More stories

  • in

    Stratigraphy of stable isotope ratios and leaf structure within an African rainforest canopy with implications for primate isotope ecology

    1.Vogel, J. Recyling of carbon in a forest environment. Oecol. Plant. 13, 89–94 (1978).
    Google Scholar 
    2.Medina, E. & Minchin, P. Stratification of δ 13C values of leaves in Amazonian rain forests. Oecologia 45, 377–378 (1980).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Ehleringer, J. R., Field, C. B., Lin, Z. & Kuo, C. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70, 520–526 (1986).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Medina, E., Sternberg, L. & Cuevas, E. Vertical stratification of δ13C values in closed natural and plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87, 369–372 (1991).ADS 
    PubMed 
    Article 

    Google Scholar 
    5.Graham, H. V. et al. Isotopic characteristics of canopies in simulated leaf assemblages. Geochim. Cosmochim. Acta 144, 82–95 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Buchmann, N., Kao, W.-Y. & Ehleringer, J. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110, 109–119 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Sternberg, L. D. S. L., Mulkey, S. S. & Wright, S. J. Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56 (1989).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006).CAS 
    Article 

    Google Scholar 
    9.van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).Article 

    Google Scholar 
    10.Houle, A. & Wrangham, R. W. Contest competition for fruit and space among wild chimpanzees in relation to the vertical stratification of metabolizable energy. Anim. Behav. 175, 231–246 (2021).Article 

    Google Scholar 
    11.Roberts, P., Blumenthal, S. A., Dittus, W., Wedage, O. & Lee-Thorp, J. A. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology. Am. J. Primatol. 79, e22656 (2017).Article 
    CAS 

    Google Scholar 
    12.Barbour, M. M. Stable oxygen isotope composition of plant tissue: A review. Funct. Plant Biol. 34, 83–94 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Cernusak, L. A. et al. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ. 39, 1087–1102 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Ometto, J. P. H., Flanagan, L. B., Martinelli, L. A. & Ehleringer, J. R. Oxygen isotope ratios of waters and respired CO2 in Amazonian forest and pasture ecosystems. Ecol. Appl. 15, 58–70 (2005).Article 

    Google Scholar 
    15.Yakir, D. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ. 15, 1005–1020 (1992).CAS 
    Article 

    Google Scholar 
    16.Wania, R., Hietz, P. & Wanek, W. Natural 15N abundance of epiphytes depends on the position within the forest canopy: Source signals and isotope fractionation. Plant Cell Environ. 25, 581–589 (2002).CAS 
    Article 

    Google Scholar 
    17.Blumenthal, S. A., Rothman, J. M., Chritz, K. L. & Cerling, T. E. Stable isotopic variation in tropical forest plants for applications in primatology. Am. J. Primatol. 78, 1041–1054 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Schleser, G. H. & Jayasekera, R. 13C-variations of leaves in forests as an indication of reassimilated CO2 from the soil. Oecologia 65, 536–542 (1985).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.van der Merwe, N. J. & Medina, E. Photosynthesis and 13C12C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).ADS 
    Article 

    Google Scholar 
    20.Chazdon, R. L. & Pearcy, R. W. The importance of sunflecks for forest understory plants. Bioscience 41, 760–766 (1991).Article 

    Google Scholar 
    21.Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology (Springer New York, 2008) https://doi.org/10.1007/978-0-387-78341-3.Book 

    Google Scholar 
    22.Hellkvist, J., Richards, G. P. & Jarvis, P. G. Vertical gradients of water potential and tissue water relations in sitka spruce trees measured with the pressure chamber. J. Appl. Ecol. 11, 637–667 (1974).Article 

    Google Scholar 
    23.Ambrose, A. R., Sillett, S. C. & Dawson, T. E. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environ. 32, 743–757 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Peltoniemi, M. S., Duursma, R. A. & Medlyn, B. E. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiol. 32, 510–519 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Araguás-Araguás, L., Froehlich, K. & Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 14, 1341–1355 (2000).ADS 
    Article 

    Google Scholar 
    26.Gonfiantini, R., Roche, M.-A., Olivry, J.-C., Fontes, J.-C. & Zuppi, G. M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 181, 147–167 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Guenni, O., Romero, E., Guédez, Y., Bravo de Guenni, L. & Pittermann, J. Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of Centrosema (DC.) Benth. Grass Forage Sci. 73, 967–978 (2018).CAS 
    Article 

    Google Scholar 
    29.Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Bioscience 47, 235–242 (1997).Article 

    Google Scholar 
    30.Dunham, N. T. & Lambert, A. L. The role of leaf toughness on foraging efficiency in Angola black and white colobus monkeys (Colobus angolensis palliatus). Am. J. Phys. Anthropol. 161, 343–354 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Poorter, L., van de Plassche, M., Willems, S. & Boot, R. G. A. Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol. 6, 746–754 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Sponheimer, M. et al. Using carbon isotopes to track dietary change in modern, historical, and ancient primates. Am. J. Phys. Anthropol. 140, 661–670 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B 280, 20132324 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Taï Forest, Côte d’Ivoire. Biol. Lett. 9, 20130466 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Oelze, V. M., Head, J. S., Robbins, M. M., Richards, M. & Boesch, C. Niche differentiation and dietary seasonality among sympatric gorillas and chimpanzees in Loango National Park (Gabon) revealed by stable isotope analysis. J. Hum. Evol. 66, 95–106 (2014).PubMed 
    Article 

    Google Scholar 
    36.McGraw, W. S. Positional behavior of Cercopithecus petaurista. Int. J. Primatol. 21, 157–182 (2000).Article 

    Google Scholar 
    37.McGraw, W. S. Comparative locomotion and habitat use of six monkeys in the Tai Forest, Ivory Coast. Am. J. Primatol. 105, 493–510 (1998).CAS 

    Google Scholar 
    38.Carter, M. L. & Bradbury, M. W. Oxygen isotope ratios in primate bone carbonate reflect amount of leaves and vertical stratification in the diet. Am. J. Primatol. 78, 1086–1097 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Sharma, N. et al. Watering holes: The use of arboreal sources of drinking water by Old World monkeys and apes. Behav. Proc. 129, 18–26 (2016).Article 

    Google Scholar 
    41.Wittig, R. M. Taï chimpanzees. In Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T.) 1–7 (Springer International Publishing, 2017) https://doi.org/10.1007/978-3-319-47829-6_1564-1.Chapter 

    Google Scholar 
    42.Nelson, S. V. & Rook, L. Isotopic reconstructions of habitat change surrounding the extinction of Oreopithecus, the last European ape. Am. J. Phys. Anthropol. 160, 254–271 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367–381 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bachofen, C., D’Odorico, P. & Buchmann, N. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chazdon, R. L., Williams, K. & Field, C. B. Interactions between crown structure and light environment in five rain forest piper species. Am. J. Bot. 75, 1459–1471 (1988).Article 

    Google Scholar 
    46.Ambrose, A. R. et al. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees. Oecologia 182, 713–730 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    47.Voigt, C. C. Insights into strata use of forest animals using the ‘canopy effect’. Biotropica 42, 634–637 (2010).Article 

    Google Scholar 
    48.Ometto, J. P. H. B. et al. Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin. Brazil. Glob. Biogeochem. Cycles 16, 56-1-56–10 (2002).
    Google Scholar 
    49.Loudon, J. E. et al. Stable isotope data from bonobo (Pan paniscus) faecal samples from the Lomako Forest Reserve, Democratic Republic of the Congo. Afr. J. Ecol. 57, 437–442 (2019).Article 

    Google Scholar 
    50.Medina, E., Klinge, H., Jordan, C. & Herrera, R. Soil respiration in Amazonian rain forests in the Rio Negro Basin. Flora 170, 240–250 (1980).Article 

    Google Scholar 
    51.Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).CAS 
    Article 

    Google Scholar 
    52.Niinemets, Ü. & Tenhunen, J. D. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20, 845–866 (1997).Article 

    Google Scholar 
    53.Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).Article 

    Google Scholar 
    54.Onoda, Y., Schieving, F. & Anten, N. P. R. Effects of light and nutrient availability on leaf mechanical properties of plantago major: A conceptual approach. Ann. Bot. 101, 727–736 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Dasilva, G. L. Diet of Colobus polykomos on Tiwai Island: Selection of food in relation to its seasonal abundance and nutritional quality. Int. J. Primatol. 15, 655–680 (1994).Article 

    Google Scholar 
    56.Rothman, J. M., Chapman, C. A. & Pell, A. N. Fiber-bound nitrogen in gorilla diets: Implications for estimating dietary protein intake of primates. Am. J. Primatol. 70, 690–694 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Ganzhorn, J. U. et al. The importance of protein in leaf selection of folivorous primates. Am. J. Primatol. 79, e22550 (2017).Article 
    CAS 

    Google Scholar 
    58.Tejada, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. USA 117, 26263–26272 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Cernusak, L. A. et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct. Plant Biol. 36, 199–213 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. 91, 219–227 (2020).Article 

    Google Scholar 
    61.Crowley, B. E., Melin, A. D., Yeakel, J. D. & Dominy, N. J. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?. Front. Ecol. Evol. 3, 127 (2015).Article 

    Google Scholar 
    62.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Lemoine, R. et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Anderson, D. L., Koomjian, W., French, B., Altenhoff, S. R. & Luce, J. Review of rope-based access methods for the forest canopy: Safe and unsafe practices in published information sources and a summary of current methods. Methods Ecol. Evol. 6, 865–872 (2015).Article 

    Google Scholar  More

  • in

    Natal origin and age-specific egress of Pacific bluefin tuna from coastal nurseries revealed with geochemical markers

    1.Duffy, L. M. et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 55–73 (2017).ADS 
    Article 

    Google Scholar 
    2.Mariani, P., Andersen, K. H., Lindegren, M. & MacKenzie, B. Trophic impact of Atlantic bluefin tuna migrations in the North Sea. ICES J. Mar. Sci. 74, 1552–1560 (2017).Article 

    Google Scholar 
    3.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Arrizabalaga, H. et al. Chapter 3. Life history and migrations of Mediterranean bluefin tuna. In The Future Of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 67–93 (Johns Hopkins University Press, 2019).
    Google Scholar 
    5.Rooker, J. R. et al. Population connectivity of pelagic megafauna in the Cuba–Mexico–United States triangle. Sci. Rep. 9, 1663 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Sun, J., Hinton, M. G. & Webster, D. G. Modeling the spatial dynamics of international tuna fleets. PLoS ONE 11, e0159626 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Collette, B. B. et al. Conservation: High value and long life-double jeopardy for tunas and billfishes. Science 333, 291–292 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kerr, L. A., Cadrin, S. X., Secor, D. H. & Taylor, N. G. Modeling the implications of stock mixing and life history uncertainty of Atlantic bluefin tuna. Can. J. Fish. Aquat. Sci. 74, 1990–2004 (2017).Article 

    Google Scholar 
    9.Fromentin, J. M. & Lopuszanski, D. Migration, residency, and homing of bluefin tuna in the western Mediterranean Sea. ICES J. Mar. Sci. 71, 510–518 (2014).Article 

    Google Scholar 
    10.Lam, C. H., Galuardi, B. & Lutcavage, M. E. Movements and oceanographic associations of bigeye tuna (Thunnus obesus) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 71, 1529–1543 (2014).Article 

    Google Scholar 
    11.Rooker, J. R. et al. Wide-ranging temporal variation in transoceanic movement and population mixing of bluefin tuna in the North Atlantic Ocean. Front. Mar. Sci. 6, 398 (2019).Article 

    Google Scholar 
    12.Bayliff, W. H. A review of the biology and fisheries for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. FAO Fish. Tech. Pap. 336, 244–295 (1994).
    Google Scholar 
    13.Collette, B. & Graves, J. Tunas and Billfishes of the World (Johns Hopkins University Press, 2019).
    Google Scholar 
    14.Madigan, D. J., Baumann, Z. & Fisher, N. S. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California. Proc. Natl. Acad. Sci. U. S. A. 109, 9483–9486 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Fujioka, K. et al. Spatial and temporal variability in the trans-Pacific migration of Pacific bluefin tuna (Thunnus orientalis) revealed by archival tags. Prog. Oceanogr. 162, 52–65 (2018).ADS 
    Article 

    Google Scholar 
    16.Fujioka, K., Masujima, M., Boustany, A. M. & Kitagawa, T. Horizontal movements of Pacific bluefin tuna. In Biology and Ecology of Bluefin Tuna (eds Kitagawa, T. & Kimura, S.) 101–122 (CRC Press, 2015).
    Google Scholar 
    17.Fujioka, K. et al. Habitat use and movement patterns of small (age-0) juvenile Pacific bluefin tuna (Thunnus orientalis) relative to the Kuroshio. Fish. Oceanogr. 27, 185–198 (2018).Article 

    Google Scholar 
    18.Kitagawa, T., Kimura, S., Nakata, H. & Yamada, H. Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: The East China Sea and the Kuroshio–Oyashio transition region. Fish. Oceanogr. 13, 161–180 (2004).Article 

