More stories

  • in

    Seasonal and geographic variation in packed cell volume and selected serum chemistry of platypuses

    1.Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).Article 

    Google Scholar 
    2.Sand, H., Cederlund, G. & Danell, K. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102, 433–442 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    3.Gigliotti, L. C. et al. Latitudinal variation in snowshoe hare (Lepus americanus) body mass: a test of Bergmann’s rule. Can. J. Zool. 98, 88–95 (2020).Article 

    Google Scholar 
    4.Best, T. L. Intraspecific Variation in the Agile Kangaroo Rat (Dipodomys agilis). J. Mammal. 64, 426–436. https://doi.org/10.2307/1380355 (1983).Article 

    Google Scholar 
    5.Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Gigliotti, L. C., Diefenbach, D. R. & Sheriff, M. J. Geographic variation in winter adaptations of snowshoe hares (Lepus americanus). Can. J. Zool. 95, 539–545 (2017).Article 

    Google Scholar 
    7.Singaravelan, N. et al. Adaptation of pelage color and pigment variations in Israeli subterranean blind mole rats, Spalax ehrenbergi. PloS ONE 8, 119 (2013).Article 

    Google Scholar 
    8.Price, T., Ndiaye, O., Hammerschmidt, K. & Fischer, J. Limited geographic variation in the acoustic structure of and responses to adult male alarm barks of African green monkeys. Behav. Ecol. Sociobiol. 68, 815–825 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Lagos, L. & Bárcena, F. Spatial variability in wolf diet and prey selection in Galicia (NW Spain). Mammal Res. 63, 125–139. https://doi.org/10.1007/s13364-018-0352-6 (2018).Article 

    Google Scholar 
    10.Ashton, K. G., Tracy, M. C. & Queiroz, A. D. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).PubMed 
    Article 

    Google Scholar 
    11.Watt, C., Mitchell, S. & Salewski, V. Bergmann’s rule; a concept cluster?. Oikos 119, 89–100 (2010).Article 

    Google Scholar 
    12.Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).PubMed 
    Article 

    Google Scholar 
    13.Basuony, M., Mohamed, W. & Shalabi, M. Food and feeding ecology of the Egyptian Mongoose, Herpestes ichneumon (Linnaeus, 1758) in Egypt. J. Appl. Sci. Res. 9, 5811–5816 (2013).
    Google Scholar 
    14.McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    15.Wang, M. et al. Ambient temperature correlates with geographic variation in body size of least horseshoe bats. Curr. Zool. 2, 19 (2020).
    Google Scholar 
    16.Taggart, D. A. et al. Environmental factors influencing hairy-nosed wombat abundance in semi-arid rangelands. J. Wildl. Manag. 84, 921–929 (2020).Article 

    Google Scholar 
    17.Brandimarti, M. E. et al. Reference intervals for parameters of health of eastern grey kangaroos Macropus giganteus and management implications across their geographic range. Wildl. Biol. 2020 (2020).18.Fancourt, B. A., Hawkins, C. E. & Nicol, S. C. Mechanisms of climate-change-induced species decline: spatial, temporal and long-term variation in the diet of an endangered marsupial carnivore, the eastern quoll. Wildl. Res. 45, 737–750 (2019).Article 

    Google Scholar 
    19.Phillips, B. L. & Shine, R. Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc. Natl. Acad. Sci. 101, 17150–17155 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Both, C. & Visser, M. E. The effect of climate change on the correlation between avian life-history traits. Global Change Biol. 11, 1606–1613 (2005).ADS 
    Article 

    Google Scholar 
    21.Borg, C., Majolo, B., Qarro, M. & Semple, S. A comparison of body size, coat condition and endoparasite diversity of wild Barbary macaques exposed to different levels of tourism. Anthrozoös 27, 49–63 (2014).Article 

    Google Scholar 
    22.Maceda-Veiga, A., Green, A. J. & De Sostoa, A. Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in north-eastern Spain and provides a novel indicator of ecosystem health. Freshwat. Biol. 59, 1145–1160 (2014).Article 

    Google Scholar 
    23.Thatcher, H. R., Downs, C. T. & Koyama, N. F. Using parasitic load to measure the effect of anthropogenic disturbance on vervet monkeys. EcoHealth 15, 676–681 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).Article 

    Google Scholar 
    25.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    26.Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D. & Frankham, R. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol. Conserv. 113, 23–34 (2003).Article 

    Google Scholar 
    27.Stevenson, R. & Woods, W. A. Jr. Condition indices for conservation: new uses for evolving tools. Integr. Comp. Biol. 46, 1169–1190 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass–size residuals: validating body condition indices. Ecology 86, 155–163 (2005).Article 

    Google Scholar 
    29.Weiss, D. J. & Wardrop, K. J. Schalm’s Veterinary Hematology (Wiley, 2011).
    Google Scholar 
    30.Hanks, J., Fowler, C. & Smith, T. Dynamics of large mammal populations. Dyn. Large Mamm. Popul. 2, 47–73 (1981).
    Google Scholar 
    31.Mapfumo, L., Muchenje, V., Mupangwa, J. F. & Scholtz, M. M. Changes in biochemical proxy indicators for nutritional stress resilience from Boran and Nguni cows reared in dry arid rangeland. Trop. Anim. Health Prod. 49, 1383–1392 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Miller, D. S. et al. Biomedical evaluation of free-ranging ring-tailed lemurs (Lemur catta) in three habitats at the Beza Mahafaly Special Reserve, Madagascar. J. Zoo Wildl. Med. 38, 201–216 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Pérez, J. M. et al. Distinguishing disease effects from environmental effects in a mountain ungulate: seasonal variation in body weight, hematology, and serum chemistry among Iberian ibex (Capra pyrenaica) affected by sarcoptic mange. J. Wildl. Dis. 51, 148–156 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Webster, K. N., Hill, N. J., Burnett, L. & Deane, E. M. Ectoparasite infestation patterns, haematology and serum biochemistry of urban-dwelling common brushtail possums. Wildl. Biol. 20, 206–216 (2014).Article 

    Google Scholar 
    35.Perrault, J. R. & Stacy, N. I. Note on the unique physiologic state of loggerhead sea turtles (Caretta caretta) during nesting season as evidenced by a suite of health variables. Mar. Biol. 165, 71 (2018).Article 

    Google Scholar 
    36.O’Brien, J., Schmitt, T., Nollens, H., Dubach, J. & Robeck, T. Reproductive physiology of the female Magellanic penguin (Spheniscus magellanicus): insights from the study of a zoological colony. Gen. Comp. Endocrinol. 225, 81–94 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Robert, K. A. & Schwanz, L. E. Monitoring the health status of free-ranging tammar wallabies using hematology, serum biochemistry, and parasite loads. J. Wildl. Manag. 77, 1232–1243 (2013).Article 

    Google Scholar 
    38.Portas, T. J. et al. Beyond morbidity and mortality in reintroduction programmes: changing health parameters in reintroduced eastern bettongs Bettongia gaimardi. Oryx 50, 674–683 (2016).Article 

    Google Scholar 
    39.Lücker, A., Secomb, T. W., Weber, B. & Jenny, P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 24, e12337. https://doi.org/10.1111/micc.12337 (2017).CAS 
    Article 

    Google Scholar 
    40.Shield, J. A seasonal change in blood cell volume of the Rottnest Island quokka, Setonix brachyurus. J. Zool. 165, 343–354 (1971).Article 

    Google Scholar 
    41.Sealander, J. A. Seasonal changes in blood values of deer mice and other small mammals. Ecology 12, 107–119 (1962).Article 

    Google Scholar 
    42.Trumble, S. J., Castellini, M. A., Mau, T. L. & Castellini, J. M. Dietary and seasonal influences on blood chemistry and hematology in captive harbor seals. Mar. Mamm. Sci. 22, 104–123 (2006).Article 

    Google Scholar 
    43.Boonstra, R., McColl, C. J. & Karels, T. J. Reproduction at all costs: The adaptive stress response of male Arctic ground squirrels. Ecology 82, 1930–1946. (2001).Article 

    Google Scholar 
    44.Stockham, S. L. & Scott, M. A. Fundamentals of Veterinary Clinical Pathology (Wiley, 2013).
    Google Scholar 
    45.Thrall, M. A., Weiser, G., Allison, R. W. & Campbell, T. W. Veterinary Hematology and Clinical Chemistry (Wiley, 2012).
    Google Scholar 
    46.Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 6, 1045 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Serrano, E. et al. The use of total serum proteins and triglycerides for monitoring body condition in the Iberian wild goat (Capra pyrenaica). J. Zoo Wildl. Med. 39, 646–649 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Stevens, L. A. & Levey, A. S. Measurement of kidney function. . Med. Clin. 89, 457–473 (2005).
    Google Scholar 
    49.Vanholder, R., Glorieux, G., De Smet, R. & Lameire, N. New insights in uremic toxins. Kidney Int. 63, S6–S10 (2003).Article 

    Google Scholar 
    50.Caldeira, R., Belo, A., Santos, C., Vazques, M. & Portugal, A. The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Rumin. Res. 68, 233–241 (2007).Article 

    Google Scholar 
    51.Schutte, J. E., Longhurst, J. C., Gaffney, F. A., Bastian, B. C. & Blomqvist, C. G. Total plasma creatinine: an accurate measure of total striated muscle mass. J. Appl. Physiol. 51, 762–766 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Kaneko, J. J., Harvey, J. W. & Bruss, M. L. Clinical Biochemistry of Domestic Animals. (Academic Press, 2008).53.Stirrat, S. C. Body condition and blood chemistry of agile wallabies (Macropus agilis) in the wet–dry tropics. Wildl. Res. 30, 59–67 (2003).CAS 
    Article 

    Google Scholar 
    54.Lassen, E. Perspectives in data interpretation. Vet. Hematol. Clini. Chem. 5, 45–49 (2004).
    Google Scholar 
    55.Maceda-Veiga, A. et al. Inside the Redbox: applications of haematology in wildlife monitoring and ecosystem health assessment. Sci. Total Environ. 514, 322–332 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Brandimarti, M. E., Gray, R., Silva, F. R. & Herbert, C. A. Kangaroos at maximum capacity: health assessment of free-ranging eastern grey kangaroos on a coastal headland. J. Mamm. 2, 96 (2021).
    Google Scholar 
    57.Clark, P. Haematology of Australian Mammals. (CSIRO Publishing, 2004).58.Solberg, H. A guide to IFCC recommendations on reference values. J. Int. Fed. Clin. Chem. 5, 162–165 (1993).CAS 
    PubMed 

