 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Badeck, F.-W. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309 (2004).Article 

    Google Scholar 
    30.Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 185, 471–480 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Rossi, S., Girard, M.-J.J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 20, 2261–2271 (2014).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.McCarty, J. P. Ecological consequences of recent climate change. Conserv. Biol. 15, 320–331 (2001).Article 

    Google Scholar 
    33.Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. Oceans 94, 14485–14498 (1989).ADS 
    Article 

    Google Scholar 
    34.Hunt, J. D. et al. Hydropower impact on the river flow of a humid regional climate. Clim. Change 163, 379–393 (2020).ADS 
    Article 

    Google Scholar 
    35.Kosmakov, I. V. Thermal and Ice Regime in the Upper and Lower Reaches of High-Pressure Hydroelectric Power Stations on the Yenisei (Klaretianum, 2001) (in Russian).
    Google Scholar 
    36.Bryzgalov, V. I. From the Experience of Creation and Development of the Krasnoyarsk and Sayano-Shushenskaya Hydroelectric Power Plants (Siberian Publ. House “Surikov,” 1999) (in Russian).
    Google Scholar 
    37.Sheffield, J., Andreadis, K. M. & Wood, E. F. Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. J. Clim. 22, 1962–1981 (2009).ADS 
    Article 

    Google Scholar 
    38.Liu, H. et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Change Biol. 19, 2500–2510 (2013).ADS 
    Article 

    Google Scholar 
    39.Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451. https://doi.org/10.1038/s41467-020-20678-z (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Amrit, K., Pandey, R. P., Mishra, S. K. & Daradur, M. Relationship of drought frequency and severity with range of annual temperature variation. Nat. Hazards 92, 1199–1210 (2018).Article 

    Google Scholar 
    41.Jackson, R. D., Idso, S. B., Reginato, R. J. & Pinter, P. J. Jr. Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4), 1133–1138 (1981).ADS 
    Article 

    Google Scholar 
    42.Bao, G., Liu, Y. & Linderholm, H. W. April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313, 162–172 (2012).Article 

    Google Scholar 
    43.de Vrese, P. & Stacke, T. Irrigation and hydrometeorological extremes. Clim. Dyn. 55, 1521–1537 (2020).Article 

    Google Scholar 
    44.Gustokashina, N. N. & Balybina, A. S. Variation in the natural-climatic characteristics of the territory adjacent to the reservoirs of the Angara chain of power plants. Geogr. Nat. Res. 4, 93–100 (2005) (in Russian).
    Google Scholar 
    45.Arzac, A. et al. Increasing radial and latewood growth rates of Larix cajanderi Mayr. and Pinus sylvestris L. in the continuous permafrost zone in Central Yakutia (Russia). Ann. For. Sci. 76, 96 (2019).Article 

    Google Scholar 
    46.Gower, S. T. & Richards, J. H. Larches: Deciduous conifers in an evergreen world. Bioscience 40, 818–826 (1990).Article 

    Google Scholar 
    47.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Piper, F. I. & Fajardo, A. Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. J. Ecol. 102, 1101–1111 (2014).CAS 
    Article 

    Google Scholar 
    49.Khansaritoreh, E., Schuldt, B. & Dulamsuren, C. Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe. Ann. For. Sci. 75, 30. https://doi.org/10.1007/s13595-018-0701-2 (2018).Article 

    Google Scholar 
    50.Urban, J., Rubtsov, A. V., Urban, A. V., Shashkin, A. V. & Benkova, V. E. Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia. Agric. For. Meteorol. 271, 64–72 (2019).ADS 
    Article 

    Google Scholar 
    51.Kolari, P., Lappalainen, H. K., HäNninen, H. & Hari, P. Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone. Tellus B Chem. Phys. Meteorol. 59, 542–552 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Wu, J., Guan, D., Yuan, F., Wang, A. & Jin, C. Soil temperature triggers the onset of photosynthesis in Korean pine. PLoS ONE 8, e65401. https://doi.org/10.1371/journal.pone.0065401 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Yang, Q. et al. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nat. Commun. 11, 128. https://doi.org/10.1038/s41467-019-13954-0 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Tanja, S. et al. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob. Change Biol. 9, 1410–1426 (2003).ADS 
    Article 

    Google Scholar 
    55.Sevanto, S. et al. Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol. 26, 749–757 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17, 696–707 (2008).Article 

    Google Scholar 
    57.Babushkina, E. A., Belokopytova, L. V., Zhirnova, D. F. & Vaganov, E. A. Siberian spruce tree ring anatomy: Imprint of development processes and their high-temporal environmental regulation. Dendrochronologia 53, 114–124 (2019).Article 

    Google Scholar 
    58.Cannell, M. G. R. & Smith, R. I. Climatic warming, spring budburst and forest damage on trees. J. Appl. Ecol. 23, 177–191 (1986).Article 