    Google Scholar 
    19.Rooker, J. R. et al. Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742–744 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Wells, R. J. D., Rooker, J. R. & Itano, D. G. Nursery origin of yellowfin tuna in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 461, 187–196 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Wells, R. J. D. et al. Natal origin of Pacific bluefin tuna from the California current large marine ecosystem. Biol. Lett. 16, 20190878 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Baumann, H. et al. Combining otolith microstructure and trace elemental analyses to infer the arrival of juvenile Pacific bluefin tuna in the California current ecosystem. ICES J. Mar. Sci. 72, 2128–2138 (2015).Article 

    Google Scholar 
    23.Rooker, J. R. & Secor, D. H. Otolith microchemistry: Migration and ecology of Atlantic bluefin tuna. In The Future of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 45–66 (Johns Hopkins University Press, 2019).
    Google Scholar 
    24.Kitchens, L. L. et al. Discriminating among yellowfin tuna Thunnus albacares nursery areas in the Atlantic Ocean using otolith chemistry. Mar. Ecol. Prog. Ser. 603, 201–213 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Reeves, J., Chen, J., Wang, X. L., Lund, R. & Lu, Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).ADS 
    Article 

    Google Scholar 
    26.Killick, R. & Eckley, I. A. Changepoint: An R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).Article 

    Google Scholar 
    27.Liu, H., Gilmartin, J., Li, C. & Li, K. Detection of time-varying pulsed event effects on estuarine pelagic communities with ecological indicators after catastrophic hurricanes. Ecol. Indic. 123, 107327 (2021).Article 

    Google Scholar 
    28.Millar, R. B. Comparison of methods for estimating mixed stock fishery composition. Can. J. Fish. Aquat. Sci. 47, 2235–2241 (1990).Article 

    Google Scholar 
    29.Rooker, J. R., Secor, D. H., Zdanowicz, V. S. & Itoh, T. Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Mar. Ecol. Prog. Ser. 218, 275–282 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Wells, R. J. D. et al. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific Ocean. ICES J. Mar. Sci. 72, 2118–2127 (2015).Article 

    Google Scholar 
    31.Elsdon, T. S. et al. Otolith chemistry to describe movements and life history parameters of fishes: Hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. Annu. Rev. 46, 297–330 (2008).
    Google Scholar 
    32.Secor, D. H. Migration Ecology of Marine Fishes (Johns Hopkins University Press, 2015).
    Google Scholar 
    33.Chen, C. T. A., Ruo, R., Pai, S. C., Liu, C. T. & Wong, G. T. F. Exchange of water masses between East China Sea and the Kuroshio off northeastern Taiwan. Cont. Shelf Res. 15, 19–39 (1995).ADS 
    Article 

    Google Scholar 
    34.Sasaki, Y. N., Minobe, S., Asai, T. & Inatsu, M. Influence of the Kuroshio in the East China Sea on the early summer (Baiu) rain. J. Climate 25, 6627–6645 (2012).ADS 
    Article 

    Google Scholar 
    35.Sturrock, A. M., Trueman, C. N., Darnaude, A. M. & Hunter, E. Can otololith elemental chemistry retrospectively track migrations in marine fishes. J. Fish. Biol. 81, 766–795 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lebrato, M. et al. Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. Proc. Nat. Acad. Sci. 117, 22281–22292 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rooker, J. R., Wells, R. J. D., Itano, D. G., Thorrold, S. R. & Lee, J. M. Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean. Fish. Oceanogr. 25, 277–291 (2016).Article 

    Google Scholar 
    38.Liao, W. H. & Ho, T. Y. Particulate trace metal composition and sources in the Kuroshio adjacent to the East China Sea: The importance of aerosol deposition. J. Geophys. Res. Oceans 123, 6207–6223 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Elsdon, T. S. & Gillanders, B. M. Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar. Ecol. Prog. Ser. 260, 263–272 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Elsdon, T. S. & Gillanders, B. M. Interactive effects of temperature and salinity on otolith chemistry: Challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 59, 1796–1808 (2002).CAS 
    Article 

    Google Scholar 
    42.Stanley, R. R. E. et al. Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES J. Mar. Sci. 72, 2350–2363 (2015).Article 

    Google Scholar 
    43.Macdonald, J. I. & Crook, D. A. Variability in Sr:Ca and Ba:Ca ratios in water and fish otoliths across an estuarine salinity gradient. Mar. Ecol. Prog. Ser. 413, 147–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Reis-Santos, P., Tanner, S. E., Elsdon, T. S., Cabral, H. N. & Gillanders, B. M. Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. J. Exp. Mar. Biol. Ecol. 446, 245–252 (2013).CAS 
    Article 

    Google Scholar 
    45.Rooker, J. R., Kraus, R. T. & Secor, D. H. Dispersive behaviors of black drum and red drum: Is otolith Sr:Ca a reliable indicator of salinity history?. Estuaries 27, 334–441 (2004).Article 

    Google Scholar 
    46.Hüssy, K. et al. Trace element patterns in otoliths: The role of biomineralization. Rev. Fish. Sci. Aquacult. https://doi.org/10.1080/23308249.2020.1760204 (2020).Article 

    Google Scholar 
    47.Thorrold, S. R., Jones, C. M. & Campana, S. E. Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol. Oceanogr. 42, 102–111 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Secor, D. H. & Rooker, J. R. Is otolith strontium a useful scalar of life-cycles in estuarine fishes?. Fish. Res. 1032, 1–14 (2000).
    Google Scholar 
    49.Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454 (2018).Article 

    Google Scholar 
    50.Sturrock, A. M. et al. Quantifying physiological influences on otolith chemistry. Methods Ecol. Evol. 6, 806–816 (2015).Article 

    Google Scholar 
    51.Bath, G. E. et al. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 64, 1705–1714 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Arai, T., Kotake, A., Kayama, S., Ogura, M. & Watanabe, Y. Movements and life history patterns of the skipjack tuna Katsuwonus pelamis in the western Pacific, as revealed by otolith Sr:Ca ratios. J. Mar. Biol. Assoc. U. K. 85, 1211–1271 (2005).Article 

    Google Scholar 
    53.Shiozaki, T., Kondo, Y., Yuasa, D. & Takeda, S. Distribution of major diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to south of mainland Japan. J. Plankton Res. 40, 407–419 (2018).CAS 
    Article 

    Google Scholar 
    54.Nakata, K., Hada, A. & Masukawa, Y. Variation in food abundance for Japanese sardine larvae related to Kuroshio meander. Fish. Oceanogr. 3, 39–49 (1994).Article 

    Google Scholar 
    55.Kitagawa, T. et al. Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean. Fish. Oceanogr. 16, 409–421 (2007).Article 

    Google Scholar 
    56.Ichinokawa, M., Okamura, H., Oshima, K., Yokawa, K. & Takeuchi, Y. Spatiotemporal catch distribution of age-0 Pacific bluefin tuna Thunnus orientalis caught by the Japanese troll fishery in relation to surface sea temperature and seasonal migration. Fish. Sci. 80, 1181–1191 (2014).CAS 
    Article 

    Google Scholar 
    57.Shimose, T., Tanabe, T., Chen, K. S. & Hsu, C. C. Age determination and growth of Pacific bluefin tuna, Thunnus orientalis, off Japan and Taiwan. Fish. Res. 100, 134–139 (2009).Article 

    Google Scholar 
    58.Chiba, S. et al. Large-scale climate control of zooplankton transport and biogeography in the Kuroshio–Oyashio extension region. Geophys. Res. Lett. 40, 5182–5187 (2013).ADS 
    Article 

    Google Scholar 
    59.Hiraoka, Y., Fujioka, K., Fukuda, H., Watai, M. & Ohshimo, S. Interannual variation of the diet shifts and their effects on the fatness and growth of age-0 Pacific bluefin tuna (Thunnus orientalis) off the southwestern Pacific coast of Japan. Fish. Oceanogr. 28, 419–433 (2019).Article 

    Google Scholar 
    60.Inagake, D. et al. Migration of young bluefin tuna, Thunnus orientalis Temminck et Schlegel, through archival tagging experiments and its relation with oceanographic conditions in the western north Pacific. Bull. Natl Res. Inst. Far Seas Fish. 38, 53–81 (2001).
    Google Scholar 
    61.Mohan, J. A. et al. Elements of time and place: Manganese and barium in shark vertebrae reflect age and upwelling histories. Proc. R. Soc. B Biol. Sci. 285, 20181760 (2018).Article 

    Google Scholar 
    62.Hsieh, Y. T. & Henderson, G. M. Barium stable isotopes in the global ocean: Tracer of Ba inputs and utilization. Earth Planet. Sci. Lett. 473, 269–278 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Kimura, S. et al. Biological productivity of meso-scale eddies caused by front disturbances in the Kuroshio. ICES J. Mar. Sci. 54, 179–192 (1997).Article 

    Google Scholar 
    64.Tanaka, Y. et al. Occurrence of Pacific bluefin tuna (Thunnus orientalis) larvae off the Pacific coast of Tohoku area, northeastern Japan: Possibility of the discovery of the third spawning ground. Fish. Oceanogr. 29, 46–51 (2019).Article 

    Google Scholar 
    65.Shiao, J. C. et al. Contribution rates of different spawning and feeding grounds to adult Pacific bluefin tuna (Thunnus orientalis) in the northwestern Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. https://doi.org/10.1016/j.dsr.2020.103453 (2020).Article 

    Google Scholar 
    66.Uematsu, Y., Ishihara, T., Hiraoka, Y., Shimose, T. & Ohshimo, S. Natal origin identification of Pacific bluefin tuna (Thunnus orientalis) by vertebral first annulus. Fish. Res. 199, 26–31 (2018).Article 

    Google Scholar 
    67.Kitagawa, T., Fujioka, K. & Suzuki, N. Migrations of Pacific bluefin tuna in the western Pacific Ocean. In The Future of Bluefin Tuna: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) 147–164 (Johns Hopkins University Press, 2019).
    Google Scholar  More

  • in

    Recent expansion of marine protected areas matches with home range of grey reef sharks

    1.Rasher, D. B., Hoey, A. S. & Hay, M. E. Cascading predator effects in a Fijian coral reef ecosystem. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    2.Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31, 395–407 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M.-J. & Meekan, M. G. Caught in the middle: Combined impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS ONE 8, e74648 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Field, I. C., Meekan, M. G., Buckworth, R. C. & Bradshaw, C. J. A. Chapter 4 susceptibility of sharks, rays and chimaeras to global extinction. In Advances in Marine Biology vol. 56 275–363 (Elsevier, 2009).6.MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Ward-Paige, C. A. et al. Large-scale absence of sharks on reefs in the Greater-Caribbean: A footprint of human pressures. PLoS ONE 5(8), e11968 (2010).8.Robbins, W. D., Hisano, M., Connolly, S. R. & Choat, J. H. Ongoing collapse of coral-reef shark populations. Curr. Biol. 16, 2314–2319 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Juhel, J.-B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13007 (2017).Article 

    Google Scholar 
    10.Nadon, M. O. et al. Re-creating missing population baselines for pacific reef sharks. Conserv. Biol. 26, 493–503 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Ferretti, F., Curnick, D., Liu, K., Romanov, E. V. & Block, B. A. Shark baselines and the conservation role of remote coral reef ecosystems. Sci. Adv. 4, eaaq0333 (2018).12.Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R. & Lotze, H. K. Patterns and ecosystem consequences of shark declines in the ocean: Ecosystem consequences of shark declines. Ecol. Lett. 13, 1055–1071 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    13.Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl. Acad. Sci. 115, E6116–E6125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Nat. Ecol. Evol. 1, 0040 (2017).Article 

    Google Scholar 
    15.O’Leary, B. C. et al. Effective coverage targets for ocean protection: Effective targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).Article 

    Google Scholar 
    16.Sala, E. et al. Assessing real progress towards effective ocean protection. Mar. Policy 91, 11–13 (2018).Article 

    Google Scholar 
    17.D’agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish. 20, 255–267 (2019).Article 

    Google Scholar 
    19.Juhel, J.-B. et al. Isolation and no-entry marine reserves mitigate anthropogenic impacts on grey reef shark behavior. Sci. Rep. 9, 2897 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Robbins, W. D. Abundance, demography and population structure of the grey reef shark (Carcharhinus amblyrhynchos) and the white tip reef shark (Triaenodon obesus) (Fam. Charcharhinidae). (James Cook University, 2006).21.Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Nillos Kleiven, P. J. et al. Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area. Proc. R. Soc. B Biol. Sci. 286, 20182455 (2019).Article 

    Google Scholar 
    23.Gerber, L. R. et al. Population models for marine reserve design: A retrospective and prospective synthesis. Ecol. Appl. 13, 47–64 (2003).Article 

    Google Scholar 
    24.Grüss, A., Kaplan, D. M., Guénette, S., Roberts, C. M. & Botsford, L. W. Consequences of adult and juvenile movement for marine protected areas. Biol. Conserv. 144, 692–702 (2011).Article 