    Google Scholar 
    59.Gongora, J. et al. Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA. J. Zool. 286, 110–119 (2012).Article 

    Google Scholar 
    60.Grant, T. & Fanning, D. The Platypus: A Unique Mammal. (University of New South Wales Press, 1995).61.Furlan, E. et al. Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables?. Aust. J. Zool. 59, 201–215 (2012).Article 

    Google Scholar 
    62.Allen, A. Allens rule. The influence of Physical conditions in the genesis of species. Rad. Rev. 1, 108–140 (1877).
    Google Scholar 
    63.Bergmann, C. Uber die Verhaltnisse der warmeokonomie der Thiere zu uber Grosso. Gottinger Studien 3, 595–708 (1847).
    Google Scholar 
    64.Grant, T., Griffiths, M. & Temple-Smith, P. in Proc. Linn. Soc. N.S.W. 227 (Linnean Society of New South Wales).65.Munks, S., Otley, H., Bethge, P. & Jackson, J. Reproduction, diet and daily energy expenditure of the platypus in a sub-alpine Tasmanian lake. Aust. Mamm. 21, 260–261 (2000).
    Google Scholar 
    66.Temple-Smith, P. & Grant, T. Uncertain breeding: a short history of reproduction in monotremes. Reprod. Fertil. Dev. 13, 487–497 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Chessman, B. C. & Williams, S. A. Biodiversity and conservation of river macroinvertebrates on an expanding urban fringe: western Sydney, New South Wales, Australia. Pac. Conserv. Biol. 5, 36–55 (1999).Article 

    Google Scholar 
    68.Magierowski, R. H., Davies, P. E., Read, S. M. & Horrigan, N. Impacts of land use on the structure of river macroinvertebrate communities across Tasmania, Australia: spatial scales and thresholds. Mar. Freshw. Res. 63, 762–776 (2012).Article 

    Google Scholar 
    69.Verkaik, I., Prat, N., Rieradevall, M., Reich, P. & Lake, P. S. Effects of bushfire on macroinvertebrate communities in south-east Australian streams affected by a megadrought. Mar. Freshw. Res. 65, 359–369 (2014).Article 

    Google Scholar 
    70.Stitz, L., Fabbro, L. & Kinnear, S. Response of macroinvertebrate communities to seasonal hydrologic changes in three sub-tropical Australian streams. Environ. Monit. Assess. 189, 254 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    71.McLachlan-Troup, T., Dickman, C. & Grant, T. Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. J. Zool. 280, 237–246 (2010).Article 

    Google Scholar 
    72.Bino, G. et al. The platypus: evolutionary history, biology, and an uncertain future. J. Mamm. 100, 308–327 (2019).Article 

    Google Scholar 
    73.Grant, T. & Temple-Smith, P. Conservation of the platypus, Ornithorhynchus anatinus: threats and challenges. Aquat. Ecosyst. Health Manag. 6, 5–18 (2003).Article 

    Google Scholar 
    74.Gust, N. et al. Distribution, prevalence and persistence of mucormycosis in Tasmanian platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 57, 245–254 (2009).Article 

    Google Scholar 
    75.Klamt, M., Thompson, R. & Davis, J. Early response of the platypus to climate warming. Global Change Biol. 17, 3011–3018 (2011).ADS 
    Article 

    Google Scholar 
    76.Richmond, E. K. et al. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 9, 4491 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Scheelings, T. Morbidity and mortality of monotremes admitted to the Australian Wildlife Health Centre, Healesville Sanctuary, Australia, 2000–2014. Aust. Vet. J. 94, 121–124 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Hawke, T., Bino, G. & Kingsford, R. T. A silent demise: historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Global Ecol. Conserv. 20, 720 (2019).
    Google Scholar 
    79.Connolly, J., Obendorf, D. & Whittington, R. Haematological, serum biochemical and serological features of platypuses with and without mycotic granulomatous dermatitis. Aust. Vet. J. 77, 809–813 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Geraghty, D. P., Griffiths, J., Stewart, N., Robertson, I. K. & Gust, N. Hematologic, plasma biochemical, and other indicators of the health of Tasmanian platypuses (Ornithorhynchus anatinus): predictors of mucormycosis. J. Wildl. Dis. 47, 483–493 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Macgregor, J. W. et al. A need for dynamic hematology and serum biochemistry reference tools: Novel use of sine wave functions to produce seasonally varying reference curves in platypuses (Ornithorhynchus anatinus). J. Wildl. Dis. 53, 235–247. https://doi.org/10.7589/2015-12-336 (2017).Article 
    PubMed 

    Google Scholar 
    82.Booth, R. & Connolly, J. in Medicine in Australian Mammals 103–132 (CSIRO Publishing, 2008).83.Whittington, R. & Grant, T. Haematology and blood chemistry of the free-living platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 31, 475–482 (1983).CAS 
    Article 

    Google Scholar 
    84.Whittington, R. & Grant, T. Haematology and Blood Chemistry of the Conscious Platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 32, 631–635. https://doi.org/10.1071/ZO9840631 (1984).CAS 
    Article 

    Google Scholar 
    85.Grant, T. & Carrick, F. Some aspects of the ecology of the platypus, Ornithorhynchus anatinus, in the upper Shoalhaven River. New South Wales. Australian Zool. 20, 181–199 (1978).
    Google Scholar 
    86.Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D. & Vogelnest, L. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    87.Hawke, T., Bino, G. & Kingsford, R. T. Damming insights: impacts and implications of river regulation on platypus populations. Aquatic Conservation in press (2020).88.Gallant, J. & Read, A. A near-global bare-Earth DEM from SRTM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, B4 (2016).
    Google Scholar 
    89.Temple-Smith, P. D. M. Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male. (1973).90.Williams, G., Serena, M. & Grant, T. Age-related change in spurs and spur sheaths of the platypus (Ornithorhynchus anatinus). Australian Mammalogy 35, 107–114 (2013).Article 

    Google Scholar 
    91.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet 
    Article 

    Google Scholar 
    93.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing., (R Foundation for Statistical Computing., 2020).94.Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer International Publishing, 2016).MATH 

    Google Scholar 
    95.Wood, S. Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL. R Package Version, 1.8–23 (2018).96.Wood, S. & Wood, M. S. Package ‘mgcv’. R Package Ver. 1, 29 (2015).
    Google Scholar 
    97.Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56 (2017).Article 

    Google Scholar 
    98.Geffré, A., Concordet, D., Braun, J. P. & Trumel, C. Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet. Clin. Pathol. 40, 107–112 (2011).PubMed 
    Article 

    Google Scholar 
    99.Friedrichs, K. R. et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 41, 441–453 (2012).PubMed 
    Article 

    Google Scholar 
    100.Calver, M. C., Goldman, B., Hutchings, P. A. & Kingsford, R. T. Why discrepancies in searching the conservation biology literature matter. Biol. Conserv. 213, 19–26 (2017).Article 

    Google Scholar 
    101.Pfeffermann, D. The role of sampling weights when modeling survey data. International Statistical Review/Revue Internationale de Statistique, 317–337 (1993).102.Deem, S. L., Karesh, W. B. & Weisman, W. Putting theory into practice: wildlife health in conservation. Conserv. Biol. 15, 1224–1233 (2001).Article 

    Google Scholar 
    103.Isaksson, C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29, 913–923 (2015).Article 

    Google Scholar 
    104.Karesh, W. B. & Cook, R. A. Applications of veterinary medicine to in situ conservation efforts. Oryx 29, 244–252 (1995).Article 

    Google Scholar 
    105.Cahill, A. E. et al. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).Article 

    Google Scholar 
    106.Elmore, R. D. et al. Implications of the thermal environment for terrestrial wildlife management. Wildl. Soc. Bull. 41, 183–193 (2017).Article 

    Google Scholar 
    107.Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comput. Biol. 53, 539–544 (2013).Article 

    Google Scholar 
    108.Brice, P. H. Thermoregulation in monotremes: riddles in a mosaic. Aust. J. Zool. 57, 255–263 (2009).Article 

    Google Scholar 
    109.Grant, T. Body temperatures of free-ranging platypuses, Ornithorhynchus anatinus (Monotremata), with observations on their use of burrows. Aust. J. Zool. 31, 117–122 (1983).Article 

    Google Scholar 
    110.Grant, T. & Dawson, T. Temperature regulation in the platypus, Ornithorhynchus anatinus: maintenance of body temperature in air and water. Physiol. Zool. 51, 1–6 (1978).Article 

    Google Scholar 
    111.Grant, T. & Dawson, T. J. Temperature regulation in the platypus, Ornithorhynchus anatinus: production and loss of metabolic heat in air and water. Physiol. Zool. 51, 315–332 (1978).Article 

    Google Scholar 
    112.Connolly, J. H., Claridge, T., Cordell, S. M., Nielsen, S. & Dutton, G. J. Distribution and characteristics of the platypus (Ornithorhynchus anatinus) in the Murrumbidgee catchment. Aust. Mamm. 38, 58–67 (2016).Article 

    Google Scholar 
    113.Grant, T. Historical and current distribution of the platypus, Ornithorhynchus anatinus. Australia. In Platypus and echidnas (ed. ML Augee), 232–254 (1992).114.Grant, T., Gehrke, P., Harris, J. & Hartley, S. Distribution of the platypus (Ornithorhynchus anatinus) in NSW: results of the 1994–96 NSW Rivers Survey. Aust. Mamm. 21, 177–184 (2000).Article 

    Google Scholar 
    115.Nazifi, S., Gheisari, H. & Poorabbas, H. The influences of thermal stress on serum biochemical parameters of dromedary camels and their correlation with thyroid activity. Comp. Haematol. Int. 9, 49–54 (1999).Article 

    Google Scholar 
    116.Singh, K. M. et al. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin. Res. 141, 113–117 (2016).Article 

    Google Scholar 
    117.Zhang, Y. & Kieffer, J. D. Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (Acipenser brevirostrum) acclimated to three temperatures. Can. J. Zool. 92, 215–221 (2014).CAS 
    Article 

    Google Scholar 
    118.Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Carr, M., Li, L., Sadeghian, A., Phillips, I. D. & Lindenschmidt, K. E. Modelling the possible impacts of climate change on the thermal regime and macroinvertebrate species of a regulated prairie river. Ecohydrology 12, e2102 (2019).Article 

    Google Scholar 
    120.Daufresne, M., Bady, P. & Fruget, J.-F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151, 544–559 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    121.Durance, I. & Ormerod, S. J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biol. 13, 942–957 (2007).ADS 
    Article 