    Google Scholar 
    59.Bertin, R. I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126–146 (2008).Article 

    Google Scholar 
    60.Ziaco, E., Biondi, F., Rossi, S. & Deslauriers, A. Environmental drivers of cambial phenology in Great Basin bristlecone pine. Tree Physiol. 36, 818–831 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Rahman, M. H. et al. Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci. Rep. 10, 14341. https://doi.org/10.1038/s41598-020-70356-9 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Katz, R. W. & Brown, B. G. Extreme events in a changing climate: Variability is more important than averages. Clim. Chang. 21, 289–302 (1992).ADS 
    Article 

    Google Scholar 
    63.Germain, S. J. & Lutz, J. A. Climate extremes may be more important than climate means when predicting species range shifts. Clim. Chang. 163, 579–598 (2020).ADS 
    Article 

    Google Scholar 
    64.Vendrov, S. L., Avakyan, A. B., Dyakonov, K. N. & Reteyum, A. Y. The Role of Reservoirs in Changing Natural Conditions (Znaniye, 1968) (in Russian).
    Google Scholar 
    65.Stivari, S. M., De Oliveira, A. P. & Soares, J. On the climate impact of the local circulation in the Itaipu Lake area. Clim. Chang. 72, 103–121 (2005).ADS 
    Article 

    Google Scholar 
    66.Wilks, D. S. Statistical Methods in the Atmospheric Sciences 4th edn. (Elsevier, 2019).
    Google Scholar 
    67.Arguez, A. & Vose, R. S. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. 92, 699–704 (2011).ADS 
    Article 

    Google Scholar 
    68.Rosgidromet. Guidelines for the Compilation of Agrometeorological Yearbook for the Agricultural Zone of the Russian Federation. Guiding Document 52.33.725–2010 (Russian Scientific Research Institute of Hydrometeorological Information, World Data Center, 2010) (in Russian).69.Chae, H. et al. Local variability in temperature, humidity and radiation in the Baekdu Daegan Mountain protected area of Korea. J. Mt. Sci. 9, 613–627 (2012).Article 

    Google Scholar 
    70.Wypych, A., Ustrnul, Z. & Schmatz, D. R. Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. J. Mt. Sci. 15, 237–253 (2018).Article 

    Google Scholar 
    71.Selyaninov, G. T. About climate agricultural estimation. Proc. Agric. Meteorol. 20, 165–177 (1928) (in Russian).
    Google Scholar 
    72.Babushkina, E. A., Belokopytova, L. V., Grachev, A. M., Meko, D. M. & Vaganov, E. A. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg. Environ. Change. 17, 1725–1737 (2017).Article 

    Google Scholar 
    73.Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology. Application in Environmental Sciences (Kluwer Academic Publishers, 1990).Book 

    Google Scholar 
    74.Rinn, F. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications: User Reference (RINNTECH, 2003).
    Google Scholar 
    75.Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    76.Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57, 205–221 (2001).
    Google Scholar 
    77.Cook, E. R, Krusic, P. J., Holmes, R. H. & Peters, K. Program ARSTAN Ver. ARS41d. https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software (2007).78.Strackee, J. & Jansma, E. The statistical properties of mean sensitivity—A reappraisal. Dendrochronologia 10, 121–135 (1992).
    Google Scholar 
    79.Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 23, 201–213 (1984).ADS 
    Article 

    Google Scholar 
    80.Yasmeen, S. et al. Contrasting climate-growth relationship between Larix gmelinii and Pinus sylvestris var. mongolica along a latitudinal gradient in Daxing’an Mountains, China. Dendrochronologia 58, 125645. https://doi.org/10.1016/j.dendro.2019.125645 (2019).Article 

    Google Scholar  More

  • in

    Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing

    Soil diversity, taxonomic classification and binning of BGCsNonpareil analysis estimated an abundance-weighted coverage of 85.3% for the 44.4 Gb used in the long-read assembly. To achieve 95% and 99% coverage, respectively, 250 Gb and 1.6 Tb of sequencing were predicted to be necessary. Alpha diversity was estimated at Nd = 21.6. Contigs were binned using CONCOCT, MaxBin2 and MetaBAT2, consensus bins were generated using metaWRAP refine and classified using GTDB-Tk. This yielded 114 bacterial bins with CheckM completeness  > 50% and contamination  More

