More stories

  • in

    Environmental variables and machine learning models to predict cetacean abundance in the Central-eastern Mediterranean Sea

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. & Kent, J. M. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cuttelod, A., García, V., Abdul Malak, D., Temple, H. & Katariya, V. The Mediterranean: A biodiversity hotspot under threat. In Wildl. a Chang. World an Anal. 2008 IUCN Red List Threat. Species 89–101 (2008).Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5, e11842–e11842 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).Article 

    Google Scholar 
    Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).Article 
    PubMed 

    Google Scholar 
    Tsirintanis, K. et al. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquatic Invasions, 17(3), 308–352 (2022).Article 

    Google Scholar 
    Sanderson, C. E. & Alexander, K. A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 26, 4284–4301 (2020).Article 
    PubMed 

    Google Scholar 
    EEC, 1992. European Commission. In EU Council Directive 92/43/EEC on the Conservationof Natural Habitats and of Wild Fauna and Flora. Orkesterjournalen L 7–50 206 (1992).Bearzi, G. Interactions between cetacean and fisheries in the Mediterranean Sea. In: G. Notarbartolo di Sciara (Ed.), Cetaceans of the Mediterranean and Black Seas: state of knowledge and conservation strategies. A report to the ACCOBAMS Secretariat, Monaco, 9, 20 (2002). Reeves, R. R., Smith, B. D., Crespo, E. A. & Notarbartolo di Sciara, G. Dolphins, Whales and Porpoises : 2002–2010 Conservation Action Plan for the world’s Cetaceans (2003).Dolman, S., Evans, P., Ritter, F., Simmonds, M. & Swabe, J. Implications of new technical measures regulation for cetacean bycatch in European waters. Mar. Policy 124, 1043 (2020).
    Google Scholar 
    Carlucci, R. et al. Managing multiple pressures for cetaceans’ conservation with an Ecosystem-Based Marine Spatial Planning approach. J. Environ. Manage. 287, 112240 (2021).Article 
    PubMed 

    Google Scholar 
    Carlucci, R. et al. Assessment of cetacean–fishery interactions in the marine food web of the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea). Rev. Fish Biol. Fish. 31, 135–156 (2020).Article 

    Google Scholar 
    Fossi, C. & Lauriano, G. Impacts of shipping on the biodiversity of large marine vertebrates: Persistent organic pollutants, sewage and debris. Marit. Traffic Eff. Biodivers. Mediterr. Sea Rev Impacts Prior. Areas Mitig. Meas. 3, 65–73 (2008).
    Google Scholar 
    Cardellicchio, N. Persistent contaminants in dolphins: An indication of chemical pollution in the mediterranean sea. Water Sci. Technol. 32, 331–340 (1995).Article 
    CAS 

    Google Scholar 
    Fossi, M. C., Panti, C., Baini, M. & Lavers, J. L. A review of plastic-associated pressures: Cetaceans of the Mediterranean Sea and Eastern Australian Shearwaters as case studies. Front. Mar. Sci. 5, 125 (2018).Article 

    Google Scholar 
    Marsili, L., Jiménez, B. & Borrell, A. Persistent Organic Pollutants in Cetaceans Living in a Hotspot Area (Elsevier, 2018).Book 

    Google Scholar 
    Dolman, S. J., Evans, P. G. H., Notarbartolo-di-Sciara, G. & Frisch, H. Active sonar, beaked whales and European regional policy. Mar. Pollut. Bull. 63, 27–34 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    di Sciara, G. N. et al. Place-based approaches to marine mammal conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 85–100 (2016).Article 

    Google Scholar 
    Holcer, D., Fortuna, C. M., Mackelworth, P., Cebrian, D. & Requena Moreno, S. Adriatic Sea: Important Areas for Conservation of Cetaceans, Sea Turtles and Giant Devil Rays (2015).Carlucci, R. et al. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indic. 69, 707–721 (2016).Article 

    Google Scholar 
    Carlucci, R., Ricci, P., Cipriano, G. & Fanizza, C. Abundance, activity and critical habitat of the striped dolphin Stenella coeruleoalba in the Gulf of Taranto (northern Ionian Sea, central Mediterranean Sea). Aquat. Conserv. Freshw. Ecosyst. 28, 324–336 (2018).Article 

    Google Scholar 
    Carlucci, R. et al. Random Forest population modelling of striped and common-bottlenose dolphins in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Estuar. Coast. Shelf Sci. 204, 177–192 (2018).Article 

    Google Scholar 
    Arcangeli, A., Campana, I. & Bologna, M. A. Influence of seasonality on cetacean diversity, abundance, distribution and habitat use in the western Mediterranean Sea: Implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 995–1010 (2017).Article 

    Google Scholar 
    Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for Management. Deep. Res. Part II-Top. Stud. Oceanogr. 141, 41–58 (2017).Article 

    Google Scholar 
    Mannocci, L. et al. Assessing cetacean surveys throughout the Mediterranean Sea: A gap analysis in environmental space. Sci. Rep. 8, 1 (2018).Article 
    CAS 

    Google Scholar 
    Panigada, S. et al. Estimates of Abundance and Distribution of Cetaceans, Marine Mega-Fauna and Marine Litter in the Mediterranean Sea from 2018–2019 surveys. ACCOBAMS vol. ACCOBAMS S (2021).Paiu, R.-M. et al. Estimates of abundance and distribution of cetaceans in the Black Sea from 2019 surveys. ACCOBAMS 54, 45 (2021).
    Google Scholar 
    Azzolin, M. et al. Spatial distribution modelling of striped dolphin (Stenella coeruleoalba) at different geographical scales within the EU Adriatic and Ionian Sea Region, central-eastern Mediterranean Sea. Aquat. Conserv. Freshw. Ecosyst. 30, 1194–1207 (2020).Article 

    Google Scholar 
    Renò, V. et al. A SIFT-based software system for the photo-identification of the Risso’s dolphin. Ecol. Inform. 50, 95–101 (2019).Article 

    Google Scholar 
    Maglietta, R. et al. DolFin: an innovative digital platform for studying Risso’s dolphins in the Northern Ionian Sea (North-eastern Central Mediterranean). Sci. Rep. 8, 17185 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. 8, 96 (2021).Article 

    Google Scholar 
    Fontaine, M. C. et al. History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data. Proc. Natl. Acad. Sci. 109, E2569–E2576 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alter, S. E., Rynes, E. & Palumbi, S. R. DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc. Natl. Acad. Sci. 104, 15162–15167 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chavez-Rosales, S., Palka, D. L., Garrison, L. P. & Josephson, E. A. Environmental predictors of habitat suitability and occurrence of cetaceans in the western North Atlantic Ocean. Sci. Rep. 9, 5833 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buckland, S. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).MATH 

    Google Scholar 
    Buckland, S. T. et al. Advanced Distance Sampling: Estimating Abundance of Biological Populations (OUP Oxford, 2004).MATH 

    Google Scholar 
    Laake, J. S. T., Buckland, E. A., Rexstad, T. A., Marques, C. S. & Oedekoven, F. Distance sampling: Methods and applications. Biometrics 72, 1389–1390 (2016).Article 

    Google Scholar 
    Hammond, P. S., Mizroch, S. A. & Donovan, G. P. Individual recognition of cetaceans: Use of photo-identification and other techniques to estimate population parameters. In Incorporating the Proceedings of the Symposium and Workshop on Individual Recognition and the Estimation of Cetacean Population Parameters (1990).Sandercock, B. K. Handbook of capture-recapture analysis. Biometrics 62, 1276–1277 (2006).Article 

    Google Scholar 
    Hammond, P. S. Mark-Recapture. In Encyclopedia of Marine Mammals (Third Edition) (eds Würsig, B. et al.) 580–584 (Academic Press, 2018).Pless, E., Saarman, N. P., Powell, J. R., Caccone, A. & Amatulli, G. A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc. Natl. Acad. Sci. 118, 9 (2021).Article 

    Google Scholar 
    Belanger, C. L. et al. Global environmental predictors of benthic marine biogeographic structure. Proc. Natl. Acad. Sci. 109, 14046–14051 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. USA 114, 12202–12207 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, D. L., Burt, M. L., Rexstad, E. A. & Thomas, L. Spatial models for distance sampling data: Recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010 (2013).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.) 43, 1261–1277 (2020).Article 

    Google Scholar 
    Redfern, J. V. et al. Techniques for cetacean-habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Taylor & Francis, 1990).MATH 

    Google Scholar 
    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).MATH 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Vapnik, N.V. Statistical Learning Theory (1998).Culley, C., Vijayakumar, S., Zampieri, G. & Angione, C. A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. 117, 18869–18879 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, B. M. et al. Robust predictions of specialized metabolism genes through machine learning. Proc. Natl. Acad. Sci. 116, 2344–2353 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renò, V. et al. Combined color semantics and deep learning for the automatic detection of dolphin dorsal fins. Electronics 9, 75 (2020).Article 

    Google Scholar 
    Maglietta, R., Milella, A., Caccia, M. & Bruzzone, G. A vision-based system for robotic inspection of marine vessels. Signal Image Video Process. 12, 471–478 (2018).Article 

    Google Scholar 
    Maglietta, R. et al. Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Anal. Appl. 19, 579–591 (2016).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Ancona, N., Maglietta, R. & Stella, E. Data representations and generalization error in kernel based learning machines. Pattern Recognit. 39, 1588–1603 (2006).Article 
    MATH 

    Google Scholar 
    Martín, B., González-Arias, J. & Vicente-Virseda, J. A. Machine learning as a successful approach for predicting complex spatial temporal patterns in animal species abundance. Anim. Biodivers. Conserv. 2021, 25 (2021).
    Google Scholar 
    Dimauro, G. et al. A novel approach for biofilm detection based on a convolutional neural network. Electronics 9, 88 (2020).Article 

    Google Scholar 
    Inglese, P. et al. Multiple RF classifier for the hippocampus segmentation: Method and validation on EADC-ADNI Harmonized Hippocampal Protocol. Phys. Med. 31(8), 1085–1091 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maglietta, R. et al. Convolutional neural networks for Risso’s Dolphins identification. IEEE Access 8, 80195–80206 (2020).Article 

    Google Scholar 
    Conference on Biological Diversity—Nagoya 2010 European Parliament resolution of 7 October 2010 on the EU strategic objectives for the 10th Meeting of the Conference of the Parties to the Convention on Biological Diversity (CBD), to be held in Nagoya (2010).EU. In Commission Decision (EU) 2017/848 of 17 May 2017 Laying Down Criteria and Methodological Standards on Good Environmental Status of Marine Waters and Specifications and Standardised Methods for Monitoring and Assessment, and Repealing Decision 2 (2017).European Commission. Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. In Off. J. Eur. Union 2014, L 257, 135; MSFD (2008/56/EC) (2014).Muckenhirn, A., Baş, A. A. & Richard, F.-J. Assessing the influence of environmental and physiographic parameters on common bottlenose dolphin (Tusiops truncatus) distribution in the southern Adriatic Sea. In Proc. 1st Int. Electron. Conf. Biol. Divers. Ecol. Evol. (2021).Correia, A. et al. Predicting Cetacean Distributions in the Eastern North Atlantic to Support Marine Management. Front. Mar. Sci. 8, 256 (2021).Article 

    Google Scholar 
    Redfern, J. V., Barlow, J., Ballance, L. T., Gerrodette, T. & Becker, E. A. Absence of scale dependence in dolphin-habitat models for the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 363, 1–14 (2008).Article 

    Google Scholar 
    Kruse, S. L. Aspects of the Biology, Ecology, and Behavior of Risso’s dolphins (Grampus griseus) off the California Coast (University of California, Santa Cruz, 1989).Kruse, S., Caldwell, D. K., Caldwell, M. C., Ridgway, S. H. & Harrison, R. Risso’s dolphin Grampus griseus (G. Cuvier, 1812). Handb. Mar. Mamm. Sec. B Dolphins Porpoises 6, 12 (1999).
    Google Scholar 
    Gómez-de-Segura, A., Hammond, P. S. & Raga, J. A. Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. J. Mar. Biol. Assoc. UK 88, 1185–1192 (2008).Article 

    Google Scholar 
    Pitchford, J. et al. Predictive spatial modelling of seasonal bottlenose dolphin (Tursiops truncatus) distributions in the Mississippi Sound: Seasonal spatial distributions of bottlenose dolphins. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 289–306 (2015).Article 

    Google Scholar 
    La Manna, G., Ronchetti, F. & Sarà, G. Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean Coast. Manag. 130, 317–327 (2016).Article 