    Google Scholar 
    122.Walsh, C. J. Biological indicators of stream health using macroinvertebrate assemblage composition: a comparison of sensitivity to an urban gradient. Mar. Freshw. Res. 57, 37–47 (2006).Article 

    Google Scholar 
    123.Marchant, R. & Grant, T. The productivity of the macroinvertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Mar. Freshw. Res. 66, 1128–1137 (2015).Article 

    Google Scholar 
    124.Bino, G., Kingsford, R. T. & Wintle, B. A. A stitch in time–Synergistic impacts to platypus metapopulation extinction risk. Biol. Conserv. 242, 108399 (2020).125.Ambrosio, A. M. et al. Significant hematocrit decrease in healthy horses during clinical anesthesia. Braz. j. vet. Res. Anim. Sci. 49, 139–145 (2012).Article 

    Google Scholar 
    126.Dhumeaux, M. P. et al. Effects of a standardized anesthetic protocol on hematologic variables in healthy cats. J. Feline Med. Surg. 14, 701–705 (2012).PubMed 
    Article 

    Google Scholar 
    127.Marini, R. et al. Effect of isoflurane on hematologic variables in ferrets. Am. J. Vet. Res. 55, 1479–1483 (1994).CAS 
    PubMed 

    Google Scholar 
    128.Bejaei, M. & Cheng, K. Effects of pretransport handling stress on physiological and behavioral response of ostriches. Poult. Sci. 93, 1137–1148 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    129.Delgiudice, G. D., Kunkel, K. E., Mech, L. D. & Seal, U. S. Minimizing capture-related stress on white-tailed deer with a capture collar. J. Wildl. Manag. 11, 299–303 (1990).Article 

    Google Scholar 
    130.Harvey, J. W. Veterinary Hematology-E-Book: A Diagnostic Guide and Color Atlas. (Elsevier Health Sciences, 2011).131.Raskin, R. E. Hematologic disorders 6. Clinical medicine of the dog and cat, Schaer M, editor. Manson Publishing, London, UK, 227–288 (2009).132.Mayer, J. & Donnelly, T. M. Clinical Veterinary Advisor-E-Book: Birds and Exotic Pets. (Elsevier Health Sciences, 2012).133.Bino, G., Grant, T. R. & Kingsford, R. T. Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys. Sci. Rep. 5, 16073 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Gust, N. & Handasyde, K. Seasonal-variation in the ranging behavior of the platypus (Ornithorhynchus-anatinus) on the Goulburn River, Victoria. Aust. J. Zool. 43, 193–208 (1995).Article 

    Google Scholar 
    135.Handasyde, K., McDonald, I. & Evans, B. Plasma glucocorticoid concentrations in free-ranging platypuses (Ornithorhynchus anatinus): response to capture and patterns in relation to reproduction. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 136, 895–902 (2003).CAS 
    Article 

    Google Scholar 
    136.Wang, J.-C., Gray, N. E., Kuo, T. & Harris, C. A. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2, 19–19. https://doi.org/10.1186/2045-3701-2-19 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    137.Griffiths, M. Reproduction and embryology. Biol. Monotremes, 209–254 (1978).138.Hawkins, M. & Battaglia, A. Breeding behaviour of the platypus (Ornithorhynchus anatinus) in captivity. Aust. J. Zool. 57, 283–293 (2009).Article 

    Google Scholar 
    139.Thomas, J., Handasyde, K., Parrott, M. & Temple-Smith, P. The platypus nest: burrow structure and nesting behaviour in captivity. Aust. J. Zool. 65, 347–356 (2018).Article 

    Google Scholar 
    140.Holland, N. & Jackson, S. M. Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). J. Zool. 256, 279–288 (2002).Article 

    Google Scholar 
    141.Thomas, J. L., Handasyde, K. A., Temple-Smith, P. & Parrott, M. L. Seasonal changes in food selection and nutrition of captive platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 65, 319–327. https://doi.org/10.1071/ZO18004 (2017).Article 

    Google Scholar 
    142.Kruger, B., Hunter, S. & Serena, M. Husbandry, diet and behaviour of platypus Ornithorhynchus anatinus at Healesville Sanctuary. International Zoo Yearbook 31, 64–71 (1992).Article 

    Google Scholar 
    143.El-Sherif, M. & Assad, F. Changes in some blood constituents of Barki ewes during pregnancy and lactation under semi arid conditions. Small Rumin. Res. 40, 269–277 (2001).PubMed 
    Article 

    Google Scholar 
    144.Hõrak, P., Jenni-Eiermann, S., Ots, I. & Tegelmann, L. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76, 2235–2244 (1998).Article 

    Google Scholar 
    145.dos Santos Schmidt, E. M. et al. Serum biochemical parameters of female bronze turkeys (Meleagris gallopavo) during egg-laying season. Int J Poult Sci 9, 177–179 (2010).146.Lumeij, J. in Clinical biochemistry of domestic animals 857–883 (Elsevier, 1997).147.Whittington, C. M. & Belov, K. Tracing monotreme venom evolution in the genomics era. Toxins 6, 1260–1273 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    148.Grant, T. & Temple–Smith, P. Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 1081–1091 (1998).149.Handasyde, K. & McDonald, I. Reproductive hormones and reproduction in the platypus. Progress Comp. Endocrinol., 184–185 (1993).150.Wikelski, M., Lynn, S., Breuner, J., Wingfield, J. & Kenagy, G. Energy metabolism, testosterone and corticosterone in white-crowned sparrows. J. Comp. Physiol. A. 185, 463–470 (1999).CAS 
    Article 

    Google Scholar 
    151.Thomas, J. L., Parrott, M. L., Handasyde, K. A. & Temple-Smith, P. Female control of reproductive behaviour in the platypus (Ornithorhynchus anatinus), with notes on female competition for mating. Behaviour 155, 27–53 (2018).Article 

    Google Scholar 
    152.Hawke, T. et al. Long term movements and activity patterns of platypus on regulated rivers. Scientific Reports in press (2020).153.Andersen, N. A., Mesch, U., Lovell, D. J. & Nicol, S. C. The effects of sex, season, and hibernation on haematology and blood viscosity of free-ranging echidnas (Tachyglossus aculeatus). Can. J. Zool. 78, 174–181 (2000).Article 

    Google Scholar 
    154.Barnett, J., How, R. & Humphreys, W. Blood parameters in natural populations of Trichosurus species (Marsupialia: Phalangeridae). I. Age, sex and seasonal variation in T. caninus and T. vulpecula. II. Influence of habitat and population strategies of T. caninus and T. vulpecula. Aust. J. Zool. 27, 913–926 (1979).155.Fancourt, B. A. & Nicol, S. C. Hematologic and serum biochemical reference intervals for wild eastern quolls (Dasyurus viverrinus): variation by age, sex, and season. Vet. Clin. Pathol. 48, 114–124 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    156.McKenzie, S., Deane, E. & Burnett, L. Haematology and serum biochemistry of the tammar wallaby, Macropus eugenii. Comp. Clin. Pathol. 11, 229–237 (2002).CAS 
    Article 

    Google Scholar 
    157.Schultz, D. J. et al. Investigations into the health of brush-tailed rock-wallabies (Petrogale penicillata) before and after reintroduction. Aust. Mamm. 33, 235–244 (2011).Article 

    Google Scholar 
    158.Warren, K. S., Holyoake, C. S., Friend, T. J., Yeap, L. & McConnell, M. Hematologic and serum biochemical reference intervals for the bilby (Macrotis lagotis). J. Wildl. Dis. 51, 889–895 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    159.Woolford, L. et al. Serum biochemistry of free-ranging southern hairy-nosed wombats (Lasiorhinus latifrons). J. Zool. Wildl. Med. 50, 937–946 (2020).Article 

    Google Scholar 
    160.Sidman, C. L. et al. Increased expression of major histocompatibility complex antigens on lymphocytes from aged mice. Proc. Natl. Acad. Sci. 84, 7624–7628 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    161.Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Australasian Mycol. 28, 1–8 (2009).
    Google Scholar 
    162.MacGregor, J. W. et al. Assessing body condition in the platypus (Ornithorhynchus anatinus): A comparison of new and old methods. Aust. J. Zool. 64, 421–429. https://doi.org/10.1071/ZO16071 (2016).Article 

    Google Scholar 
    163.Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).Article 

    Google Scholar 
    164.Woinarski, J. C., Burbidge, A. A. & Harrison, P. L. The action plan for Australian mammals 2012. (2014).165.Parer, J. & Metcalfe, J. Respiratory studies of monotremes. I. Blood of the platypus (Ornithorynchus anatinus). Respir. Physiol. 3, 136–142 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    166.Isaacks, R., Nicol, S., Sallis, J., Zeidler, R. & Kim, H. D. Erythrocyte phosphates and hemoglobin function in monotremes and some marsupials. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R236–R241 (1984).CAS 
    Article 

    Google Scholar  More

  • in

    Climate amenities

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Will yield gains be lost to disease?

    1.Feynman, J. & Ruzmaikin, R. in Climate Change and Agriculture (Ed. Hussain, S.) (IntechOpen, 2018); https://doi.org/10.5772/intechopen.833442.Ferrio, J. P., Voltas, J. & Araus, J. L. in Crop Stress Management and Global Climate Change (eds Araus, J. L. & Slafer, G. A.) 1–14 (CABI Publishing, 2011).3.Chaloner, T. M., Gurr, S. J. & Bebber, P. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01104-8 (2021).Article 

    Google Scholar 
    4.Saunders, D. G. O., Pretorius, Z. A. & Hovmoller, M. S. Commun. Biol. 2, 51 (2019).Article 

    Google Scholar 
    5.Fisher, M. C. et al. mBio 11, e00449-20 (2020).
    Google Scholar 
    6.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Nat. Clim. Change 3, 985–988 (2013).Article 

    Google Scholar 
    7.Turner, R. S. Hist. Stud. Phys. Biol. 35, 341–370 (2005).Article 

    Google Scholar 
    8.Sen, A. in Poverty and Famines: An Essay on Entitlement and Deprivation (Clarendon Press, 1981).9.Gottwald, T., Luo, W., Posny, D., Riley, T. & Louws, F. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180260 (2019).Article 

    Google Scholar 
    10.Fisher, M. C. et al. Nature 484, 186–194 (2012).CAS 
    Article 

    Google Scholar 
    11.Islam, M. T. et al. BMC Biol. 14, 84 (2016).Article 

    Google Scholar 
    12.Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. I. J. Exp. Bot. 60, 2827–2838 (2009).CAS 
    Article 