  • in

    The limits of SARS-CoV-2 predictability

    If an endpoint of continued circulation (endemicity rather than eradication) seems likely, this still leaves us with questions about the range of outbreak sizes, their intensity and seasonality. Surprisingly, some basic epidemiological parameters for predicting these dynamical features are still uncertain. For example, R0, the reproductive number, which captures the infectiousness of the pathogen, is typically measured from the growth of the epidemic and is harder to estimate once non-pharmaceutical interventions (NPIs) are in place. Similarly, changes to R0 for evolved SARS- CoV-2 variants are difficult to ascertain given simultaneous changes to behaviour and interventions. It is not yet clear whether there is an evolutionary limit to strain infectiousness. To date, structural changes to the SARS-CoV-2 spike furin cleavage site7 as well as enhanced binding of the receptor binding domain to the human ACE2 receptor8 have been associated with enhanced transmissibility in variant strains, but in the longer term, transmission increases may saturate and viral evolution may modulate other aspects of disease transmission including host susceptibility. Nevertheless, any present or future changes to R0 will affect long-term epidemic dynamics, including the intensity of outbreaks and the age-structure of infections.The transmission of many respiratory pathogens varies seasonally, driven either by climatic factors or seasonal changes in behaviour such as schooling. The role of climate in driving transmission of SARS-CoV-2 is currently unclear: high susceptibility during the early pandemic likely limited any climate effect9, and statistical analyses of the climate-SARS-CoV-2 link have been confounded by trends in the data and regional differences in reporting and control measures. This has not been helped by the relatively short case time series (that is, just over a year’s worth of data) compared to typical climate–disease studies that look for climate links over many seasons. An alternative line of evidence comes from the four endemic coronaviruses, which exhibit seasonal wintertime outbreaks. It is possible that SARS-CoV-2 will follow suit. Disentangling the climate drivers of SARS-CoV-2 will become easier over time as both longer time series are available, and susceptibility declines9.A further question is the extent to which SARS-CoV-2 endemic dynamics will be affected by interactions with other circulating pathogens, including the endemic coronaviruses. Both modelling and laboratory work implies a degree of cross-immunity between coronaviruses10,11,12. The NPIs put in place to limit the spread of SARS-CoV-2 have also limited the circulation of many other pathogens, such that infection interactions have not been observed in current case trajectories13. However, as NPIs are relaxed, signatures of cross-species interactions will likely become increasingly visible.Beyond cross-immunity with other pathogens, the longitudinal trajectory of immunity, as depicted in Fig. 1, will play a crucial role in determining SARS-CoV-2 endemic dynamics14. For immunizing infections, susceptibility is driven by birth rates, and infections may be concentrated in younger age groups. For infections with waning immunity or antigenic evolution, susceptibility is driven by the rate at which immunity wanes or the rate the pathogen evolves as well as characteristics of secondary infections. The disease dynamics of pathogens with high rates of antigenic evolution are particularly hard to predict: evolved strains may have variable transmission rates and manifest variable immune responses. An analogy can be made with influenza, where the size and intensity of the seasonal influenza peak is typically very difficult to forecast15.The future course of SARS-CoV-2 remains uncertain. The next few months to a year represents a critical time where we will begin to develop an understanding of key parameters, such as the strength and duration of vaccinal and natural immunity, the seasonality of transmission and the possible interaction of SARS-CoV-2 with other circulating pathogens. In combination, these parameters will allow improved prediction of both long-term SARS-CoV-2 epidemic dynamics, as well as the likelihood of elimination and eradication. An area of particular focus will be the rate of antigenic evolution and the extent to which vaccines remain protective against evolved strains. In all scenarios, rapid and equitable distribution of vaccines presents the greatest hope for minimizing future severe outbreaks. More

  • in

    Some countries donate blue carbon

    Climate change mitigation and adaptation, including through nature-based measures, are urgently needed. Now mapping and valuation of global vegetated coastal and marine blue carbon ecosystems shows how interlinked countries are when dealing with climate change.Towards the end of the eighteenth century, Adam Smith’s famous The Wealth of Nations highlighted the role of the different aspects comprising a country’s wealth, including its natural resources or natural capital. Today, the ‘inclusive wealth’ concept, encompassing the different forms of capital which constitute the wealth of a country (natural, manufactured, human and social capital), expands this idea6. Blue carbon ecosystems are valuable natural capital assets. One way to value their worth is using the social cost of carbon (SCC), which is estimated through complex models that include physical and economic variables. The SCC values the ‘marginal’ damaging effects of an additional ton of CO2 emissions in the atmosphere, or the benefit of a removed ton of CO2 emissions, for society7. Greenhouse gas emissions to the atmosphere are a global problem; therefore, the SCC is a global estimate. Based on the assumption that climate change effects are felt differently in different countries, in 2018, Ricke et al.8 elaborated a new model to calculate these damages at the national level through the country-specific SCC (CSCC). To value blue carbon assets, the extent of each ecosystem, and how much carbon it sequesters and stores, have to be known. The areal extent is multiplied by the carbon burial rate of the blue carbon ecosystems in a specific geographical region — the precise species of mangroves, saltmarshes and seagrasses also plays a role in terms of carbon sequestration and storage rate — and by the chosen SCC. Uncertainty surrounding these factors is high because of the current lack of data on the precise extent of worldwide vegetated coastal and marine ecosystems, as well as their carbon sequestration and storage rates, and because of the uncertainty surrounding some of the chosen physical and economic variables used in the models estimating the SCC9. More