    Google Scholar 
    Becker, E. A. et al. Predicting cetacean abundance and distribution in a changing climate. Divers. Distrib. 25, 626–643 (2019).Article 

    Google Scholar 
    Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Spec. Res. 4, 309–331 (2008).Article 

    Google Scholar 
    Mannocci, L. et al. Predicting cetacean and seabird habitats across a productivity gradient in the South Pacific gyre. Prog. Oceanogr. 120, 383–398 (2014).Article 

    Google Scholar 
    Carretta, J. V. Estimates of Marine Mammal, Sea Turtle, and Seabird Bycatch in the California Large-Mesh Drift Gillnet Fishery: 1990–2019 U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-654.
    https://doi.org/10.25923/7emj-za90 (2021).Rustam, F. et al. A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis. PLoS ONE 16, e0245909 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Addabbo, A. & Maglietta, R. Parallel selective sampling method for imbalanced and large data classification. Pattern Recognit. Lett. 62, 61–67 (2015).Article 

    Google Scholar 
    Dimauro, G. et al. An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset. Artif. Intell. Med. 136, 102477 (2023).Article 
    PubMed 

    Google Scholar 
    Spooner, A. et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 10, 20410 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becker, E. A. et al. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol. Evol. 10, 5759–5784 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kosicki, J. Z. Generalised additive models and random forest approach as effective methods for predictive species density and functional species richness. Environ. Ecol. Stat. 27, 273–292 (2020).Article 
    CAS 

    Google Scholar 
    Barreto, J. et al. Drone-monitoring: Improving the detectability of threatened marine megafauna. Drones 5, 14 (2021).Article 

    Google Scholar 
    Sarr, J.-M.A. et al. Complex data labeling with deep learning methods: Lessons from fisheries acoustics. ISA Trans. 109, 113–125 (2021).Article 
    PubMed 

    Google Scholar 
    Capezzuto, F. et al. The bathyal benthopelagic fauna in the north-western Ionian Sea: Structure, patterns and interactions. Chem. Ecol. 26, 199–217 (2010).Article 

    Google Scholar 
    Harris, P. & Whiteway, T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 285, 69–86 (2011).Article 

    Google Scholar 
    Pescatore, T. & Senatore, M. R. A comparison between a present.day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennine (Italy). Spec. Publ. 1986, 169–182 (1986).
    Google Scholar 
    Rossi, S. & Gabbianelli, G. Geomorfologia del Golfo di Taranto. Ital. J. Geosci. 97, 423–437 (1978).
    Google Scholar 
    Federico, I. et al. Observational evidence of the basin-wide gyre reversal in the Gulf of Taranto. Geophys. Res. Lett. 47, 1030 (2020).Article 

    Google Scholar 
    Carlucci, R., Battista-Capezzuto, F., Serena, F. & Sion, L. Occurrence of the basking shark Cetorhinus maximus (Gunnerus, 1765) (Lamniformes: Cetorhinidae) in the central-eastern Mediterranean Sea. Ital. J. Zool. 81, 280–286 (2014).Article 

    Google Scholar 
    Matarrese, R., Chiaradia, M. T., Tijani, K., Morea, A. & Carlucci, R. Chlorophyll A multi-temporal analysis in coastal waters with MODIS data. Eur. J. Remote Sens. 2011, 39–48 (2011).
    Google Scholar 
    Civitarese, G., Gačić, M., Lipizer, M. & Eusebi-Borzelli, G. L. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences 7, 3987–3997 (2010).Article 
    CAS 

    Google Scholar 
    Pinardi, N. et al. Marine rapid environmental assessment in the hack{newline} Gulf of Taranto: A multiscale approach. Nat. Hazards Earth Syst. Sci. 16, 2623–2639 (2016).Article 

    Google Scholar 
    Ciancia, E. et al. Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data. Cont. Shelf Res. 155, 34–44 (2018).Article 

    Google Scholar 
    Trotta, F., Pinardi, N., Fenu, E., Grandi, A. & Lyubartsev, V. Multi-nest high-resolution model of submesoscale circulation features in the Gulf of Taranto. Ocean Dyn. 67, 1609–1625 (2017).Article 

    Google Scholar 
    Federico, I. et al. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci. 17, 45–59 (2017).Article 

    Google Scholar 
    Trotta, F. et al. A relocatable ocean modeling platform for downscaling to shelf-coastal areas to support disaster risk reduction. Front. Mar. Sci. 8, 103 (2021).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532 (1997).Article 

    Google Scholar 
    Cushman-Roisin, B., Gacić, M., Poulain, P. M. & Artegiani, A. Physical Oceanography of the Adriatic Sea (2001).Escudier, R. et al. Mediterranean sea production centre MEDSEA_MULTIYEAR_PHY_006_004 (2021).Clementi, E. et al. Mediterranean sea physical analysis and forecast (CMEMS MED-Currents, EAS6 system) (Version 1) set. In Copernicus Monitoring Environment Marine Service (CMEMS) (2021).Madec, G. NEMO Ocean Engine (2008).Dobricic, S. & Nadia, P. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model 22, 89–105 (2008).Article 

    Google Scholar 
    Roquet, F., Madec, G., McDougall, T. J. & Barker, P. M. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Model 90, 29–43 (2015).Article 

    Google Scholar 
    IOC, SCOR & IAPSO. In The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties 196 (2010).MEDSEA_MULTIYEAR_BGC_006_008 (2020).Mediterranean Sea Monthly and Daily Reprocessed Surface Chlorophyll Concentration from Multi Satellite observations + SeaWiFS daily climatology (2020).Volpe, G. et al. Mediterranean ocean colour Level 3 operational multi-sensor processing. Ocean Sci. 25, 1527–1532 (2019).
    Google Scholar 
    Berthon, J.-F. & Zibordi, G. Bio-optical relationships for the northern Adriatic Sea. Int. J. Remote Sens. 25, 1527–1532 (2004).Article 

    Google Scholar 
    De Dominicis, M. et al. A relocatable ocean model in support of environmental emergencies. Ocean Dyn. 64, 667–688 (2014).Article 

    Google Scholar 
    Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Wu, J. et al. Hyperparameter optimization for machine learning models based on bayesian optimizationb. J. Electron. Sci. Technol. 17, 26–40 (2019).
    Google Scholar 
    Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316 (2020).Article 

    Google Scholar  More

  • in

    Adélie penguins north and east of the ‘Adélie gap’ continue to thrive in the face of dramatic declines elsewhere in the Antarctic Peninsula region

    Fraser, W., Trivelpiece, W., Ainley, D. & Trivelpiece, S. Increases in Antarctic penguin populations: Reduced competition with whales or a loss of sea ice due to environmental warming?. Polar Biol. 11, 525–531 (1992).Article 

    Google Scholar 
    Trivelpiece, W. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 108, 7625–7628 (2011).Article 
    CAS 

    Google Scholar 
    Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).Article 

    Google Scholar 
    Hinke, J., Salwicka, K., Trivelpiece, S., Watters, G. & Trivelpiece, W. Divergent responses of Pygoscelis penguins reveal common environmental driver. Oecologia 153, 845–855 (2007).Article 

    Google Scholar 
    Poncet, S. & Poncet, J. Censuses of penguin populations of the Antarctic Peninsula, 1983–87. Br. Antarct. Surv. Bull. 77, 109–129 (1987).
    Google Scholar 
    Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: Winter-summer heterogeneity in the distribution of Adélie penguin populations. Found. For. Ecol. Res. West Antarct. Penins. 70, 257–272 (1996).Article 

    Google Scholar 
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Rec. 53, 160–166 (2017).Article 

    Google Scholar 
    Lynch, H., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).Article 

    Google Scholar 
    Elliot, D. H., Watts, D. R., Alley, R. B. & Gracanin, T. M. Bird and seal observations at Joinville Island and offshore islands. Antarct. J. USA 13, 154–155 (1978).
    Google Scholar 
    Bender, N. A., Crosbie, K. & Lynch, H. Patterns of tourism in the Antarctic Peninsula region: A twenty-year re-analysis. Antarct. Sci. 28, 194–203 (2016).Article 

    Google Scholar 
    Lynch, H. J. & Schwaller, M. R. Mapping the abundance and distribution of Adélie penguins using Landsat-7: First steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie penguin. Auk 131, 457–466 (2014).Article 

    Google Scholar 
    Parkinson, C. L. & Cavalieri, D. J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880 (2012).Article 

    Google Scholar 
    Parkinson, C. L. Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol. 34, 435–440 (2002).Article 

    Google Scholar 
    Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. NPJ Clim. Atmos. Sci. 5, 1–15 (2022).Article 

    Google Scholar 
    Kumar, A., Yadav, J. & Mohan, R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica. Environ. Res. Lett. 16, 024046 (2021).
    Google Scholar 
    Strass, V. H., Rohardt, G., Kanzow, T., Hoppema, M. & Boebel, O. Multidecadal warming and density loss in the deep Weddell Sea. Antarct. J. Clim. 33, 9863–9881 (2020).Article 

    Google Scholar 
    Morioka, Y. & Behera, S. K. Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res. Ocean 126, e2020JC017036 (2021).Article 

    Google Scholar 
    Veytia, D. et al. Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Chang. 10, 568–575 (2020).Article 

    Google Scholar 
    Humphries, G. R. et al. Predicting the future is hard and other lessons from a population time series data science competition. Ecol. Inf. 48, 1–11 (2018).Article 

    Google Scholar 
    Borowicz, A. et al. A multi-modal survey of Adèlie penguin megacolonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article 

    Google Scholar 
    Cimino, M., Lynch, H., Saba, V. & Oliver, M. Projected asymmetric response of Adèlie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).Article 
    CAS 

    Google Scholar 
    McClintock, J., Silva-Rodriguez, P. & Fraser, W. Southerly breeding in gentoo penguins for the eastern Antarctic Peninsula: Further evidence for unprecedented climate change. Antarct. Sci. 22, 285–286 (2010).Article 

    Google Scholar 
    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001–2007. Mar. Ornithol. 36, 83–97 (2008).
    Google Scholar 
    Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).Article 

    Google Scholar 
    Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-1, Priority Areas for Conservation. SC-CAMLR- XXXVI/17. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-2, Priority Areas for Conservation. SC-CAMLR- XXXVI/18. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Teschke, K. et al. Planning marine protected areas under the CCAMLR regime—the case of the Weddell Sea (Antarctica). Mar. Policy 124, 104370 (2021).Article 

    Google Scholar 
    Herman, R. et al. Update on the global abundance and distribution of breeding Gentoo Penguins (Pygoscelis papua). Polar Biol. 43, 1947–1956 (2020).Article 

    Google Scholar 
    Korczak-Abshire, M., Hinke, J. T., Milinevsky, G., Juáres, M. A. & Watters, G. M. Coastal regions of the northern Antarctic Peninsula are key for gentoo populations. Biol. Lett. 17, 20200708 (2021).Article 

    Google Scholar 
    Miller, A. K., Karnovsky, N. J. & Trivelpiece, W. Z. Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands. Antarct. Mar. Biol. 156, 2527–2537 (2009).Article 

    Google Scholar 
    Herman, R. W. et al. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 164, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    Cimino, M. A., Fraser, W. R., Irwin, A. J. & Oliver, M. J. Satellite data identify decadal trends in the quality of Pygoscelis penguin chick-rearing habitat. Glob. Chang. Biol. 19, 136–148 (2013).Article 

    Google Scholar 
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).Article 

    Google Scholar 
    Croxall, J. P. & Kirkwood, E. The Distribution of Penguins on the Antarctic Peninsula and Islands of the Scotia Sea (British Antarctic Survey, Cambridge, UK, 1979).
    Google Scholar 
    Naveen, R. et al. Censuses of penguin, blue-eyed shag, and southern giant petrel populations in the Antarctic Peninsula region, 1994–2000. Polar Rec. 36, 323–334 (2000).Article 

    Google Scholar 
    Woehler,E. J. The Distribution and Abundance of Antarctic and Subantarctic Penguins. In SCAR Comm. on Antarctic Res. Bird Biol. Subcomm. (Cambridge University Press, 1993).Naveen, R., Lynch, H. J., Forrest, S., Mueller, T. & Polito, M. First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol. 35, 1879–1888 (2012).
    Google Scholar 
    Hallermann, N., Morgenthal, G. & Rodehorst, V. Unmanned aerial systems (UAS)–case studies of vision based monitoring of ageing structures. In Int. Symp. Non-Destructive Test. Civ. Eng. (NDT-CE) 15–17 (2015).Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 38, 421–430 (2013).Article 

