1.Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 285, 20180792 (2018).PubMed
PubMed Central
Article
Google Scholar
2.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
3.Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
Google Scholar
4.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
5.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article
Google Scholar
6.Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).PubMed
Article
CAS
PubMed Central
Google Scholar
7.Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18, 1239–1252 (2012).Article
Google Scholar
8.Falaschi, M., Manenti, R., Thuiller, W. & Ficetola, G. F. Continental‐scale determinants of population trends in European amphibians and reptiles. Glob. Change Biol. 25, 3504–3515 (2019).Article
Google Scholar
9.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
10.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed
Article
CAS
Google Scholar
11.Jarzyna, M. A. & Jetz, W. Detecting the multiple facets of biodiversity. Trends Ecol. Evol. 31, 527–538 (2016).PubMed
Article
Google Scholar
12.Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).CAS
PubMed
Article
Google Scholar
13.Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).Article
Google Scholar
14.Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).PubMed
Article
Google Scholar
15.van Strien, A. J., van Swaay, C. A., van Strien-van Liempt, W. T., Poot, M. J. & WallisDeVries, M. F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 234, 116–122 (2019).Article
Google Scholar
16.Jarzyna, M. A. & Jetz, W. Taxonomic and functional diversity change is scale dependent. Nat. Commun. 9, 2565 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
17.Magurran, A. E., Dornelas, M., Moyes, F. & Henderson, P. A. Temporal β diversity—a macroecological perspective. Glob. Ecol. Biogeogr. 28, 1949–1960 (2019).Article
Google Scholar
18.Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).CAS
PubMed
Article
Google Scholar
19.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article
Google Scholar
20.Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).Article
Google Scholar
21.Kondratyeva, A., Grandcolas, P. & Pavoine, S. Reconciling the concepts and measures of diversity, rarity and originality in ecology and evolution. Biol. Rev. 94, 1317–1337 (2019).PubMed
Article
Google Scholar
22.Auffret, A. G. & Thomas, C. D. Synergistic and antagonistic effects of land use and non‐native species on community responses to climate change. Glob. Change Biol. 25, 4303–4314 (2019).Article
Google Scholar
23.WallisDeVries, M. F. & van Swaay, C. A. A nitrogen index to track changes in butterfly species assemblages under nitrogen deposition. Biol. Conserv. 212, 448–453 (2017).Article
Google Scholar
24.Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS
PubMed
Article
Google Scholar
25.Sgardeli, V., Zografou, K. & Halley, J. M. Climate change versus ecological drift: assessing 13 years of turnover in a butterfly community. Basic Appl. Ecol. 17, 283–290 (2016).Article
Google Scholar
26.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2019).Article
CAS
Google Scholar
27.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
28.Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).PubMed
PubMed Central
Article
Google Scholar
29.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).CAS
PubMed
Article
Google Scholar
30.Marta, S. et al. ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna. Sci. Data 6, 195 (2019).PubMed
PubMed Central
Article
Google Scholar
31.Koleff, P., Gaston, K. J. & Lennon, J. T. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article
Google Scholar
32.Legendre, P. A temporal beta‐diversity index to identify sites that have changed in exceptional ways in space–time surveys. Ecol. Evol. 9, 3500–3514 (2019).PubMed
PubMed Central
Article
Google Scholar
33.Suggit, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).Article
Google Scholar
34.Baselga, A., Bonthoux, S. & Balent, G. Temporal beta diversity of bird assemblages in agricultural landscapes: land cover change vs. stochastic processes. PLoS ONE 10, e0127913 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
35.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).
Google Scholar
36.Mason, N. W., de Bello, F., Mouillot, D., Pavoine, S. & Dray, S. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J. Veg. Sci. 24, 794–806 (2013).Article
Google Scholar
37.Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).38.Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).Article
Google Scholar
39.Brunetti, M., Maugeri, M., Monti, F. & Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 26, 345–381 (2006).Article
Google Scholar
40.Terzago, S., von Hardenberg, J., Palazzi, E. & Provenzale, A. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models. Cryosphere 11, 1625–1645 (2017).Article
Google Scholar
41.Beniston, M. et al. The European mountain cryosphere: a review of its current state, trends and future challenges. Cryosphere 12, 759–794 (2018).Article
Google Scholar
42.Wang, J. et al. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11, 528 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with nonstationary climate–fire models. Nat. Commun. 9, 3821 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
44.Jacobson, A. R., Provenzale, A., von Hardenberg, A., Bassano, B. & Festa-Bianchet, M. Climate forcing and density dependence in a mountain ungulate population. Ecology 85, 1598–1610 (2004).Article
Google Scholar
45.Imperio, S., Bionda, R., Viterbi, R. & Provenzale, A. Climate change and human disturbance can lead to local extinction of Alpine rock ptarmigan: new insight from the Western Italian Alps. PLoS ONE 8, e81598 (2013).PubMed
PubMed Central
Article
Google Scholar
46.Hoffmann, S., Beierkuhnlein, C., Field, R., Provenzale, A. & Chiarucci, A. Uniqueness of protected areas for conservation strategies in the European Union. Sci. Rep. 8, 6445 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