  • in

    Stratigraphy of stable isotope ratios and leaf structure within an African rainforest canopy with implications for primate isotope ecology

    1.Vogel, J. Recyling of carbon in a forest environment. Oecol. Plant. 13, 89–94 (1978).
    Google Scholar 
    2.Medina, E. & Minchin, P. Stratification of δ 13C values of leaves in Amazonian rain forests. Oecologia 45, 377–378 (1980).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Ehleringer, J. R., Field, C. B., Lin, Z. & Kuo, C. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70, 520–526 (1986).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Medina, E., Sternberg, L. & Cuevas, E. Vertical stratification of δ13C values in closed natural and plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87, 369–372 (1991).ADS 
    PubMed 
    Article 

    Google Scholar 
    5.Graham, H. V. et al. Isotopic characteristics of canopies in simulated leaf assemblages. Geochim. Cosmochim. Acta 144, 82–95 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Buchmann, N., Kao, W.-Y. & Ehleringer, J. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110, 109–119 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Sternberg, L. D. S. L., Mulkey, S. S. & Wright, S. J. Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56 (1989).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006).CAS 
    Article 

    Google Scholar 
    9.van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).Article 

    Google Scholar 
    10.Houle, A. & Wrangham, R. W. Contest competition for fruit and space among wild chimpanzees in relation to the vertical stratification of metabolizable energy. Anim. Behav. 175, 231–246 (2021).Article 

    Google Scholar 
    11.Roberts, P., Blumenthal, S. A., Dittus, W., Wedage, O. & Lee-Thorp, J. A. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology. Am. J. Primatol. 79, e22656 (2017).Article 
    CAS 

    Google Scholar 
    12.Barbour, M. M. Stable oxygen isotope composition of plant tissue: A review. Funct. Plant Biol. 34, 83–94 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Cernusak, L. A. et al. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ. 39, 1087–1102 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Ometto, J. P. H., Flanagan, L. B., Martinelli, L. A. & Ehleringer, J. R. Oxygen isotope ratios of waters and respired CO2 in Amazonian forest and pasture ecosystems. Ecol. Appl. 15, 58–70 (2005).Article 

    Google Scholar 
    15.Yakir, D. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ. 15, 1005–1020 (1992).CAS 
    Article 

    Google Scholar 
    16.Wania, R., Hietz, P. & Wanek, W. Natural 15N abundance of epiphytes depends on the position within the forest canopy: Source signals and isotope fractionation. Plant Cell Environ. 25, 581–589 (2002).CAS 
    Article 

    Google Scholar 
    17.Blumenthal, S. A., Rothman, J. M., Chritz, K. L. & Cerling, T. E. Stable isotopic variation in tropical forest plants for applications in primatology. Am. J. Primatol. 78, 1041–1054 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Schleser, G. H. & Jayasekera, R. 13C-variations of leaves in forests as an indication of reassimilated CO2 from the soil. Oecologia 65, 536–542 (1985).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.van der Merwe, N. J. & Medina, E. Photosynthesis and 13C12C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).ADS 
    Article 

    Google Scholar 
    20.Chazdon, R. L. & Pearcy, R. W. The importance of sunflecks for forest understory plants. Bioscience 41, 760–766 (1991).Article 

    Google Scholar 
    21.Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology (Springer New York, 2008) https://doi.org/10.1007/978-0-387-78341-3.Book 

    Google Scholar 
    22.Hellkvist, J., Richards, G. P. & Jarvis, P. G. Vertical gradients of water potential and tissue water relations in sitka spruce trees measured with the pressure chamber. J. Appl. Ecol. 11, 637–667 (1974).Article 

    Google Scholar 
    23.Ambrose, A. R., Sillett, S. C. & Dawson, T. E. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environ. 32, 743–757 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Peltoniemi, M. S., Duursma, R. A. & Medlyn, B. E. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiol. 32, 510–519 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Araguás-Araguás, L., Froehlich, K. & Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 14, 1341–1355 (2000).ADS 
    Article 

    Google Scholar 
    26.Gonfiantini, R., Roche, M.-A., Olivry, J.-C., Fontes, J.-C. & Zuppi, G. M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 181, 147–167 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Guenni, O., Romero, E., Guédez, Y., Bravo de Guenni, L. & Pittermann, J. Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of Centrosema (DC.) Benth. Grass Forage Sci. 73, 967–978 (2018).CAS 
    Article 

