1.Balcombe, P., Speirs, J. F., Brandon, N. P. & Hawkes, A. D. Methane emissions: choosing the right climate metric and time horizon. Environ. Sci. Process. Impacts 20, 1323–1339 (2018).CAS
PubMed
Article
Google Scholar
2.Nisbet, E. G. et al. Rising atmospheric methane: 2007-2014 growth and isotopic shift. Glob. Biogeochem. Cycles 30, 1356–1370 (2016).CAS
Article
Google Scholar
3.Worden, J. R. et al. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat. Commun. 8, 2227 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
4.Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl Acad. Sci. 116, 2805–2813 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).CAS
Article
Google Scholar
6.Zhu, Y. et al. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nat. Clim. Chang. 10, 685–690 (2020).CAS
Article
Google Scholar
7.Sanches, L. F., Guenet, B., Marinho, C. C., Barros, N. & de Assis Esteves, F. Global regulation of methane emission from natural lakes. Sci. Rep. 9, 255 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
8.Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).CAS
Article
Google Scholar
9.Günthel, M. et al. Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat. Commun. 10, 5497 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
10.Bogard, M. J. et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun. 5, 5350 (2014).CAS
PubMed
Article
Google Scholar
11.Tang, K. W., McGinnis, D. F., Ionescu, D. & Grossart, H.-P. Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ. Sci. Technol. Lett. 3, 227–233 (2016).CAS
Article
Google Scholar
12.Donis, D. et al. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat. Commun. 8, 1661 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
13.Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W. & Tang, K. W. Microbial methane production in oxygenated water column of an oligotrophic lake. Proc. Natl Acad. Sci. 108, 19657–19661 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
14.Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6, eaax5343 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
15.Del Sontro, T., Beaulieu, J. J. & Downing, J. A. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnol. Oceanogr. Lett. 3, 64–75 (2018).Article
CAS
Google Scholar
16.Beaulieu, J. J., DelSontro, T. & Downing, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 10, 1375 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
17.León-Palmero, E., Contreras-Ruiz, A., Sierra, A., Morales-Baquero, R. & Reche, I. Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and to cumulative chlorophyll a in anoxic waters of reservoirs. Biogeosciences 17, 3223–3245 (2020).Article
CAS
Google Scholar
18.Mayr, M. J. et al. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun. Biol. 3, 108 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
19.Schagerl, M. Soda Lakes of East Africa. (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-28622-8.20.Pecoraino, G., D’Alessandro, W. & Inguaggiato, S. The Other Side of the Coin: Geochemistry of Alkaline Lakes in Volcanic Areas. in Advances in Volcanology 219–237 (2015). https://doi.org/10.1007/978-3-642-36833-2_9.21.Kempe, S. & Kazmierczak, J. Soda Lakes. in Encyclopedia of Geobiology (eds. Reitner, J. & Thiel, V.) 824–829 (Springer Netherlands, 2011). https://doi.org/10.1007/978-1-4020-9212-1_191.22.Lunt, M. F. et al. An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmos. Chem. Phys. Discuss. 19, 14721–14740 (2019).CAS
Article
Google Scholar
23.Tollefson, J. Tropical Africa could be a key to solving methane mystery. Nature 566, 165–166 (2019).CAS
PubMed
Article
Google Scholar
24.Zorz, J. K. et al. A shared core microbiome in soda lakes separated by large distances. Nat. Commun. 10, 4230 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
25.Butturini, A. et al. Dissolved organic matter in a tropical saline-alkaline lake of the East African Rift Valley. Water Res. 173, 115532 (2020).CAS
PubMed
Article
Google Scholar
26.Sorokin, D. Y. et al. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol. Ecol. 91, 1–12 (2015).27.Juutinen, S. et al. Methane dynamics in different boreal lake types. Biogeosciences 6, 209–223 (2009).CAS
Article
Google Scholar
28.Encinas Fernández, J., Peeters, F. & Hofmann, H. On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J. Geophys. Res. Biogeosci. 121, 2717–2726 (2016).Article
CAS
Google Scholar
29.Bloom, A. A. et al. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geosci. Model Dev. 10, 2141–2156 (2017).CAS
Article
Google Scholar
30.Vo, T. B. T. et al. Methane emission from rice cultivation in different agro-ecological zones of the Mekong river delta: seasonal patterns and emission factors for baseline water management. Soil Sci. Plant Nutr. 64, 47–58 (2018).CAS