    Google Scholar 
    Cavalieri, D. J., Germain, K. M. S. & Swift, C. T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I. J. Glaciol. 41, 455–464 (1995).Article 

    Google Scholar 
    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. Updated daily Sea Ice Index, Version 3. In Boulder, Colo.USA. NSIDC: Natl. Snow Ice Data Cent (2017).Iles, D. T. et al. Sea ice predicts long-term trends in Adélie penguin population growth, but not annual fluctuations: Results from a range-wide multiscale analysis. Glob. Change Biol. 26, 3788–3798 (2020).Article 

    Google Scholar 
    Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using mcmc. R package version 4. https://rdrr.io/cran/rjags/ (2016).Plummer, M. et al. Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, 1–10 (Vienna, Austria., 2003).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Youngflesh, C. MCMCvis: Tools to visualize, manipulate, and summarize MCMC output. J. Open Sourc. Softw. 3, 640 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2. Wiley Interdiscipl. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Kellner,K. jagsUI: A wrapper around rjags to streamline JAGS analyses. R package version 1, 2015 (2015).Herman, R. & Lynch, H. Age-structured model reveals prolonged immigration is key for colony establishment in Gentoo Penguins. Ornithol. Appl. 124, duac04 (2022).
    Google Scholar 
    Polito, M. J., Lynch, H. J., Naveen, R. & Emslie, S. D. Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar. Ecol. Prog. Ser. 421, 265–277 (2011).Article 

    Google Scholar 
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F. & Focardi, S. Nonlinear effects of winter sea ice on the survival probabilities of Adélie penguins. Oecologia 161, 253–265 (2009).Article 

    Google Scholar 
    Wilson, P. et al. Adélie penguin population change in the pacific sector of Antarctica: Relation to sea-ice extent and the Antarctic Circumpolar Current. Mar. Ecol. Prog. Ser. 213, 301–309 (2001).Article 

    Google Scholar 
    Wienecke, B. et al. Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica. Deep. Sea Res. Part II Top. Stud. Oceanogr. 47, 2573–2587 (2000).Article 

    Google Scholar 
    Ainley, D. G. The Adélie Penguin: Bellwether of Climate Change (Columbia University Press, 2002).Book 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land. Antarct. Mar. Biol. 154, 813–821 (2008).Article 

    Google Scholar 
    Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: Chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).Article 

    Google Scholar 
    Ashford, J., Zane, L., Torres, J. J., La Mesa, M. & Simms, A. R. Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem 193–234 (Springer, 2017).Pakhomov, E. & Perissinotto, R. Antarctic neritic krill Euphausia crystallorophias: Spatio-temporal distribution, growth and grazing rates. Deep. Sea Res. Part I Oceanogr. Res. Pap. 43, 59–87 (1996).Article 

    Google Scholar 
    La Mesa, M. & Eastman, J. T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13, 241–266 (2012).Article 

    Google Scholar 
    Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea. Antarct. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).Article 
    CAS 

    Google Scholar 
    Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).Article 

    Google Scholar 
    La Mesa, M., Piñones, A., Catalano, B. & Ashford, J. Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula. Fish. Oceanogr. 24, 150–161 (2015).Article 

    Google Scholar 
    La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).Article 

    Google Scholar 
    Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Front. Mar. Sci. 7, 256 (2021).Article 

    Google Scholar 
    Brooks, C. et al. Workshop on identifying key biodiversity areas for the Southern Ocean using tracking data. In Tech.Rep. SC-CAMLR-41/BG/22, CCAMLR (2022).Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013: Ecological Archives E094–243. Ecology 94, 2653–2653 (2013).Article 

    Google Scholar 
    Myrcha, A., Tatur, A. & Valle, R. D. V. Numbers of Adélie penguins breeding at Hope Bay and Seymour Island rookeries (West Antarctica) in 1985. Pol. Polar Res. 8, 411–422 (1987).
    Google Scholar 
    Montalti, D. & Soave, G. E. The birds of Seymour Island, Antarctica. Ornitol. Neotrop. 13, 267–271 (2002).
    Google Scholar 
    Perchivale, P. J. et al. Updated estimate of the Breeding Population of Adélie penguins (Pygoscelis adeliae) at Penguin Point, Marambio/Seymour Island within the proposed Weddell Sea Marine Protected Area (2022). https://www.researchsquare.com/article/rs-2117503/v1.Che-Castaldo, C. et al. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 8, 832 (2017).Article 

    Google Scholar 
    Hinke, J. T., Trivelpiece, S. G. & Trivelpiece, W. Z. Variable vital rates and the risk of population declines in Adélie penguins from the Antarctic Peninsula region. Ecosphere 8, e01666 (2017).Article 

    Google Scholar  More

  • in

    Evaluating red tide effects on the West Florida Shelf using a spatiotemporal ecosystem modeling framework

    Brown, A. R. et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquac. 12, 1663–1688 (2020).
    Google Scholar 
    Bechard, A. Red tide at morning, tourists take warning? County-level economic effects of HABS on tourism dependent sectors. Harmful Algae 85, 101689–101689 (2019).Article 

    Google Scholar 
    Landsberg, J. H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10, 113–390 (2002).Article 

    Google Scholar 
    Flewelling, L. J. et al. Brevetoxicosis: Red tides and marine mammal mortalities. Nature 435, 755–756 (2005).Article 
    CAS 

    Google Scholar 
    Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).Article 
    CAS 

    Google Scholar 
    Driggers, W. B. et al. Environmental conditions and catch rates of predatory fishes associated with a mass mortality on the West Florida Shelf. Estuar. Coast. Shelf Sci. 168, 40–49 (2016).Article 
    CAS 

    Google Scholar 
    Hallett, C. S., Valesini, F. J., Clarke, K. R. & Hoeksema, S. D. Effects of a harmful algal bloom on the community ecology, movements and spatial distributions of fishes in a microtidal estuary. Hydrobiologia 763, 267–284 (2016).Article 

    Google Scholar 
    Anderson, D. M. et al. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae 102, 101975–101975 (2021).Article 
    CAS 

    Google Scholar 
    Steidinger, K. A. & Haddad, K. Biologic and hydrographic aspects of red tides. Bioscience 31, 814–819 (1981).Article 

    Google Scholar 
    Soto, I. M. et al. Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters. Harmful Algae 72, 46–64 (2018).Article 

    Google Scholar 
    Steidinger, K. A. & Ingle, R. M. Observations on the 1971 summer red tide in tampa bay, Florida1. Environ. Lett. 3, 271–278 (1972).Article 
    CAS 

    Google Scholar 
    Liu, Y. et al. Offshore forcing on the “pressure point” of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms. J. Geophys. Res. 121, 5501–5515 (2016).Article 

    Google Scholar 
    Liu, Y., Weisberg, R. H., Zheng, L., Heil, C. A. & Hubbard, K. A. Termination of the 2018 Florida red tide event: A tracer model perspective. Estuar. Coast. Shelf Sci. 272, 107901 (2022).Article 

    Google Scholar 
    Weisberg, R. H. & Liu, Y. Local and deep-ocean forcing effects on the West Florida continental shelf circulation and ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.863227 (2022).Article 

    Google Scholar 
    Walsh, J. J. et al. Red tides in the Gulf of Mexico: Where, when, and why? Journal of Geophysical Research: Oceans 111, (2006).Lapointe, B. E., Herren, L. W., Debortoli, D. D. & Vogel, M. A. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 43, 82–102 (2015).Article 
    CAS 

    Google Scholar 
    Medina, M. et al. Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida. Sci. Total Environ. 827, 154149–154149 (2022).Article 
    CAS 

    Google Scholar 
    Perkins, S. Ramping up the fight against Florida’s red tides. Proc. Natl. Acad. Sci. U.S.A. 116, 6510–6512 (2019).Article 
    CAS 

    Google Scholar 
    Skripnikov, A. et al. Using localized Twitter activity to assess harmful algal bloom impacts of Karenia brevis in Florida, USA. Harmful Algae 110, 102118–102118 (2021).Article 
    CAS 

    Google Scholar 
    SEDAR. SEDAR 33 Update – Gulf of Mexico gag grouper stock assessment report, 123. https://sedarweb.org/docs/suar/GagUpdateAssessReport_Final_0.pdf (2016).SEDAR. SEDAR 61 – Gulf of Mexico red grouper stock assessment report, 285. https://sedarweb.org/docs/sar/S61_Final_SAR.pdf (2019).SEDAR. SEDAR 10 Stock Assessment Report 2: Gulf of Mexico Gag Grouper, 250. www.sedarweb.org (2004).SEDAR. SEDAR 10 Update – Gulf of Mexico gag grouper stock assessment report. http://www.sedarweb.org (2009).SEDAR. SEDAR 72—Gulf of Mexico gag grouper stock assessment report, 318–318. https://sedarweb.org/docs/sar/S72_SAR_FINAL.pdf%0A (2021).Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).Article 

    Google Scholar 
    Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209–105209 (2021).Article 

    Google Scholar 
    Gray DiLeone, A. M. & Ainsworth, C. H. Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf. Ecol. Model. 392, 250–267 (2019).Article 

    Google Scholar 
    Perryman, H. A. et al. A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts. Ecol. Model. 416, 108890–108890 (2020).Article 

    Google Scholar 
    Mayer-Pinto, M., Ledet, J., Crowe, T. P. & Johnston, E. L. Sublethal effects of contaminants on marine habitat-forming species: A review and meta-analysis. Biol. Rev. 95, 1554–1573 (2020).Article 

    Google Scholar 
    Reis Costa, P. Impact and effects of paralytic shellfish poisoning toxins derived from harmful algal blooms to marine fish. Fish Fish. 17, 226–248 (2016).Article 

    Google Scholar 
    Dahood, A., de Mutsert, K. & Watters, G. M. Evaluating Antarctic marine protected area scenarios using a dynamic food web model. Biol. Cons. 251, 108766–108766 (2020).Article 

    Google Scholar 
    de Mutsert, K. et al. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecol. Model. 331, 142–150 (2016).Article 

    Google Scholar 
    de Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-end modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104–104 (2021).Article 

    Google Scholar 
    Bauer, B. et al. Erratum: Reducing eutrophication increases spatial extent of communities supporting commercial fisheries: A model case study (ICES Journal of Marine Science (2018) DOI: https://doi.org/10.1093/icesjms/fsy003). ICES Journal of Marine Science, 75, 1155–1155 (2018).Sadchatheeswaran, S., Branch, G. M., Shannon, L. J., Coll, M. & Steenbeek, J. A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment. Ecol. Model. 459, 109731–109731 (2021).Article 

    Google Scholar 
    Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 7, 741–741 (2020).Article 

    Google Scholar 
    Hernvann, P. Y. et al. The celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018–1018 (2020).Article 

    Google Scholar 
    Walters, C. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).Article 

    Google Scholar 
    Christensen, V., Walters, C. J., Pauly, D. & Forrest, R. Ecopath with Ecosim version 6 user guide. Fish. Cent. Univ. Br. Columbia Vanc. Can. 281, 1–235 (2008).
    Google Scholar 
    Okey, T. A., Mahmoudi, B., Mackinson, S., Vasconcellos, M. & Vidal-Hernandez, L. An ecosystem model of the West Florida Shelf for use in fisheries management and ecological research: Volume II. Model construction. Fish. Manag. II, 163–163 (2002).
    Google Scholar 
    Liu, Y. & Weisberg, R. H. Seasonal variability on the West Florida Shelf. Prog. Oceanogr. 104, 80–98 (2012).Article 

    Google Scholar 
    Moretzsohn, F., Chávez-Sánchez, J. A. & J.W. Tunnell, Jr. GulfBase: Resource Database for Gulf of Mexico Research. World Wide Web electronic publication (2016).Murawski, S. A., Peebles, E. B., Gracia, A., Tunnell, J. W. & Armenteros, M. Comparative abundance, species composition, and demographics of continental shelf fish assemblages throughout the Gulf of Mexico. Mar. Coast. Fish. 10, 325–346 (2018).Article 

    Google Scholar 
    Darnell, R. M. The American sea: A natural history of the gulf of Mexico. The American Sea: A Natural History of the Gulf of Mexico, 557, https://doi.org/10.5860/choice.193769 (2015).Brochure, I. Marine recreational information program: Implementation plan (2008).Florida Fish and Wildlife Conservation Commission. Commercial fisheries landings summaries (2021).Murawski, S. A. et al. How did the deepwater horizon oil spill affect coastal and continental shelf ecosystems of the Gulf of Mexico?. Oceanography 29, 160–173 (2016).Article 