    Google Scholar 
    29.Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Bioscience 47, 235–242 (1997).Article 

    Google Scholar 
    30.Dunham, N. T. & Lambert, A. L. The role of leaf toughness on foraging efficiency in Angola black and white colobus monkeys (Colobus angolensis palliatus). Am. J. Phys. Anthropol. 161, 343–354 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Poorter, L., van de Plassche, M., Willems, S. & Boot, R. G. A. Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol. 6, 746–754 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Sponheimer, M. et al. Using carbon isotopes to track dietary change in modern, historical, and ancient primates. Am. J. Phys. Anthropol. 140, 661–670 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B 280, 20132324 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Taï Forest, Côte d’Ivoire. Biol. Lett. 9, 20130466 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Oelze, V. M., Head, J. S., Robbins, M. M., Richards, M. & Boesch, C. Niche differentiation and dietary seasonality among sympatric gorillas and chimpanzees in Loango National Park (Gabon) revealed by stable isotope analysis. J. Hum. Evol. 66, 95–106 (2014).PubMed 
    Article 

    Google Scholar 
    36.McGraw, W. S. Positional behavior of Cercopithecus petaurista. Int. J. Primatol. 21, 157–182 (2000).Article 

    Google Scholar 
    37.McGraw, W. S. Comparative locomotion and habitat use of six monkeys in the Tai Forest, Ivory Coast. Am. J. Primatol. 105, 493–510 (1998).CAS 

    Google Scholar 
    38.Carter, M. L. & Bradbury, M. W. Oxygen isotope ratios in primate bone carbonate reflect amount of leaves and vertical stratification in the diet. Am. J. Primatol. 78, 1086–1097 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Sharma, N. et al. Watering holes: The use of arboreal sources of drinking water by Old World monkeys and apes. Behav. Proc. 129, 18–26 (2016).Article 

    Google Scholar 
    41.Wittig, R. M. Taï chimpanzees. In Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T.) 1–7 (Springer International Publishing, 2017) https://doi.org/10.1007/978-3-319-47829-6_1564-1.Chapter 

    Google Scholar 
    42.Nelson, S. V. & Rook, L. Isotopic reconstructions of habitat change surrounding the extinction of Oreopithecus, the last European ape. Am. J. Phys. Anthropol. 160, 254–271 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367–381 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bachofen, C., D’Odorico, P. & Buchmann, N. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chazdon, R. L., Williams, K. & Field, C. B. Interactions between crown structure and light environment in five rain forest piper species. Am. J. Bot. 75, 1459–1471 (1988).Article 

    Google Scholar 
    46.Ambrose, A. R. et al. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees. Oecologia 182, 713–730 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    47.Voigt, C. C. Insights into strata use of forest animals using the ‘canopy effect’. Biotropica 42, 634–637 (2010).Article 

    Google Scholar 
    48.Ometto, J. P. H. B. et al. Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin. Brazil. Glob. Biogeochem. Cycles 16, 56-1-56–10 (2002).
    Google Scholar 
    49.Loudon, J. E. et al. Stable isotope data from bonobo (Pan paniscus) faecal samples from the Lomako Forest Reserve, Democratic Republic of the Congo. Afr. J. Ecol. 57, 437–442 (2019).Article 

    Google Scholar 
    50.Medina, E., Klinge, H., Jordan, C. & Herrera, R. Soil respiration in Amazonian rain forests in the Rio Negro Basin. Flora 170, 240–250 (1980).Article 

    Google Scholar 
    51.Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).CAS 
    Article 

    Google Scholar 
    52.Niinemets, Ü. & Tenhunen, J. D. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20, 845–866 (1997).Article 

    Google Scholar 
    53.Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).Article 

    Google Scholar 
    54.Onoda, Y., Schieving, F. & Anten, N. P. R. Effects of light and nutrient availability on leaf mechanical properties of plantago major: A conceptual approach. Ann. Bot. 101, 727–736 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Dasilva, G. L. Diet of Colobus polykomos on Tiwai Island: Selection of food in relation to its seasonal abundance and nutritional quality. Int. J. Primatol. 15, 655–680 (1994).Article 

    Google Scholar 
    56.Rothman, J. M., Chapman, C. A. & Pell, A. N. Fiber-bound nitrogen in gorilla diets: Implications for estimating dietary protein intake of primates. Am. J. Primatol. 70, 690–694 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Ganzhorn, J. U. et al. The importance of protein in leaf selection of folivorous primates. Am. J. Primatol. 79, e22550 (2017).Article 
    CAS 

    Google Scholar 
    58.Tejada, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. USA 117, 26263–26272 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Cernusak, L. A. et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct. Plant Biol. 36, 199–213 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. 91, 219–227 (2020).Article 

