A new charophyte habitat with a stabilized good ecological potential of mine water
1.Schultze, M., Pokrandt, K.-H. & Hille, W. Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica 40, 148–155 (2010).Article
CAS
Google Scholar
2.Kodir, A., Hartono, D. M., Haeruman, H. & Mansur, I. Integrated post mining landscape for sustainable land use: A case study in South Sumatera, Indonesia. Sustain. Environ. Res. 27(4), 203–213 (2017).CAS
Article
Google Scholar
3.Blanchette, M. L. & Lund, M. A. Pit lakes are a global legacy of mining: An integrated approach to achieving sustainable ecosystems and value for communities. Curr. Opin. Sustain. 23, 28–34 (2016).Article
Google Scholar
4.Manjón, G., Galván, J., Mantero, J., Díaz, I. & García-Tenorio, R. Norm levels in mine pit lakes in south-western Spain. NORM VII, Beijing, China, IAEA Proceedings Series: 277–288 (2015).5.Mantero, J. et al. Pit lakes from Southern Sweden: Natural radioactivity and elementary characterization. Sci. Rep. 10, 13712 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Dolný, A. & Harabiš, F. Underground mining can contribute to freshwater biodiversity conservation: Allogenic succession forms suitable habitats for dragonflies. Biol. Conserv. 145, 109–117 (2012).Article
Google Scholar
7.European Commission. Directive of the European Parliament and of the Council 2000/60/EC Establishing a Framework for Community Action in the Field of Water Policy. Official Journal 2000 L 327/1 (European Commission, 2000).
Google Scholar
8.European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/EC): Guidance Document on Eutrophication Assessment in the Context of European Water Policies (Office for Official Publications of the European Communities, 2009).
Google Scholar
9.Blindow, I., Hargeby, A. & Hilt, S. Facilitation of clear-water conditions in shallow lakes by macrophytes: Differences between charophyte and angiosperm dominance. Hydrobiologia 737, 99–110 (2014).CAS
Article
Google Scholar
10.Conde-Álvarez, R. M., Bañares-España, E., Nieto-Caldera, J. M., Flores-Moya, A. & Figueroa, F. L. Submerged macrophyte biomass distribution in the shallow saline lake Fuente de Piedra (Spain) as function of environmental variables. Anal. Jardín Bot. Madrid 69(1), 119–127 (2012).Article
Google Scholar
11.Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecol. 419, 33 (2018).Article
Google Scholar
12.Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9(1), 16113 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
13.Skrzypczak, A. R. & Napiórkowska-Krzebietke, A. Identification of hydrochemical and hydrobiological properties of mine waters for use in aquaculture. Aquac. Rep. 18, 100460 (2020).Article
Google Scholar
14.Environment Agency. RBC2 Method Statement: Rivers at risk from diffuse source pressures (mines and minewaters). http://www.environmentagency.gov.uk/subjects/waterquality/955573/1001324/1654756/1903912/?version=1&lang=_e (2008).15.Gogacz, M. The analysis of the quality of waters from mining plant open pit brown coal “Belchatow” joint—stock company off the surface waterways. In Mining Workshops from the cycle “Natural hazards in mining”: Symposium Materials: Occasional Session: Problems of Natural Hazards in Brown Coal mining. Bełchatów, June 2–4, 2004. IGSMiE PAN, Cracow, Series: Symposia and Conferences, Vol 62 (ed. Pilecka, E.) 139–151 (Springer, 2004).16.Pękala, A. The mineral character and geomechanical properties of the transitional rocks from the Mesozoic-Neogene Contact Zone in the Bełchatów lignite deposit. J. Sustain. Min. 13(1), 10–14. https://doi.org/10.7424/jsm140103 (2014).Article
Google Scholar
17.Davison, W. Iron and manganese in lakes. Earth Sci. Rev. 34(2), 119–163 (1993).ADS
CAS
Article
Google Scholar
18.Wittkop, C. et al. Controls on iron- and manganese-mineral solubility in ferruginous lakes. Geol. Soc. Am. Abstr. Progr. 49, 6 (2017).