    Google Scholar 
    Chagaris, D. D., Patterson, W. F. & Allen, M. S. Relative effects of multiple stressors on reef food webs in the Northern Gulf of Mexico revealed via ecosystem modeling. Front. Mar. Sci. 7, 513–513 (2020).Article 

    Google Scholar 
    South, A. rnaturalearth: world map data from Natural Earth. R package version 0.1.0. The R Foundation. https://CRAN.R-project.org/package=rnaturalearth (2017).Colleter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).Article 

    Google Scholar 
    Ahrens, R. N., Walters, C. J. & Christensen, V. Foraging arena theory. Fish fish. 13, 41–59 (2012).Article 

    Google Scholar 
    Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).Article 
    CAS 

    Google Scholar 
    Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).Article 

    Google Scholar 
    Walters, C., Christensen, V., Walters, W. & Rose, K. Representation of multistanza life histories in Ecospace models for spatial organization of ecosystem trophic interaction patterns. Bull. Mar. Sci. 86, 439–459 (2010).
    Google Scholar 
    Heymans, J. J. et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol. Model. 331, 173–184 (2016).Article 

    Google Scholar 
    Okey, T. Simulating community effects of sea floor shading by plankton blooms over the West Florida Shelf. Ecol. Model. 172, 339–359 (2004).Article 

    Google Scholar 
    Chagaris, D. D. Ecosystem-based Evaluation of Fishery Policies and Tradeoffs on the West Florida Shelf Vol. 53, 1699 (University of Florida, 2013).
    Google Scholar 
    Chagaris, D. D., Mahmoudi, B., Walters, C. J. & Allen, M. S. Simulating the trophic impacts of fishery policy options on the west florida shelf using ecopath with ecosim. Mar. Coast. Fish. 7, 44–58 (2015).Article 

    Google Scholar 
    Chagaris, D. et al. An ecosystem-based approach to evaluating impacts and management of invasive lionfish. Fisheries 42, 421–431 (2017).Article 

    Google Scholar 
    Chagaris, D. West Florida Shelf Ecosystem Model. University of Florida. https://ufdc.ufl.edu/IR00011604/00001%0A West Florida Shelf Ecosystem Model (2021).Vilas, D. Spatiotemporal Ecosystem Dynamics on the West Florida Shelf: Prediction, Validation, and Application to Red Tides and Stock Assessment (University of Florida, 2022).
    Google Scholar 
    Chassignet, E. P. et al. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65, 60–83 (2007).Article 

    Google Scholar 
    NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 3—Florida and East Gulf of Mexico. https://doi.org/10.7289/V5W66HP (2001).NASA. Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Earth Data (2018).Casey, L. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1950–2020: U.S. Geological Survey, https://doi.org/10.5066/P9P2PF1N (2021).Chagaris, D. & Vilas, D. NOAA RESTORE Science Program: Ecosystem modeling to improve fisheries management in the Gulf of Mexico: model inputs and outputs for the West Florida Shelf, 1985–01–01 to 2018–12–31 (NCEI Accession 0242339), https://doi.org/10.25921/t26e-wj91. (2022).Püts, M. et al. Insights on integrating habitat preferences in process-oriented ecological models—A case study of the southern North Sea. Ecol. Model. 431, 109189–109189 (2020).Article 

    Google Scholar 
    Vilas, D., Fletcher, R. J. Jr., Siders, Z. A. & Chagaris, D. Understanding the temporal dynamics of estimated environmental niche hypervolumes for marine fishes. Ecol. Evol. 12, e9604 (2022).Article 

    Google Scholar 
    Grubbs, R. D., Musick, J. A., Conrath, C. L. & Romine, J. G. Long-term movements, migration, and temporal delineation of a summer nursery for Juvenile Sandbar Sharks in the Chesapeake Bay region. In Shark Nursery Grounds of the Gulf of Mexico and the East Coast Waters of the United States. American Fisheries Society Symposium 50 Vol. 50 (eds Grubbs, R. D. et al.) 87–107 (American Fisheries Society, 2007).
    Google Scholar 
    Addis, D. T., Patterson, W. F., Dance, M. A. & Ingram, G. W. Implications of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fish. Res. 147, 349–358 (2013).Article 

    Google Scholar 
    Akins, J. L., Morris, J. A. & Green, S. J. In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish. Ecol. Evol. 4, 3768–3777 (2014).Article 

    Google Scholar 
    Chen, Z., Xu, S., Qiu, Y., Lin, Z. & Jia, X. Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fish. Res. 100, 222–229 (2009).Article 

    Google Scholar 
    Steenbeek, J. et al. Ecopath with ecosim as a model-building toolbox: Source code capabilities, extensions, and variations. Ecol. Model. 319, 178–189 (2016).Article 

    Google Scholar 
    Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).Article 

    Google Scholar 
    Hu, C. et al. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 97, 311–321 (2005).Article 

    Google Scholar 
    Chagaris, D., Vilas, D., Siders, Z. A. & Sinnickson, D. Monthly maps of red tide on the West Florida Shelf 2002–2021: A simple approach combining remote sensing and in situ measurements (in prep).Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute. Statewide harmful algal bloom karenia brevis current status map (2022).Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics (2016).Landsberg, J. H., Flewelling, L. J. & Naar, J. Karenia brevis red tides, brevetoxins in the food web, and impacts on natural resources: Decadal advancements. Harmful Algae 8, 598–607 (2009).Article 
    CAS 

    Google Scholar 
    Gianelli, I., Ortega, L. & Defeo, O. Modeling short-term fishing dynamics in a small-scale intertidal shellfishery. Fish. Res. 209, 242–250 (2019).Article 

    Google Scholar 
    Moore, S. K. et al. An index of fisheries closures due to harmful algal blooms and a framework for identifying vulnerable fishing communities on the U.S. West Coast. Mar. Policy 110, 103543–103543 (2019).Article 

    Google Scholar 
    GSMFC. SEAMAP: Environmental and Biological Atlas of the Gulf of Mexico. www.seamap.org (2020).Bechard, A. Harmful algal blooms and tourism: The economic impact to counties in Southwest Florida. Rev. Reg. Stud. 50, 170–188 (2020).
    Google Scholar 
    Foley, A. M. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).Article 

    Google Scholar 
    Karnauskas, M. et al. Timeline of severe red tide events on the West Florida Shelf: insights from oral histories. http://sedarweb.org/docs/wpapers/S61_WP_20_Karnauskasetal_red_tide.pdf (2019).Sagarese, S. R., Gruss, A., Karnauskas, M. & Walter, J. F. Ontogenetic spatial distributions of red grouper (Epinephelus morio) within the northeastern Gulf of Mexico and spatio‐ temporal overlap with red tide events, 35–35. http://sedarweb.org/docs/wpapers/S42_DW_04_Red_tide_distribution.pdf (2014).Sagarese, S. R., Vaughan, N. R., Walter, J. F. & Karnauskas, M. Enhancing single-species stock assessments with diverse ecosystem perspectives: A case study for gulf of mexico red grouper (epinephelus morio) and red tides. Can. J. Fish. Aquat. Sci. 78, 1168–1180 (2021).Article 

    Google Scholar 
    Sagarese, S. R. & Harford, W. J. Evaluating the risks of red tide mortality misspecification when modeling stock dynamics. Fish. Res. 250, 106271–106271 (2022).Article 

    Google Scholar 
    Whitehouse, G. A. & Aydin, K. Y. Assessing the sensitivity of three Alaska marine food webs to perturbations: An example of Ecosim simulations using Rpath. Ecol. Model. 429, 109074–109074 (2020).Article 

    Google Scholar 
    Walter, J. F. et al. Satellite derived indices of red tide severity for input for Gulf of Mexico Gag grouper stock assessment. SEDAR33-DW08 SEDAR. North Charlest. S. C. 43, 40–40 (2013).
    Google Scholar 
    Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: From individuals to ecosystems. Trends Ecol. Evol. 36, 402–410 (2021).Article 

    Google Scholar 
    Walters, S., Lowerre-Barbieri, S., Bickford, J., Tustison, J. & Landsberg, J. H. Effects of Karenia brevis red tide on the spatial distribution of spawning aggregations of sand seatrout Cynoscion arenarius in Tampa Bay Florida. Mar. Ecol. Prog. Ser. 479, 191–202 (2013).Article 

    Google Scholar 
    Reynolds, D. A., Yoo, M. J., Dixson, D. L. & Ross, C. Exposure to the Florida red tide dinoflagellate, Karenia brevis, and its associated brevetoxins induces ecophysiological and proteomic alterations in Porites astreoides. PLoS One 15, e0228414–e0228414 (2020).Article 
    CAS 

    Google Scholar 
    Bornman, E., Cowley, P. D., Adams, J. B. & Strydom, N. A. Daytime intra-estuary movements and harmful algal bloom avoidance by Mugil cephalus (family Mugilidae). Estuar. Coast. Shelf Sci. 260, 107492–107492 (2021).Article 
    CAS 

    Google Scholar 
    Moreira-Santos, M., Ribeiro, R. & Araújo, C. V. M. What if aquatic animals move away from pesticide-contaminated habitats before suffering adverse physiological effects? A critical review. Crit. Rev. Environ. Sci. Technol. 49, 989–1025 (2019).Article 
    CAS 

    Google Scholar 
    Schreck, C. B. & Tort, L. The concept of stress in fish. In Fish Physiology Vol. 35 (eds Schreck, C. B. & Tort, L.) 1–34 (Elsevier, 2016).
    Google Scholar 
    Madin, E. M. P., Dill, L. M., Ridlon, A. D., Heithaus, M. R. & Warner, R. R. Human activities change marine ecosystems by altering predation risk. Glob. Change Biol. 22, 44–60 (2016).Article 

    Google Scholar 
    Walsh, J. R., Carpenter, S. R. & Van Der Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. U.S.A. 113, 4081–4085 (2016).Article 
    CAS 

    Google Scholar 
    Short, J. W. et al. Evidence for ecosystem-level trophic cascade effects involving gulf menhaden (Brevoortia patronus) triggered by the Deepwater horizon blowout. J. Mar. Sci. Eng. 9, 1–20 (2021).Article 

    Google Scholar 
    Zohdi, E. & Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 16, 1789–1806 (2019).Article 

    Google Scholar 
    Weisberg, R. H., Barth, A., Alvera-Azcarate, A. & Zheng, L. A coordinated coastal ocean observing and modeling system for the West Florida Continental Shelf. Harmful Algae 8, 585–597 (2009).Article 

    Google Scholar 
    Turley, B. D., Karnauskas, M., Campbell, M. D., Hanisko, D. S. & Kelble, C. R. Relationships between blooms of Karenia brevis and hypoxia across the West Florida Shelf. Harmful Algae 114, 102223 (2022).Article 

    Google Scholar 
    Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: Insights from ecosystem-level management strategy evaluation. PLoS One 9, e84242 (2014).Article 

    Google Scholar 
    Flynn, K. J. & McGillicuddy, D. J. Modeling marine harmful algal blooms: Current status and future prospects. Harmful Algal Blooms https://doi.org/10.1002/9781118994672.ch3 (2018).Article 

    Google Scholar 
    Thorson, J. T. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161 (2019).Article 

    Google Scholar 
    Fossum, T. O., Travelletti, C., Eidsvik, J., Ginsbourger, D. & Rajan, K. Learning excursion sets of vector-valued gaussian random fields for autonomous ocean sampling. Ann. Appl. Stat. 15, 597–618 (2021).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Fu, F. X., Place, A. R., Garcia, N. S. & Hutchins, D. A. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquat. Microb. Ecol. 59, 55–65 (2010).Article 

    Google Scholar 
    Hardison, D. R., Sunda, W. G., Shea, D. & Litaker, R. W. Increased toxicity of Karenia brevis during phosphate limited growth: Ecological and evolutionary implications. PLoS One 8, e58545–e58545 (2013).Article 
    CAS 

    Google Scholar 
    Errera, R. M., Yvon-Lewis, S., Kessler, J. D. & Campbell, L. Reponses of the dinoflagellate Karenia brevis to climate change: PCO2 and sea surface temperatures. Harmful Algae 37, 110–116 (2014).Article 
    CAS 

    Google Scholar 
    Wells, M. L. et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 91, 101632–101632 (2020).Article 

    Google Scholar 
    Wolny, J. L. et al. Current and future remote sensing of harmful algal blooms in the chesapeake bay to support the shellfish industry. Front. Mar. Sci. 7, 337–337 (2020).Article 

