Wet-dry cycles protect surface-colonizing bacteria from major antibiotic classes
1.Or D, Smets BF, Wraith J, Dechesne A, Friedman S. Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review. Adv Water Resour. 2007;30:1505–27.Article
Google Scholar
2.Burkhardt J, Hunsche M. “Breath figures” on leaf surfaces—formation and effects of microscopic leaf wetness. Front plant Sci. 2013;4:422.PubMed
PubMed Central
Article
Google Scholar
3.Wolf AB, Vos M, de Boer W, Kowalchuk GA. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria. PloS One. 2013;8:e83661.PubMed
PubMed Central
Article
CAS
Google Scholar
4.Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–11.CAS
PubMed
PubMed Central
Article
Google Scholar
5.Williams S, Vickers J. The ecology of antibiotic production. Microb Ecol. 1986;12:43–52.CAS
PubMed
Article
PubMed Central
Google Scholar
6.Raaijmakers JM, Weller DM, Thomashow LS. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol. 1997;63:881–7.CAS
PubMed
PubMed Central
Article
Google Scholar
7.Wells JS, Hunter JC, Astle GL, Sherwood JC, Ricca cM, Trejo WH, et al. Distribution of β-lactam and β-lactone producing bacteria in nature. The. J Antibiot. 1982;35:814–21.CAS
Article
Google Scholar
8.Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J. 2014;8:249–56.CAS
PubMed
Article
Google Scholar
9.Vetsigian K, Jajoo R, Kishony R. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol. 2011;9:e1001184.CAS
PubMed
PubMed Central
Article
Google Scholar
10.Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep. 2015;32:956–70.CAS
PubMed
Article
PubMed Central
Google Scholar
11.Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, et al. Antibiotics in agroecosystems: introduction to the special section. J Environ Qual. 2016;45:377–93.CAS
PubMed
Article
PubMed Central
Google Scholar
12.Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–45.CAS
PubMed
Article
PubMed Central
Google Scholar
13.Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int. 2009;35:803–14.CAS
PubMed
Article
PubMed Central
Google Scholar
14.Kelsic ED, Zhao J, Vetsigian K, Kishony R. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature. 2015;521:516–9.CAS
PubMed
PubMed Central
Article
Google Scholar
15.Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science. 2012;337:1228–31.CAS
PubMed
Article
PubMed Central
Google Scholar
16.Schlatter DC, Song Z, Vaz-Jauri P, Kinkel LL. Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. Plos One. 2019;14:e0223779.CAS
PubMed
PubMed Central
Article
Google Scholar
17.Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, Van Wezel GP, et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci. 2015;112:11054–9.CAS
PubMed
PubMed Central
Article
Google Scholar
18.Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320.CAS
PubMed
Article
PubMed Central
Google Scholar
19.Andersson DI, Levin BR. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999;2:489–93.CAS
PubMed
Article
PubMed Central
Google Scholar
20.Handwerger S, Tomasz A. Antibiotic tolerance among clinical isolates of bacteria. Annu Rev Pharmacol Toxicol. 1985;25:349–80.CAS
PubMed
Article
PubMed Central
Google Scholar
21.Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol. 2014;49:91–101.CAS
PubMed
Article
PubMed Central
Google Scholar
22.Wood KB, Cluzel P. Trade-offs between drug toxicity and benefit in the multi-antibiotic resistance system underlie optimal growth of E. coli. BMC Syst Biol. 2012;6:1–11.Article
Google Scholar
23.Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334:982–6.CAS
PubMed
PubMed Central
Article
Google Scholar
24.Meredith HR, Srimani JK, Lee AJ, Lopatkin AJ, You L. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat Chem Biol. 2015;11:182.CAS
PubMed
PubMed Central
Article
Google Scholar
25.Nagarajan R, Boeck LD, Gorman M, Hamill RL, Higgens CE, Hoehn MM, et al. beta.-Lactam antibiotics from Streptomyces. J Am Chem Soc. 1971;93:2308–10.CAS
PubMed