    Google Scholar 
    25.Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Abecasis, D., Afonso, P. & Erzini, K. Combining multispecies home range and distribution models aids assessment of MPA effectiveness. Mar. Ecol. Prog. Ser. 513, 155–169 (2014).ADS 
    Article 

    Google Scholar 
    27.Di Franco, A. et al. Linking home ranges to protected area size: The case study of the Mediterranean Sea. Biol. Conserv. 221, 175–181 (2018).Article 

    Google Scholar 
    28.Krueck, N. C. et al. Reserve sizes needed to protect coral reef fishes: reserve sizes to protect coral reef fishes. Conserv. Lett. 11, e12415 (2018).29.Pittman, S. J. et al. Fish with chips: Tracking reef fish movements to evaluate size and connectivity of Caribbean marine protected areas. PLoS ONE 9, e96028 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Weeks, R., Green, A. L., Joseph, E., Peterson, N. & Terk, E. Using reef fish movement to inform marine reserve design. J. Appl. Ecol. 54, 145–152 (2017).Article 

    Google Scholar 
    31.Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 117–118 (2020).32.Friedlander, A., Sandin, S., DeMartini, E. & Sala, E. Spatial patterns of the structure of reef fish assemblages at a pristine atoll in the central Pacific. Mar. Ecol. Prog. Ser. 410, 219–231 (2010).ADS 
    Article 

    Google Scholar 
    33.Clarke, C., Lea, J. & Ormond, R. Comparative abundance of reef sharks in the Western Indian Ocean. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012 (2012).34.Bonnin, L. et al. Repeated long-range migrations of adult males in a common Indo-Pacific reef shark. Coral Reefs https://doi.org/10.1007/s00338-019-01858-w (2019).Article 

    Google Scholar 
    35.Speed, C. W. et al. Reef shark movements relative to a coastal marine protected area. Reg. Stud. Mar. Sci. 3, 58–66 (2016).Article 

    Google Scholar 
    36.Udyawer, V. et al. A standardised framework for analysing animal detections from automated tracking arrays. Anim. Biotelem. 6, 17 (2018).Article 

    Google Scholar 
    37.Brodie, S. et al. Continental-scale animal tracking reveals functional movement classes across marine taxa. Sci. Rep. 8, 3717 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Espinoza, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Residency patterns and movements of grey reef sharks (Carcharhinus amblyrhynchos) in semi-isolated coral reef habitats. Mar. Biol. 162, 343–358 (2015).CAS 
    Article 

    Google Scholar 
    39.Vianna, G. M. S., Meekan, M. G., Meeuwig, J. J. & Speed, C. W. Environmental influences on patterns of vertical movement and site fidelity of grey reef sharks (Carcharhinus amblyrhynchos) at aggregation sites. PLoS ONE 8, e60331 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Barnett, A., Abrantes, K. G., Seymour, J. & Fitzpatrick, R. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation. PLoS ONE 7, e36574 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Field, I. C., Meekan, M. G., Speed, C. W., White, W. & Bradshaw, C. J. A. Quantifying movement patterns for shark conservation at remote coral atolls in the Indian Ocean. Coral Reefs 30, 61–71 (2010).ADS 
    Article 

    Google Scholar 
    42.Heupel, M. R. & Simpfendorfer, C. A. Long-term movement patterns of a coral reef predator. Coral Reefs 34, 679–691 (2015).ADS 
    Article 

    Google Scholar 
    43.Andréfouët, S., Torres-Pulliza, D., Dosdane, M., Kranenburg, C. & Murch, B. Atlas des récifs coralliens de Nouvelle-Calédonie. IFRECOR Nouv.-Caléd. IRD Nouméa 26 (2004).44.Lea, J. S. E., Humphries, N. E., von Brandis, R. G., Clarke, C. R. & Sims, D. W. Acoustic telemetry and network analysis reveal the space use of multiple reef predators and enhance marine protected area design. Proc. R. Soc. B Biol. Sci. 283, 20160717 (2016).Article 

    Google Scholar 
    45.Benhamou, S. & Cornélis, D. Incorporating movement behavior and barriers to improve kernel home range space use estimates. J. Wildl. Manag. 74, 1353–1360 (2010).Article 

    Google Scholar 
    46.Fieberg, J. & Börger, L. Could you please phrase “home range” as a question?. J. Mammal. 93, 890–902 (2012).Article 

    Google Scholar 
    47.Heupel, M. R. & Simpfendorfer, C. A. Importance of environmental and biological drivers in the presence and space use of a reef-associated shark. Mar. Ecol. Prog. Ser. 496, 47–57 (2014).ADS 
    Article 

    Google Scholar 
    48.Dwyer, R. G. et al. Using individual-based movement information to identify spatial conservation priorities for mobile species. Conserv. Biol. 33, 1426–1437 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.IUCN, UNEP-WCMC. The World Database on Protected Areas (WDPA). [01/2019]. (UNEP World Conservation Monitoring Centre, Cambridge (UK), 2014). Available at: https://www.protectedplanet.net.50.UNEP-WCMC. Global Distribution of Warm-Water Coral Reefs, Compiled from Multiple Sources Including the Millennium Coral Reef Mapping Project. Version 4.0. (WorldFish Centre, WRI, TNC, 2018).51.Graham, N. A. J., Spalding, M. D. & Sheppard, C. R. C. Reef shark declines in remote atolls highlight the need for multi-faceted conservation action. Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 543–548 (2010).Article 

    Google Scholar 
    52.Davis, K. L. F., Russ, G. R., Williamson, D. H. & Evans, R. D. Surveillance and poaching on inshore reefs of the Great Barrier Reef marine park. Coast. Manag. 32, 373–387 (2004).Article 

    Google Scholar 
    53.D’agata, S. et al. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24, 555–560 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Gaines, S. D., White, C., Carr, M. H. & Palumbi, S. R. Designing marine reserve networks for both conservation and fisheries management. Proc. Natl. Acad. Sci. 107, 18286–18293 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Bessa-Gomes, C., Legendre, S. & Clobert, J. Allee effects, mating systems and the extinction risk in populations with two sexes. Ecol. Lett. 7, 802–812 (2004).Article 

    Google Scholar 
    56.Rankin, D. J. & Kokko, H. Do males matter? The role of males in population dynamics. Oikos 116, 335–348 (2007).Article 

    Google Scholar 
    57.Pratt, H. L. & Carrier, J. C. A review of elasmobranch reproductive behavior with a case study on the nurse shark, Ginglymostoma cirratum. Environ. Biol. Fish. 60, 157–188 (2001).Article 

    Google Scholar 
    58.Momigliano, P., Harcourt, R., Robbins, W. D. & Stow, A. Connectivity in grey reef sharks (Carcharhinus amblyrhynchos) determined using empirical and simulated genetic data. Sci. Rep. 5, 13229 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Momigliano, P. et al. Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Heredity 119(3), 142–153 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Bradley, D. et al. Resetting predator baselines in coral reef ecosystems. Sci. Rep. 5, 43131 (2017).61.Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. P. Mobile marine predators: An understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B 285, 20172456 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Mourier, J., Vercelloni, J. & Planes, S. Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim. Behav. 83, 389–401 (2012).Article 

    Google Scholar 
    63.Mourier, J. et al. Extreme inverted trophic pyramid of reef sharks supported by spawning groupers. Curr. Biol. 26, 2011–2016 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Robbins, W. D. & Renaud, P. Foraging mode of the grey reef shark, Carcharhinus amblyrhynchos, under two different scenarios. Coral Reefs 35, 253–260 (2015).ADS 
    Article 

    Google Scholar 
    65.Devillers, R. et al. Reinventing residual reserves in the sea: Are we favouring ease of establishment over need for protection?. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 480–504 (2015).Article 

    Google Scholar 
    66.Boerder, K., Miller, N. A. & Worm, B. Global hot spots of transshipment of fish catch at sea. Sci. Adv. 4, eaat7159 (2018).67.Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Watson, R. A. et al. Marine foods sourced from farther as their use of global ocean primary production increases. Nat. Commun. 6, 7365 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Januchowski-Hartley, F. A., Vigliola, L., Maire, E., Kulbicki, M. & Mouillot, D. Low fuel cost and rising fish price threaten coral reef wilderness. Conserv. Lett. 13, e12706 (2020).Article 

    Google Scholar 
    70.Dent, F. & Clarke, S. State of the global market for shark products. FAO Fish. Aquac. Tech. Pap. 590, 37 (2015).
    Google Scholar 
    71.Schofield, G. et al. Evidence-based marine protected area planning for a highly mobile endangered marine vertebrate. Biol. Conserv. 161, 101–109 (2013).72.Botsford, L. W., Micheli, F. & Hastings, A. Principles for the design of marine reserves. Ecol. Appl. 13, 25–31 (2003).Article 

    Google Scholar 
    73.Hastings, A. & Botsford, L. W. Comparing designs of marine reserves for fisheries and for biodiversity. Ecol. Appl. 13, 65–70 (2003).Article 

    Google Scholar 
    74.Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.CBD. Decisions Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Eighth Meeting (Decision VIII/15, Annex IV). (2006).76.Giakoumi, S. et al. Revisiting “success” and “failure” of marine protected areas: A conservation scientist perspective. Front. Mar. Sci. 5, 223 (2018).Article 

    Google Scholar 
    77.Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Rife, A. N., Erisman, B., Sanchez, A. & Aburto-Oropeza, O. When good intentions are not enough … Insights on networks of “paper park” marine protected areas. Conserv. Lett. 6, 200–212 (2013).Article 

    Google Scholar 
    79.Heupel, M. R., Simpfendorfer, C. A. & Fitzpatrick, R. Large-scale movement and reef fidelity of grey reef sharks. PLoS ONE 5, e9650 (2010). ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    80.Heupel, M. R., Reiss, K. L., Yeiser, B. G. & Simpfendorfer, C. A. Effects of biofouling on performance of moored data logging acoustic receivers. Limnol. Oceanogr. Methods 6, 327–335 (2008).Article 

    Google Scholar  More

  • in

    Shifts in ecological strategy spectra of typical forest vegetation types across four climatic zones

    1.Schimper, A. F. W., Fisher, W. R., Groom, P. & Balfour, I. B. Plant-Geography Upon a Physiological Basis. Rev. and ed. edn (Clarendon Press, 1903).2.Grime, J. & Pierce, S. The Evolutionary Strategies that Shape Ecosystems (Wiley-Blackwell, 2012).Book 

    Google Scholar 
    3.McGill, B., Enquist, B., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Chapin Iii, F. S., Bret-Harte, M., Hobbie, S. & Zhong, H. Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veg. Sci. 7, 347 (1996).Article 

    Google Scholar 
    5.Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).
    Google Scholar 
    6.Lavorel, S. & Garnier, E. Aardvarck to Zyzyxia-functional groups across kingdoms. New Phytol. 149, 360–363 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Guo, W. et al. The role of adaptive strategies in plant naturalization. Ecol. Lett. 21, 1380–1389 (2018).PubMed 
    Article 

    Google Scholar 
    8.Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007).Article 

    Google Scholar 
    9.Pinho, B., Tabarelli, M., Engelbrecht, B., Sfair, J. & Melo, F. Plant functional assembly is mediated by rainfall and soil conditions in a seasonally dry tropical forest. Basic Appl. Ecol. (2019).10.Wang, J. et al. Plant community ecological strategy assembly response to yak grazing in an alpine meadow on the eastern Tibetan Plateau. Land Degrad. Dev. 29, 2920–2931 (2018).Article 

    Google Scholar 
    11.Barba-Escoto, L., Ponce-Mendoza, A., García-Romero, A. & Calvillo-Medina, R. P. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico. J. Veg. Sci. 30, 375–385 (2019).Article 

    Google Scholar 
    12.Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    13.Kelly, R. et al. Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecol. Lett. 24, 970 (2021).PubMed 
    Article 

    Google Scholar 
    14.Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Reich, P. The world-wide “fast-slow” plant economics spectrum: A traits manifesto. J. Ecol. 102, 275 (2014).Article 

    Google Scholar 
    16.Rosado, B. H. P. & De Mattos, E. A. On the relative importance of CSR ecological strategies and integrative traits to explain species dominance at local scales. Funct. Ecol. 31, 1969 (2017).Article 

    Google Scholar 
    17.Raunkiær, C. The Life Forms of Plants and Statistical Plant Geography (Oxford University Press, 1934).
    Google Scholar 
    18.MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).
    Google Scholar 
    19.Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).ADS 
    Article 

    Google Scholar 
    20.Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).Article 

    Google Scholar 
    21.Liao, H. et al. The role of functional strategies in global plant distribution. Ecography n/a (2020).22.Pierce, S. et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 31, 444–457 (2017).Article 