    Google Scholar 
    Reum, J. C. P. et al. It’s not the destination, It’s the journey: Multispecies model ensembles for ecosystem approaches to fisheries management. Front. Mar. Sci. 8, 75–75 (2021).Article 

    Google Scholar 
    Howell, D. et al. Combining ecosystem and single-species modeling to provide ecosystem-based fisheries management advice within current management systems. Front. Mar. Sci. 7, 607831 (2021).Article 

    Google Scholar 
    McPherson, W. C. and J. C. and J. A. and Y. X. and J. shiny: Web application framework for R. R package version 1.4.0, 115–115 (2019). More

  • in

    Macroecological processes drive spiritual ecosystem services obtained from giant trees

    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. Camb. Phil. Soc. 92, 1434–1458 (2017).Article 

    Google Scholar 
    Voigt, C. C., Borissov, I. & Kelm, D. H. Bats fertilize roost trees. Biotropica 47, 403–406 (2015).Article 

    Google Scholar 
    Blicharska, M. & Mikusiński, G. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 28, 1558–1567 (2014).Article 

    Google Scholar 
    Sponsel, L. E. Spiritual Ecology: A Quiet Revolution (ABC-CLIO, 2012).Omura, H. Trees, forests and religion in Japan. Mt. Res. Dev. 24, 179–182 (2004).Article 

    Google Scholar 
    Heintzman, P. Nature-based recreation and spirituality: a complex relationship. Leis. Sci. 32, 72–89 (2009).Article 

    Google Scholar 
    Irvine, K. N., Hoesly, D., Bell-Williams, R. & Warber, S. L. in Biodiversity and Health in the Face of Climate Change (eds Marselle, M. R. et al.) 213–247 (Springer, 2019).Millennium Ecosystem Assessment Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).Vihervaara, P., Rönkä, M. & Walls, M. Trends in ecosystem service research: early steps and current drivers. Ambio 39, 314–324 (2010).Article 

    Google Scholar 
    Brown, J. H. Macroecology (Univ. Chicago Press, 1995).Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Matsui, K. Geography of Religion in Japan: Religious Space, Landscape, and Behavior (Springer, 2013).Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Giant Trees Follow-Up Survey Report, the Sixth Census of the National Survey of the Natural Environment (in Japanese) (Biodiversity Center of Japan & Ministry of the Environment, 2001); https://www.biodic.go.jp/reports2/6th/kyojuflup/6_kyojuflup.pdfMakino, K. Folkloristics of Giant Trees (in Japanese) (Kobunsha, 1986).Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).Article 
    CAS 

    Google Scholar 
    Muthukrishna, M. et al. Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) psychology: measuring and mapping scales of cultural and psychological distance. Psychol. Sci. 31, 678–701 (2020).Article 

    Google Scholar 
    Twigger-Ross, C. L. & Uzzell, D. L. Place and identity processes. J. Environ. Psychol. 16, 205–220 (1996).Article 

    Google Scholar 
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).Watanabe, T., Matsunaga, K., Kanazawa, Y., Suzuki, K. & Rotherham, I. D. Landforms and distribution patterns of giant Castanopsis sieboldii trees in urban areas and western suburbs of Tokyo, Japan. Urban For. Urban Green. 60, 126997 (2021).Article 

    Google Scholar 
    Uryu, S. jpmesh: Utilities for Japanese Mesh Code. R package version 2.1.0 https://CRAN.R-project.org/package=jpmesh (2022).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Yamanouchi, T. et al. A Checklist of Japanese Plant Names (Japan Node of Global Biodiversity Information Facility, 2019); https://www.gbif.jp/v2/activities/wamei_checklist.html More

  • in

    Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests

    Wohlleben, P. The Hidden Life of Trees: What They Feel, How They Communicate—Discoveries From a Secret World Vol. 1 (Greystone Books, 2016).Simard, S. W. Finding the Mother Tree: Discovering the Wisdom of the Forest (Knopf Doubleday Publishing Group, 2022).Powers, R. The Overstory (W. W. Norton & Company, 2018).Jabr, F. The social life of forests. New York Times Magazine https://www.nytimes.com/interactive/2020/12/02/magazine/tree-communication-mycorrhiza.html (2020).Kaplan, S. With forests in peril, she’s on a mission to save ‘mother trees’. Washington Post (27 December 2022).Chung, D. & Williams, R. T. Talking trees. Natl Geogr. 233, 6 (2018).
    Google Scholar 
    Grant, R. Do trees talk to each other? Smithsonian Magazine https://www.smithsonianmag.com/science-nature/the-whispering-trees-180968084/ (2018).Schwartzberg, L. Fantastic Fungi. Moving Art (2019).Druyan, A. Cosmos: Possible Worlds: the Search for Intelligent Life on Earth (2020).Mills, M. C’mon C’mon (2020).Simard, S. W. How trees talk to each other. YouTube https://www.youtube.com/watch?v=Un2yBgIAxYs (2016).Abumrad J & Krulwich, R. From tree to shining tree. Radiolab https://radiolab.org/episodes/from-tree-to-shining-tree (2016).Geddes, L. Unearthing the secret social lives of trees. The Guardian Science Weekly https://www.theguardian.com/science/audio/2021/apr/29/unearthing-the-secret-social-lives-of-trees-podcast (2021).Davies, D. Trees talk to each other. ‘Mother Tree’ ecologist hears lessons for people, too. National Public Radio https://www.npr.org/sections/health-shots/2021/05/04/993430007/trees-talk-to-each-other-mother-tree-ecologist-hears-lessons-for-people-too (2021).Braff, Z. Midnight train to Royston. Ted Lasso (2021).Murphy, R. Welcome, friends. The Watcher (2022).Milović, M., Kebert, M. & Orlović, S. How mycorrhizas can help forests to cope with ongoing climate change? Pregledni Članci Rev. 5, 279–286 (2021).
    Google Scholar 
    Simard, S. W. & Austin, M. E. in Climate Change and Variabilty (eds Simard, S. W. & Austin, M. E.) 275–302 (IntechOpen Europe, 2010).Domínguez-Núñez, J. A. in Structure and Functions of the Pedosphere (eds Giri, B. et al.) 365–391 (Springer, 2022).Authier, L., Violle, C. & Richard, F. Ectomycorrhizal networks in the anthropocene: from natural ecosystems to urban planning. Front. Plant Sci. 13, 900231 (2022).Article 

    Google Scholar 
    Selosse, M.-A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).Article 

    Google Scholar 
    Newman, E. Mycorrhizal links between plants—their functioning and ecological significance. Adv. Ecol. Res. 18, 243–270 (1988).Article 

    Google Scholar 
    Bonello, P., Bruns, T. D. & Gardes, M. Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol. 138, 533–542 (1998).Article 
    CAS 

    Google Scholar 
    Dahlberg, A. & Stenlid, J. Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol. 128, 225–234 (1994).Article 

    Google Scholar 
    Kretzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol. 161, 313–320 (2004).Article 
    CAS 

    Google Scholar 
    Figueiredo, A. F., Boy, J. & Guggenberger, G. Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front. Fungal Biol. 2, https://doi.org/10.3389/ffunb.2021.735299 (2021).Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).Article 

    Google Scholar 
    Trappe, J. M. & Fogel, R. in The Belowground Ecosystem: a Synthesis of Plant-Associated Processes (ed. Marshall J. K.) 205–214 (Colorado State Univ., 1977).Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. & Kretzer, A. M. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 185, 543–553 (2010).Article 
    CAS 

    Google Scholar 
    Beiler, K. J., Simard, S. W. & Durall, D. M. Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J. Ecol. 103, 616–628 (2015).Article 

    Google Scholar 
    Beiler, K. J., Simard, S. W., LeMay, V. & Durall, D. M. Vertical partitioning between sister species of Rhizopogon fungi on mesic and xeric sites in an interior Douglas-fir forest. Mol. Ecol. 21, 6163–6174 (2012).Article 

    Google Scholar 
    Lian, C., Narimatsu, M., Nara, K. & Hogetsu, T. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 171, 825–836 (2006).Article 

    Google Scholar 
    Van Dorp, C. H., Simard, S. W. & Durall, D. M. Resilience of Rhizopogon–Douglas-fir mycorrhizal networks 25 years after selective logging. Mycorrhiza 30, 467–474 (2020).Article 

    Google Scholar 
    Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA 119, e2115329119 (2022).Article 

    Google Scholar 
    Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).Article 

    Google Scholar 
    Setälä, H. Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76, 1844–1851 (1995).Article 

    Google Scholar 
    Kanters, C., Anderson, I. C. & Johnson, D. Chewing up the wood-wide web: selective grazing on ectomycorrhizal fungi by collembola. Forests 6, 2560–2570 (2015).Article 

    Google Scholar 
    Horton, T. R., Bruns, T. D. & Parker, V. T. Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can. J. Bot. 77, 93–102 (1999).
    Google Scholar 
    Kennedy, P. G., Izzo, A. D. & Bruns, T. D. There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91, 1071–1080 (2003).Article 

    Google Scholar 
    Kennedy, P. G., Smith, D. P., Horton, T. R. & Molina, R. J. Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity. Am. J. Bot. 99, 1691–1701 (2012).Article 

    Google Scholar 
    Horton, T. R., Molina, R. & Hood, K. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15, 393–403 (2005).Article 
    CAS 

    Google Scholar 
    Buscardo, E. et al. Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol. Biochem. 46, 136–144 (2012).Article 
    CAS 

    Google Scholar 
    Hewitt, R. E., Chapin, F. S. III, Hollingsworth, T. N. & Taylor, D. L. The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline. Mol. Ecol. 26, 3826–3838 (2017).Article 

    Google Scholar 
    Jia, S., Nakano, T., Hattori, M. & Nara, K. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. Mycorrhiza 27, 733–745 (2017).Article 
    CAS 

    Google Scholar 
    Hortal, S. et al. Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus Laccaria amethystina clustered in two genetic groups. Mol. Ecol. 21, 2116–2129 (2012).Article 
    CAS 

    Google Scholar 
    Wadud, M. A., Nara, K., Lian, C., Ishida, T. A. & Hogetsu, T. Genet dynamics and ecological functions of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji. Mycorrhiza 24, 551–563 (2014).Article 

    Google Scholar 
    Germain, S. J. & Lutz, J. A. Shared friends counterbalance shared enemies in old forests. Ecology 102, e03495 (2021).Article 

    Google Scholar 
    Simard, S. W. et al. Partial retention of legacy trees protect mycorrhizal inoculum potential, biodiversity, and soil resources while promoting natural regeneration of interior Douglas-fir. Front. For. Glob. Change 3, https://doi.org/10.3389/ffgc.2020.620436 (2021).Björkman, E. Monotropa hypopitys L.—an epiparasite on tree roots. Physiol. Plant. 13, 308–327 (1960).Article 

    Google Scholar 
    Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).Article 
    CAS 

    Google Scholar 
    Read, D. The ties that bind. Nature 388, 517–518 (1997).Article 
    CAS 

    Google Scholar 
    Aleklett, K. & Boddy, L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol. Evol. 36, 787–796 (2021).Article 

    Google Scholar 
    Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).Article 
    CAS 

    Google Scholar 
    Hasselquist, N. J. et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology 97, 1012–1022 (2016).
    Google Scholar 
    Näsholm, T. et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol. 198, 214–221 (2013).Article 

    Google Scholar 
    Hoeksema, J. D. in Mycorrhizal Networks (ed. Horton, T. R.) 255–277 (Springer Netherlands, 2015).Teste, F. P. & Simard, S. W. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158, 193–203 (2008).Article 

    Google Scholar 
    Teste, F. P., Simard, S. W., Durall, D. M., Guy, R. D. & Berch, S. M. Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J. Ecol. 98, 429–439 (2010).Article 
    CAS 

    Google Scholar 
    Teste, F. P. et al. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90, 2808–2822 (2009).Article 

    Google Scholar 
    Lerat, S. et al. 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132, 181–187 (2002).Article 

    Google Scholar 
    Klein, T., Siegwolf, R. T. W. & Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).Article 
    CAS 

    Google Scholar 
    He, X., Bledsoe, C. S., Zasoski, R. J., Southworth, D. & Horwath, W. R. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol. 170, 143–151 (2006).Article 
    CAS 

    Google Scholar 
    Schoonmaker, A. L., Teste, F. P., Simard, S. W. & Guy, R. D. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Oecologia 154, 455–466 (2007).Article 