47.Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).Article
Google Scholar
48.Queiroz, C., Beilin, R., Folke, C. & Lindborg, R. Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front. Ecol. Environ. 12, 288–296 (2014).Article
Google Scholar
49.Falcucci, A., Maiorano, L. & Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 22, 617–631 (2007).Article
Google Scholar
50.Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Ranganathan, S., Swain, R. B. & Sumpter, D. J. T. The demographic transition and economic growth: implications for development policy. Palgrave Commun. 1, 15033 (2015).Article
Google Scholar
52.Weltzin, J. F. et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience 53, 941–952 (2003).Article
Google Scholar
53.Lacasella, F. et al. From pest data to abundance-based risk maps combining eco-physiological knowledge, weather, and habitat variability. Ecol. Appl. 27, 575–588 (2017).PubMed
Article
Google Scholar
54.Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693 (2016).PubMed
Article
Google Scholar
55.Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).CAS
PubMed
Article
Google Scholar
56.Adams, H. D. et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl Acad. Sci. USA 106, 7063–7066 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).PubMed
PubMed Central
Article
Google Scholar
58.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).PubMed
Article
Google Scholar
59.Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2017).Article
Google Scholar
60.Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).PubMed
Article
Google Scholar
61.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).PubMed
Article
CAS
PubMed Central
Google Scholar
62.Galland, T. et al. Colonization resistance and establishment success along gradients of functional and phylogenetic diversity in experimental plant communities. J. Ecol. 107, 2090–2104 (2019).Article
Google Scholar
63.Lister, A. M. et al. Natural history collections as sources of long-term datasets. Trends Ecol. Evol. 26, 153–154 (2011).PubMed
Article
Google Scholar
64.Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. Lond. B 345, 101–118 (1994).CAS
Article
Google Scholar
65.Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).Article
Google Scholar
66.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 (2019).67.Chazdon, R. L., Colwell, R. K., Denslow, J. S. & Guariguata, M.R. in Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies (eds. Dallmeir, F. & Cominsky, J. A.) 285–309 (Parthenon, 1998).68.Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).Article
Google Scholar
69.van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).Article
Google Scholar
70.Osborn, T. J. & Jones, P. The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth Syst. Sci. Data 6, 61–68 (2014).Article
Google Scholar
71.New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 13, 2217–2238 (2000).Article
Google Scholar
72.Brunetti, M. et al. Projecting north eastern Italy temperature and precipitation secular records onto a high resolution grid. Phys. Chem. Earth. 40, 9–22 (2012).Article
Google Scholar
73.Brunetti, M., Maugeri, M., Nanni, T., Simolo, C. & Spinoni, J. High-resolution temperature climatology for Italy: interpolation method intercomparison. Int. J. Climatol. 34, 1278–1296 (2014).Article
Google Scholar
74.Crespi, A., Brunetti, M., Lentini, G. & Maugeri, M. 1961–1990 high-resolution monthly precipitation climatologies for Italy. Int. J. Climatol. 38, 878–895 (2018).Article
Google Scholar
75.Peterson, T. C. et al. Homogeneity adjustments of in situ atmospheric climate data: a review. Int. J. Climatol. 18, 1493–1517 (1998).Article
Google Scholar
76.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
77.Burnham, K. & Anderson, D. Model Selection and Multi-model Inference (Springer, 2002).78.Blonder, B & Harris, D. J. hypervolume: High dimensional geometry and set operations using kernel density estimation, support vector machines, and convex hulls. R package version 2.0.12 (2019).79.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n‐dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article
Google Scholar
80.Barros, C., Thuiller, W., Georges, D., Boulangeat, I. & Münkemüller, T. N‐dimensional hypervolumes to study stability of complex ecosystems. Ecol. Lett. 19, 729–742 (2016).PubMed
PubMed Central
Article
Google Scholar
81.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed
Article
Google Scholar
82.Botta-Dukát, Z. Cautionary note on calculating standardized effect size (SES) in randomization test. Community Ecol. 19, 77–83 (2018).Article
Google Scholar
83.Signorell, A. et al. DescTools: Tools for descriptive statistics. R package version 0.99.40 (2021).84.Maclean, I. M. D., Suggitt, A. J., Wilson, R. J., Duffy, J. P. & Bennie, J. J. Fine-scale climate change: modelling fine-scale spatial variation in biologically meaningful rates of warming. Glob. Change Biol. 23, 256–268 (2017).Article
Google Scholar
85.Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article
Google Scholar
86.Besag, J., York, J. & Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–59 (1991).Article
Google Scholar
87.Bivand, R. S. & Wong, D. W. Comparing implementations of global and local indicators of spatial association. Test 27, 716–748 (2018).Article
Google Scholar
88.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).Article
Google Scholar
89.Bivand, R. S., Gómez-Rubio, V. & Rue, H. Spatial data analysis with R-INLA with some extensions. J. Stat. Softw. 63, 1–31 (2015).
Google Scholar
90.Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).PubMed
Article
Google Scholar
91.R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).92.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article
Google Scholar More