    Google Scholar 
    61.Crowley, B. E., Melin, A. D., Yeakel, J. D. & Dominy, N. J. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?. Front. Ecol. Evol. 3, 127 (2015).Article 

    Google Scholar 
    62.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Lemoine, R. et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Anderson, D. L., Koomjian, W., French, B., Altenhoff, S. R. & Luce, J. Review of rope-based access methods for the forest canopy: Safe and unsafe practices in published information sources and a summary of current methods. Methods Ecol. Evol. 6, 865–872 (2015).Article 

    Google Scholar  More

  • in

    Natal origin and age-specific egress of Pacific bluefin tuna from coastal nurseries revealed with geochemical markers

    1.Duffy, L. M. et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 55–73 (2017).ADS 
    Article 

    Google Scholar 
    2.Mariani, P., Andersen, K. H., Lindegren, M. & MacKenzie, B. Trophic impact of Atlantic bluefin tuna migrations in the North Sea. ICES J. Mar. Sci. 74, 1552–1560 (2017).Article 

    Google Scholar 
    3.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Arrizabalaga, H. et al. Chapter 3. Life history and migrations of Mediterranean bluefin tuna. In The Future Of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 67–93 (Johns Hopkins University Press, 2019).
    Google Scholar 
    5.Rooker, J. R. et al. Population connectivity of pelagic megafauna in the Cuba–Mexico–United States triangle. Sci. Rep. 9, 1663 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Sun, J., Hinton, M. G. & Webster, D. G. Modeling the spatial dynamics of international tuna fleets. PLoS ONE 11, e0159626 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Collette, B. B. et al. Conservation: High value and long life-double jeopardy for tunas and billfishes. Science 333, 291–292 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kerr, L. A., Cadrin, S. X., Secor, D. H. & Taylor, N. G. Modeling the implications of stock mixing and life history uncertainty of Atlantic bluefin tuna. Can. J. Fish. Aquat. Sci. 74, 1990–2004 (2017).Article 

    Google Scholar 
    9.Fromentin, J. M. & Lopuszanski, D. Migration, residency, and homing of bluefin tuna in the western Mediterranean Sea. ICES J. Mar. Sci. 71, 510–518 (2014).Article 

    Google Scholar 
    10.Lam, C. H., Galuardi, B. & Lutcavage, M. E. Movements and oceanographic associations of bigeye tuna (Thunnus obesus) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 71, 1529–1543 (2014).Article 

    Google Scholar 
    11.Rooker, J. R. et al. Wide-ranging temporal variation in transoceanic movement and population mixing of bluefin tuna in the North Atlantic Ocean. Front. Mar. Sci. 6, 398 (2019).Article 

    Google Scholar 
    12.Bayliff, W. H. A review of the biology and fisheries for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. FAO Fish. Tech. Pap. 336, 244–295 (1994).
    Google Scholar 
    13.Collette, B. & Graves, J. Tunas and Billfishes of the World (Johns Hopkins University Press, 2019).
    Google Scholar 
    14.Madigan, D. J., Baumann, Z. & Fisher, N. S. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California. Proc. Natl. Acad. Sci. U. S. A. 109, 9483–9486 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Fujioka, K. et al. Spatial and temporal variability in the trans-Pacific migration of Pacific bluefin tuna (Thunnus orientalis) revealed by archival tags. Prog. Oceanogr. 162, 52–65 (2018).ADS 
    Article 

    Google Scholar 
    16.Fujioka, K., Masujima, M., Boustany, A. M. & Kitagawa, T. Horizontal movements of Pacific bluefin tuna. In Biology and Ecology of Bluefin Tuna (eds Kitagawa, T. & Kimura, S.) 101–122 (CRC Press, 2015).
    Google Scholar 
    17.Fujioka, K. et al. Habitat use and movement patterns of small (age-0) juvenile Pacific bluefin tuna (Thunnus orientalis) relative to the Kuroshio. Fish. Oceanogr. 27, 185–198 (2018).Article 

    Google Scholar 
    18.Kitagawa, T., Kimura, S., Nakata, H. & Yamada, H. Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: The East China Sea and the Kuroshio–Oyashio transition region. Fish. Oceanogr. 13, 161–180 (2004).Article 

    Google Scholar 
    19.Rooker, J. R. et al. Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742–744 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Wells, R. J. D., Rooker, J. R. & Itano, D. G. Nursery origin of yellowfin tuna in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 461, 187–196 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Wells, R. J. D. et al. Natal origin of Pacific bluefin tuna from the California current large marine ecosystem. Biol. Lett. 16, 20190878 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Baumann, H. et al. Combining otolith microstructure and trace elemental analyses to infer the arrival of juvenile Pacific bluefin tuna in the California current ecosystem. ICES J. Mar. Sci. 72, 2128–2138 (2015).Article 