    Google Scholar 
    Warren, J. M., Brooks, J. R., Meinzer, F. C. & Eberhart, J. L. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol. 178, 382–394 (2008).Article 
    CAS 

    Google Scholar 
    Bingham, M. A. & Simard, S. W. Seedling genetics and life history outweigh mycorrhizal network potential to improve conifer regeneration under drought. For. Ecol. Manag. 287, 132–139 (2013).Article 

    Google Scholar 
    Kranabetter, J. M. Understory conifer seedling response to a gradient of root and ectomycorrhizal fungal contact. Can. J. Bot. 83, 638–646 (2005).Article 

    Google Scholar 
    Liang, M. et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 11, 2636 (2020).Article 
    CAS 

    Google Scholar 
    Liang, M. et al. Soil fungal networks moderate density-dependent survival and growth of seedlings. New Phytol. 230, 2061–2071 (2021).Article 

    Google Scholar 
    McGuire, K. L. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88, 567–574 (2007).Article 

    Google Scholar 
    Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30, 173–183 (2020).Article 

    Google Scholar 
    Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).Article 

    Google Scholar 
    Booth, M. G. Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecol. Lett. 7, 538–546 (2004).Article 

    Google Scholar 
    Booth, M. G. & Hoeksema, J. D. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91, 2294–2302 (2010).Article 

    Google Scholar 
    Brearley, F. Q. et al. Testing the importance of a common ectomycorrhizal network for dipterocarp seedling growth and survival in tropical forests of Borneo. Plant Ecol. Divers. 9, 563–576 (2016).Article 

    Google Scholar 
    Dehlin, H. et al. Tree seedling performance and below-ground properties in stands of invasive and native tree species. N. Z. J. Ecol. 32, 67–79 (2008).
    Google Scholar 
    Newbery, D. M. & Neba, G. A. Micronutrients may influence the efficacy of ectomycorrhizas to support tree seedlings in a lowland African rain forest. Ecosphere 10, e02686 (2019).Article 

    Google Scholar 
    Oliveira, I. R. et al. Nutrient deficiency enhances the rate of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus trees in mixed-species plantations. For. Ecol. Manag. 491, 119192 (2021).Article 

    Google Scholar 
    Paula, R. R. et al. Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol. Biochem. 91, 99–108 (2015).Article 
    CAS 

    Google Scholar 
    Nygren, P. & Leblanc, H. A. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol. 35, 134–147 (2015).Article 
    CAS 

    Google Scholar 
    Liu, Y., Chen, H. & Mou, P. Spatial patterns nitrogen transfer models of ectomycorrhizal networks in a Mongolian scotch pine plantation. J. For. Res. 29, 339–346 (2018).Article 
    CAS 

    Google Scholar 
    Bingham, M. A. & Simard, S. Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15, 188–199 (2012).Article 
    CAS 

    Google Scholar 
    Robinson, D. & Fitter, A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J. Exp. Bot. 50, 9–13 (1999).Article 
    CAS 

    Google Scholar 
    Chen, W., Koide, R. T. & Eissenstat, D. M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 106, 148–156 (2018).Article 
    CAS 

    Google Scholar 
    Jones, M. D., Durall, D. M. & Tinker, P. B. A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol. 140, 125–134 (1998).Article 

    Google Scholar 
    Pickles, B. J. et al. Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. New Phytol. 214, 400–411 (2017).Article 
    CAS 

    Google Scholar 
    Teste, F. P., Simard, S. W. & Durall, D. M. Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecol. 2, 21–30 (2009).Article 

    Google Scholar 
    Bingham, M. A. & Simard, S. W. Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza 22, 317–326 (2012).Article 

    Google Scholar 
    Pec, G. J. et al. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytol. 213, 864–873 (2017).Article 
    CAS 

    Google Scholar 
    Coomes, D. A. & Grubb, P. J. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol. Monogr. 70, 171–207 (2000).Article 

    Google Scholar 
    Finlay, R. D. & Read, D. J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol. 103, 143–156 (1986).Article 

    Google Scholar 
    Brownlee, C., Duddridge, J. A., Malibari, A. & Read, D. J. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71, 433–443 (1983).Article 

    Google Scholar 
    Wu, B., Nara, K. & Hogetsu, T. Can 14C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol. 149, 137–146 (2001).Article 
    CAS 

    Google Scholar 
    Anten, N. P. R. & Chen, B. J. W. Detect thy family: mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant Cell Environ. 44, 1059–1071 (2021).Article 
    CAS 

    Google Scholar 
    Dominguez, P. G. & Niittylä, T. Mobile forms of carbon in trees: metabolism and transport. Tree Physiol. 42, 458–487 (2021).Article 

    Google Scholar 
    Yu, R.-P., Lambers, H., Callaway, R. M., Wright, A. J. & Li, L. Belowground facilitation and trait matching: two or three to tango. Trends Plant Sci. 26, 1227–1235 (2021).Article 
    CAS 

    Google Scholar 
    Simard, S. W. in The Word for World is Still Forest (eds Springer, A. & Turpin, E.) 66–72 (K Verlag and Haus der Kulturen der Welt, 2017).Simard, S. W. in Memory and Learning in Plants (eds Baluska, F. et al.) 191–213 (Springer, 2018).Boyno, G. & Demir, S. Plant–mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis 86, 155–168 (2022).Article 

    Google Scholar 
    Rasheed, M. U., Brosset, A. & Blande, J. D. Tree communication: the effects of “wired” and “wireless” channels on interactions with herbivores. Curr. For. Rep. 9, 33–47 (2023).
    Google Scholar 
    Song, Y. Y., Simard, S. W., Carroll, A., Mohn, W. W. & Zeng, R. S. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci. Rep. 5, 8495 (2015).Article 
    CAS 

    Google Scholar 
    Gorzelak, M. A. Kin-Selected Signal Transfer Through Mycorrhizal Networks in Douglas-Fir. PhD thesis, Univ. British Columbia (2017).Asay, A. K. Mycorrhizal Facilitation of Kin Recognition in Interior Douglas-Fir (Pseudotsuga menziesii var. glauca). MSc thesis, Univ. British Columbia (2013).Orrego, G. Western Hemlock Regeneration on Coarse Woody Debris is Facilitated by Linkage into a Mycorrhizal Network in an Old-Growth Forest. MSc thesis, Univ. British Columbia (2018).Diédhiou, A. G. et al. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ. Microbiol. 12, 2219–2232 (2010).
    Google Scholar 
    Grelet, G.-A. et al. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol. 188, 210–222 (2010).Article 
    CAS 

    Google Scholar 
    Van der Heijden, M. G. A. & Horton, T. R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97, 1139–1150 (2009).Article 

    Google Scholar 
    Babikova, Z., Johnson, D., Bruce, T., Pickett, J. & Gilbert, L. Underground allies: how and why do mycelial networks help plants defend themselves? BioEssays 36, 21–26 (2014).Article 

    Google Scholar 
    Alaux, P.-L., Zhang, Y., Gilbert, L. & Johnson, D. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plants People Planet 3, 433–444 (2021).Article 

    Google Scholar 
    Simard, S. W. et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60 (2012).Article 

    Google Scholar 
    Flinn, K. The idea that trees talk to cooperate is misleading. Scientific American https://www.scientificamerican.com/article/the-idea-that-trees-talk-to-cooperate-is-misleading/ (2021).Högberg, P. & Högberg, M. N. Does successful forest regeneration require the nursing of seedlings by nurse trees through mycorrhizal interconnections. For. Ecol. Manag. 516, 120252 (2022).Article 

    Google Scholar 
    Teste, F. P., Jones, M. D. & Dickie, I. A. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851 (2020).Article 

    Google Scholar 
    Toju, H., Guimarães, P. R., Olesen, J. M. & Thompson, J. N. Assembly of complex plant–fungus networks. Nat. Commun. 5, 5273 (2014).Article 
    CAS 

    Google Scholar 
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Elsevier, 2008).Nara, K. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169, 169–178 (2006).Article 
    CAS 

    Google Scholar 
    Arnebrant, K., Ek, H., Finlay, R. D. & Söderström, B. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124, 231–242 (1993).Article 

    Google Scholar 
    Finlay, R. D. Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cauipes. New Phytol. 112, 185–192 (1989).Article 
    CAS 

    Google Scholar 
    Cahanovitc, R., Livne-Luzon, S., Angel, R. & Klein, T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. 16, 1420–1429 (2022).Article 
    CAS 

    Google Scholar 
    Teste, F. P., Veneklass, E. J., Dixon, K. W. & Lambers, H. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies? Plant Cell Environ. 38, 50–60 (2015).Article 
    CAS 

    Google Scholar 
    Simard, S. W. et al. Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol. 137, 529–542 (1997).Article 
    CAS 

    Google Scholar 
    Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).Article 
    CAS 

    Google Scholar 
    He, X., Critchley, C., Ng, H. & Bledsoe, C. Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3− supplied as ammonium nitrate. New Phytol. 167, 897–912 (2005).Article 
    CAS 

    Google Scholar 
    He, X., Critchley, C., Ng, H. & Bledsoe, C. Reciprocal N (15NH4+ or 15NO3−) transfer between nonN2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163, 629–640 (2004).Article 

    Google Scholar 
    Bingham, M. A. & Simard, S. W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecol. Evol. 1, 306–316 (2011).Article 

    Google Scholar 
    Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843 (2013).Article 

    Google Scholar 
    Birch, J. D., Simard, S. W., Beiler, K. J. & Karst, J. Beyond seedlings: ectomycorrhizal fungal networks and growth of mature Pseudotsuga menziesii. J. Ecol. 109, 806–818 (2021).Article 
    CAS 

    Google Scholar 
    Färkkilä, S. M. A. et al. Fluorescent nanoparticles as tools in ecology and physiology. Biol. Rev. 96, 2392–2424 (2021).Article 

    Google Scholar  More

  • in

    Gut microbiome composition associates with corticosteroid treatment, morbidity, and senescence in Chinook salmon (Oncorhynchus tshawytscha)

    Jerez-Cepa, I., Gorissen, M., Mancera, J. M. & Ruiz-Jarabo, I. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 231, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Brown, C. L., Urbinati, E. C., Zhang, W., Brown, S. B. & McComb-Kobza, M. Maternal thyroid and glucocorticoid hormone interactions in larval fish development, and their applications in aquaculture. Rev. fish. Sci. Aquac. 22, 207–220 (2014).Article 

    Google Scholar 
    Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375 (2011).Article 
    CAS 

    Google Scholar 
    Schreck, C. B. & Tort, L. In Fish Physiology (eds Schreck, C. B. et al.) vol. 35, 1–34 (Elsevier, 2016).Sternberg, E. M., Chrousos, G. P., Wilder, R. L. & Gold, P. W. The stress response and the regulation of inflammatory disease. Ann. Intern. Med. 117, 854–866 (1992).Article 
    CAS 

    Google Scholar 
    Staufenbiel, S. M., Penninx, B. W. J. H., Spijker, A. T., Elzinga, B. M. & van Rossum, E. F. C. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology 38, 1220–1235 (2013).Article 
    CAS 

    Google Scholar 
    Pickering, A. D. & Pottinger, T. G. Cortisol can increase the susceptibility of brown trout, Salmo trutta L., to disease without reducing the white blood cell count. J. Fish Biol. 27, 611–619 (1985).Article 
    CAS 

    Google Scholar 
    McCormick, S. D. et al. Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 168, 221–235 (1998).Article 
    CAS 

    Google Scholar 
    McConnachie, S. H. et al. Consequences of acute stress and cortisol manipulation on the physiology, behavior, and reproductive outcome of female Pacific salmon on spawning grounds. Horm. Behav. 62, 67–76 (2012).Article 
    CAS 

    Google Scholar 
    Moffat, S. D., An, Y., Resnick, S. M., Diamond, M. P. & Ferrucci, L. Longitudinal change in cortisol levels across the adult life span. J. Gerontol. A Biol. Sci. Med. Sci. 75, 394–400 (2020).Article 
    CAS 

    Google Scholar 
    Oh, H.-J. et al. Age-related decrease in stress responsiveness and proactive coping in male mice. Front. Aging Neurosci. 10, 128 (2018).Article 
    PubMed Central 

    Google Scholar 
    Woods, H. A. 2nd. & Hellgren, E. C. Seasonal changes in the physiology of male Virginia opossums (Didelphis virginiana): Signs of the Dasyurid semelparity syndrome?. Physiol. Biochem. Zool. 76, 406–417 (2003).Article 