Article
PubMed Central
Google Scholar
26.Imada A, Kitano K, Kintaka K, Muroi M, Asai M. Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature. 1981;289:590–1.CAS
PubMed
Article
PubMed Central
Google Scholar
27.Sykes R, Cimarusti C, Bonner D, Bush K, Floyd D, Georgopapadakou N, et al. Monocyclic β-lactam antibiotics produced by bacteria. Nature. 1981;291:489.CAS
PubMed
Article
PubMed Central
Google Scholar
28.Wells JS, TREJO WH, PRINCIPE PA, Bush K, Georgopapadakou N, Bonner DP, et al. EM5400, a family of monobactam antibiotics produced by Agrobacterium radiobacter. J Antibiot. 1982;35:295–9.CAS
Article
Google Scholar
29.ThaKurIa B, Lahon K. The beta lactam antibiotics as an empirical therapy in a developing country: An update on their current status and recommendations to counter the resistance against them. J Clin Diagn Res. 2013;7:1207.PubMed
PubMed Central
Google Scholar
30.Russ D, Glaser F, Tamar ES, Yelin I, Baym M, Kelsic ED, et al. Escape mutations circumvent a tradeoff between resistance to a beta-lactam and resistance to a beta-lactamase inhibitor. Nat Commun. 2020;11:1–9.Article
CAS
Google Scholar
31.Grinberg M, Orevi T, Steinberg S, Kashtan N. Bacterial survival in microscopic surface wetness. eLife. 2019;8:e48508.CAS
PubMed
PubMed Central
Article
Google Scholar
32.Orevi T, Kashtan N. Life in a droplet: microbial ecology in microscopic surface wetness. Front Microbiol. 2021;12:797.Article
Google Scholar
33.Mauer LJ, Taylor LS. Water-solids interactions: deliquescence. Annu Rev food Sci Technol. 2010;1:41–63.CAS
PubMed
Article
Google Scholar
34.Wise ME, Martin ST, Russell LM, Buseck PR. Water uptake by NaCl particles prior to deliquescence and the phase rule. Aerosol Sci Technol. 2008;42:281–94.CAS
Article
Google Scholar
35.Burkhardt J, Koch K, Kaiser H. Deliquescence of deposited atmospheric particles on leaf surfaces. J Water, Air Soil Pollut: Focus. 2001;1:313–21.CAS
Article
Google Scholar
36.Beattie GA. Water relations in the Interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol. 2011;49:533–55.CAS
PubMed
Article
Google Scholar
37.Davila AF, Hawes I, Ascaso C, Wierzchos J. Salt deliquescence drives photosynthesis in the hyperarid A tacama D esert. Environ Microbiol Rep. 2013;5:583–7.CAS
PubMed
Article
PubMed Central
Google Scholar
38.Dai S, Shin H, Santamarina JC. Formation and development of salt crusts on soil surfaces. Acta Geotechnica. 2016;11:1103–9.Article
Google Scholar
39.Trechsel HR. Moisture control in buildings. ASTM International; West Conshohocken, PA19428-2959, USA; 1994.40.Schwartz-Narbonne H, Donaldson DJ. Water uptake by indoor surface films. Sci Rep. 2019;9:1–10.CAS
Article
Google Scholar
41.Patrick D, Findon G, Miller T. Residual moisture determines the level of touch-contact-associated bacterial transfer following hand washing. Epidemiol Infect. 1997;119:319–25.CAS
PubMed
PubMed Central
Article
Google Scholar
42.Tang IN, Munkelwitz HR. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos Environ Part A Gen Top. 1993;27:467–73.Article
Google Scholar
43.Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed. 2005;44:7520–40.Article
CAS
Google Scholar
44.Tecon R. Bacterial survival: life on a leaf. eLife. 2019;8:e52123.CAS
PubMed
PubMed Central
Article
Google Scholar
45.Vejerano EP, Marr LC. Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface. 2018;15:20170939.PubMed
PubMed Central
Article
CAS
Google Scholar
46.Rubasinghege G, Grassian VH. Role (s) of adsorbed water in the surface chemistry of environmental interfaces. Chem Commun. 2013;49:3071–94.CAS
Article
Google Scholar
47.Campbell TD, Febrian R, McCarthy JT, Kleinschmidt HE, Forsythe JG, Bracher PJ. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat Commun. 2019;10:1–7.Article
CAS
Google Scholar
48.Alsved M, Holm S, Christiansen S, Smidt M, Rosati B, Ling M, et al. Effect of aerosolization and drying on the viability of pseudomonas syringae cells. Front Microbiol. 2018;9:3086.PubMed