    Google Scholar 
    13.Lehmann, P. et al. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    14.Plumpton, H. & Wentworth, J. Climate Change and Agriculture (The Parliamentary Office of Science and Technology, 2019).15.Orton, E. S., Lewis, C. M., Davey, P. E., Radhakrishnan, G. V. & Saunders, D. G. O. New Dis. Rep. 40, 11 (2019).Article 

    Google Scholar  More

  • in

    Eristalis flower flies can be mechanical vectors of the common trypanosome bee parasite, Crithidia bombi

    Rearing methodologyEristalis flower flies were reared in laboratory conditions from egg clutches laid by wild-caught females in the summer of 2019 (see Supplementary Materials for detailed rearing methodology). Only flies that emerged on the same day were used in the experiments. An artificial diapause protocol (see Supplementary Materials for detailed protocol) was used to prolong the lifespan of lab-reared flower flies, as adult Eristalis flower flies in lab colonies have shorter lifespans than adult Eristalis flies in the wild48. Once the adult flies emerged, all siblings were placed in artificial diapause in a refrigerator and fed 10% sucrose ad libitum until the experiment began. These Eristalis flower fly rearing and artificial diapause protocols are a modification of previously published protocols48,49.Osmia lignaria (n = 50; Crown Bees, Woodinville, WA, USA) and Megachile rotundata (n = 50; Watts Solitary Bees, Bothell, WA, USA) were purchased and allowed to emerge in an incubator kept at 23 °C and 65% humidity. Bumble bees (Bombus impatiens) used as C. bombi source colonies or as uninfected sources of bees for the dose–response trials were purchased from Biobest (Biobest, Leamington, Ontario, Canada) and maintained in the lab by feeding sucrose and pollen from a mixture of honey bee-collected poly-floral pollen (Bee Pollen Granules, CC Pollen High Desert, Phoenix AZ, USA). To ensure the commercial colonies were free of parasites, we pulled 20 workers and screened them for parasites via microscopy. No parasites were found in any of the colonies used for the dose–response trials.Evaluating whether the European drone fly, Eristalis tenax, is a host of Crithidia bombi
    After breaking artificial diapause, the E. tenax flower flies were allowed to groom, but not feed, for one hour. Each fly was then placed abdomen-first into a 1.5 mL microcentrifuge tube harness to collect defecation events (Supplementary Figure S5). The size of these tubes allowed the flies to feed comfortably, but the tubes were also tapered at the bottom, which prevented the flies from stepping in their feces. Holes were placed along the side of the tubes so the fly could respire. One large hole was placed on the lid of the tube so the fly could be inoculated directly with a pipette.Flies were randomly divided into treatment and control groups. E. tenax flies in a roughly 1:2 F:M sex ratio were used in both the treatment (n = 30) and control groups (n = 30), for a total of 60 replicates. The flies that emerged from the same egg clutch with this 1:2 F:M sex ratio were the only siblings that could accommodate the replicates needed for this experiment, which is why this sex ratio was used.The C. bombi inoculum was made fresh from infected B. impatens individuals the morning of the experiment using established protocols. Briefly, we dissected the gut of infected B. impatiens workers from a laboratory source colony that sustained a strain collected from wild B. impatiens workers from Massachusetts, USA (GPS coordinates: 42.363911 N, – 72.567747 W). We homogenized the bee guts in distilled water and diluted the mixture to 1280 C. bombi cells μL−1, which we then combined 1:1 with 30% sucrose solution for an inoculum of 640 cells μL−1, a standard inoculum concentration for infecting bumble bees with C. bombi35,50. Control groups were fed 5 μL of a 30% sucrose and blue dye (Butler Extract Co., Lancaster, PA, USA) that in pilot experiments was not found to influence host or parasite survival. Treatment groups were inoculated with 5 μL (3200 cells total) of C. bombi, 30% sucrose and blue dye solution. The number of cells used in the inoculum is similar to levels of C. bombi found in the feces of bumblebees with recently established infections37. Blue dye was used to better visualize when fecal events occurred and flies that did not drink the entire 5 μL inoculum were not used in the experiment.After feeding, the flies were monitored continuously until defecation occurred. As these flies recently emerged from artificial diapause and were starved pre-experiment, every hour post-inoculation the flies were fed a 30% sucrose and blue dye solution ad libitum to encourage defecation. Once a fly defecated, the feces were collected via pipette and diluted to a 10 μL solution with deionized water to observe and count parasites using Kova Glasstic slides. The fly was then placed in an individual 60 mL plastic portion cup with filter paper (Sigma–Aldrich, St Louis, MO, USA) and a 1.5 mL microcentrifuge tube feeder containing 500 μL of a 30% sucrose and blue dye solution for 10 days. Feeders and filter papers were replaced every 3 days to prevent mold growth. As C. bombi typically replicates in high numbers after 10 days in the guts of bumble bees51, both control and treatment flies were dissected and C. bombi gut counts were performed 10 days post-inoculation. Since actively swimming, and thus live, C. bombi is infective to susceptible bumble bee hosts35, only actively swimming C. bombi were counted. The fecal volume, dilution factor and counts of C. bombi were quantified for each individual fly to calculate the exact amount of C. bombi in the individual’s first defecation event.Dose–response dataCrithidia bombi inoculum was made from infected B. impatiens individuals the morning of each trial using the protocols described above, with two exceptions. First, the C. bombi strain was collected from wild B. impatiens workers from New York, USA (GPS coordinates: 42.457350, − 76.426907). Second, a range of serially diluted doses were used to inoculate uninfected B. impatiens workers. The doses were: 25,000 cells, 12,500 cells, 6250 cells, 3125 cells, 1563 cells, 781 cells, 391 cells, 195 cells, 98 cells, 49 cells, 24 cells, and 12 cells. To obtain these doses, we homogenized bee guts in distilled water and diluted the mixture to 5000 C. bombi cells μL−1 with 30% sucrose solution. Serial dilutions were then conducted with a 10% sucrose solution to ensure the same osmolarity of each inoculum.We conducted four replicate dose–response trials over a period of four weeks. Each week, five uninfected workers per dose from each of two colonies were administered 5 μL of C. bombi inoculum. The ten highest doses were administered for the first 2 weeks, and two additional doses (24 cells, and 12 cells) were added for the final 2 weeks. Inoculated bees were kept individually in vials and fed 30% sucrose ad libitum for 7 days at 23 °C and 65% humidity. After 7 days, the bees were dissected and C. bombi loads were quantified using a hemocytometer as described above. In addition, the right forewing was removed from each bee and marginal cell length was measured as a proxy for size52. In total, 220 bees were inoculated (20 replicates for each of the ten highest doses, 10 replicates for the two lowest doses).Defecation patterns on a shared floral resourceAll pollinators (O. lignaria, M. rotundata, E. arbustorum and E. tenax) were placed in individual 60 mL plastic portion cups lined with filter paper. Each pollinator received a 1.5 mL microcentrifuge tube feeder containing 500 μL of fluorescent dye via 2.5 g of fluorescent powder (Stardust Micas) dissolved into 500 mL 30% sucrose feeders to visualize fecal deposition on flowers. After 24 hours, filter papers were collected (for analysis of fecal volume and defecation frequency, see below) and a total of five, randomly selected pollinators of the same species were placed in 12 × 12 × 12″ mesh cages (Bioquip Products, Rancho Dominguez, CA, USA) containing inflorescences of similar sized Solidago dansolitum ‘Little Lemon’ goldenrod each replicate trial. Goldenrod was used in this experiment because both bees and flower flies were observed foraging on this abundant floral resource. Only pollinators with filter papers containing fluorescing defecation events were released in the mesh cages.All E. arbustorum cages (n = 10) contained 2:3 F:M sex ratios, except one cage contained a 3:2 F:M sex ratio. All E. tenax cages (n = 20) contained 3:2 F:M sex ratios, except four cages contained 2:3 F:M sex ratios. All O. lignaria cages (n = 10) contained 4:1 F:M sex ratios, except one cage contained a 3:2 F:M sex ratio. For the two fly species, sample sizes and F:M sex ratios were determined by the greatest, same-day sibling emergence. For O. lignaria, sample sizes and F:M sex ratios were determined by emergence availability. M. rotundata floral deposition data was not collected, as the F:M emergence was heavily skewed to males that did not interact with, and therefore defecate on, the flowers.After 24-hours, the pollinators were removed and the defecation events on the goldenrod from all cages were counted under a blacklight. The location of the defecation events on the goldenrod was recorded. The plant parts were divided into six categories: ‘inside’ the flower (inside the corolla), ‘outside’ the flower (surface of the corolla), on the sepal, on the bract (the leaflike structure beneath the flower), on the stem or on a leaf.Defecation frequency and fecal volumesThe diameter of the smallest and largest defecation events per filter paper was measured by a digital caliper and an average diameter was calculated from these two values for all pollinators. The average diameter of the defecation events was converted to an average volume (in μL) using a standard curve (Supplementary Figure S6; R2 = 0.99 for the calibration data). The collected fecal volumes defecated by control flies from the E. tenax inoculation experiment (see above) were compared to the average fly fecal volumes calculated here. This was done to analyze whether flies in a confined environment, where they were inoculated with C. bombi, defecated similar volumes to flies allowed to move freely in an individual cup, which the average volumes were estimated from. In addition, the number of defecation events (frequency) over a 24-hour period on the collected E. arbustorum (n = 46) and E. tenax (n = 100) filter papers were counted for each fly.Statistical analysesFor the E. tenax inoculation experiment, we evaluated the amount of C. bombi cells in the first defecation event using a negative binomial generalized linear model (GLM), with fly sex as predictor. We chose negative binomial over Poisson to account for overdispersion, which we evaluated using Pearson residuals. Significance of sex was evaluated using a likelihood ratio test (LRT).Data from the B. impatiens inoculation experiment were used to fit two dose–response curves, the first for infection probability, and the second for infection intensity among infected bees. Infection intensity was defined using the loads estimated from the hemocytometer. A bee was considered infected if the counts were nonzero. We first tested whether the dose ingested, wing length (as a proxy for body size) and the colony the bee came from affected its response. For infection probability, this was done using a GLM with log10(dose), colony, wing length and their interactions as predictors, and infection status as the Bernoulli response. For infection intensity, this was done using a linear model (LM) with the same predictors, and log10(intensity) as response, using only infected bees. Doses were log-transformed in accordance to how the experimental doses were varied, while intensities were log-transformed to achieve normality of the residuals. Significance of predictors were tested in accordance with the principle of marginality.While we found that wing length and colony were significant predictors, in practice the colony-specific response of a wild bee is unknown (since it would not have come from any of the experimental colonies), while the dependence on wing length is only useful in a size-based epidemiological model. Hence, we generated dose–response curves by marginalizing across colony and wing length. Finally, we tested whether linear relationships between the link function and log10(dose), assumed in LMs and GLMs, were sufficient to capture the shape of the dose–response curves, by fitting the data to shape-constrained additive models and then comparing AIC values53. SCAMs are generalized additive models (GAMs) on which additional constraints such as monotonicity have been imposed; being more flexible, they can better capture the shapes of the dose–response curves should the linear relationships be inadequate.We evaluated whether fecal volume depended on pollinator species and sex with a linear model (LM), fitted using weighted least squares to account for unequal variances between group (detected using Levene’s test). Since the transformation from diameter (of feces on filter paper) to volume introduced a noticeable skew to the distribution, we transformed the volume back to diameter and further performed a Box-Cox transformation to achieve normality54, which we verified using the Shapiro–Wilk and D’Agostino’s K2 test. The transformed volume was used as the response in the abovementioned linear model.For E. tenax, fecal volume was also manually collected from the 1.5 microcentrifuge tubes during the inoculations experiment. We compared the fecal volume from the two methods using a LM with method and fly sex as well as their interaction as predictors. Volumes were log-transformed to achieve normality, while the linear model was fitted using ordinary least squares since Levene’s test indicated no significant deviation from the assumption of equal variance.We evaluated whether defecation frequency depended on pollinator species and sex with a LM, again fitted using weighted least squares to account for unequal variances between groups. While two of the groups showed deviation from normality using the Shapiro–Wilk test, the deviations were only marginally significant and hence not expected to qualitatively affect the results55.Finally, we evaluated defecation patterns on goldenrod using a negative binomial GLM, with feces counts as the response, and pollinator species, plant location and their interaction as predictors. We did not use a mixed model with cage number as a random effect since there was only one count value per cage per location, so pseudo-replication was not an issue. Significance of predictors were evaluated using LRT in accordance to the principle of marginality56 (i.e., main effects were tested only when their interactions were insignificant and hence dropped). Post-hoc tests of pairwise contrasts with Tukey corrections were performed for predictors that were significant. We recognize that the principle sex ratio and its interactions with other predictors could also be included among the predictors; however, since each species had cages with predominantly one sex ratio (E. tenax 3F:2M; E. arbustorum 2F:3M; O. lignaria mix of 4F:1M and 5F:0M), this meant that species and sex ratios were highly correlated, making it impossible to separate their effects. Nonetheless, since female Eristalis flies do not provision their brood, the differences between sexes (e.g., time spent foraging on plants) may be less pronounced than in bees. More