Article
Google Scholar
31.Devol, A. H., Richey, J. E., Forsberg, B. R. & Martinelli, L. A. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. J. Geophys. Res. 95, 16417 (1990).CAS
Article
Google Scholar
32.Sha, C. et al. Methane emissions from freshwater riverine wetlands. Ecol. Eng. 37, 16–24 (2011).Article
Google Scholar
33.Sepulveda-Jauregui, A. et al. Eutrophication exacerbates the impact of climate warming on lake methane emission. Sci. Total Environ. 636, 411–419 (2018).CAS
PubMed
Article
Google Scholar
34.Bastviken, D., Cole, J. J., Pace, M. L. & Van de Bogert, M. C. Fates of methane from different lake habitats: connecting whole-lake budgets and CH 4 emissions. J. Geophys. Res. Biogeosciences 113, 1–13 (2008).Article
CAS
Google Scholar
35.West, W. E., McCarthy, S. M. & Jones, S. E. Phytoplankton lipid content influences freshwater lake methanogenesis. Freshw. Biol. 60, 2261–2269 (2015).CAS
Article
Google Scholar
36.Grasset, C. et al. Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnol. Oceanogr. 63, 1488–1501 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Mopper, K. et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353, 60–62 (1991).CAS
Article
Google Scholar
38.Pacheco, F., Roland, F. & Downing, J. Eutrophication reverses whole-lake carbon budgets. Inl. Waters 4, 41–48 (2014).CAS
Article
Google Scholar
39.Li, S., Bush, R. T., Ward, N. J., Sullivan, L. A. & Dong, F. Air–water CO2 outgassing in the Lower Lakes (Alexandrina and Albert, Australia) following a millennium drought. Sci. Total Environ. 542, 453–468 (2016).CAS
PubMed
Article
Google Scholar
40.Melack, J. M., Kilham, P. & Fisher, T. R. Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake. Oecologia 52, 321–326 (1982).PubMed
Article
Google Scholar
41.Borges, A. V. et al. Variability of Carbon Dioxide and Methane in the Epilimnion of Lake Kivu. in Lake Kivu 47–66 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-4243-7_4.42.Cerling, T. E. Pore water chemistry of an alkaline lake: Lake Turkana, Kenya. in The Limnology, Climatology and Paleoclimatology of the East African Lakes 225–240 (Routledge, 2019). https://doi.org/10.1201/9780203748978-12.43.Hoefs, J. Stable Isotope Geochemistry. Stable Isotope Geochemistry: Sixth Edition (Springer Berlin Heidelberg, 2009). https://doi.org/10.1007/978-3-540-70708-0.44.Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).CAS
PubMed
Article
Google Scholar
45.Orellana, E. et al. Microbiome network analysis of co-occurrence patterns in anaerobic co-digestion of sewage sludge and food waste. Water Sci. Technol. 79, 1956–1965 (2019).CAS
PubMed
Article
Google Scholar
46.Nobu, M. K., Narihiro, T., Kuroda, K., Mei, R. & Liu, W.-T. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Vuillemin, A. et al. Metabolic potential of microbial communities from ferruginous sediments. Environ. Microbiol. 20, 4297–4313 (2018).CAS
PubMed
Article
Google Scholar
48.Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).CAS
PubMed
Article
Google Scholar
49.Appel, J., Phunpruch, S., Steinmüller, K. & Schulz, R. The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch. Microbiol. 173, 333–338 (2000).CAS
PubMed
Article
Google Scholar
50.Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).CAS
PubMed
Article
Google Scholar
51.Xiang, X. et al. Distribution of bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci. Rep. 7, 45028 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
52.McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).CAS
PubMed
Article
Google Scholar
53.McGenity, T. J. & Sorokin, D. Y. Methanogens and methanogenesis in hypersaline environments. in Biogenesis of Hydrocarbons 1–27 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-53114-4_12-1.54.Hug, L. A. et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 22 (2013).PubMed
PubMed Central
Article
Google Scholar
55.Wasmund, K. et al. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. Isme J. 8, 383 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
56.Fazi, S. et al. Microbiomes in soils exposed to naturally high concentrations of CO2 (Bossoleto Mofette Tuscany, Italy). Front. Microbiol. 10, 1–17 (2019).57.Nolla-Ardèvol, V., Strous, M. & Tegetmeyer, H. E. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome. Front. Microbiol. 6, 1–21 (2015).58.Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).CAS
PubMed
Article
Google Scholar
59.Leygeber, M. et al. Analyzing microbial population heterogeneity—expanding the toolbox of microfluidic single-cell cultivations. J. Mol. Biol. 431, 4569–4588 (2019).CAS
PubMed
Article
Google Scholar