    Google Scholar 
    Barry, T. P., Unwin, M. J., Malison, J. A. & Quinn, T. P. Free and total cortisol levels in semelparous and iteroparous Chinook salmon. J. Fish Biol. 59, 1673–1676 (2001).Article 
    CAS 

    Google Scholar 
    Petrosus, E., Silva, E. B., Lay, D. Jr. & Eicher, S. D. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage. J. Anim. Sci. 96, 4543–4551 (2018).PubMed Central 

    Google Scholar 
    Shi, D. et al. Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci. 98, 2405–2413 (2019).Article 

    Google Scholar 
    Uren Webster, T. M., Rodriguez-Barreto, D., Consuegra, S. & Garcia de Leaniz, C. Cortisol-related signatures of stress in the fish microbiome. Front. Microbiol. 11, 1621 (2020).Article 
    PubMed Central 

    Google Scholar 
    Ridlon, J. M. et al. Clostridium scindens: A human gut microbe with a high potential to convert glucocorticoids into androgens. J. Lipid Res. 54, 2437–2449 (2013).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    UrenWebster, T. M., Consuegra, S. & Garcia de Leaniz, C. Early life stress causes persistent impacts on the microbiome of Atlantic salmon. Comp. Biochem. Physiol. Part D Genomics Proteomics 40, 100888 (2021).Article 
    CAS 

    Google Scholar 
    Bozzi, D. et al. Salmon gut microbiota correlates with disease infection status: Potential for monitoring health in farmed animals. Anim. Microbiome 3, 30 (2021).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Xiong, J.-B., Nie, L. & Chen, J. Current understanding on the roles of gut microbiota in fish disease and immunity. Zool. Res. 40, 70–76 (2019).
    Google Scholar 
    Williams, C. L., Garcia-Reyero, N., Martyniuk, C. J., Tubbs, C. W. & Bisesi, J. H. Jr. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen. Comp. Endocrinol. 292, 113437 (2020).Article 
    CAS 

    Google Scholar 
    Schmidt, K. et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232, 1793–1801 (2015).Article 
    CAS 

    Google Scholar 
    Crumeyrolle-Arias, M. et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42, 207–217 (2014).Article 
    CAS 

    Google Scholar 
    Bell, E. A., Ball, A. G., Deprey, K. L. & Uno, J. K. The impact of antibiotics on the intestinal microbiome and the gut-brain axis in zebrafish. FASEB J. 32, 765–771 (2018).Article 

    Google Scholar 
    Björnsson, B. T., Stefansson, S. O. & McCormick, S. D. Environmental endocrinology of salmon smoltification. Gen. Comp. Endocrinol. 170, 290–298 (2011).Article 

    Google Scholar 
    Carruth, L. L., Jones, R. E. & Norris, D. O. Cortisol and Pacific Salmon: A new look at the role of stress hormones in olfaction and home-stream migration. Integr. Comp. Biol. 42, 574–581 (2002).Article 
    CAS 

    Google Scholar 
    Donaldson, E. M. & Fagerlund, U. H. M. Effect of sexual maturation and gonadectomy at sexual maturity on cortisol secretion rate in sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Can. 27, 2287–2296 (1970).Article 

    Google Scholar 
    Dickhoff, W. W. Development, Maturation, and Senescence of Neuroendocrine Systems 253–266 (Elsevier, 1989).Book 

    Google Scholar 
    Maule, A. G., Schreck, C. B. & Kaattari, S. L. Changes in the immune system of coho salmon (Oncorhynchus kisutch) during the parr-to-smolt transformation and after implantation of cortisol. Can. J. Fish. Aquat. Sci. 44, 161–166 (1987).Article 
    CAS 

    Google Scholar 
    Llewellyn, M. S. et al. Parasitism perturbs the mucosal microbiome of Atlantic Salmon. Sci. Rep. 7, 1–10 (2017).Article 

    Google Scholar 
    Vasemägi, A., Visse, M. & Kisand, V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild Salmonid fish. mSphere 2, e00418-17 (2017).Article 
    PubMed Central 

    Google Scholar 
    Kelly, C. & Salinas, I. Under pressure: Interactions between commensal microbiota and the teleost immune system. Front. Immunol. 8, 559 (2017).Article 
    PubMed Central 

    Google Scholar 
    Fast, M. D., Hosoya, S., Johnson, S. C. & Afonso, L. O. B. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol. 24, 194–204 (2008).Article 
    CAS 

    Google Scholar 
    Carrizo, V. et al. Effect of cortisol on the immune-like response of rainbow trout (Oncorhynchus mykiss) myotubes challenged with Piscirickettsia salmonis. Vet. Immunol. Immunopathol. 237, 110240 (2021).Article 
    CAS 

    Google Scholar 
    Nervino, S. Intestinal lesions and parasites associated with prespawn mortality in Chinook salmon (Oncorhynchus tshawytscha). (2022).Couch, C. E. et al. Enterocytozoon schreckii n. sp. infects the enterocytes of adult chinook salmon (Oncorhynchus tshawytscha) and may be a sentinel of immunosenescence. mSphere 7, e0090821 (2022).Article 

    Google Scholar 
    Redding, J. M., Schreck, C. B., Birks, E. K. & Ewing, R. D. Cortisol and its effects on plasma thyroid hormone and electrolyte concentrations in fresh water and during seawater acclimation in yearling coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 56, 146–155 (1984).Article 
    CAS 

    Google Scholar 
    Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62, 290–293 (2017).Article 
    CAS 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 108(Suppl 1), 4516–4522 (2011).Article 
    CAS 

    Google Scholar 
    Minich, J. J. et al. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems 3, e00166-18 (2018).Article 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Escalas, A. et al. Ecological specialization within a carnivorous fish family is supported by a herbivorous microbiome shaped by a combination of gut traits and specific diet. Front. Mar. Sci. 8, 622883 (2021).Article 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).Article 
    CAS 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2020). https://www.R-project.org/.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 

    Google Scholar 
    Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352 (2016).Article 

    Google Scholar 
    Schliep, K., Potts, A. J., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 8, 1212–1220 (2017).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika 27, 219–246 (1962).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Oksanen, J. et al. The vegan package. Community Ecol. Packag. 10, 631–637 (2007).
    Google Scholar 
    Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. Preprint at (2017)Zhang, Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Stat. Comput. 23, 743–757 (2013).Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Hassenrück, C., Reinwald, H., Kunzmann, A., Tiedemann, I. & Gärdes, A. Effects of thermal stress on the gut microbiome of juvenile milkfish (Chanos chanos). Microorganisms 9, 5 (2020).Article 
    PubMed Central 

    Google Scholar 
    Liu, Y. et al. Response mechanism of gut microbiome and metabolism of European seabass (Dicentrarchus labrax) to temperature stress. Sci. Total Environ. 813, 151786 (2022).Article 
    CAS 

    Google Scholar 
    Du, F. et al. Response of the gut microbiome of Megalobrama amblycephala to crowding stress. Aquaculture 500, 586–596 (2019).Article 
    CAS 

    Google Scholar 
    Stothart, M. R., Palme, R. & Newman, A. E. M. It’s what’s on the inside that counts: Stress physiology and the bacterial microbiome of a wild urban mammal. Proc. Biol. Sci. 286, 20192111 (2019).PubMed Central 

    Google Scholar 
    Michels, N. et al. Gut microbiome patterns depending on children’s psychosocial stress: Reports versus biomarkers. Brain Behav. Immun. 80, 751–762 (2019).Article 

    Google Scholar 
    Zhao, H., Jiang, X. & Chu, W. Shifts in the gut microbiota of mice in response to dexamethasone administration. Int. Microbiol. 23, 565–573 (2020).Article 
    CAS 

    Google Scholar 
    Zanuzzo, F. S., Sabioni, R. E., Marzocchi-Machado, C. M. & Urbinati, E. C. Modulation of stress and innate immune response by corticosteroids in pacu (Piaractus mesopotamicus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 231, 39–48 (2019).Article 
    CAS 

    Google Scholar 
    Timmermans, S., Souffriau, J. & Libert, C. A general introduction to glucocorticoid biology. Front. Immunol. 10, 1545 (2019).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Kugathas, S. & Sumpter, J. P. Synthetic glucocorticoids in the environment: First results on their potential impacts on fish. Environ. Sci. Technol. 45, 2377–2383 (2011).Article 
    CAS 

    Google Scholar 
    Schaal, P. et al. Links between host genetics, metabolism, gut microbiome and amoebic gill disease (AGD) in Atlantic salmon. Anim. Microbiome 4, 53 (2022).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Birlanga, V. B. et al. Dynamic gill and mucus microbiomes during a gill disease episode in farmed Atlantic salmon. Sci. Rep. 12, 16719 (2022).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Cipriano, R. C., Ford, L. A., Smith, D. R., Schachte, J. H. & Petrie, C. J. Differences in detection of Aeromonas salmonicida in covertly infected Salmonid fishes by the stress-inducible furunculosis test and culture-based assays. J. Aquat. Anim. Health 9, 108–113 (1997).Article 

    Google Scholar 
    Lovy, J., Speare, D. J., Stryhn, H. & Wright, G. M. Effects of dexamethasone on host innate and adaptive immune responses and parasite development in rainbow trout Oncorhynchus mykiss infected with Loma salmonae. Fish Shellfish Immunol. 24, 649–658 (2008).Article 
    CAS 

    Google Scholar 
    Bakhtiyar, Y., Yousuf, T. & Arafat, M. Y. Bacterial Fish Diseases 269–278 (Elsevier, 2022).Book 

    Google Scholar 
    Benda, S. E., Naughton, G. P., Caudill, C. C., Kent, M. L. & Schreck, C. B. Cool, pathogen-free refuge lowers pathogen-associated prespawn mortality of Willamette River Chinook salmon. Trans. Am. Fish. Soc. 144, 1159–1172 (2015).Article 

    Google Scholar 
    Barton, B. A. & Iwama, G. K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1, 3–26 (1991).Article 

    Google Scholar 
    Dolan, B. P. et al. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha. Fish Shellfish Immunol. 48, 136–144 (2016).Article 
    CAS 

    Google Scholar 
    Wedemeyer, G. A. Physiological response of juvenile coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) to handling and crowding stress in intensive fish culture. J. Fish. Res. Board Can. 33, 2699–2702 (1976).Article 

    Google Scholar 
    Suomalainen, L.-R., Tiirola, M. A. & Valtonen, E. T. Influence of rearing conditions on Flavobacterium columnare infection of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 28, 271–277 (2005).Article 

    Google Scholar 
    Schmidt-Posthaus, H., Bernet, D., Wahli, T. & Burkhardt-Holm, P. Morphological organ alterations and infectious diseases in brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss exposed to polluted river water. Dis. Aquat. Organ. 44, 161–170 (2001).Article 
    CAS 

    Google Scholar 
    Shi, N., Li, N., Duan, X. & Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 4, 1–7 (2017).CAS 

    Google Scholar 
    Mitchell, S. O. et al. “Candidatus Branchiomonas cysticola” is a common agent of epitheliocysts in seawater-farmed Atlantic salmon Salmo salar in Norway and Ireland. Dis. Aquat. Organ. 103, 35–43 (2013).Article 
    CAS 

    Google Scholar 
    Kormas, K. A., Meziti, A., Mente, E. & Frentzos, A. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata). Microbiologyopen 3, 718–728 (2014).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Engel, M. et al. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS ONE 12, e0180859 (2017).Article 
    PubMed Central 

    Google Scholar 
    Lucasson, A. et al. A core of functionally complementary bacteria colonizes oysters in Pacific Oyster Mortality Syndrome. bioRxiv https://doi.org/10.1101/2020.11.16.384644 (2020).Article 

    Google Scholar  More

  • in

    Global conservation prioritization areas in three dimensions of crocodilian diversity

    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, 50–61 (2006).Article 

    Google Scholar 
    Somaweera, R. et al. The ecological importance of crocodylians: Towards evidence-based justification for their conservation. Biol. Rev. Camb. Philos. Soc. 95, 936–959. https://doi.org/10.1111/brv.12594 (2020).Article 

    Google Scholar 
    Swain, S. et al. Anthropogenic influence on the physico-chemical parameters of Dhamra estuary and adjoining coastal water of the Bay of Bengal. Mar. Pollut. Bull. 162, 111826. https://doi.org/10.1016/j.marpolbul.2020.111826 (2021).Article 
    CAS 