Google Scholar
19.Martyniak, R. & Sołtyk, W. Changes in groundwater chemistry resulting from dewatering lignite deposits Belchatow. Min. Geoeng. 33(2), 307–316 (2009).
Google Scholar
20.Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential, chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances. Official Journal of the Laws of 2019, item 2149.21.Zdechlik, R. & Kania, J. Hydrogeochemical background and distribution of indicator ion concentrations in the region of the Bełchatów lignite deposit. Contemp. Probl. Hydrog. 11(2), 327–334 (2003) (in Polish, with English summary).
Google Scholar
22.Marszelewski, W., Dembowska, E., Napiórkowski, P. & Solarczyk, A. Understanding abiotic and biotic conditions in post-mining pit lakes for efficient management: A case study (Poland). Mine Water Environ. 36, 418–428 (2017).CAS
Article
Google Scholar
23.Sobolev, D., Moore, K. & Morris, A. L. Nutrients and light limitation of phytoplankton biomass in a Turbid Southeastern reservoir. Implic. Water Qual. Southeast Nat. 8(2), 255–266 (2009).Article
Google Scholar
24.Laurenceau-Cornec, E. C. et al. The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: Insights from free drifting sediment trap deployments in naturally iron-fertilized waters near the Kerguelen Plateau. Biogeosciences 12, 1007–1027. https://doi.org/10.5194/bg-12-1007-2015 (2015).ADS
Article
Google Scholar
25.Stottmeister, U. et al. Strategies for remediation of former open cast mining areas in eastern Germany. In Environmental Impacts of Mining Activities: Emphasis on Mitigation and Remediation (ed. Azcue, J. M.) 263–296 (Springer, 1999).Chapter
Google Scholar
26.Søndergaard, M., Larsen, S. E., Johansson, L. S., Lauridsen, T. L. & Jeppesen, E. Ecological classification of lakes: Uncertainty and the influence of year-to-year variability. Ecol. Indic. 61, 248–257 (2016).Article
Google Scholar
27.Napiórkowska-Krzebietke, A. Phytoplankton of artificial ecosystems—an attempt to assess water quality. Arch. Pol. Fish. 22, 81–96 (2014).Article
Google Scholar
28.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article
Google Scholar
29.Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).Article
Google Scholar
30.Bucka, H. & Wilk-Woźniak, E. Pro-and Eukaryotic Algae of Phytoplankton Community in Water Bodies of Southern Poland (IOP PAN, 2007) ((in Polish)).
Google Scholar
31.Siemińska, J. et al. Red list of the algae in Poland. In Red List of Plants and Fungi in Poland (eds Mirek, Z. et al.) 37–52 (W. Szafer Institute of Botany, Polish Academy of Science, 2006).
Google Scholar
32.IUCN Red List of Threatened Species (ver. 2011.1). http://www.iucnredlist.org (2011).33.Krajewski, Ł et al. New data on the distribution and habitat conditions of stoneworts (Characeae) in Poland (2010–2012) including protected areas and lands involved in agri-environmental programmes. Water Environ. Rural Areas T15, Z 2(50), 65–85 (2015) ((in Polish with English summary)).
Google Scholar
34.Urbaniak, J. & Gąbka, M. Polish Charophytes—An Illustrated Guide to Identification (Wydawnictwo Uniwersytetu Wrocławskiego, 2014).