  • in

    Changes in surface water drive the movements of Shoebills

    1.Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674 (2015).Article 

    Google Scholar 
    2.Van Der Graaf, S., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—How plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94, 567–577 (2006).
    Google Scholar 
    3.Shariatinajafabadi, M. et al. Migratory herbivorous waterfowl track satellite-derived green wave index. PLoS ONE 9, 1–11 (2014).Article 
    CAS 

    Google Scholar 
    4.Bennetts, R. E. & Kitchens, W. M. Factors influencing movement probabilities of a nomadic food specialist: Proximate foraging benefits or ultimate gains from exploration?. Oikos 91, 459–467 (2000).Article 

    Google Scholar 
    5.Trierweiler, C. et al. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel. J. Anim. Ecol. 82, 107–120 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Ma, Z., Cai, Y., Li, B. & Chen, J. Managing wetland habitats for waterbirds: An international perspective. Wetlands 30, 15–27 (2010).CAS 
    Article 

    Google Scholar 
    7.Smit, I. P. J. Resources driving landscape-scale distribution patterns of grazers in an African savanna. Ecography (Cop.) 34, 67–74 (2011).Article 

    Google Scholar 
    8.Donnelly, J. P. et al. Synchronizing conservation to seasonal wetland hydrology and waterbird migration in semi-arid landscapes. Ecosphere 10, 1–12 (2019).Article 

    Google Scholar 
    9.Bennitt, E., Bonyongo, M. C. & Harris, S. Habitat selection by African buffalo (Syncerus caffer) in response to landscape-level fluctuations in water availability on two temporal scales. PLoS ONE 9, 1–14 (2014).Article 

    Google Scholar 
    10.Kleyheeg, E. et al. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov. Ecol. 5, 1–14 (2017).Article 

    Google Scholar 
    11.Roshier, D. A., Doerr, V. A. J. & Doerr, E. D. Animal movement in dynamic landscapes: Interaction between behavioural strategies and resource distributions. Oecologia 156, 465–477 (2008).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Henry, D. A. W., Ament, J. M. & Cumming, G. S. Exploring the environmental drivers of waterfowl movement in arid landscapes using first-passage time analysis. Mov. Ecol. 4, 1–18 (2016).Article 

    Google Scholar 
    13.Cook, M. I., Call, E. M., Kobza, R., Mac Hill, S. D. & Saunders, C. J. Seasonal movements of crayfish in a fluctuating wetland: Implications for restoring wading bird populations. Freshw. Biol. 59, 1608–1621 (2014).Article 

    Google Scholar 
    14.Weimerskirch, H. et al. Lifetime foraging patterns of the wandering albatross: Life on the move!. J. Exp. Mar. Bio. Ecol. 450, 68–78 (2014).Article 

    Google Scholar 
    15.Krüger, S., Reid, T. & Amar, A. Differential range use between age classes of southern African bearded vultures Gypaetus barbatus. PLoS ONE 9, e114920 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Wolfson, D. W., Fieberg, J. R. & Andersen, D. E. Juvenile Sandhill Cranes exhibit wider ranging and more exploratory movements than adults during the breeding season. Ibis 162, 556–562 (2019).Article 

    Google Scholar 
    17.Péron, C. & Grémillet, D. Tracking through life stages: Adult, immature and juvenile Autumn migration in a long-lived seabird. PLoS ONE 8, e72713 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Hake, M., Kjellén, N. & Alerstam, T. Age-dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103, 385–396 (2003).Article 

    Google Scholar 
    19.Gschweng, M., Kalko, E. K. V., Querner, U., Fiedler, W. & Berthold, P. All across Africa: Highly individual migration routes of Eleonora’s falcon. Proc. R. Soc. B Biol. Sci. 275, 2887–2896 (2008).Article 

    Google Scholar 
    20.Miller, T. A. et al. Limitations and mechanisms influencing the migratory performance of soaring birds. Ibis 158, 116–134 (2016).Article 

    Google Scholar 
    21.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Howison, R. A., Piersma, T., Kentie, R., Hooijmeijer, J. C. E. W. & Olff, H. Quantifying landscape-level land-use intensity patterns through radar-based remote sensing. J. Appl. Ecol. 55, 1276–1287 (2018).Article 

    Google Scholar 
    25.Wang, X. et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nat. Commun. 10, 2187 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.McFeeters, S. K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996).ADS 
    Article 

    Google Scholar 
    27.Mcfeeters, S. K. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 5, 3544–3561 (2013).ADS 
    Article 

    Google Scholar 
    28.Yang, X., Zhao, S., Qin, X., Zhao, N. & Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI Imagery at 10m resolution via NDWI-based image sharpening. Remote Sens. 9, 1–19 (2017).ADS 

    Google Scholar 
    29.Choi, C. Y. et al. Where to draw the line? Using movement data to inform protected area design and conserve mobile species. Biol. Conserv. 234, 64–71 (2019).Article 

    Google Scholar 
    30.Guillet, A. Distribution and conservation of the shoebill (Balaeniceps rex) in the southern Sudan. Biol. Conserv. 13, 39–49 (1978).Article 

    Google Scholar 
    31.BirdLife International. Species factsheet: Balaeniceps rex. https://www.birdlife.org. Accessed on Apr 14, 2020 (2020).32.Dodman, T. International single species plan for the conservation of the Shoebill Balaeniceps rex. AEWA Technical Series 51 (2013).33.Guillet, A. Aspects of the foraging behaviour of the shoebill. Ostritch J. Afr. Ornithol. 50, 252–255 (1979).Article 

    Google Scholar 
    34.Mullers, R. H. E. & Amar, A. Shoebill Balaeniceps rex foraging behaviour in the Bangweulu Wetlands, Zambia. Ostritch J. Afr. Ornithol. 86, 113–118 (2015).Article 

    Google Scholar 
    35.Roxburgh, L. & Buchanan, G. M. Revising estimates of the Shoebill (Balaeniceps rex) population size in the Bangweulu Swamp, Zambia, through a combination of aerial surveys and habitat suitability modelling. Ostrich J. Afr. Ornithol. 81, 25–30 (2010).Article 

    Google Scholar 
    36.John, J. R. M., Nahonyo, C. L., Lee, W. S. & Msuya, C. A. Observations on nesting of Shoebill Balaeniceps rex and Wattled Crane Bugeranus carunculatus in Malagari wetlands, western Tanzania. Afr. J. Ecol. 51, 184–187 (2013).Article 

    Google Scholar 
    37.Mullers, R. H. E. & Amar, A. Parental nesting behavior, chick growth and breeding success of Shoebills (Balaeniceps rex) in the Bangweulu Wetlands, Zambia. Waterbirds 38, 1–9 (2015).Article 

    Google Scholar 
    38.Elliott, A., Garcia, E. F. J. & Boesman, P. Shoebill (Balaeniceps rex). in Handbook of the Birds of the World (eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E.) (Lynx Edicions, 2020).39.African Parks. African Parks: Unlocking the value of protected areas. African Parks Annual Report 2018. (2018).40.Möller, W. Beobachtungen zum Nahrungserwerb des Schuhschnabels (Balaeniceps rex). J. Ornithol. 123, 19–28 (1982).Article 

    Google Scholar 
    41.Christensen, K. D., Falk, K., Jensen, F. P. & Petersen, B. S. Abdim’s Stork Ciconia abdimii in Niger: Population size, breeding ecology and home range. Ostritch J. Afr. Ornithol. 79, 177–185 (2008).Article 

    Google Scholar 
    42.McCann, K. I. & Benn, G. A. Land use patterns within Wattled Crane (Bugeranus carunculatus) home ranges in an agricultural landscape in KwaZulu-Natal, South Africa. Ostritch J. Afr. Ornithol. 77, 186–194 (2006).Article 

    Google Scholar 
    43.El-Hacen, E.-H.M., Overdijk, O., Lok, T., Olff, H. & Piersma, T. Home Range, habitat selection, and foraging rhythm in Mauritanian Spoonbills (Platalea leucorodia balsaci): A satellite tracking study. Waterbirds 36, 277–286 (2013).Article 