60.Klawonn, I., Bonaglia, S., Brüchert, V. & Ploug, H. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. ISME J. 9, 1456–1466 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Romero, L., Camacho, A., Vicente, E. & Miracle, M. R. Sedimentation patterns of photosynthetic bacteria based on pigment markers in meromictic Lake La Cruz (Spain): paleolimnological implications. J. Paleolimnol. 35, 167–177 (2006).Article
Google Scholar
62.Verschuren, D. Influence of depth and mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnol. Oceanogr. 44, 1103–1113 (1999).CAS
Article
Google Scholar
63.MacIntyre, S. & Melack, J. M. Meromixis in an equatorial African soda lake1. Limnol. Oceanogr. 27, 595–609 (1982).CAS
Article
Google Scholar
64.Tassi, F. et al. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy). PLoS One 13, e0193914 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
65.Montegrossi, G., Tassi, F., Vaselli, O., Bidini, E. & Minissale, A. A new, rapid and reliable method for the determination of reduced sulphur (S2−) species in natural water discharges. Appl. Geochem. 21, 849–857 (2006).CAS
Article
Google Scholar
66.Verdouw, H., Van Echteld, C. J. A. & Dekkers, E. M. J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. https://doi.org/10.1016/0043-1354(78)90107-0 (1978).Article
Google Scholar
67.Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).CAS
Article
Google Scholar
68.Herzsprung, P. et al. Differences in DOM of rewetted and natural peatlands—results from high-field FT-ICR-MS and bulk optical parameters. Sci. Total Environ. 586, 770–781 (2017).CAS
PubMed
Article
Google Scholar
69.Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).CAS
Article
Google Scholar
70.Mackenzie, F. T. & Lerman, A. Carbon in the Geobiosphere—Earth’s Outer Shell—. Carbon in the Geobiosphere—Earth’s Outer Shell—25, (Springer Netherlands, 2006).71.Liss, P. S. & Slater, P. G. Flux of gases across the air-sea interface. Nature 247, 181–184 (1974).CAS
Article
Google Scholar
72.Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).Article
Google Scholar
73.Crusius, J. & Wanninkhof, R. Gas transfer velocities measured at low wind speed over a lake. Limnol. Oceanogr. 48, 1010–1017 (2003).Article
Google Scholar
74.Melack, J. M. & MacIntyre, S. Morphometry and physical processes of East African Soda Lakes. in Soda Lakes of East Africa 61–76 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-28622-8_3.75.Hoover, T. E. & Berkshire, D. C. Effects of hydration on carbon dioxide exchange across an air-water interface. J. Geophys. Res. 74, 456–464 (1969).CAS
Article
Google Scholar
76.Wanninkhof, R. & Knox, M. Chemical enhancement of CO2 exchange in natural waters. Limnol. Oceanogr. 41, 689–697 (1996).CAS
Article
Google Scholar
77.Zeebe, R. E. On the molecular diffusion coefficients of dissolved, and and their dependence on isotopic mass. Geochim. Cosmochim. Acta 75, 2483–2498 (2011).CAS
Article
Google Scholar
78.Johnson, K. S. Carbon dioxide hydration and dehydration kinetics in seawater1. Limnol. Oceanogr. 27, 849–855 (1982).CAS
Article
Google Scholar
79.Clark, I. Groundwater Geochemistry and Isotopes. Groundwater Geochemistry and Isotopes (CRC Press, 2015). https://doi.org/10.1201/b18347.80.Crognale, S. et al. Biological As(III) oxidation in biofilters by using native groundwater microorganisms. Sci. Total Environ. 651, 93–102 (2019).CAS
PubMed
Article
Google Scholar
81.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed
PubMed Central
Article
Google Scholar
82.Tonanzi, B. et al. Long-term anaerobic digestion of food waste at semi-pilot scale: relationship between microbial community structure and process performances. Biomass-. Bioenergy 118, 55–64 (2018).CAS
Article
Google Scholar
83.Pechar, L. Use of an acetone: methanol mixture for the extraction and spectrophotometric determination of chlorophyll-a in phytoplankton. Stud. Hydrobiol. Suppl. 78, 99–117 (1987).CAS
Google Scholar
84.Fazi, S., Amalfitano, S., Pizzetti, I. & Pernthaler, J. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content. Syst. Appl. Microbiol. 30, 463–470 (2007).PubMed
Article
Google Scholar
85.Amalfitano, S. et al. Deconvolution model to resolve cytometric microbial community patterns in flowing waters. Cytom. Part A 93, 194–200 (2018).Article
Google Scholar
86.Callieri, C., Amalfitano, S., Corno, G. & Bertoni, R. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol. Ecol. 92, 1–10 (2016).87.Hammer, Ø., Harper, D. A. Ta. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Google Scholar
88.Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF 6. Limnol. Oceanogr. 43, 647–656 (1998).CAS
Article
Google Scholar
89.Nightingale, P. D. et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387 (2000).CAS
Article
Google Scholar More