    Google Scholar 
    23.Junker, R., Lechleitner, M., Kuppler, J. & Ohler, L.-M. Interconnectedness of the Grinnellian and Eltonian niche in regional and local plant-pollinator communities. Front. Plant Sci. 10, 1371 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Yu, R., Huang, J., Xu, Y., Ding, Y. & Zang, R. Plant functional niches in forests across four climatic zones: Exploring the periodic table of niches based on plant functional traits. Front. Plant Sci. 11, 841 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    26.Westoby, M., Falster, D., Moles, A., Vesk, P. & Wright, I. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).Article 

    Google Scholar 
    27.Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Pierce, S. & Cerabolini, B. Plant economics and size trait spectra are both explained by one theory. (2018).29.Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, 1979).
    Google Scholar 
    30.Grime, J. P. A comment on Loehle’s critique of the triangular model of primary plant strategies. Ecology 69, 1618–1620 (1988).Article 

    Google Scholar 
    31.Grime, J. et al. Integrated screening validates primary axes of specialisation in plants. Oikos 79, 259–281 (1997).Article 

    Google Scholar 
    32.Hodgson, J. G., Wilson, P. J., Hunt, R., Grime, J. P. & Thompson, K. Allocating C-S-R plant functional types: A soft approach to a hard problem. Oikos 85, 282–294 (1999).Article 

    Google Scholar 
    33.Pierce, S. & Cerabolini, B. E. L. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).Article 

    Google Scholar 
    34.Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain?. Plant Ecol. 210, 253–261 (2010).Article 

    Google Scholar 
    35.Shipley, B. & Li, Y. An experimental test of CSR theory using a globally calibrated ordination method. PLoS ONE 12, e0175404 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Rosenfield, M. F., Müller, S. C. & Overbeck, G. E. Short gradient, but distinct plant strategies: The CSR scheme applied to subtropical forests. J. Veg. Sci. 30, 984–993 (2019).Article 

    Google Scholar 
    37.Pyšek, P., Sádlo, J., Mandák, B. & Jarosík, V. Czech alien flora and the historical pattern of its formation: What came first to Central Europe?. Oecologia 135, 122–130 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    38.Lambdon, P., Lloret, F. & Hulme, P. Do alien plants on Mediterranean islands tend to invade different niches from native species?. Biol. Invasions 10, 703–716 (2008).Article 

    Google Scholar 
    39.Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian Alps: A comparative analysis between native and alien species. Alpine Bot. 122, 11–21 (2012).Article 

    Google Scholar 
    40.Alexander, J. et al. Plant invasions into mountains and alpine ecosystems: Current status and future challenges. Alpine Bot. 126, 89 (2016).Article 

    Google Scholar 
    41.Condit, R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots (Springer, 1998).Book 

    Google Scholar 
    42.Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    43.Cerabolini, B. et al. Why are many anthropogenic agroecosystems particularly species-rich?. Plant Biosyst. 150, 550–557 (2014).Article 

    Google Scholar 
    44.Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    45.Ferry, N. E. H. A. M. {ggtern}: Ternary diagrams using {ggplot2}. J. Stat Softw. 87, 1–17 (2018).
    Google Scholar 
    46.Pinheiro, J. B. D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (2021).47.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2020).48.Diaz, S. et al. The plant traits that drive ecosystems: Evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).Article 

    Google Scholar 
    49.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Parkhurst, D. F. & Loucks, O. L. Optimal leaf size in relation to environment. J. Ecol. 60, 505–537 (1972).Article 

    Google Scholar 
    51.Fonseca, C., Overton, J., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2001).Article 

    Google Scholar 
    52.Hodgson, J. et al. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?. Ann. Bot. 108, 1337–1345 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Han, X.-W., Fang, J. Y., Reich, P., Woodward, I. & Wang, Z. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 14, 788–796 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ordoñez, J. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).Article 

    Google Scholar 
    55.Bernard-Verdier, M. et al. Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol. 100, 1422–1433 (2012).Article 

    Google Scholar 
    56.Freschet, G. et al. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblagesg eb_651 755..765. Glob. Ecol. Biogeogr. 20, 755–765 (2011).Article 

    Google Scholar 
    57.Niinemets, Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).Article 

    Google Scholar 
    58.Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).Article 

    Google Scholar 
    59.Ackerly, D. & Cornwell, W. A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecol. Lett. 10, 135–145 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Rijkers, T., Pons, T. L. & Bongers, F. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Funct. Ecol. 14, 77–86 (2000).Article 

    Google Scholar 
    61.de Bello, F. et al. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J. Veg. Sci. 20, 475–486 (2009).Article 

    Google Scholar 
    62.Ding, Y., Zang, R., Lu, X. & Huang, J. The impacts of selective logging and clear-cutting on woody plant diversity after 40years of natural recovery in a tropical montane rain forest, south China. Sci. Total Environ. 579, 1683–1691 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Stability analysis of the coexistence equilibrium of a balanced metapopulation model

    We now derive the metapopulation model used in this paper. We start by deriving a general metapopulation model that is based on the seminal work of Levin50. Assuming that the inter-patch migrations are detailed-balanced, we make use of the formulation in Eq. (8) to derive a balanced metapopulation model. We then show that the balanced model admits a unique coexistence equilibrium that is asymptotically stable if the dispersal network is heterogeneous, whereas the same equilibrium is neutrally stable in the case of a homogeneous network.General metapopulation modelMathematical models based on traditional metapopulation theory usually assume that the metapopulation is made up of many neighboring spatially homogeneous habitat patches connected via dispersal. Consider an interconnected network of m discrete patches each being inhabited by the same n species. In addition, assume that species can migrate from one patch to some or all of the other patches. The rate of migration of each species between two patches is directly proportional to the proportion of the particular species in the originating patch, with a (nonnegative) constant of proportionality being the same across species. This constant of proportionality will be referred to as the rate constant associated with the migration. It is assumed that if there is migration between two given patches, then it is bidirectional, i.e., the rate constant of migration from j to k is strictly positive if and only the same holds for the migration from k to j. Just like in the case of a reversible single-species chemical reaction network, inter-patch migrations may be described by a weighted symmetric directed graph (G_2=(V_2,E_2)) where (V_2={1,ldots ,m}) is the set of patches (vertices) and an edge ((j,k)in E_2) means that every species can migrate from patch j to patch k. Finally, it is also assumed that the graph (G_2) corresponding to the inter-patch migration is connected, i.e., there is a path between every two distinct vertices of the graph.The flow of species between the patches can be summarized in a weighted (mtimes m) adjacency matrix ({mathbf {A}}) with entry (A_{jk}) being equal to the rate constant of migration of species from the (j{ {text {th}}}) to the (k{ {text {th}}}) patch. The diagonal elements of ({mathbf {A}}) are hence equal to 0. Due to the bidirectional nature of migration, it holds that (A_{jk} >0 Leftrightarrow A_{kj} >0) and (A_{jk}=0 Leftrightarrow A_{kj}=0), for any (jne k). Let (Delta =text {diag}(delta _1,ldots ,delta _m)) denote the m-dimensional diagonal matrix whose (j{ {text {th}}}) entry is given by$$begin{aligned} delta _{j}=sum _{k=1}^{m} A_{jk}. end{aligned}$$Define ({mathbf {L}}:=Delta -{mathbf {A}}^top ). Note that$$begin{aligned} (mathbb {1}^m)^{top }{mathbf {L}}=(mathbb {1}^m)^{top }Delta -big ({mathbf {A}}mathbb {1}^mbig )^{top }=({mathbf {0}}^m)^top . end{aligned}$$Let ({mathbf {x}}in S^{mn}), with (x_{i,j}) the proportion of species i in patch j across the entire metapopulation, then the net migration rate (psi _{i,j}) of species i from other patches to patch j is given by$$begin{aligned} psi _{i,j}=sum _{k=1}^{m}A_{kj}x_{i,k}-sum _{k=1}^{m}A_{jk}x_{i,j}=sum _{k=1}^{m}A_{kj}x_{i,k}-delta _{j}x_{i,j}=-sum _{k=1}^{m}L_{jk}x_{i,k}. end{aligned}$$Let us denote (Psi _i:=left( psi _{i,1},psi _{i,2},ldots ,psi _{i,m}right) ^{top }) and ({mathbf {r}}_i:=left( x_{i,1},x_{i,2},ldots ,x_{i,m}right) ^{top }), then$$begin{aligned} Psi _{i}=-{mathbf {L}}{mathbf {r}}_{i}. end{aligned}$$
    (9)
    Within each patch, the proportions of species are affected by other patches only via migration. Let (phi _{i,j}) denote the rate of change of the proportion of species i in patch j in the absence of migration. Since the dominance relationships among the species (described by a tournament matrix ({mathbf {T}})) are assumed to be the same for all patches and since the habitat patches are spatially homogeneous, the expression for (phi _{i,j}) is given by the right-hand side of System (1):$$begin{aligned} phi _{i,j}=x_{i,j}left( {mathbf {T}}{mathbf {p}}_{j}right) _{i}, end{aligned}$$
    (10)
    where ({mathbf {p}}_j:=left( x_{1,j},x_{2,j},ldots , x_{n,j}right) ^{top }), (i=1,ldots ,n) and (j=1,ldots ,m). Assuming migration among the patches, the proportion of a species within a patch is influenced by two factors: the first is the interaction with other species within the patch and the second is the migration of that particular species to or from other patches. Thus, the metapopulation model describing the dynamics of the n species in the m-patch network is described by the system of mn differential equations;$$begin{aligned} {dot{x}}_{i,j}=phi _{i,j}+psi _{i,j}=x_{i,j}left( {mathbf {T}}{mathbf {p}}_{j}right) _{i}-left( {mathbf {L}}{mathbf {r}}_{i}right) _{j},qquad i=1,ldots ,n,quad j=1,ldots ,m . end{aligned}$$
    (11)
    This system evolves on the unit simplex (S^{mn}).
    Proposition 2

    The unit simplex (S^{mn}) is positively invariant for System (11).