    Google Scholar 
    IUCN. IUCN Red List of Threatened Species. Version 2022.1. www.iucnredlist.org (2022).Markich, S. J. & Jeffree, R. A. (eds) The Finnis River. A Natural Laboratory of Mining Impact—Past, Present and Future (Australian Nuclear Science and Technology Organisation, 2002).
    Google Scholar 
    Vieira, L. M. et al. Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area, Brazil. J. Environ. Monitor. 13, 280–287. https://doi.org/10.1039/c0em00561d (2011).Article 
    CAS 

    Google Scholar 
    Quintela, F. M. et al. Arsenic, lead and cadmium concentrations in caudal crests of the yacare caiman (Caiman yacare) from Brazilian Pantanal. Sci. Total Environ. 707, 135479. https://doi.org/10.1016/j.scitotenv.2019.135479 (2020).Article 
    CAS 

    Google Scholar 
    Briggs-Gonzalez, V. S., Basille, M., Cherkiss, M. S. & Mazzotti, F. J. American crocodiles (Crocodylus acutus) as restoration bioindicators in the Florida Everglades. PLoS ONE 16, e0250510. https://doi.org/10.1371/journal.pone.0250510 (2021).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015).Book 

    Google Scholar 
    Subalusky, A. L., Fitzgerald, L. A. & Smith, L. L. Ontogenetic niche shifts in the American alligator establish functional connectivity between aquatic systems. Biol. Conserv. 142, 1507–1514 (2009).Article 

    Google Scholar 
    Villamarín, F., Escobedo-Galván, A. H., Siroski, P. & Magnusson, W. E. Geographic distribution, habitat, reproduction, and conservation status of crocodilians in the Americas. In Conservation Genetics of New World Crocodilians (eds Zucoloto, R. B. et al.) (Springer, 2021).
    Google Scholar 
    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flag ships. Conserv. Lett. 4, 1–8. https://doi.org/10.1111/j.1755-263X.2010.00151.x (2011).Article 

    Google Scholar 
    Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10, 569–579 (2000).Article 

    Google Scholar 
    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trents Ecol. Evol. 2211, 583–592 (2007).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).Article 

    Google Scholar 
    Magurran, A. E. Measuring Biological Diversity 2nd edn. (Blackwell Publishing, 2004).
    Google Scholar 
    Campos, F. S., Lourenço-de-Moraes, R., Llorente, G. A. & Solé, M. Cost-effective conservation of amphibian ecology and evolution. Sci. Adv. 36, e1602929 (2017).Article 

    Google Scholar 
    Dietz, M. S., Belote, R. T., Aplet, G. H. & Aycrigg, J. L. The world’s largest wilderness protection network after 50 years: An assessment of ecological system representation in the US National Wilderness Preservation System. Biol. Conserv. 184, 431–438 (2015).Article 

    Google Scholar 
    UNEP-WCMC, IUCN. Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).
    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791. https://doi.org/10.1126/science.aap9565 (2018).Article 
    CAS 

    Google Scholar 
    Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643. https://doi.org/10.1038/nature02422 (2004).Article 
    CAS 

    Google Scholar 
    Ladle, R. J. & Whittaker, R. J. Conservation Biogeography 301 (Wiley-Blackwell, 2011).Book 

    Google Scholar 
    Dinerstein, E. et al. A “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, 2824 (2020).Article 

    Google Scholar 
    Lourenço-de-Moraes, R. et al. No more trouble: An economic strategy to protect taxonomic, functional and phylogenetic diversity of continental turtles. Biol. Conserv. 261, 109241. https://doi.org/10.1016/j.biocon.2021.109241 (2021).Article 

    Google Scholar 
    Brochu, C. A. Phylogenetic relationships of Necrosuchus ionensis Simpson, 1937 and the early history of caimanines. Zool. J. Linn. Soc. 163, 228–256. https://doi.org/10.1111/j.1096-3642.2011.00716.x (2011).Article 

    Google Scholar 
    Buffetaut, E. Systématique, origine et evolution des Gavialidae sud-américains. In Phylógenie et Paléobiogeography: Livre Jubilaire en l´honneur de Robert Hoffstetter (ed. Buffetaut, E.) 127–140 (Géobios, 1982).
    Google Scholar 
    Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Data from: Using functional traits to identify conservation priorities for the world’s crocodylians. Zenodo. https://doi.org/10.5281/zenodo.6645415 (2022).Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Using functional traits to identify conservation priorities for the world’s crocodylians. Funct. Ecol. 37, 112. https://doi.org/10.1111/1365-2435.14140 (2022).Article 
    CAS 

    Google Scholar 
    Milian-Garcia, Y. et al. Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J. Exp. Zool. A 315, 358–375. https://doi.org/10.1002/jez.683 (2011).Article 

    Google Scholar 
    Rodrıguez-Soberon, R., Ross, P. & Seal, U. IUCN/SSC Conservation Breeding Specialist Group (2000).Milián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Espinosa-López, G. & Russello, M. A. Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: Implications for population history and in situ/ex situ conservation. Heridity 114, 272–280 (2015).Article 

    Google Scholar 
    Pacheco-Sierra, G., Gompert, Z., Dominguez-Laso, J. & Vazquez-Dominguez, E. Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylus acutus and Crocodylus moreletii. Mol. Ecol. 25, 3484–3498. https://doi.org/10.1111/mec.13694 (2016).Article 

    Google Scholar 
    Borges, V. S. et al. Evolutionary significant units within populations of Neotropical broad-snouted caimans (Caiman latirostris, Daudin, 1802). J. Herpetol. 52, 282–288 (2018).Article 

    Google Scholar 
    Palmer, M. L. & Mazzoti, F. J. Structure of everglades alligator holes. Wetlands 24, 115–122 (2004).Article 

    Google Scholar 
    Marques, T. S. et al. Intraspecific isotopic niche variation in broad-snouted caiman (Caiman latirostris). Isot. Environ. Health Stud. 49, 325–335 (2013).Article 
    CAS 

    Google Scholar 
    Mascarenhas-Junior, P. B. et al. Conflicts between humans and crocodilians in urban areas across Brazil: A new approach to support management and conservation. Ethnobiol. Conserv. 10, 19. https://doi.org/10.15451/ec2021-12-10.37-1-19 (2021).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 

    Google Scholar 
    Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).Article 

    Google Scholar 
    Filogonio, R., Assis, V. B., Passos, L. F. & Coutinho, M. E. Distribution of populations of broad-snouted caiman (Caiman latirostris, Daudin 1802, Alligatoridae) in the São Francisco River basin, Brazil. Braz. J. Biol. https://doi.org/10.1590/S1519-69842010000500007 (2010).Article 

    Google Scholar 
    Marques, J. F. et al. Fires dynamics in the Pantanal: Impacts of anthropogenic activities and climate change. J. Environ. Manag. 299, 113586. https://doi.org/10.1016/j.jenvman.2021.113586 (2021).Article 

    Google Scholar 
    Mataveli, G. A. V. et al. 2020 Pantanal’s widespread fire: Short- and long-term implications for biodiversity and conservation. Biodivers. Conserv. https://doi.org/10.1007/s10531-021-02243-2 (2021).Article 
    PubMed Central 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    CAS 

    Google Scholar 
    Canning, A. & Death, R. Trophic cascade direction and flow determine network flow stability. Ecol. Model. 355, 18–23 (2017).Article 

    Google Scholar 
    Wang, Y. Q., Zhu, W. Q., Huang, L., Zhou, K. Y. & Wang, R. P. Genetic diversity of Chinese alligator (Alligator sinensis) revealed by AFLP analysis: An implication on the management of captive conservation. Biodivers. Conserv. 15, 2945–2955 (2006).Article 

    Google Scholar 
    Zhai, T. et al. Effects of population bottleneck and balancing selection on the chinese alligator are revealed by locus-specific characterization of MHC genes. Sci. Rep. 7, 5549. https://doi.org/10.1038/s41598-017-05640-2 (2017).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Sharma, S. P. et al. Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Sci. Rep. https://doi.org/10.1038/s41598-021-85201-w (2021).Article 
    PubMed Central 

    Google Scholar 
    Nair, T. & Krishna, Y. C. Vertebrate fauna of the Chambal River basin, with emphasis on the National Chambal Sanctuary, India. J. Threat. Taxa 5, 3620–3641 (2013).Article 

    Google Scholar 
    Sharma, R. & Singh, L. Status of mugger crocodile (Crocodylus palustris) in National Chambal Sanctuary after thirty years and its implications on conservation of Gharial (Gavialis gangeticus). Zoo’s Print 30, 9–16 (2015).
    Google Scholar 
    Sinhg, H. & Rao, R. Status, threats and conservation challenges to key aquatic fauna (crocodile and dolphin) in National Chambal Sanctuary, India. Aquat. Ecosyst. Health Manag. 20, 59–70 (2017).Article 

    Google Scholar 
    UNEP-WCMC, IUCN. Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC, IUCN, 2021).
    Google Scholar 
    Smolensky, N. L., Hurtado, L. A. & Fitzgerald, L. A. DNA barcoding of Cameroon samples enhances our knowledge on the distributional limits of putative species of Osteolaemus (African dwarf crocodiles). Conserv. Genet. 16, 235–240. https://doi.org/10.1007/s10592-014-0639-3 (2014).Article 
    CAS 

    Google Scholar 
    Shirley, M. H., Villanova, V. L., Vliet, K. A. & Austin, J. D. Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim. Conserv. 18, 322–330 (2015).Article 

    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African Slender-snouted Crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151–193. https://doi.org/10.11646/zootaxa.4504.2.1 (2018).Article 

    Google Scholar 
    Murray, C. M., Russo, P., Zorrilla, A. & McMahan, C. D. Divergent morphology among populations of the New Guinea crocodile, Crocodylus novaeguineae (Schmidt, 1928): Diagnosis of an independent lineage and description of a new species. Copeia 107, 517–523. https://doi.org/10.1643/CG-19-240 (2019).Article 

    Google Scholar 
    Hekkala, E. H. et al. An ancient icon reveals new mysteries: Mummy DNA resurrects a cryptic species within the Nile crocodile. Mol. Ecol. 20, 4199–4215 (2011).Article 
    CAS 

    Google Scholar 
    Mobaraki, A. et al. Conservation status of the mugger crocodile Crocodylus palustris: Establishing a task force for a poster species of climate change. Crocodile Specialist Group Newslett. 40(3), 12–20 (2021).
    Google Scholar 
    Cunningham, S. W., Shirley, M. H. & Hekkala, E. R. Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ 12, e1901 (2016).Article 

    Google Scholar 
    Platt, S. G. et al. Siamese Crocodile Crocodylus siamensis. In Crocodiles. Status Survey and Conservation Action Plan 4th edn (eds Manolis, S. C. & Stevenson, C.) (Crocodile Specialist Group, 2019).
    Google Scholar 
    Arcgis Software v. Version 10.1 (2011).Lourenço-de-Moraes, R. et al. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. J. Biogeogr. 47, 275–287 (2020).Article 

    Google Scholar 
    Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402. https://doi.org/10.1111/j.1600-0706.2008.16668.x (2009).Article 

    Google Scholar 
    Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20(1), 1–16 (2020).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Pio, D. V. et al. Spatial predictions of phylogenetic diversity in conservation decision making. Conserv. Biol. 256, 1229–1239 (2011).Article 

    Google Scholar 
    Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).Article 

    Google Scholar 
    Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366, 2536–2544 (2011).Article 

    Google Scholar 
    Trindade-Filho, J., Carvalho, R. A., Brito, D. & Loyola, R. D. How does the inclusion of data deficient species change conservation priorities for amphibians in the Atlantic Forest?. Biodivers. Conserv. 21, 2709–2718 (2012).Article 

    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).
    Google Scholar 
    Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).Book 
    MATH 

    Google Scholar 
    Mouchet, M., Villéger, S., Mason, N. W. H. & Mouillo, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).Article 

    Google Scholar 
    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).Article 
    CAS 

    Google Scholar 
    Sharp, R. et al. InVEST 3.10.2.post28+ug.ga4e401c.d20220324 User’s Guide (The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2020).
    Google Scholar 
    Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 8523. https://doi.org/10.1038/s41598-019-44732-z (2019).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Sánchez-Fernandez, D. & Abellán, P. Using null models to identify underrepresented species in protected areas: A case study using European amphibians and reptiles. Biol. Conserv. 184, 290–299 (2015).Article 

    Google Scholar  More

  • in

    The changing climate could lead to carbon losses in the tropics

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Uribe, M. R. et al. Net loss of biomass predicted for tropical biomes in a changing climate. Nat. Clim. Change https://doi.org/10.1038/s41558-023-01600-z (2023). More