    Google Scholar 
    23.Rooker, J. R. & Secor, D. H. Otolith microchemistry: Migration and ecology of Atlantic bluefin tuna. In The Future of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 45–66 (Johns Hopkins University Press, 2019).
    Google Scholar 
    24.Kitchens, L. L. et al. Discriminating among yellowfin tuna Thunnus albacares nursery areas in the Atlantic Ocean using otolith chemistry. Mar. Ecol. Prog. Ser. 603, 201–213 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Reeves, J., Chen, J., Wang, X. L., Lund, R. & Lu, Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).ADS 
    Article 

    Google Scholar 
    26.Killick, R. & Eckley, I. A. Changepoint: An R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).Article 

    Google Scholar 
    27.Liu, H., Gilmartin, J., Li, C. & Li, K. Detection of time-varying pulsed event effects on estuarine pelagic communities with ecological indicators after catastrophic hurricanes. Ecol. Indic. 123, 107327 (2021).Article 

    Google Scholar 
    28.Millar, R. B. Comparison of methods for estimating mixed stock fishery composition. Can. J. Fish. Aquat. Sci. 47, 2235–2241 (1990).Article 

    Google Scholar 
    29.Rooker, J. R., Secor, D. H., Zdanowicz, V. S. & Itoh, T. Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Mar. Ecol. Prog. Ser. 218, 275–282 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Wells, R. J. D. et al. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific Ocean. ICES J. Mar. Sci. 72, 2118–2127 (2015).Article 

    Google Scholar 
    31.Elsdon, T. S. et al. Otolith chemistry to describe movements and life history parameters of fishes: Hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. Annu. Rev. 46, 297–330 (2008).
    Google Scholar 
    32.Secor, D. H. Migration Ecology of Marine Fishes (Johns Hopkins University Press, 2015).
    Google Scholar 
    33.Chen, C. T. A., Ruo, R., Pai, S. C., Liu, C. T. & Wong, G. T. F. Exchange of water masses between East China Sea and the Kuroshio off northeastern Taiwan. Cont. Shelf Res. 15, 19–39 (1995).ADS 
    Article 

    Google Scholar 
    34.Sasaki, Y. N., Minobe, S., Asai, T. & Inatsu, M. Influence of the Kuroshio in the East China Sea on the early summer (Baiu) rain. J. Climate 25, 6627–6645 (2012).ADS 
    Article 

    Google Scholar 
    35.Sturrock, A. M., Trueman, C. N., Darnaude, A. M. & Hunter, E. Can otololith elemental chemistry retrospectively track migrations in marine fishes. J. Fish. Biol. 81, 766–795 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lebrato, M. et al. Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. Proc. Nat. Acad. Sci. 117, 22281–22292 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rooker, J. R., Wells, R. J. D., Itano, D. G., Thorrold, S. R. & Lee, J. M. Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean. Fish. Oceanogr. 25, 277–291 (2016).Article 

    Google Scholar 
    38.Liao, W. H. & Ho, T. Y. Particulate trace metal composition and sources in the Kuroshio adjacent to the East China Sea: The importance of aerosol deposition. J. Geophys. Res. Oceans 123, 6207–6223 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Elsdon, T. S. & Gillanders, B. M. Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar. Ecol. Prog. Ser. 260, 263–272 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Elsdon, T. S. & Gillanders, B. M. Interactive effects of temperature and salinity on otolith chemistry: Challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 59, 1796–1808 (2002).CAS 
    Article 

    Google Scholar 
    42.Stanley, R. R. E. et al. Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES J. Mar. Sci. 72, 2350–2363 (2015).Article 

    Google Scholar 
    43.Macdonald, J. I. & Crook, D. A. Variability in Sr:Ca and Ba:Ca ratios in water and fish otoliths across an estuarine salinity gradient. Mar. Ecol. Prog. Ser. 413, 147–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Reis-Santos, P., Tanner, S. E., Elsdon, T. S., Cabral, H. N. & Gillanders, B. M. Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. J. Exp. Mar. Biol. Ecol. 446, 245–252 (2013).CAS 
    Article 

    Google Scholar 
    45.Rooker, J. R., Kraus, R. T. & Secor, D. H. Dispersive behaviors of black drum and red drum: Is otolith Sr:Ca a reliable indicator of salinity history?. Estuaries 27, 334–441 (2004).Article 

    Google Scholar 
    46.Hüssy, K. et al. Trace element patterns in otoliths: The role of biomineralization. Rev. Fish. Sci. Aquacult. https://doi.org/10.1080/23308249.2020.1760204 (2020).Article 

    Google Scholar 
    47.Thorrold, S. R., Jones, C. M. & Campana, S. E. Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol. Oceanogr. 42, 102–111 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Secor, D. H. & Rooker, J. R. Is otolith strontium a useful scalar of life-cycles in estuarine fishes?. Fish. Res. 1032, 1–14 (2000).
    Google Scholar 
    49.Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454 (2018).Article 