    Proof
    To show the invariance of the unit simplex (S^{mn}) under the flow of System (11), it suffices to show that each of the faces of the simplex cannot be crossed, i.e., the vector field points inward from the faces of (S^{mn}).
    On the one hand, if (x_{i,j}=0) for some i, j, then$$begin{aligned}{dot{x}}_{i,j}=sum _{k=1}^{m}A_{kj}x_{i,k}ge 0,end{aligned}$$which implies that (x_{i,j}=0) cannot be crossed from positive to negative. In an ecological context, this condition simply states the obvious fact that an extinct species is in no danger of declining. On the other hand, if (x_{i,j}=1) for some i, j, then obviously (x_{l,k}=0) for any (lne i) or (kne j) and$$begin{aligned}{dot{x}}_{i,j}=-delta _{j}< 0.end{aligned}$$Hence, the vector field associated with System (11) points inward from the faces of (S^{mn}). So, (S^{mn}) is positively invariant under the flow of System (11). (square ) Note that Proposition 2 does not exclude the solution trajectories of System (11) from approaching the boundary equilibria of the system as (trightarrow infty ). We call metapopulation model (11) persistent if for every ({mathbf {x}}_0in S^{mn}_{+}), the (omega )-limit set (omega ({mathbf {x}}_0)) does not intersect the boundary of (S^{mn}). In other words, a metapopulation model is persistent if the initial existence of all the species implies that none of the species goes extinct with the passage of time.Balanced homogeneous and heterogeneous metapopulation modelsWe say that the inter-patch migration of a metapopulation model is detailed balanced if the overall migration rate of any species between any two patches is zero for a certain positive set of proportions of that species in the different patches. From the theory of detailed-balanced reaction networks described in “Detailed-balanced single species mass action reaction networks” section, it follows that a detailed-balanced inter-patch migration network corresponds to a detailed-balanced single species mass action reaction network. Let B denote the incidence matrix corresponding to the directed graph (G_2) describing the inter-patch migrations and let r denote the number of edges in (G_2). Comparing Eqs. (8) and (9), it follows that if the inter-patch migration is detailed balanced, then there exist diagonal matrices ({mathcal {K}}in {mathbb {R}}^{rtimes r}) and ({mathbf {Z}}^*in {mathbb {R}}^{mtimes m}) with positive diagonal entries such that ((mathbb {1}^m)^{top }{mathbf {Z}}^*mathbb {1}^m=1) and$$begin{aligned} {mathbf {L}}={mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }({mathbf {Z}}^*)^{-1}. end{aligned}$$Let ({mathbf {Z}}^*=text { diag}({mathbf {z}}^*)). Equation (9) can now be rewritten as$$begin{aligned} Psi _{i}=-{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}}{{mathbf {z}}^{*}}right) . end{aligned}$$ (12) Henceforth in this manuscript, we restrict our analysis to metapopulation models of type (11) for which the interactions within each patch correspond to a tournament with a completely mixed optimal strategy and whose inter-patch migration is detailed balanced. Such metapopulation models will be referred to as balanced metapopulation models.We have seen earlier in “Species interactions and tournament matrices” section that if the interactions within every patch correspond to a tournament with a completely mixed optimal strategy, then the corresponding mean-field model admits a unique coexistence equilibrium ({mathbf {y}}^*in S^{n}_{+}) with ({mathbf {T}}{mathbf {y}}^*={mathbf {0}}^n). Thus, for a balanced metapopulation model, System (10) can be rewritten as$$begin{aligned} phi _{i,j}=x_{i,j}left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}}{{mathbf {y}}^*}right) right) _i, end{aligned}$$ (13) where ({mathbf {Y}}^*:=) diag(({mathbf {y}}^*)). Consequently, from Eqs. (11)–(13), it follows that the dynamics of a balanced metapopulation model containing n species and m patches can be described by mn differential equations$$begin{aligned} {dot{x}}_{i,j}=x_{i,j}left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}}{{mathbf {y}}^*}right) right) _i-left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}}{{mathbf {z}}^{*}}right) right) _{j} ,qquad i=1,ldots ,n,quad j=1,ldots ,m . end{aligned}$$ (14) If all the elements of ({mathbf {z}}^*) in the above equation are equal, i.e., if (z_j^*=frac{1}{m}) for (j=1,ldots ,m), then we say that the balanced metapopulation model is homogeneous, otherwise we call it heterogeneous. Whether a balanced metapopulation model is homogeneous or not can be checked from the adjacency matrix ({mathbf {A}}) corresponding to its inter-patch migration graph (G_2). If ({mathbf {A}}) is symmetric, then the model is homogeneous, otherwise it is heterogeneous. Remark 3 In35, the authors assume that migrations from one patch to other patches are random with a probability of migration (or migration constant) equal to the reciprocal of the number of dispersal links from a patch to other patches. They thus define a dispersal graph to be homogeneous if all nodes have the same degree (number of links), otherwise the graph is heterogeneous. With this definition, homogeneity, in general, is equivalent to the existence of cycles in the dispersal graph, whereas heterogeneity is equivalent to their absence. However, with our new definition, it is clear that this is not necessary. An example of such a case is shown in Fig. 2.Figure 2Left: A heterogeneous dispersal graph according to35. Right: A homogeneous dispersal graph according to our definition.Full size image Coexistence equilibrium and its uniquenessIn this section, we present a theorem that gives an expression for a coexistence equilibrium of a balanced metapopulation model. Before we state our main theorem in this section, we need the following lemma. Lemma 4 Let ({mathbf {B}}in {mathbb {R}}^{mtimes r}) denote the incidence matrix of a finite connected directed graph (G_2) and let ({mathcal {K}}in {mathbb {R}}^{rtimes r}) denote a diagonal matrix with positive diagonal entries. For any ({mathbf {w}}in {mathbb {R}}_+^m), it holds that (-{mathbf {w}}^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{mathbb {1}^m}{{mathbf {w}}}right) ge 0). Moreover (-{mathbf {w}}^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{mathbb {1}^m}{{mathbf {w}}}right) = 0) if and only if ({mathbf {w}}=qmathbb {1}^m), where (qin {mathbb {R}}_+). Proof Assume that the (p{ {text {th}}}) edge of the graph (G_2) is directed from vertex (i_p) to vertex (j_p). Hence, (B_{i_pp}=-1), (B_{j_pp}=1) and (B_{kp}=0) for (i_pne kne j_p). Thus,$$begin{aligned} -{mathbf {w}}^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{mathbb {1}^m}{{mathbf {w}}}right) =sum _{p=1}^m(w_{j_p}-w_{i_p})kappa _pleft( frac{1}{w_{i_p}}-frac{1}{w_{j_p}}right) =sum _{p=1}^mfrac{kappa _p}{w_{i_p}w_{j_p}}left( w_{j_p}-w_{i_p}right) ^2ge 0. end{aligned}$$Moreover, (-{mathbf {w}}^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{mathbb {1}^m}{{mathbf {w}}}right) =0) if and only if (w_{j_p}=w_{i_p}) for (p=1,ldots ,m), which is equivalent with ({mathbf {B}}^{top }{mathbf {w}}={mathbf {0}}^r). Since the graph (G_2) is connected, we recall from48 that (text {rank}({mathbf {B}})=m-1) and furthermore (text {ker}({mathbf {B}}^{top })=mathbb {1}^m). Therefore ({mathbf {B}}^{top }{mathbf {w}}={mathbf {0}}^r) if and only if ({mathbf {w}}=qmathbb {1}^m), where (qin {mathbb {R}}_+). This completes the proof. (square ) We now state the main theorem of this section. Theorem 5 A balanced metapopulation model described by System (14) admits a unique coexistence equilibrium ({mathbf {x}}^*in S^{mn}_{+}). The proportion (x_{i,j}^{*}) of species i in patch j at the unique coexistence equilibrium is given by$$begin{aligned} x_{i,j}^*=y^{*}_iz^{*}_j. end{aligned}$$ (15) for (i=1,ldots ,n) and (j=1,ldots ,m). Proof We divide the proof into two parts. In the first part we prove that System (15) indeed yields an equilibrium for the model. In the second part, we prove that this coexistence equilibrium is unique. Let us define$$begin{aligned} {mathbf {p}}_{j}^*:=left( x_{1,j}^*, x_{2,j}^*, ldots , x_{n,j}^*right) ^top =z_j^*{mathbf {y}}^*; quad {mathbf {r}}_{i}^{*}:=left( x_{i,1}^{*}, x_{i,2}^{*}, ldots , x_{i,m}^{*}right) ^top =y_i^*{mathbf {z}}^*. end{aligned}$$For ({mathbf {x}}^*) to be an equilibrium of System (14), it should render the right-hand side equal to zero. Note that$$begin{aligned} mathbf {TY}^*left( frac{{mathbf {p}}_{j}^*}{{mathbf {y}}^*}right) =z_j^*mathbf {TY}^*mathbb {1}^n=z_j^*{mathbf {T}}{mathbf {y}}^{*}={mathbf {0}}^n end{aligned}$$and$$begin{aligned} {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^*}{{mathbf {z}}^{*}}right) =y_i^*{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }mathbb {1}^m={mathbf {0}}^m. end{aligned}$$In addition,$$begin{aligned} (mathbb {1}^{mn})^{top }{mathbf {x}}^*=sum _{i=1}^nsum _{j=1}^mx_{i,j}^*=sum _{i=1}^{n}y_i^*sum _{j=1}^mz_j^{*}=1. end{aligned}$$Thus, ({mathbf {x}}^*) is a coexistence equilibrium of System (14). Assume that there exists another coexistence equilibrium ({mathbf {x}}^{**}in , S^{mn}_{+}). Let (x_{i,j}^{**}) denote the corresponding proportion of species i in patch j and define$$begin{aligned} {mathbf {p}}_{j}^{**}:=left( x_{1,j}^{**}, x_{2,j}^{**}, ldots , x_{n,j}^{**}right) ^top ; qquad {mathbf {r}}_{i}^{**}:=left( x_{i,1}^{**}, x_{i,2}^{**}, ldots , x_{i,m}^{**}right) ^top . end{aligned}$$It follows that for any i, j it holds that$$begin{aligned} x_{i,j}^{**}left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}^{**}}{{mathbf {y}}^*}right) right) _i-left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) right) _{j}=0. end{aligned}$$ (16) Multiplying both sides of this equality with (frac{x_{i,j}^*}{x_{i,j}^{**}}), we get$$begin{aligned} x_{i,j}^*left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}^{**}}{{mathbf {y}}^*}right) right) _i- frac{x_{i,j}^*}{x_{i,j}^{**}} left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) right) _{j}=0. end{aligned}$$Summing the left-hand side of the above expression over the different species and patches, we get$$begin{aligned} sum _{j=1}^msum _{i=1}^nx_{i,j}^*left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}^{**}}{{mathbf {y}}^*}right) right) _i- sum _{i=1}^nsum _{j=1}^mfrac{x_{i,j}^*}{x_{i,j}^{**}} left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) right) _{j}=0. end{aligned}$$ (17) Now consider the two terms in the left-hand side of the above equality separately. For the first term, note that for any j it holds that$$begin{aligned} sum _{i=1}^nx_{i,j}^*left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}^{**}}{{mathbf {y}}^*}right) right) _i= & {} sum _{i=1}^nx_{i,j}^*left( {mathbf {T}}{mathbf {p}}_{j}^{**}right) _{i} = sum _{i=1}^{n}x_{i,j}^{*}left( sum _{l=1}^{n}T_{il}x_{l,j}^{**}right) =-sum _{l=1}^{n}x_{l,j}^{**}left( sum _{i=1}^{n}T_{li}x_{i,j}^{*}right) \= & {} -sum _{l=1}^{n}x_{l,j}^{**}left( sum _{i=1}^nT_{li}y_i^{*}z_j^*right) =-z_j^*sum _{l=1}^{n}x_{l,j}^{**}({mathbf {T}}{mathbf {y}}^*)_l=0. end{aligned}$$Hence,$$begin{aligned} sum _{j=1}^msum _{i=1}^nx_{i,j}^*left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}^{**}}{{mathbf {y}}^*}right) right) _i=0. end{aligned}$$For the second term, we find$$begin{aligned} -sum _{i=1}^nsum _{j=1}^mfrac{x_{i,j}^*}{x_{i,j}^{**}} left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) right) _{j}=-sum _{i=1}^ny_i^*sum _{j=1}^mfrac{z_j^*}{x_{i,j}^{**}}left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) right) _{j}=-sum _{i=1}^ny_i^*left( frac{{mathbf {z}}^{*}}{{mathbf {r}}_{i}^{**}}right) ^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) . end{aligned}$$Thus, Eq. (17) can be simplified as$$begin{aligned} -sum _{i=1}^ny_i^*left( frac{{mathbf {z}}^{*}}{{mathbf {r}}_{i}^{**}}right) ^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) =0. end{aligned}$$Since (y_i^* >0) for (i=1,ldots ,n), it holds for any (i=1,ldots ,n) that$$begin{aligned} -left( frac{{mathbf {z}}^{*}}{{mathbf {r}}_{i}^{**}}right) ^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) =0. end{aligned}$$
    (18)
    From Eq. (18) and Lemma 4, it follows that ({mathbf {r}}_{i}^{**}=q_i{mathbf {z}}^*) with (q_iin {mathbb {R}}_+) for (i=1,ldots ,n). Thus, (x_{i,j}^{**}=q_iz_{j}^*) and ({mathbf {p}}_{j}^{**}=z_j^*{mathbf {q}}) for (i=1,ldots ,n) and (j=1,ldots ,m). Substituting the latter in the left-hand side of Eq. (16), we get$$begin{aligned} x_{i,j}^{**}left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}^{**}}{{mathbf {y}}^*}right) right) _i-left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{**}}{{mathbf {z}}^{*}}right) right) _{j}=q_i{z_j^*}^2left( {mathbf {T}}{mathbf {Y}}^*left( frac{{mathbf {q}}}{{mathbf {y}}^*}right) right) _i-q_ileft( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }mathbb {1}^mright) _j=q_i{z_j^*}^2(mathbf {Tq})_i. end{aligned}$$Since (q_i >0) for (i=1,ldots ,n), for Eq. (16) to hold, we should have (mathbf {Tq}={mathbf {0}}^n). Also note that$$begin{aligned} (mathbb {1}^{mn})^{top }{mathbf {x}}^{**}=sum _{i=1}^nsum _{j=1}^{m}x_{i,j}^{**}=sum _{i=1}^nq_isum _{j=1}^mz_j^* =sum _{i=1}^nq_i=1. end{aligned}$$Since the metapopulation model is balanced, it follows that ({mathbf {q}}={mathbf {y}}^*). Thus, (x_{i,j}^{**}=y_i^*z_j^*=x_{i,j}^*) for (i=1,ldots ,n) and (j=1,ldots ,m). This proves the uniqueness of the coexistence equilibrium ({mathbf {x}}^*). (square )
    We now give examples of two balanced metapopulation models.