    Google Scholar 
    44.King, D. T. et al. Winter and summer home ranges of American White Pelicans (Pelecanus erythrorhynchos) captured at loafing sites in the Southeastern United States. Waterbirds 39, 287–294 (2016).Article 

    Google Scholar 
    45.Shaw, A. K. Drivers of animal migration and implications in changing environments. Evol. Ecol. 30, 991–1007 (2016).Article 

    Google Scholar 
    46.Folmer, E. O., Olff, H. & Piersma, T. The spatial distribution of flocking foragers: Disentangling the effects of food availability, interference and conspecific attraction by means of spatial autoregressive modeling. Oikos 121, 551–561 (2012).Article 

    Google Scholar 
    47.Folmer, E. O. & Piersma, T. The contributions of resource availability and social forces to foraging distributions: A spatial lag modelling approach. Anim. Behav. 84, 1371–1380 (2012).Article 

    Google Scholar 
    48.Mendez, L. & Weimerskirch, H. Ontogeny of foraging behaviour in juvenile red-footed boobies (Sula sula). Sci. Rep. 7, 13886 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Patrick, S. C. & Weimerskirch, H. Consistency pays: Sex differences and fitness consequences of behavioural specialization in a wide-ranging seabird. Biol. Lett. 10, 20140630 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Patrick, S. C. & Weimerskirch, H. Personality, foraging and fitness consequences in a long lived seabird. PLoS ONE 9, e87269 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Doherty, T. S. & Driscoll, D. A. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. B Biol. Sci. 285, 20172272 (2018).Article 

    Google Scholar 
    52.Riotte-lambert, L. & Weimerskirch, H. Do naive juvenile seabirds forage differently from adults?. Proc. R. Soc. B Biol. Sci. 280, 20131434 (2013).Article 

    Google Scholar 
    53.Buxton, L., Slater, J. & Brown, L. The breeding behaviour of the shoebill or whale-headed stork Balaeniceps rex in the Bangweulu Swamps, Zambia. Afr. J. Ecol. 16, 201–220 (1978).Article 

    Google Scholar 
    54.Roshier, D. A., Robertson, A. I. & Kingsford, R. T. Responses of waterbirds to flooding in an arid region of Australia and implications for conservation. Biol. Conserv. 106, 399–411 (2002).Article 

    Google Scholar 
    55.Chevallier, D. et al. Human activity and the drying up of rivers determine abundance and spatial distribution of Black Storks Ciconia nigra on their wintering grounds determine abundance and spatial distribution of Black Storks Ciconia nigra on their wintering grounds. Bird Study 3657, 369–380 (2010).Article 

    Google Scholar 
    56.Ng’onga, M., Kalaba, F. K., Mwitwa, J. & Nyimbiri, B. The interactive effects of rainfall, temperature and water level on fish yield in Lake Bangweulu fishery, Zambia. J. Therm. Biol. 84, 45–52 (2019).57.Grissac, S. D., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: Behavioral responses of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Bolduc, F. & Afton, A. D. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds. Waterbirds 27, 333–341 (2004).Article 

    Google Scholar 
    59.Ratcliffe, C. The fishery of the Lower Shire River area. Malawy Fisheries Bulletin No. 3. Fisheries Department, Malawi (1972).60.Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006).ADS 
    Article 

    Google Scholar 
    61.Tian, S., Zhang, X., Tian, J. & Sun, Q. Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjuang, China. Remote Sens. 8, 1–14 (2016).CAS 

    Google Scholar 
    62.Kamweneshe, B. M. Ecology, Conservation and Management of the Black Lechwe (Kobus leche smithemani) in the Bangweulu Basin, Zambia. University of Pretoria (2000).63.BirdLife International. Important Bird Areas Factsheet: Bangweulu Swamps. https://www.birdlife.org. Accessed on Oct 14, 2020 (2020).64.Thurlow, J., Zhu, T. & Diao, X. The impact of climate variability and change on economic growth and poverty in Zambia. International Food Policy Research Institute (2009).65.Evans, D. W. Lake Bangweulu: A study of the complex and fishery. Fisheries Service Reports, Zambia (1978).66.Kolding, J. & van Zwieten, P. A. M. Relative lake level fluctuations and their influence on productivity and resilience in tropical lakes and reservoirs. Fish. Res. 115–116, 99–109 (2012).Article 

    Google Scholar 
    67.Howard, G. W. & Aspinwall, D. R. Aerial censuses of Shoebills, Saddlebilled Storks and Wattled Cranes at the Bangweulu Swamps and Kafue Flats, Zambia. Ostrich J. Afr. Ornithol. 55, 207–212 (1984).Article 

    Google Scholar 
    68.Microwave Telemetry. Microwave Telemetry Solar Argos/GPS 70g PTT. https://www.microwavetelemetry.com/. Accessed on Oct 14, 2020 (2020).69.Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).Article 

    Google Scholar 
    70.Hijmans, R. J. geosphere: Spherical trignometry. https://cran.r-project.org/package=geosphere (2019).71.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/ (2019).72.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. https://cran.r-project.org/package=sp (2005).73.Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied Spatial Data Analysis with R. (Springer, 2013).74.E. Vermote. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD09A1.006 (2015).75.Hijmans, R. J. raster: Geographic data analysis and modeling. https://cran.r-project.org/package=raster (2019).76.Bivand, R. S., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘geospatial’ abstraction library. https://cran.r-project.org/package=rgdal (2019).77.Bivand, R. S. & Rundel, C. rgeos: Interface to geometry engine – Open source (GEOS). https://cran.r-project.org/package=rgeos (2019).78.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    79.Barton, K. MuMIn: Multi-Model Inference. https://cran.r-project.org/package=MuMIn (2019). More

  • in

    Quality of heavy metal-contaminated soil before and after column flushing with washing agents derived from municipal sewage sludge

    Residual HMs in the flushed soil and their mobilityOne of the aims of soil remediation is a permanent and substantial reduction in the amount, toxicity or mobility of pollutants. In this study, many factors affected HM removal, such as the type of WA, the flow rate of the WA and the type of HM. In general, the residual HM contents in soil flushed at a flow rate of 1.0 ml/min. were significantly lower than those in soil flushed at 0.5 ml/min (p  More

  • in

    Ecological plasticity to ions concentration determines genetic response and dominance of Anopheles coluzzii larvae in urban coastal habitats of Central Africa

    1.Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 79, 460–487 (2006).ADS 
    Article 

    Google Scholar 
    2.Thomas, W. L. Man’s role in changing the face of the earth. (The University of Chicago, 1956).3.Johnson, M. T. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Dubois, J. & Cheptou, P.-O. Effects of fragmentation on plant adaptation to urban environments. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160038 (2017).Article 

    Google Scholar 
    5.Cavia, R., Cueto, G. R. & Suárez, O. V. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc. Urban Plan. 90, 11–19 (2009).Article 

    Google Scholar 
    6.Jackson, J. A. Ivory-billed Woodpecker (Campephilus principalis): Hope, and the interfaces of science, conservation, and politics. Auk 123, 1–15 (2006).Article 

    Google Scholar 
    7.McIntyre, N. E. Ecology of urban arthropods: a review and a call to action. Ann. Entomol. Soc. Am. 93, 825–835 (2000).Article 

    Google Scholar 
    8.Crispo, E., Moore, J. S., Lee-Yaw, J. A., Gray, S. M. & Haller, B. C. Broken barriers: Human-induced changes to gene flow and introgression in animals: An examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity. BioEssays 33, 508–518 (2011).PubMed 
    Article 

    Google Scholar 
    9.Triteeraprapab, S. et al. Transmission of the nocturnal periodic strain of Wuchereria bancrofti by Culex quinquefasciatus: establishing the potential for urban filariasis in Thailand. Epidemiol. Infect. 125, 207–212 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Carrieri, M., Bacchi, M., Bellini, R. & Maini, S. On the competition occurring between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy. Environ. Entomol. 32, 1313–1321 (2003).Article 

    Google Scholar 
    11.Doby, J. & Mouchet, J. Écologie larvaire de quelques espèces de Culicidés dans la région de Yaoundé (Sud-Cameroun). Bulletin de la Société de Pathologie Exotique 50, 945–957 (1957).CAS 

    Google Scholar 
    12.Delatte, H. et al. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à la Réunion: biologie et contrôle. Parasite 15, 3–13 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Vazeille, M., Moutailler, S., Pages, F., Jarjaval, F. & Failloux, A. B. Introduction of Aedes albopictus in Gabon: what consequences for dengue and chikungunya transmission?. Tropical Med. Int. Health 13, 1176–1179 (2008).Article 

    Google Scholar 
    14.United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). (New York, United Nations, 2019).15.Trape, J. F.  L’impact de l’urbanisation sur le paludisme en Afrique centrale. Doctoral dissertation, Université Paris 11 (1986).16.Robert, V. et al. Malaria transmission in urban sub-Saharan Africa. Am. J. Trop. Med. Hyg. 68, 169–176 (2003).PubMed 
    Article 

    Google Scholar 
    17.Hay, S. I., Guerra, C. A., Tatem, A. J., Noor, A. M. & Snow, R. W. The global distribution and population at risk of malaria: past, present, and future. Lancet. Infect. Dis 4, 327–336 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Keiser, J. et al. Urbanization in sub-saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 71, 118–127 (2004).PubMed 
    Article 

    Google Scholar 
    19.Hay, S. I., Guerra, C. A., Tatem, A. J., Atkinson, P. M. & Snow, R. W. Urbanization, malaria transmission and disease burden in Africa. Nat. Rev. Microbiol. 3, 81 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Mourou, J.-R. et al. Malaria transmission and insecticide resistance of Anopheles gambiae in Libreville and Port-Gentil, Gabon. Malaria J. 9, 1475–2875 (2010).Article 

    Google Scholar 
    21.Ndo, C., Menze-Djantio, B. & Antonio-Nkondjio, C. Awareness, attitudes and prevention of malaria in the cities of Douala and Yaoundé (Cameroon). Parasit. Vectors 4, 181 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Kamdem, C. et al. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PloS One 7, e39453 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Akogbeto, M., Chippaux, J.-P. & Coluzzi, M. . Le. paludisme urbain côtier à Cotonou (République du Bénin). Étude entomologique. Revue d’Epidémiologie Santé Publique 40, 233–239 (1992).CAS 