PubMed Central
Article
Google Scholar
49.Xie X, Li Y, Zhang T, Fang HH. Bacterial survival in evaporating deposited droplets on a teflon-coated surface. Appl Microbiol Biotechnol. 2006;73:703–12.CAS
PubMed
PubMed Central
Article
Google Scholar
50.Runkel S, Wells HC, Rowley G. Living with stress: a lesson from the enteric pathogen Salmonella enterica. Adv Appl Microbiol. 2013;83:87–144.51.Amaeze N, Akinbobola A, Chukwuemeka V, Abalkhaila A, Ramage G, Kean R, et al. Development of a high throughput and low cost model for the study of semi-dry biofilms. Biofouling. 2020:36:403–15.52.Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. The rate of killing of Escherichia coli byβ-lactam antibiotics is strictly proportional to the rate of bacterial growth. Microbiology. 1986;132:1297–304.CAS
Article
Google Scholar
53.Eng R, Padberg F, Smith S, Tan E, Cherubin C. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrobial Agents Chemother. 1991;35:1824–8.CAS
Article
Google Scholar
54.Lee S, Foley E, Epstein JA. Mode of action of penicillin: I. Bacterial growth and penicillin activity—Staphylococcus aureus FDA. J Bacteriol. 1944;48:393.CAS
PubMed
PubMed Central
Article
Google Scholar
55.Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK, You L, et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat Microbiol. 2019;4:2109–17.56.Yoon H, Park B-Y, Oh M-H, Choi K-H, Yoon Y. Effect of NaCl on heat resistance, antibiotic susceptibility, and Caco-2 cell invasion of Salmonella. BioMed Res Int. 2013;2013:274096.57.Zhu M, Dai X. High salt cross-protects Escherichia coli from antibiotic treatment through increasing efflux pump expression. mSphere 3: e00095-18. mSphere. 2018;3:e00095–18.CAS
PubMed
PubMed Central
Google Scholar
58.Lee AJ, Wang S, Meredith HR, Zhuang B, Dai Z, You L. Robust, linear correlations between growth rates and β-lactam–mediated lysis rates. Proc Natl Acad Sci. 2018;115:4069–74.CAS
PubMed
PubMed Central
Article
Google Scholar
59.Loftin KA, Adams CD, Meyer MT, Surampalli R. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J Environ Qual. 2008;37:378–86.CAS
PubMed
Article
PubMed Central
Google Scholar
60.Thonus IP, Fontijne P, Michel MF. Ampicillin susceptibility and ampicillin-induced killing rate of Escherichia coli. Antimicrobial Agents Chemother. 1982;22:386–90.CAS
Article
Google Scholar
61.Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159:1300–11.CAS
PubMed
PubMed Central
Article
Google Scholar
62.Yao Z, Kahne D, Kishony R. Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell. 2012;48:705–12.CAS
PubMed
PubMed Central
Article
Google Scholar
63.Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol. 2011;65:189–213.CAS
PubMed
PubMed Central
Article
Google Scholar
64.Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée J-Y, et al. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet. 2013;9:e1003144.CAS
PubMed
PubMed Central
Article
Google Scholar
65.Pu Y, Zhao Z, Li Y, Zou J, Ma Q, Zhao Y, et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell. 2016;62:284–94.CAS
PubMed
PubMed Central
Article
Google Scholar
66.Martins D, McKay G, Sampathkumar G, Khakimova M, English AM, Nguyen D. Superoxide dismutase activity confers (p) ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci. 2018;115:9797–802.CAS
PubMed
PubMed Central
Article
Google Scholar
67.Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12:208–14.CAS
PubMed
Article
PubMed Central
Google Scholar
68.Liao X, Ma Y, Daliri EB-M, Koseki S, Wei S, Liu D, et al. Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci Technol. 2020;95:97–106.CAS
Article
Google Scholar
69.Levin-Reisman I, Brauner A, Ronin I, Balaban NQ. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc Natl Acad Sci. 2019;116:14734–9.CAS
PubMed
PubMed Central
Article
Google Scholar
70.Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.CAS
PubMed
Article
Google Scholar More