Google Scholar
35.Siong, K. & Asaeda, T. Does calcite encrustation in Chara provide a phosphorus nutrient sink?. J. Environ. Qual. 35, 490–494. https://doi.org/10.2134/jeq2005.0276 (2006).CAS
Article
PubMed
PubMed Central
Google Scholar
36.Asaeda, T., Senavirathna, M. D. H. J., Kaneko, Y. & Rashid, M. H. Effect of calcium and magnesium on the growth and calcite encrustation of Chara fibrosa. Aquat. Bot. 113, 100–106. https://doi.org/10.1016/j.aquabot.2013.11.002 (2014).CAS
Article
Google Scholar
37.Cassanova, M. T. & Brock, M. A. Charophyte occurance, seed banks and establishment in farm dams in New South Wales. Aust. J. Bot. 47, 437–444 (1999).Article
Google Scholar
38.Bueno, N. C. & Bicudo, C. E. M. Biomass and chemical composition of Nitella furcata subsp. mucronata var. mucronata f. oligospira (A. Braun) R. D. Wood (Chlorophyta, Characeae) in the littoral region of Ninféias Pond, São Paulo, Southeast Brazil. Rev. Bras. Bot. 3(3), 499–505 (2008).
Google Scholar
39.Fontanini, D. et al. The phytochelatin synthase from Nitella mucronata (Charophyta) plays a role in the homeostatic control of iron (II)/(III). Plant Physiol. Biochem. 127, 88–96 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Mulderij, G., van Nes, E. & van Donk, E. Macrophyte–phytoplankton interactions: The relative importance of allelopathy versus other factors. Ecol. Model. 204, 85–92 (2007).Article
Google Scholar
41.Blindow, I., Hargeby, A. & Andersson, G. Alternative stable state in shallow lakes: What causes a shift? In The Structuring Role of Submerged Macrophytes in Lakes (eds Jeppesen, E. et al.) 353–360 (Springer, 1998).Chapter
Google Scholar
42.Höhne, L. et al. Environmental determinants of perch (Perca fluviatilis) growth in gravel pit lakes and the relative performance of simple versus complex ecological predictors. Ecol. Freshw. Fish 29, 557–573 (2020).Article
Google Scholar
43.Sabel, M., Eckmann, R., Jeppesen, E., Rösch, R. & Straile, D. Long-term changes in littoral fish community structure and resilience of total catch to reoligotrophication in a large, peri-alpine European lake. Freshw. Biol. 65, 1325–1336 (2020).Article
Google Scholar
44.APHA Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC (1999).45.Utermöhl, H. Guidance on the quantitative analysis of phytoplankton—methods. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1–38 (1958) (in German).
Google Scholar
46.Napiórkowska-Krzebietke, A. & Kobos, J. Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies. Water Res. 104, 532–546 (2016).PubMed
Article
CAS
PubMed Central
Google Scholar
47.Guiry, M. D. & Guiry, G. M. AlgaeBase; World-wide electronic publication. National University of Ireland: Galway, Ireland, 2008. http://www.algaebase.org. Accessed 4 Mar 2021.48.Pełechaty, M. & Pukacz, A. The Key to Determining Characeae Species in Rivers and Lakes. Environmental Protection Inspection (Monitoring Library of the Environment, 2008).
Google Scholar
49.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet
MATH
Article
Google Scholar
50.Pielou, E. C. An Introduction to Mathematical Ecology (Wiley, 1969).MATH
Google Scholar
51.Phillips, G. et al. Water Framework Directive Intercalibration Technical Report: Central Baltic Lake Phytoplankton Ecological Assessment Methods (Publications Office of the European Union, 2014).
Google Scholar
52.Napiórkowska-Krzebietke, A., Chybowski, Ł, Prus, P. & Adamczyk, M. Assessment criteria and ecological classification of Polish lakes and rivers: Limitations and current state. In Polish River Basins and Lakes—Part II Biological Status and Water Management. The Handbook of Environmental Chemistry, Vol. 87 (eds Korzeniewska, E. & Harnisz, M.) 295–325 (Springer, 2020).
Google Scholar
53.Burns, N., McIntosh, J. & Scholes, P. Strategies for Managing the Lakes of the Rotorua District, New Zealand. Lake Reserv. Manag. 21(1), 61–72 (2005).CAS
Article
Google Scholar More