    Google Scholar 
    24.Awolola, T., Oduola, A., Obansa, J., Chukwurar, N. & Unyimadu, J. Anopheles gambiae ss breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J. Vect. Borne Diseas. 44, 241 (2007).25.Ravoahangimalala, R., Randrianambinintsoa, E., Tchuinkam, T. & Robert, V. Malaria in the urban highland area of Antananarivo, Madagascar: bioecology of Anopheles arabiensis. Bull. Soc. Pathol. Exot. 101, 348 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Labbo, R. et al. Ecology of urban malaria vectors in Niamey, Republic of Niger. Malaria J. 15, 314 (2016).Article 

    Google Scholar 
    27.Klinkenberg, E. et al. Malaria and irrigated crops, Accra, Ghana. Emerg. Infect. Dis. 11, 1290 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Baudon, D. & Spiegel, A. Paludisme urbain, paludisme de demain pour l’Afrique sub-saharienne. Bull. Soc. Pathol. Exot. 96, 3–155 (2003).
    Google Scholar 
    29.Carme, B. Reducing the risk of malaria acquisition by urban dwellers of sub-Saharan Africa during travel in malaria-endemic areas. J. Infect. Dis. 170, 257–258 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Silva, P. M. & Marshall, J. M. Factors contributing to urban malaria transmission in sub-Saharan Africa: a systematic review. J. Trop. Med. https://doi.org/10.1155/2012/819563 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Bouyou-Akotet, M. K. et al. Falciparum malaria as an emerging cause of fever in adults living in Gabon, Central Africa. BioMed. Res. Internat. (2014).32.Coetzee, M. et al. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619, 246–274 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Fontaine, M. C. et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    34.Tene, F. B. et al. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evolut. Appl. 7 (2015).35.Mourou, J.-R. et al. Malaria transmission in Libreville: results of a one year survey. Malar. J. 11, 40 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Trape, J.-F. et al. Malaria morbidity among children exposed to low seasonal transmission in Dakar, Senegal and its implications for malaria control in tropical Africa. Am. J. Trop. Med. Hyg. 48, 748–756 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Dukeen, M. Y. & Omer, S. Ecology of the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae) by the Nile in northern Sudan. Bull. Entomol. Res. 76, 451–467 (1986).Article 

    Google Scholar 
    38.Robert, V., Awono-Ambene, H. & Thioulouse, J. Ecology of larval mosquitoes, with special reference to Anopheles arabiensis (Diptera: Culcidae) in market-garden wells in urban Dakar, Senegal. J. Med. Entomol. 35, 948–955 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Takken, W. & Lindsay, S. Increased threat of urban malaria from Anopheles stephensi mosquitoes, Africa. Emerg. Infect. Dis. 25, 1431 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Seyfarth, M., Khaireh, B. A., Abdi, A. A., Bouh, S. M. & Faulde, M. K. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established—malaria emerging. Parasitol. Res. 118, 725–732 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Sinka, M. et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proceedi. Nat. Acad. Sci. 117 (2020).42.Tene, B. et al. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 13, 1 (2013).Article 

    Google Scholar 
    43.Akpodiete, N. O. & Tripet, F. Laboratory and microcosm experiments reveal contrasted adaptive responses to ammonia and water mineralisation in aquatic stages of the sibling species Anopheles gambiae (sensu stricto) and Anopheles coluzzii. Parasit. Vectors 14, 1–19 (2021).Article 
    CAS 

    Google Scholar 
    44.Udo , W., In Su, C. & Eva-Maria, D. (ed Environmental Protection Agency) (2009).45.Huff, L., Delos, C., Gallagher, K. & Beaman, J. Aquatic life ambient water quality criteria for ammonia-freshwater. Washington DC: US Environmental Protection Agency (2013).46.Antonio-Nkondjio, C. et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde(Cameroon): influence of urban agriculture and pollution. Malar. J. 10, 154–154 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Djouaka, R. F. et al. Does the spillage of petroleum products in Anopheles breeding sites have an impact on the pyrethroid resistance?. Malar. J. 6, 159 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Tene Fossog, B. et al. Water quality and Anopheles gambiae larval tolerance to pyrethroids in the cities of Douala and Yaounde (Cameroon). J. Trop. Med. 2012 (2012).49.Ossè, R., Bangana, S., Aïkpon, R., Kintonou, J. & Sagbohan, H. Adaptation of Anopheles coluzzii Larvae to polluted breeding Sites in Cotonou: a strengthening in Urban Malaria transmission in Benin. Vector Biology Journal 6, 2 (2019).
    Google Scholar 
    50.Cassone, B. J. et al. Gene expression divergence between malaria vector sibling species Anopheles gambiae and Anopheles coluzzii from rural and urban Yaounde Cameroon. Mol. Ecol. 23, 2242–2259 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Kamdem, C., Fouet, C., Gamez, S. & White, B. J. Pollutants and insecticides drive local adaptation in African malaria mosquitoes. Mol. Biol. Evol. 34, 1261–1275 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Kengne, P., Charmantier, G., Blondeau-Bidet, E., Costantini, C. & Ayala, D. Tolerance of disease-vector mosquitoes to brackish water and their osmoregulatory ability. Ecosphere 10, e02783. https://doi.org/10.1002/ecs2.2783 (2019).Article 

    Google Scholar 
    53.Peres-Neto, P. R., Jackson, D. A. & Somers, K. M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 49, 974–997 (2005).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    54.Panagopoulos, G., Lambrakis, N., Tsolis-Katagas, P. & Papoulis, D. Cation exchange processes and human activities in unconfined aquifers. Environ. Geol. 46, 542–552 (2004).CAS 
    Article 

    Google Scholar 
    55.Elhatip, H., Afşin, M., Dirik, K., Kurmaç, Y. & Kavurmacı, M. Influences of human activities and agriculture on groundwater quality of Kayseri-Incesu-Dokuzpınar springs, central Anatolian part of Turkey. Environ. Geol. 44, 490–494 (2003).CAS 
    Article 

    Google Scholar 
    56.Azedine, H., Lynda, C. & Younes, S. Wastewater discharge impact on groundwater quality of Béchar city, southwestern Algeria: an anthropogenic activities mapping approach. Procedia Eng. 33, 242–247 (2012).Article 
    CAS 

    Google Scholar 
    57.Hamon, J., Burnett, G., Adam, J.-P., Rickenbach, A. & Grjébine, A. Culex pipiens fatigans Wiedemann, Wuchereria bancrofti Cobbold, et le développement économique de l’Afrique tropicale. Bull. World Health Organ. 37, 217 (1967).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Subra, R. Biology and control of Culex pipiens quinquefasciatus* Say, 1823 (Diptera, Culicidae) with special reference to Africa. Int. J. Trop. Insect Sci. 1, 319–338 (1981).CAS 
    Article 

    Google Scholar 
    59.Brengues, J. Culex pipiens fatigans Wiedemann, en Afrique tropicale: son importance et son contrôle. Med. Trop. 38, 691–694 (1978).CAS 

    Google Scholar 
    60.Fanello, C., Santolamazza, F. & Della, T. A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med. Vet. Entomol. 16, 461–464 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Cangelosi, R. & Goriely, A. Component retention in principal component analysis with application to cDNA microarray data. Biol. Direct 2, 2 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Edi, C. V. et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PloS Genet. 10, e1004236 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Djouaka, R. F. et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae ss from Southern Benin and Nigeria. BMC Genom. 9, 538 (2008).Article 
    CAS 

    Google Scholar 
    64.Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. 113, 9268–9273 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Mueller, P. et al. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol. Ecol. 17, 1145–1155 (2008).Article 
    CAS 

    Google Scholar 
    66.Larsen, E. H. et al. Osmoregulation and excretion. Compr. Physiol. 4, 405–573 (2011).
    Google Scholar 
    67.Lin, L.-Y., Horng, J.-L., Kunkel, J. G. & Hwang, P.-P. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am. J. Physiol. Cell Physiol. 290, C371–C378 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Mantel, L. H. & Farmer, L. L. Osmotic and ionic regulation. Internal Anatomy Physiol. Regul. 5, 53–161 (1983).Article 

    Google Scholar 
    69.Furriel, R., McNamara, J. & Leone, F. Characterization of (Na+, K+)-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comput. Biochem. Physiol. B: Biochem. Mol. Biol. 126, 303–315 (2000).CAS 
    Article 

    Google Scholar 
    70.Chiu, T.-L., Wen, Z., Rupasinghe, S. G. & Schuler, M. A. Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc. Natl. Acad. Sci. 105, 8855–8860 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Antonio-Nkondjio, C. et al. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malaria J. 15, 424 (2016).Article 
    CAS 

    Google Scholar 
    72.David, J.-P., Ismail, H. M., Chandor-Proust, A. & Paine, M. J. I. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Phil. Trans. R. Soc. B 368, 20120429 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Müller, P. et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PloS Genet. 4, e1000286 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Mitchell, S. N. et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc. Natl. Acad. Sci. 109, 6147–6152 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Irving, H., Riveron, J., Ibrahim, S. S., Lobo, N. & Wondji, C. Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus. Heredity 109, 383 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Rongnoparut, P., Boonsuepsakul, S., Chareonviriyaphap, T. & Thanomsing, N. Cloning of cytochrome P450, CYP6P5, and CYP6AA2 from Anopheles minimus resistant to deltamethrin. J. Vector Ecol. 28, 150–158 (2003).PubMed 

    Google Scholar 
    77.Costantini, C. et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9, 16 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Simard, F. et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 9, 17 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Sattler, M. A. et al. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malaria J. 4, 4 (2005).Article 

    Google Scholar 
    80.Kudom, A. A. Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control. Malar. J. 14, 447 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Etang, J. et al. Anopheles coluzzii larval habitat and insecticide resistance in the island area of Manoka, Cameroon. BMC Infect. Dis. 16, 217 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Mbida, A. M. et al. Nouvel aperçu sur l’écologie larvaire d’Anopheles coluzzii Coetzee et Wilkerson, 2013 dans l’estuaire du Wouri, Littoral-Cameroun. Bulletin de la Société de pathologie exotique 110, 92–101 (2017).Article 

    Google Scholar 
    83.Gimonneau, G. et al. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med. Vet. Entomol. 26, 9–17 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Djamouko-Djonkam, L. et al. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect. Dis. Poverty 8, 84 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Dida, G. O. et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect. Dis. Poverty 7, 2 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.King, S. A. et al. The Role of Detoxification Enzymes in the Adaptation of the Major Malaria Vector Anopheles gambiae (Giles; Diptera: Culicidae) to Polluted Water. J. Med. Entomol. 54, 1674–1683 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Donihue, C. M. & Lambert, M. R. Adaptive evolution in urban ecosystems. Ambio 44, 194–203 (2015).PubMed 
    Article 