    Example 1

    It is easy to verify that the network shown in Fig. 3 corresponds to a balanced metapopulation model governed by System (14) with$$begin{aligned} {mathbf {T}} = left[ begin{array}{rrr} 0 &{}quad 1 &{}quad -1\ -1 &{}quad 0 &{}quad 1\ 1 &{}quad -1 &{}quad 0 end{array}right] ; quad {mathbf {B}} = left[ begin{array}{rrr} -1 &{}quad 0 &{}quad 1\ 1 &{}quad -1 &{}quad 0\ 0 &{}quad 1 &{}quad -1 end{array}right] ; end{aligned}$$({mathbf {y}}^*=left( frac{1}{3}, frac{1}{3}, frac{1}{3} right) ^{top }), ({mathbf {z}}^*=left( frac{1}{5}, frac{2}{5}, frac{2}{5} right) ^{top }) and ({mathcal {K}}=text { diag}left( frac{1}{10},frac{3}{10},frac{1}{10}right) ). Note that this metapopulation model is heterogeneous. From Theorem 5, it follows that the species proportions at the unique coexistence equilibrium for this model are given by (x_{i,1}^*=frac{1}{15}) and (x_{i,2}^*=x_{i,3}^*= frac{2}{15}).Figure 3A metapopulation network composed of three patches. Each patch contains a local population composed of three species (1, 2 and 3), in cyclic competition, as shown by the black arrows. The red arrows denote migrations among the patches in the directions shown.Full size image

    Example 2

    It is easy to verify that the network shown in Fig. 4 corresponds to a balanced metapopulation model governed by System (14) with$$begin{aligned} {mathbf {T}} = left[ begin{array}{rrr} 0 &{}quad 1 &{} quad -1\ -1 &{}quad 0 &{} quad 1\ 1 &{}quad -1 &{}quad 0 end{array}right] ; quad {mathbf {B}} = left[ begin{array}{rrr} 1 &{}quad -1\ 0 &{}quad 1\ -1 &{}quad 0 end{array}right] ; end{aligned}$$({mathbf {y}}^{*}={mathbf {z}}^*=left( frac{1}{3}, frac{1}{3}, frac{1}{3} right) ^{top }) and ({mathcal {K}}=frac{1}{3}text { diag}(mathbb {1}_2)). Note that this metapopulation model is homogeneous. From Theorem 5, it follows that the species proportions at the unique coexistence equilibrium in this case are all given by (x_{i,j}^*=frac{1}{9}) for (i,j= 1,2,3).Figure 4A metapopulation network composed of three patches. Species can migrate from patch 1 to the other two patches and vice versa. However, there exists no migrations between patches 2 and 3.Full size image
    StabilityWe now prove the local stability of the unique coexistence equilibrium corresponding to the balanced metapopulation model (14). For the proof, we make use of the same Lyapunov function as in “Neutral stability” section, coupled with LaSalle’s invariance principle51, (52, Section 4.2), (53, pp. 188–189).

    Theorem 6

    Consider the balanced metapopulation model (14) with coexistence equilibrium ({mathbf {x}}^*in , S^{mn}_{+}).

    1.

    If the model is heterogeneous, then ({mathbf {x}}^*) is locally asymptotically stable w.r.t. all initial conditions in (S^{mn}_{+}) in the neighbourhood of ({mathbf {x}}^*). Furthermore, if the model is persistent, then ({mathbf {x}}^*) is globally asymptotically stable w.r.t. all initial conditions in (S^{mn}_{+}).

    2.

    If the model is homogeneous and persistent, then as (trightarrow infty ), the solution trajectories converge to a limit cycle satisfying the equation ({dot{x}}_{i,j}=x_{i,j}({mathbf {T}}{mathbf {p}}_{j})_i) with (x_{i,j}=x_{i,k}), for (i=1,ldots ,n) and (j,k=1,ldots ,m).

    Proof
    Let (x_{i,j}) denote the proportion of species i in patch j. Assuming that ({mathbf {x}}in S^{mn}_{+}), consider the Lyapunov function$$begin{aligned} V({mathbf {x}})=-(mathbf {x^{*}})^{top }text {Ln}left( frac{{mathbf {x}}}{{mathbf {x}}^*}right) . end{aligned}$$
    (19)
    By Gibbs inequality, V(x) is positive on (S^{mn}_{+}) and is equal to zero only if ({mathbf {x}}={mathbf {x}}^*). Taking the time derivative of V, we have$$begin{aligned} {dot{V}}({mathbf {x}})=-sum _{j=1}^msum _{i=1}^{n}left( frac{x_{i,j}^{*}}{x_{i,j}}right) {dot{x}}_{i,j}. end{aligned}$$From Eq. (14), it follows that$$begin{aligned} {dot{V}}({mathbf {x}})= -sum _{j=1}^msum _{i=1}^nx_{i,j}^*left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}}{{mathbf {y}}^*}right) right) _i+ sum _{i=1}^nsum _{j=1}^mfrac{x_{i,j}^*}{x_{i,j}} left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}}{{mathbf {z}}^{*}}right) right) _{j}. end{aligned}$$As in the proof of Theorem 5, it can be verified that$$begin{aligned} sum _{j=1}^msum _{i=1}^nx_{i,j}^*left( mathbf {TY}^*left( frac{{mathbf {p}}_{j}}{{mathbf {y}}^*}right) right) _i=0 end{aligned}$$and$$begin{aligned} sum _{i=1}^nsum _{j=1}^mfrac{x_{i,j}^*}{x_{i,j}} left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}}{{mathbf {z}}^{*}}right) right) _{j}=sum _{i=1}^ny_i^*left( frac{{mathbf {z}}^{*}}{{mathbf {r}}_{i}}right) ^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}}{{mathbf {z}}^{*}}right) . end{aligned}$$Thus,$$begin{aligned} {dot{V}}({mathbf {x}})=sum _{i=1}^ny_i^*left( frac{{mathbf {z}}^{*}}{{mathbf {r}}_{i}}right) ^{top }{mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}}{{mathbf {z}}^{*}}right) . end{aligned}$$Since (y_i^* >0) for (i=1,ldots ,n), it follows from Lemma 4 that ({dot{V}}({mathbf {x}})le 0) and ({dot{V}}({mathbf {x}})=0) if and only if ({mathbf {r}}_i=q_i{mathbf {z}}^*) with (q_iin {mathbb {R}}_+), for (i=1,ldots ,n). Thus,$$begin{aligned} x_{i,j}=q_iz_j^*, end{aligned}$$
    (20)
    for (i= 1,ldots ,n) and (j=1,ldots ,m). Since ((mathbb {1}^{mn})^{top }{mathbf {x}}=1), we obtain$$begin{aligned} sum _{i=1}^nsum _{j=1}^{m}x_{i,j}=sum _{i=1}^nq_isum _{j=1}^mz_j^* =sum _{i=1}^nq_i=1. end{aligned}$$Let ({mathcal {E}}subset S^{mn}_{+}) be the set of all vectors ({mathbf {x}}) for which condition (20) is satisfied with ((mathbb {1}^n)^{top }{mathbf {q}}=1). We now determine the largest subset of ({mathcal {E}}) that is positively invariant w.r.t. System (14). Assume that ({mathbf {x}}) continuously takes values from ({mathcal {E}}) and satisfies System (14). Since ({mathbf {x}}) takes values from ({mathcal {E}}), we have ({dot{x}}_{i,j}=z_j^*{dot{q}}_i). Since ({mathbf {x}}) also satisfies System (14), we have$$begin{aligned} {dot{x}}_{i,j}=x_{i,j}left( {mathbf {T}}{mathbf {p}}_{j}right) _i-left( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }left( frac{{mathbf {r}}_{i}^{*}}{{mathbf {z}}^{*}}right) right) _{j}=q_i{z_j^*}^2(mathbf {Tq})_i-q_ileft( {mathbf {B}}{mathcal {K}}{mathbf {B}}^{top }mathbb {1}^mright) _j=q_i{z_j^*}^2(mathbf {Tq})_i. end{aligned}$$Thus, (z_j^*{dot{q}}_i=q_i{z_j^*}^2(mathbf {Tq})_i) which implies that$$begin{aligned} {dot{q}}_i=z_j^*q_i(mathbf {Tq})_i, end{aligned}$$
    (21)
    for (i=1,ldots ,n) and (j=1,ldots ,m). We now consider two cases.
    Case 1: The model is heterogeneous, i.e., the vector ({mathbf {z}}^*) is not parallel to (mathbb {1}^m).
    In this case, Eq. (21) will be satisfied only if (q_i(mathbf {Tq})_i=0) for (i=1,ldots ,n). Since (q_iin {mathbb {R}}_+) for (i=1,ldots ,n), it follows that (mathbf {Tq}={mathbf {0}}^n). Since ((mathbb {1}^n)^{top }{mathbf {q}}=1), we have ({mathbf {q}}={mathbf {y}}^*). This implies that (x_{i,j}=y_i^*z_j^*=x_{i,j}^*) for (i=1,ldots ,n) and (j= 1,ldots ,m). Thus, the largest subset of ({mathcal {E}}) that is positively invariant w.r.t. System (14) consists of just the unique equilibrium ({mathbf {x}}^*in S^{mn}_{+}). By LaSalle’s invariance principle, it follows that the equilibrium ({mathbf {x}}^*) is locally asymptotically stable w.r.t. all initial conditions in (S^{mn}_{+}) in the neighbourhood of ({mathbf {x}}^*), and globally asymptotically stable w.r.t. all initial conditions in (S^{mn}_{+}) provided that System (14) is persistent.

    Case 2: The model is homogeneous, i.e.
    ({mathbf {z}}^*=frac{1}{m}mathbb {1}^m)

    In this case, Eq. (21) takes the form ({dot{q}}_i=frac{q_i}{m}(mathbf {Tq})_i). We have (x_{i,j}=q_iz_j^*=frac{q_i}{m}) and$$begin{aligned} {dot{x}}_{i,j}=frac{{dot{q}}_i}{m}=frac{q_i}{m^2}(mathbf {Tq})_i=x_{i,j}({mathbf {T}}{mathbf {p}}_{j})_i. end{aligned}$$Consequently, the largest subset of ({mathcal {E}}) that is positively invariant w.r.t. System (14) consists of all vectors ({mathbf {x}}(t)in , S^{mn}_{+}) satisfying ({dot{x}}_{i,j}=x_{i,j}({mathbf {T}}{mathbf {p}}_{j})_i) with (x_{i,j}=x_{i,k}) for (i=1,ldots ,n) and (j,k=1,ldots ,m). The proof for Case 2 again follows from LaSalle’s invariance principle. (square )
    The above results can be illustrated by simulating System (14) for the metapopulation models shown in Fig. 3 and 4 in Examples 1 and 2, respectively. The results of the simulations are shown in Figs. 5 and 6, respectively.Figure 5Left: Dynamics of the metapopulation model in Fig. 3 for patches 1 and 3 showing asymptotic stability of the coexistence equilibrium. Right: The time evolution of the proportion of species 1 in the three patches.Full size imageFigure 6Left: Dynamics of the metapopulation model in Fig. 4 for patches 1 and 3 showing a limit cycle arising from the neutral stability of the coexistence equilibrium. Right: Time evolution of the proportion of species 1 in the three patches. Note that the dynamics in all patches are the same and thus the three graphs overlap.Full size image More

  • in

    Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models

    1.Jackson, C. & Robertson, M. Predicting the potential distribution of an endangered cryptic subterranean mammal from few occurrence records. J. Nat. Conserv. https://doi.org/10.1016/j.jnc.2010.06.006 (2011).Article 

    Google Scholar 
    2.Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2633–2641 (2011).Article 

    Google Scholar 
    3.Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).Article 

    Google Scholar 
    4.Yang, X.-Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).CAS 
    Article 

    Google Scholar 
    5.Ouyang, Z., Liu, J., Xiao, H., Tan, Y. & Zhang, H. An assessment of giant panda habitat in Wolong Nature Reserve. Acta Ecol. Sin. 11, 1869–1874 (2001).
    Google Scholar 
    6.Schadt, S. et al. Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. J. Appl. Ecol. 39, 189–203 (2002).Article 

    Google Scholar 
    7.Su, J., Aryal, A., Nan, Z. & Ji, W. Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS One 10, e0138969 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Srivastava, V., Griess, V. C. & Padalia, H. Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol. Model. 385, 35–44 (2018).Article 

    Google Scholar 
    9.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    10.Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    11.Clements, G. R. et al. Predicting the distribution of the Asian Tapir (Tapirus indicus) in Peninsular Malaysia using maximum entropy modelling. Integr. Zool. 7, 400–406 (2012).PubMed 
    Article 

    Google Scholar 
    12.Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 12, 2272–2281 (2006).ADS 
    Article 

    Google Scholar 
    13.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography (Cop.) 31, 161–175 (2008).Article 

    Google Scholar 
    14.Cassini, M. H. Ecological principles of species distribution models: The habitat matching rule. 2057–2065. https://doi.org/10.1111/j.1365-2699.2011.02552.x (2011).15.Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    16.Mac Nally, R. Regression and model-building in conservation biology, biogeography and ecology: The distinction between–and reconciliation of–‘predictive’ and ‘explanatory’models. Biodivers. Conserv. 9, 655–671 (2000).Article 

    Google Scholar 
    17.Jaynes, E. T. Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190 (1957).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    18.Jaynes, E. T. Probability Theory as Logic BT – Maximum Entropy and Bayesian Methods. In (ed. Fougère, P. F.) 1–16 (Springer, Netherlands, 1990). https://doi.org/10.1007/978-94-009-0683-9_1.19.Jaynes, E. T. Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003).MATH 
    Book 

    Google Scholar 
    20.Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).Article 

    Google Scholar 
    21.Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography (Cop.). 30, 550–560 (2007).Article 

    Google Scholar 
    22.Ganeshaiah, K. N. et al. Predicting the potential geographical distribution of the sugarcane woolly aphid Using GARP and DIVA-GIS. Curr. Sci. 85, 1526–1528 (2003).
    Google Scholar 
    23.Underwood, E. C., Klinger, R. & Moore, P. E. Predicting patterns of non-native plant invasions in Yosemite National Park, California, USA. Divers. Distrib. 10, 447–459 (2004).Article 