    Google Scholar 
    50.Sturrock, A. M. et al. Quantifying physiological influences on otolith chemistry. Methods Ecol. Evol. 6, 806–816 (2015).Article 

    Google Scholar 
    51.Bath, G. E. et al. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 64, 1705–1714 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Arai, T., Kotake, A., Kayama, S., Ogura, M. & Watanabe, Y. Movements and life history patterns of the skipjack tuna Katsuwonus pelamis in the western Pacific, as revealed by otolith Sr:Ca ratios. J. Mar. Biol. Assoc. U. K. 85, 1211–1271 (2005).Article 

    Google Scholar 
    53.Shiozaki, T., Kondo, Y., Yuasa, D. & Takeda, S. Distribution of major diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to south of mainland Japan. J. Plankton Res. 40, 407–419 (2018).CAS 
    Article 

    Google Scholar 
    54.Nakata, K., Hada, A. & Masukawa, Y. Variation in food abundance for Japanese sardine larvae related to Kuroshio meander. Fish. Oceanogr. 3, 39–49 (1994).Article 

    Google Scholar 
    55.Kitagawa, T. et al. Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean. Fish. Oceanogr. 16, 409–421 (2007).Article 

    Google Scholar 
    56.Ichinokawa, M., Okamura, H., Oshima, K., Yokawa, K. & Takeuchi, Y. Spatiotemporal catch distribution of age-0 Pacific bluefin tuna Thunnus orientalis caught by the Japanese troll fishery in relation to surface sea temperature and seasonal migration. Fish. Sci. 80, 1181–1191 (2014).CAS 
    Article 

    Google Scholar 
    57.Shimose, T., Tanabe, T., Chen, K. S. & Hsu, C. C. Age determination and growth of Pacific bluefin tuna, Thunnus orientalis, off Japan and Taiwan. Fish. Res. 100, 134–139 (2009).Article 

    Google Scholar 
    58.Chiba, S. et al. Large-scale climate control of zooplankton transport and biogeography in the Kuroshio–Oyashio extension region. Geophys. Res. Lett. 40, 5182–5187 (2013).ADS 
    Article 

    Google Scholar 
    59.Hiraoka, Y., Fujioka, K., Fukuda, H., Watai, M. & Ohshimo, S. Interannual variation of the diet shifts and their effects on the fatness and growth of age-0 Pacific bluefin tuna (Thunnus orientalis) off the southwestern Pacific coast of Japan. Fish. Oceanogr. 28, 419–433 (2019).Article 

    Google Scholar 
    60.Inagake, D. et al. Migration of young bluefin tuna, Thunnus orientalis Temminck et Schlegel, through archival tagging experiments and its relation with oceanographic conditions in the western north Pacific. Bull. Natl Res. Inst. Far Seas Fish. 38, 53–81 (2001).
    Google Scholar 
    61.Mohan, J. A. et al. Elements of time and place: Manganese and barium in shark vertebrae reflect age and upwelling histories. Proc. R. Soc. B Biol. Sci. 285, 20181760 (2018).Article 

    Google Scholar 
    62.Hsieh, Y. T. & Henderson, G. M. Barium stable isotopes in the global ocean: Tracer of Ba inputs and utilization. Earth Planet. Sci. Lett. 473, 269–278 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Kimura, S. et al. Biological productivity of meso-scale eddies caused by front disturbances in the Kuroshio. ICES J. Mar. Sci. 54, 179–192 (1997).Article 

    Google Scholar 
    64.Tanaka, Y. et al. Occurrence of Pacific bluefin tuna (Thunnus orientalis) larvae off the Pacific coast of Tohoku area, northeastern Japan: Possibility of the discovery of the third spawning ground. Fish. Oceanogr. 29, 46–51 (2019).Article 

    Google Scholar 
    65.Shiao, J. C. et al. Contribution rates of different spawning and feeding grounds to adult Pacific bluefin tuna (Thunnus orientalis) in the northwestern Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. https://doi.org/10.1016/j.dsr.2020.103453 (2020).Article 

    Google Scholar 
    66.Uematsu, Y., Ishihara, T., Hiraoka, Y., Shimose, T. & Ohshimo, S. Natal origin identification of Pacific bluefin tuna (Thunnus orientalis) by vertebral first annulus. Fish. Res. 199, 26–31 (2018).Article 

    Google Scholar 
    67.Kitagawa, T., Fujioka, K. & Suzuki, N. Migrations of Pacific bluefin tuna in the western Pacific Ocean. In The Future of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 147–164 (Johns Hopkins University Press, 2019).
    Google Scholar  More