    Google Scholar 
    88.Coret, C., Zaugg, R. & Chouin, G. Les villes en Afrique avant 1900. Bilan historiographique et perspectives de recherche. Afriques. Débats, méthodes et terrains d’histoire (2020).89.Ndiath, M. O. et al. Composition and genetics of malaria vector populations in the Central African Republic. Malar. J. 15, 1–10 (2016).Article 

    Google Scholar 
    90.Mattah, P. A. D. et al. Diversity in breeding sites and distribution of Anopheles mosquitoes in selected urban areas of southern Ghana. Parasit. Vectors 10, 1–15 (2017).Article 

    Google Scholar 
    91.Diabaté, A. et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J. Med. Entomol. 42, 548–553 (2005).PubMed 
    Article 

    Google Scholar 
    92.Briones, M. J. I., Ineson, P. & Piearce, T. G. Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Appl. Soil. Ecol. 6, 117–134 (1997).Article 

    Google Scholar 
    93.Szulkin, M., Munshi-South, J. & Charmantier, A. Urban evolutionary biology (Oxford University Press, 2020).Book 

    Google Scholar 
    94.Bradley, T. Physiology of osmoregulation in mosquitoes. Annu. Rev. Entomol. 32, 439–462 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Raabe, W. & Lin, S. Pathophysiology of ammonia intoxication. Exp. Neurol. 87, 519–532 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Ip, Y., Chew, S. & Randall, D. Ammonia toxicity, tolerance, and excretion. Fish Physiol. 20, 109–148 (2001).CAS 
    Article 

    Google Scholar 
    97.Randall, D. J. & Tsui, T. Ammonia toxicity in fish. Mar. Pollut. Bull. 45, 17–23 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Yadouléton, A. et al. The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin. Parasit. Vectors 3, 118 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Girod, R., Orlandi-Pradines, E., Rogier, C. & Pages, F. Malaria transmission and insecticide resistance of Anopheles gambiae (Diptera: Culicidae) in the French military camp of Port-Bouet, Abidjan (Cote d’Ivoire): implications for vector control. J. Med. Entomol. 43, 1082–1087 (2006).PubMed 

    Google Scholar 
    100.Cuamba, N., Choi, K. S. & Townson, H. Malaria vectors in Angola: distribution of species and molecular forms of the Anopheles gambiae complex, their pyrethroid insecticide knockdown resistance (kdr) status and Plasmodium falciparum sporozoite rates. Malar. J. 5, 2 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    101.Jones, C. M. et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit. Vectors 5, 1–9 (2012).Article 
    CAS 

    Google Scholar 
    102.Pagès, F. et al. Malaria transmission in Dakar: a two-year survey. Malar. J. 7, 178 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Tropica 101, 207–216 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Antonio-Nkondjio, C. et al. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon. BMC Infect. Dis. 12, 275 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Calhoun, L. M. et al. Combined sewage overflows (CSO) are major urban breeding sites for Culex quinquefasciatus in Atlanta, Georgia. Am. J. Trop. Med. Hyg. 77, 478–484 (2007).PubMed 
    Article 

    Google Scholar 
    107.Lines, J., Harpham, T., Leake, C. & Schofield, C. Trends, priorities and policy directions in the control of vector-borne diseases in urban environments. Health Policy Plan. 9, 113–129 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Adje, D. D. et al. Étude de la pollution organique de la rivière Okedama dans la Commune de Parakou. Afrique Sci. 15, 299–305 (2019).
    Google Scholar 
    109.Mpakam, H. et al. Etude des facteurs de pollution des ressources en eau en milieu urbain: cas de Bafoussam (Ouest-Cameroun). Actes du colloque international sur le thème” changements climatiques et évaluation environnementale”, de Niamey (Niger) (2009).110.Adams, N. & Bealing, D. Organic pollution: biochemical oxygen demand and ammonia. Handbook of Ecotoxicology, 728–749 (1997).111.Mireji, P. O. et al. Heavy metals in mosquito larval habitats in urban Kisumu and Malindi, Kenya, and their impact. Ecotoxicol. Environ. Saf. 70, 147–153 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    112.White, B. J. et al. Dose and developmental responses of Anopheles merus larvae to salinity. J. Exp. Biol. 216, 3433–3441 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Zhao, G.-D. et al. Transcription profiling of eight cytochrome P450s potentially involved in xenobiotic metabolism in the silkworm, Bombyx mori. Pesticide Biochem. Physiol. 100, 251–255 (2011).CAS 
    Article 

    Google Scholar 
    114.Oliver, S. V. & Brooke, B. D. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PloS One 13, e0192551 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    115.Nkya, T. E. et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit. Vectors 7, 1–12 (2014).Article 
    CAS 

    Google Scholar 
    116.David, J.-P., Ismail, H. M., Chandor-Proust, A. & Paine, M. J. I. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120429 (2013).Article 
    CAS 

    Google Scholar 
    117.Wondji, C. S. et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res. 19, 452–459 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Vontas, J., Katsavou, E. & Mavridis, K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. Pesticide Biochem. Physiol. 69, 104666 (2020).Article 
    CAS 

    Google Scholar 
    119.Patrick, M. L., Aimanova, K., Sanders, H. R. & Gill, S. S. P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J. Exp. Biol. 209, 4638–4651 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    120.White, B. J., Collins, F. H. & Besansky, N. J. Evolution of Anopheles gambiae in Relation to Humans and Malaria. Annual Review of Ecology, Evolution, and Systematics 42 (2011).121.Dabiré, K. et al. Occurrence of natural Anopheles arabiensis swarms in an urban area of Bobo-Dioulasso city, Burkina Faso, West Africa. Acta Tropica 132, S35–S41 (2014).PubMed 
    Article 

    Google Scholar 
    122.Service, M. W. Mosquito ecology field sampling methods. 2nd edn, (Elsevier Applied Science, 1993).123.Bass, C. et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar. J. 6, 1–14 (2007).Article 
    CAS 

    Google Scholar 
    124.Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Tene F. B. et al. Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PloS one 8 (2013).126.Nsango, S. E. et al. AP-1/Fos-TGase2 axis mediates wounding-induced Plasmodium falciparum killing in Anopheles gambiae. J. Biolog. Chem. 288 (2013).127.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Statis. Software 22 (2007).128.Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015).129.Bartlett, M. S. Properties of sufficiency and statistical tests. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 160, 268–282 (1937).ADS 
    MATH 

    Google Scholar 
    130.Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    131.Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet 
    Article 

    Google Scholar 
    132.Schloerke, B., Crowley, J., Cook, D., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Larmarange, J. GGally: extension to ‘ggplot2’. R package version 1.4. 0. R Foundation for Statistical Computing. (2018). More

  • in

    Agrochemicals interact synergistically to increase bee mortality

    1.Holden, C. Report warns of looming pollination crisis in North America. Science 314, 397 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Siviter, H., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561, 109–112 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Vanbergen, A. J. & The Insect Pollinators Initiative. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).Article 

    Google Scholar 
    9.EFSA. Bee health. https://www.efsa.europa.eu/en/topics/topic/bee-health (2019).10.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 8, e70182 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Siviter, H., Folly, A. J., Brown, M. J. F. & Leadbeater, E. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proc. R. Soc. B 287, 20200935 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Retschnig, G. et al. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment. Environ. Microbiol. 17, 4322–4331 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. A. & Paxton, R. J. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).ADS 
    Article 

    Google Scholar 
    18.Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl Acad. Sci. USA 110, 18466–18471 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Collison, E., Hird, H., Cresswell, J. & Tyler, C. Interactive effects of pesticide exposure and pathogen infection on bee health – a critical analysis. Biol. Rev. Camb. Philos. Soc. 91, 1006–1019 (2016).PubMed 
    Article 

    Google Scholar 
    20.Tsvetkov, N. et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356, 1395–1397 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Carnesecchi, E. et al. Investigating combined toxicity of binary mixtures in bees: meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. Environ. Int. 133 (Pt B), 105256 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob. Change Biol. 22, 180–189 (2016).ADS 
    Article 

    Google Scholar 
    23.Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Ascher, J. S. & Pickering, J. Discover life: bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). https://www.discoverlife.org/mp/20q?guide=Apoidea_species&flags=HAS (2012).25.Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Schmid-Hempel, P. Evolutionary Parasitology (Oxford Univ. Press, 2011).27.Sánchez-Bayo, F. et al. Are bee diseases linked to pesticides? — A brief review. Environ. Int. 89–90, 7–11 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Büchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect Physiol. 86, 40–47 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Cedergreen, N. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 9, e96580 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Carvell, C. et al. Declines in forage availability for bumblebees at a national scale. Biol. Conserv. 132, 481–489 (2006).Article 

    Google Scholar 
    33.Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ovaskainen, O. et al. Community-level phenological response to climate change. Proc. Natl Acad. Sci. USA 110, 13434–13439 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547–549 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Siviter, H. & Muth, F. Do novel insecticides pose a threat to beneficial insects? Proc. R. Soc. B 287, 20201265 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Topping, C. J., Aldrich, A. & Berny, P. Overhaul environmental risk assessment for pesticides. Science 367, 360–363 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Sgolastra, F. et al. Bees and pesticide regulation: lessons from the neonicotinoid experience. Biol. Conserv. 241, 108356 (2020).Article 

    Google Scholar 
    39.Mullin, C. A. Effects of ‘inactive’ ingredients on bees. Curr. Opin. Insect Sci. 10, 194–200 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Colin, T., Monchanin, C., Lihoreau, M. & Barron, A. B. Pesticide dosing must be guided by ecological principles. Nat. Ecol. Evol. 4, 1575–1577 (2020).PubMed 
    Article 

    Google Scholar 
    41.Milner, A. M. & Boyd, I. L. Toward pesticidovigilance. Science 357, 1232–1234 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Franklin, E. L. & Raine, N. E. Moving beyond honeybee-centric pesticide risk assessments to protect all pollinators. Nat. Ecol. Evol. 3, 1373–1375 (2019PubMed 
    Article 

    Google Scholar 
    43.Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 177 (2019).Article 

    Google Scholar 
    44.OECD. Test No. 245: Honey Bee (Apis Mellifera L.), Chronic Oral Toxicity Test (10-Day Feeding) (OECD, 2017).45.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    46.Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    47.Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Siviter, H., Koricheva, J., Brown, M. J. F. & Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 55, 2812–2821 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More