    Google Scholar 
    24.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).Article 

    Google Scholar 
    25.Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).Article 

    Google Scholar 
    26.Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    27.Bhatta, M., Shah, K., Devkota, B., Paudel, R. & Panthi, S. Distribution and habitat preference of Red Panda (Ailurus fulgens fulgens) in Jumla District, Nepal. Open J. Ecol. 04, 989–1001 (2014).Article 

    Google Scholar 
    28.Bista, D. et al. Distribution and habitat use of red panda in the Chitwan-Annapurna Landscape of Nepal. PLoS One 12, e0178797 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Bista, R. & Aryal, A. Status of the Asiatic black bear Ursus thibetanus in the southeastern region of the Annapurna Conservation Area, Nepal. Zool. Ecol. 23 (2013).30.Garshelis, D. & Steinmetz, R. Ursus thibetanus. (errata version published in 2017) The IUCN Red List of Threatened Species. 2016: e. T22824A114252336. (2016).31.Bista, M., Panthi, S. & Weiskopf, S. R. Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. https://doi.org/10.1371/journal.pone.0203697 (2018).32.CITES. Asiatic Black bear. Convention on International Trade in Endangered Species of Wild Fauna and Flora https://www.cites.org/eng/gallery/species/mammal/Asiatic_black_bear.html (2019a).33.CITES. Lesser Panda. Convention on International Trade in Endangered Species of Wild Fauna and Flora https://www.cites.org/eng/gallery/species/mammal/lesser_panda.html (2019b).34.Garshelis, Scheick, B., Doan-Crider, D., Beecham & Obbard, M. Ursus americanus, American Black Bear. The IUCN Red List of Threatened Species 2016: e.T41687A45034604. (2016). https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T41687A45034604.en.35.Chhetri, M. Distribution and abundance of Himalayan black bear and brown bear conflict in Manaslu conservation area. https://ntnc.org.np/index.php/publication/distribution-and-ambundance-himalayan-black-bear-and-brown-bear-and-human-bear-conflict (2013).36.Ali, A. et al. An assessment of food habits and altitudinal distribution of the Asiatic black bear (Ursus thibetanus) in the Western Himalayas, Pakistan. J. Nat. Hist. 51, 689–701 (2017).Article 

    Google Scholar 
    37.Glatston, A., Wei, F., Zaw, T. & Sherpa, A. P. IUCN red list of threatened species: Ailurus fulgens. (2015).38.Hu, Y. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, eaax5751 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Chakraborty, R. et al. Status, abundance, and habitat associations of the red panda (Ailurus fulgens) in Pangchen Valley, Arunachal Pradesh, India. Mammalia 79, 25–32 (2015).
    Google Scholar 
    40.Dorji, S., Vernes, K. & Rajaratnam, R. Habitat correlates of the red panda in the temperate forests of Bhutan. PLoS One 6, e26483 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Panthi, S., Aryal, A., Raubenheimer, D., Lord, J. & Adhikari, B. Summer diet and distribution of the Red Panda (Ailurus fulgens fulgens) in Dhorpatan hunting reserve, Nepal. Zool. Stud. 51, 701–709 (2012).
    Google Scholar 
    42.Pradhan, S., Saha, G. K. & Khan, J. A. Ecology of the red panda Ailurus fulgens in the Singhalila National Park, Darjeeling, India. Biol. Conserv. 98, 11–18 (2001).Article 

    Google Scholar 
    43.Acharya, K. P., Paudel, P. K., Neupane, P. R. & Köhl, M. Human-wildlife conflicts in Nepal: Patterns of human fatalities and injuries caused by large mammals. PLoS One 11, e0161717 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Liu, Z. et al. Habitat suitability assessment of blue sheep in Helan Mountain based on MAXENT modeling. Acta Ecol. Sin. 33, 7243–7249 (2013).Article 

    Google Scholar 
    45.Bhusal, N. P. Buffer zone management system in protected areas of Nepal. Third Pole J. Geogr. Educ. 34–44 (2012).46.Carpenter, C. & Zomer, R. Forest ecology of the Makalu-Barun National Park and conservation area, Nepal. Mt. Res. Dev. 16, 135–148 (1996).Article 

    Google Scholar 
    47.Bhuju, U. R., Shakya, P. R., Basnet, T. B. & Shrestha, S. Nepal biodiversity resource book: Protected areas, Ramsar sites, and World Heritage sites. (International Centre for Integrated Mountain Development (ICIMOD), 2007).48.Wikipedia. Makalu Barun National Park. https://en.wikipedia.org/w/index.php?title=Makalu_Barun_National_Park&oldid=1022613383 (2020).49.Bista, M., Panthi, S. & Weiskopf, S. R. Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE 13, e0203697 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Chen, X. & Lei, Y. Effects of sample size on accuracy and stability of species distribution models. A Comparison of GARP and Maxent BT – Recent Advances in Computer Science and Information Engineering, Volume 2. in (eds. Qian, Z. et al.) 601–609 (Springer, Berlin Heidelberg, 2012). https://doi.org/10.1007/978-3-642-25789-6_80.Chapter 

    Google Scholar 
    51.Zomer, R., Ustin, S. & Ives, J. Using satellite remote sensing for DEM extraction in complex mountainous terrain: Landscape analysis of the Makalu Barun National Park of eastern Nepal. Int. J. Remote Sens. 23, 125–143 (2002).ADS 
    Article 

    Google Scholar 
    52.Shao, Y. & Lunetta, R. S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 70, 78–87 (2012).ADS 
    Article 

    Google Scholar 
    53.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    54.Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography (Cop.) 36, 1058–1069 (2013).Article 

    Google Scholar 
    55.Steven, J. P., Miroslav, D. & Robert, E. S. Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/Maxent/.56.Phillips, S. J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography (Cop.) 31, 272–278 (2008).Article 

    Google Scholar 
    57.Boral, D. & Moktan, S. Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: Current and future scenarios. Ecol. Process. 10, 1–16 (2021).Article 

    Google Scholar 
    58.Pasquale, G. D. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).Article 

    Google Scholar 
    59.Barbet-Massin, M., Jiguet, F., Albert, C. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    60.Adjemian, J. C. Z., Girvetz, E. H., Beckett, L. & Foley, J. E. Analysis of genetic algorithm for rule-set production (GARP) modeling approach for predicting distributions of fleas implicated as vectors of Plague, Yersinia pestis, California. J. Med. Entomol. 43, 93–103 (2006).PubMed 

    Google Scholar 
    61.Barro, A. S. et al. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis. PLoS Negl. Trop. Dis. 10, e0004689 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 162, 211–232 (2003).Article 

    Google Scholar 
    63.Babar, S., Giriraj, A., Reddy, C. S., Jentsch, A. & Sudhakar, S. Species distribution models: Ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinus L.f.). Curr. Sci. 102, 1157–1165 (2012).
    Google Scholar 
    64.Stohlgren, T. J. et al. Ensemble habitat mapping of invasive plant species. Risk Anal. 30, 224–235 (2010).PubMed 
    Article 

    Google Scholar 
    65.Smeraldo, S. et al. Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm. Rev. (2021).66.Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).Article 

    Google Scholar 
    67.Chikerema, S., Gwitira, I., Murwira, A., Pfukenyi, D. & Matope, G. Comparison of GARP and Maxent in modelling the geographic distribution of Bacillus anthracis in Zimbabwe. Zimbabwe Vet. J. 35, 1–6 (2017).
    Google Scholar 
    68.Ray, D., Behera, M. D. & Jacob, J. Evaluating ecological niche models: A comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 88, 1337–1343 (2018).
    Google Scholar 
    69.Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2005).
    Google Scholar 
    70.Jnawali, S. R. et al. The Status of Nepal’s Mammals: The National Red List Series-IUCN (2011).71.Panthi, S., Wang, T., Sun, Y. & Thapa, A. An assessment of human impacts on endangered red pandas (Ailurus fulgens) living in the Himalaya. Ecol. Evol. 9, 13413–13425 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Pearson, R. G. et al. Model-based uncertainty in species range prediction. J. Biogeogr. 33, 1704–1711 (2006).Article 

    Google Scholar 
    73.Randin, C. F. et al. Are niche-based species distribution models transferable in space?. J. Biogeogr. 33, 1689–1703 (2006).Article 

    Google Scholar 
    74.Panthi, S., Aryal, A. & Coogan, S. C. P. Diet and macronutrient niche of Asiatic black bear (Ursus thibetanus) in two regions of Nepal during summer and autumn. Ecol. Evol. 9, 3717–3727 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Thapa, A. et al. The endangered red panda in Himalayas: Potential distribution and ecological habitat associates. Glob. Ecol. Conserv. 21, e00890 (2020).Article 

    Google Scholar 
    76.Shailendra. Human-Bear Conflicts Biological Research Himalayan Black Bear Discovered in Babai Valley of Bardia National. 26, 1999–2001 (2017).77.Acharya, K. P. et al. Pervasive human disturbance on habitats of endangered red panda Ailurus fulgens in the central Himalaya. Glob. Ecol. Conserv. 15, e00420 (2018).Article 

    Google Scholar 
    78.Letro, L., Wangchuk, S. & Dhendup, T. Distribution of Asiatic black bear and its interaction with humans in Jigme Singye Wangchuck National Park, Bhutan. Nat. Conserv. Res. 5, 44–52 (2020).Article 

    Google Scholar 
    79.Karki, S. T. Do protected areas and conservation incentives contribute to sustainable livelihoods? A case study of Bardia National Park, Nepal. 988–999.80.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar  More

  • in

    Hygienic quality of soil in the Gemer region (Slovakia) and the impact of risk elements contamination on cultivated agricultural products

    SoilContents of risk metals in soilsLands of localities from which soil and plant samples were taken belong to agricultural lands.Soil reaction is one of the factors that most affects the behaviour of heavy metals in soil. Low pH values pose a risk of reduced nutrient intake and increase the availability of heavy metals for plants29,30.The presence of risk elements in the soil was evaluated based on their contents in bioavailable form (mobile forms), determined in soil extracts NH4NO3, and the total contents of risk elements were determined in soil extract by aqua regia (Table 1).Table 1 The contents of risk elements (Cu, Ni, Pb, Cd, Hg, Mn) in soil (mg/kg).Full size tableAccessible heavy metals for plants are those which are present in the soil solution as soluble components or those which are easily dissolved by root exudates31. The highest Cu contents determined in soil extract by NH4NO3, were in the cadastre of Gemerská Poloma (max. 0.390 mg/kg) (Table 1). However, even the highest determined concentration of Cu in its bioavailable form did not exceeded the determined critical value for this element18. Nickel is a beneficial element for plants. Elevated Ni concentrations in soils have a potential negative effect on plants32. Content of bioavailable forms of nickel is lower than the determined critical value in all analysed samples. Cadmium and lead present a risk to agricultural activity in this area. Cadmium in soil is highly bioavailable and has higher mobility in plants compared to other heavy metals. It is easily transported by roots to shoots. In contrast, lead is one of the least mobile heavy metals. It is naturally concentrated in the upper layers of the soil33. The contents of the available forms of cadmium and lead exceed the critical values for these elements. In case of lead, the determined contents are from 0.257 Henckovce to 0.676 Gemerská Poloma. Takáč et al.34 determined in 20 soil samples from the Central Spiš region 7.2–257.6 mg Cu/kg soil and 1.0–84.8 mg Pb/kg in their potentially mobilizable form and 0.4–1.4 mg Cu/kg soil and 4.3–7.1 mg Pb/kg in their mobile form. In comparison with our results, Vilček et al.35 determined a lower content of Cd (0.04), Pb (0.17), Ni (0.15) and higher Cu content (0.48) mg/kg in forms accessible to plants in 16 soil samples from locality Nižná Slaná in the years 2006–2008. However, high concentrations of metals in soil do not necessarily mean the availability of metals for plants36. As a result, extractable Mn is often a better indicator of Mn availability. Mn2+ is generally considered to be bioavailable22. The highest concentration of Mn was measured in soil samples from the cadastre of Nižná Slaná. On the contrary, the lowest concentrations were detected in samples from Gemerská Poloma cadastre, which is the furthest cadastre from the source. No critical limit is set up for manganese according to Slovak legislation, it is not possible to classify these soils as contaminated/uncontaminated. For comparison, the EDTA-extractable content of Mn ranged from 22.7 to 127 mg/kg dry soil (China)29; the mobile concentrations between 0.32 and 202.0 mg/kg and the available concentrations from 5.4 to 126.3 mg/kg (Egypt)37.Based on results of statistical analysis, significant higher content of Cu, Pb and Cd can be stated in samples from Gemerská Poloma cadastre. These soils are classified as gley fluvisols, soils from the other two localities are cambisols (from medium heavy to light) and acid cambisols (Henckovce), cambisols from medium heavy to light and typically acid cambisols (Nižná Slaná). The soil profile of fluvisols is repeatedly disrupted by floods, which often enriches them with a new layer of sludge sediments2.Another method for determination of metal content in soil is mineralisation using aqua regia, which dissolves most of the soil constituents except those strongly bound in silicate minerals. This content is sometimes referred to as pseudototal (determined in aqua regia). In this way, all elements that are likely to become bioavailable in the long term are determined38.Pseudototal contents of risk metals (Table 1) determined in soil extract using aqua regia were higher than their limit value in case of Cu (Gemerská Poloma cadastre), Cd (all cadastres) and Hg (cadastre of Henckovce and Gemerská Poloma).Due to the fact that the hygienic condition of agricultural soils is assessed according to the exceeding of the limit values of at least one risk substance, the monitored plots can be classified as contaminated (Cu  > 60.0, Cd  > 0.7, Hg  > 0.5 mg/kg soil).Manganese is not classified as risk element in Slovak legislation.Tóth et al.39 classified European soils into four categories: (1) no detectable content of HM, (2) the concentration of the investigated element is above the threshold value (Hg 0.5, Cd 1, Cu 100, Pb 60 and Ni 50 mg/kg), but below the lower guideline value (Hg 2, Cd 10, Cu 150, Pb 200 and Ni 100 mg/kg), (3) concentration of one or more element exceeds the lower guideline value but is below the higher guideline value (Hg 5, Cd 20, Cu 200, Pb 750 and Ni 150 mg/kg), (4) samples having concentrations above the higher guideline value.In comparison with the threshold and guideline values, soils in cadastres of Gemerská Poloma (Cu), Henckovce, Nižná Slaná, Gemerská Poloma (Cd, Hg) represent the ecological risk. Threshold and guideline values for Mn were not defined.The Spiš region and the northern part of the Gemer region belong to the most polluted areas in Slovakia in terms of soil contamination due to mining and metallurgical activities that have been carried out here in the past. Soils near the sludge in Nižná Slaná contain 3.17–53.3 (14.2–301, 0.71–20.6, 3.33–177, 12.9–223 and 675–11,510, respectively) mg Cd (Cu, Hg, Ni, Pb and Mn, respectively)/kg of soil14. In loaded area of Dongchuan, (China), contained Cd (Cu, Hg, Ni and Pb, resp.) 0.20–3.57 (45.38–2026, 0.02–0.23, 24.06–95.9 and 6.83–146.6, resp.) mg/kg40. In contrast, in the agricultural area of Punjab of the India, the soil contamination was caused by an excessive use of agrochemicals and polluted irrigation sources. Increased Cu (Pb and Cd) contents were determined in the soil samples: 9.0–48.5 (5.5–9.67 and 0.516–1.58, resp.) mg/kg41.However, in most cases, a large portion of the total element content is not available for immediate uptake by plants. Available forms represent a small proportion of this total content which is potentially available to plants. Availability is affected by many factors, including pH, redox state, macronutrient levels, available water content and temperature29,33,36,38.Indicators of soil contaminationContamination factors and degree of contaminationThe contamination character may be described in a uniform, adequate and standardised way by means of the contamination factor and the degree of contamination. Hakanson24 reported four Contamination degrees of individual metal (({mathrm{C}}_{mathrm{f}}^{mathrm{i}})) – low (({mathrm{C}}_{mathrm{f}}^{mathrm{i}}) < 1), moderate (1 ≤ ({mathrm{C}}_{mathrm{f}}^{mathrm{i}})   More

  • in

    Heterodissemination: precision insecticide delivery to mosquito larval habitats by cohabiting vertebrates

    1.Gubler, D. J. Prevention and control of Aedes aegypti-borne diseases: lesson learned from past successes and failures. AsPac. J. Mol. Biol. Biotechnol. 19, 111–114 (2011).
    Google Scholar 
    2.Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227. https://doi.org/10.1111/j.0269-283X.2004.00513.x (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Unlu, I. Aedes albopictus in America: current perspectives and future challenges. CAB Rev. 14, 1–22 (2019).Article 

    Google Scholar 
    4.Schoof, H. Dispersal of Aedes taeniorhynchus Wiede-mann near Savannah. Georgia. Mosq. News 23, 1–10 (1963).
    Google Scholar 
    5.Fonseca, D. M. et al. Area-wide management of Aedes albopictus. Part 2: gauging the efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Manag. Sci. 69, 1351–1361 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.YiBin, Z., TongYan, Z. & PeiEn, L. Evaluation on the control efficacy of source reduction to Aedes albopictus in Shanghai, China. Chin. J. Vector Biol. Control 20, 3–6 (2009).
    Google Scholar 
    7.Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L. & Farajollahi, A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS ONE 8, e60874. https://doi.org/10.1371/journal.pone.0060874 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Hawley, W. A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. Suppl. 1, 1–39 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Richards, S. L., Ghosh, S. K., Zeichner, B. C. & Apperson, C. S. Impact of source reduction on the spatial distribution of larvae and pupae of Aedes albopictus (Diptera: Culicidae) in suburban neighborhoods of a Piedmont community in North Carolina. J. Med. Entomol. 45, 617–628 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Unlu, I., Farajollahi, A., Strickman, D. & Fonseca, D. M. Crouching tiger, hidden trouble: Urban sources of Aedes albopictus (Diptera: Culicidae) refractory to source-reduction. PLoS ONE 8, e77999 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Lam, P. H. Y., Boon, C. S., Yng, N. Y. & Benjamin, S. Aedes albopictus control with spray application of Bacillus thuringiensis israelensis, strain AM 65-52. Southeast Asian J. Trop. Med. Public Health 41, 1071 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    12.Seleena, P., Lee, H. L., Nazni, W., Rohani, A. & Kadri, M. Microdroplet application of mosquitocidal Bacillus thuringiensis using ultra-low-volume generator for the control of mosquitos. Southeast Asian. J. Trop. Med. Public Health 27, 628–632 (1996).CAS 

    Google Scholar 
    13.Chandel, K. et al. Targeting a hidden enemy: Pyriproxyfen autodissemination strategy for the control of the container mosquito Aedes albopictus in cryptic habitats. PLoS Negl. Trop. Dis. 10, e0005235 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Pruszynski, C. A., Hribar, L. J., Mickle, R. & Leal, A. L. A large scale biorational approach using Bacillus thuringiensis israeliensis (strain AM65-52) for managing Aedes aegypti populations to prevent dengue, chikungunya and Zika transmission. PLoS ONE 12, e0170079 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Unlu, I., Faraji, A., Indelicato, N. & Fonseca, D. M. The hidden world of Asian tiger mosquitoes: immature Aedes albopictus (Skuse) dominate in rainwater corrugated extension spouts. Trans. R. Soc. Trop. Med. Hyg. 108, 699–705. https://doi.org/10.1093/trstmh/tru1139 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Itoh, T. Utilization of blood fed females of Aedes aegypti as a vehicle for the transfer of the insect growth regulator, pyriproxyfen, to larval habitats. Trop. Med. 36, 243–248 (1995).
    Google Scholar 
    17.Gaugler, R., Suman, D. & Wang, Y. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites. Med. Vet. Entomol. 26, 37–45 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Mbare, O., Lindsay, S. W. & Fillinger, U. Testing a pyriproxyfen auto-dissemination station attractive to gravid Anopheles gambiae sensu stricto for the development of a novel attract-release-and-kill strategy for malaria vector control. BMC Infect. Dis. 19, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    19.Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. 106, 11530–11534 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Caputo, B. et al. The “auto-dissemination” approach: a novel concept to fight Aedes albopictus in urban areas. PLoS Negl. Trop. Dis. 6, e1793 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Lwetoijera, D., Kiware, S., Okumu, F., Devine, G. J. & Majambere, S. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings. Malar. J. 18, 1–10 (2019).Article 

    Google Scholar 
    22.Unlu, I. et al. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature Asian Tiger Mosquito (Diptera: Culicidae) populations. J. Med. Entomol. 57, 1120–1130 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLoS Negl. Trop. Dis. 9, e0003406–e0003406 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Bibbs, C. S., Anderson, C. S., Smith, M. L. & Xue, R.-D. Direct and indirect efficacy of truck-mounted applications of s-methoprene against Aedes albopictus (Diptera: Culicidae). Int. J. Pest Manag. 64, 19–26 (2018).CAS 
    Article 

    Google Scholar 
    25.Wang, Y. et al. Heterodissemination: precision targeting container Aedes mosquitoes with a cohabiting midge species carrying insect growth regulator. Pest Manag. Sci. 76, 2105–2112 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Lopez, L. C. S., Filizola, B., Deiss, I. & Rios, R. I. Phoretic behaviour of bromeliad annelids (Dero) and ostracods (Elpidium) using frogs and lizards as dispersal vectors. Hydrobiologia 549, 15–22 (2005).Article 

    Google Scholar 
    27.Torresdal, J. D., Farrell, A. D. & Goldberg, C. S. Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. PLoS ONE 12, e0168787 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Wilke, A. B., Vasquez, C., Mauriello, P. J. & Beier, J. C. Ornamental bromeliads of Miami-Dade County, Florida are important breeding sites for Aedes aegypti (Diptera: Culicidae). Parasit. Vectors 11, 1–7 (2018).Article 

    Google Scholar 
    29.Council, N. R. Guide for the Care and Use of Laboratory Animals (National Academies Press, Washington, 2010).
    Google Scholar 
    30.Unlu, I. et al. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasit. Vectors 10, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    31.Unlu, I. et al. Effects of a red marker dye on Aedes and Culex larvae: are there implications for operational mosquito control?. J. Am. Mosq. Control Assoc. 31, 375–379 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Development, R. & Team, C. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria ( https://www.R-project.org/ ) (2019).33.Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1 (2014).34.Crawley, M. J. The R Book (Wiley, Chichester, 2012).MATH 
    Book 

    Google Scholar 
    35.Lenth, R. V. Using lsmeans. J. Stat. Softw. 69, 1–33 (2017).
    Google Scholar 
    36.Plummer, M. in Proceedings of the 3rd international workshop on distributed statistical computing. 1–10 (Vienna, Austria.).37.Kellner, K. jagsUI: a wrapper around rjags to streamline JAGS analyses. R Package Vers. 1, 2015 (2015).
    Google Scholar 
    38.Khan, G. Z., Khan, I., Khan, I. A., Salman, M. & Ullah, K. Evaluation of different formulations of IGRs against Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae). Asian. Pac. J. Trop. Biomed. 6, 485–491 (2016).CAS 
    Article 

    Google Scholar 
    39.Bury, R. B. & Whelan, J. A. Ecology and Management of the Bullfrog Vol. 155 (Fish and Wildlife Service, Washington, 1985).
    Google Scholar 
    40.WHO. Review of the insect growth regulator pyriproxyfen GR, pp. 50–67. InReport of the 4th WHOPES Working Group Meeting, 2000 December 4–5, Geneva Switzerland Geneva. WHO/CDS, WHOPES/2001. (2001).41.Devillers, J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ. Sci. Pollut. Res. 1–17 (2020).42.Schaefer, C. & Miura, T. Chemical persistence and effects of S-31183, 2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine, on aquatic organisms in field tests. J. Econ. Entomol. 83, 1768–1776 (1990).CAS 
    Article 

    Google Scholar 
    43.Ose, K., Miyamoto, M., Fujisawa, T. & Katagi, T. Bioconcentration and metabolism of pyriproxyfen in tadpoles of African clawed frogs, Xenopus laevis. J. Agric. Food Chem. 65, 9980–9986 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Lajmanovich, R. C. et al. Insecticide pyriproxyfen (Dragón®) damage biotransformation, thyroid hormones, heart rate, and swimming performance of Odontophrynus americanus tadpoles. Chemosphere 220, 714–722 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.https://edis.ifas.ufl.edu/uw259. The Cuban Treefrog (Osteopilus septentrionalis) in Florida. This document is WEC218, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. (2017).46.Glorioso, B. M. et al. Osteopilus septentrionalis (Cuban treefrog). Herpetol. Rev. 49, 70–71 (2018).
    Google Scholar 
    47.Wermelinger, E. D. & Carvalho, RWd. Methods and procedures used in Aedes aegypti control in the successful campaign for yellow fever prophylaxis in Rio de Janeiro, Brazil, in 1928 and 1929. Epidemiol. Serv. Saude. 25, 837–844 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Santos França, L. et al. Challanges for the control and prevention of the Aedes aegypti mosquito. Rev. Enferm. UFPE. 11, 4913 (2017).Article 

    Google Scholar 
    49.Minakawa, N., Mutero, C. M., Githure, J. I., Beier, J. C. & Yan, G. Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am. J. Trop. Med. Hyg. 61, 1010–1016 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Mutuku, F. M. et al. Pupal habitat productivity of Anopheles gambiae complex mosquitoes in a rural village in western Kenya. Am. J. Trop. Med. Hyg. 74, 54–61 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More