More stories

  • in

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Quantitative Biodiversity Dynamics, Ecology and Biodiversity, Utrecht University Botanic Gardens, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The NetherlandsEdwin PosNaturalis Biodiversity Center, PO Box 9517, Leiden, 2300 RA, The NetherlandsEdwin Pos, Olaf S. Bánki, Paul Maas, Tinde R. van Andel & Hans ter SteegeCoordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilLuiz de Souza Coelho, Diogenes de Andrade Lima Filho, Iêda Leão Amaral, Francisca Dionízia de Almeida Matos, Mariana Victória Irume, Maria Pires Martins, José Ferreira Ramos, Juan Carlos Montero, Charles Eugene Zartman, Henrique Eduardo Mendonça Nascimento, Juan David Cardenas Revilla, Flávia R. C. Costa, Juliana Schietti, Priscila Souza, Rogerio Gribel, Marcelo Petratti Pansonato, Edelcilio Marques Barbosa, Luiz Carlos de Matos Bonates, Ires Paula de Andrade Miranda & Cid FerreiraPrograma Professor Visitante Nacional Sênior Na Amazônia – CAPES, Universidade Federal Rural da Amazônia, Av. Perimetral, s/n, Belém, PA, BrazilRafael P. SalomãoCoordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, C.P. 399, Belém, PA, 66040-170, BrazilRafael P. Salomão, Ima Célia Guimarães Vieira, Leandro Valle Ferreira & Dário Dantas do AmaralEMBRAPA – Centro de Pesquisa Agroflorestal de Roraima, BR 174, km 8 – Distrito Industrial, Boa Vista, RR, 69301-970, BrazilCarolina V. CastilhoSchool of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UKOliver L. Phillips, Euridice N. Honorio Coronado, Ted R. Feldpausch, Roel Brienen, Fernanda Coelho de Souza, Tim R. Baker, Aurora Levesley, Karina Melgaço & Georgia PickavanceGrupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS, Universidad de Las Américas, Campus Queri, Quito, EcuadorJuan Ernesto GuevaraKeller Science Action Center, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605-2496, USAJuan Ernesto GuevaraDepartamento de Botânica, Instituto de Pesquisas Científicas e Tecnológicas do Amapá – IEPA, Rodovia JK, Km 10, Campus Do IEPA da Fazendinha, Amapá, 68901-025, BrazilMarcelo de Jesus Veiga Carim & José Renan da Silva GuimarãesHerbario Amazónico Colombiano, Instituto SINCHI, Calle 20 No 5-44, Bogotá, DC, ColombiaDairon Cárdenas López & Nicolás Castaño ArboledaCoordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilWilliam E. Magnusson, Alberto Vicentini, Thaise Emilio, Fernanda Antunes Carvalho & Fernanda Coelho de SouzaDepartment of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute of Technology – KIT, Josefstr.1, 76437, Rastatt, GermanyFlorian Wittmann & John Ethan HouseholderBiogeochemistry, Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128, Mainz, GermanyFlorian WittmannAMAP, IRD, Cirad, CNRS, INRA, Université de Montpellier, 34398, Montpellier, FranceDaniel Sabatier, Jean-François Molino, Julien Engel & Émile FontyCoordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilMaria Teresa Fernandez Piedade, Jochen Schöngart, Layon O. Demarchi, Adriano Quaresma, Aline Lopes, Daniel Praia Portela de Aguiar, Bianca Weiss Albuquerque & Maira RochaScience and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605-2496, USANigel C. A. Pitman & Corine VriesendorpJardín Botánico de Missouri, Oxapampa, Pasco, PeruAbel Monteagudo Mendoza, Rodolfo Vasquez & Luis Valenzuela GamarraApplied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UKJoseph E. HawesICNHS, Universidade Federal de Mato Grosso, Av. Alexandre Ferronato, 1200, Sinop, MT, 78557-267, BrazilEverton José Almeida, Luciane Ferreira Barbosa, Larissa Cavalheiro & Márcia Cléia Vilela dos SantosDepartamento de Ecologia, Universidade Estadual Paulista – UNESP – Instituto de Biociências – IB, Av. 24 A, 1515, Bela Vista, Rio Claro, SP, 13506-900, BrazilBruno Garcia LuizeDivisao de Sensoriamento Remoto – DSR, Instituto Nacional de Pesquisas Espaciais – INPE, Av. Dos Astronautas, 1758, Jardim da Granja, São José Dos Campos, SP, 12227-010, BrazilEvlyn Márcia Moraes de Leão NovoHerbario Vargas, Universidad Nacional de San Antonio Abad del Cusco, Avenida de La Cultura, Nro 733, Cusco, Cuzco, PeruPercy Núñez Vargas, Isau Huamantupa-Chuquimaco & William Farfan-RiosBiological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UKThiago Sanna Freire SilvaCentro de Biociências, Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, Natal, RN, 59072-970, BrazilEduardo Martins VenticinqueDepartamento de Biologia, Universidade Federal de Rondônia, Rodovia BR 364 s/n Km 9, 5 – Sentido Acre, Unir, Porto Velho, RO, 76.824-027, BrazilAngelo Gilberto ManzattoPrograma de Pós- Graduação em Biodiversidade e Biotecnologia PPG- Bionorte, Universidade Federal de Rondônia, Campus Porto Velho Km 9, 5 Bairro Rural, Porto Velho, RO, 76.824-027, BrazilNeidiane Farias Costa Reis, Katia Regina Casula, Susamar Pansini & Adeilza Felipe SampaioDepartment of Biology and Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USAJohn TerborghCentre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Cairns, QLD, 4870, AustraliaJohn Terborgh, William F. Laurance & Susan G. W. LauranceInstituto de Investigaciones de la Amazonía Peruana (IIAP), Av. A. Quiñones Km 2,5, Iquitos, Loreto, 784, PeruEuridice N. Honorio CoronadoInstituto Boliviano de Investigacion Forestal, Av. 6 de Agosto #28, Km. 14, Doble via La Guardia, 6204, Santa Cruz, Santa Cruz, Casilla, BoliviaJuan Carlos Montero & Juan Carlos LiconaPrograma de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, BrazilBeatriz S. Marimon & Ben Hur Marimon-JuniorGeography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UKTed R. Feldpausch & Toby PenningtonDepartamento de Ciencias Forestales, Universidad Nacional de Colombia, Calle 64 X Cra 65, 1027, Medellín, Antioquia, ColombiaAlvaro Duque & Ligia Estela Urrego GiraldoInternational Center for Tropical Botany (ICTB) Department of Biological Sciences, Florida International University, 11200 SW 8Th Street, OE 243, Miami, FL, 33199, USAChris Baraloto, Julien Engel & Freddie DraperCirad UMR Ecofog, AgrosParisTech, CNRS, INRA, Univ Guyane, Campus Agronomique, 97379, Kourou Cedex, FrancePascal PetronelliAgteca-Amazonica, Santa Cruz, BoliviaTimothy J. KilleenFacultad de Ciencias Agrícolas, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Santa Cruz, BoliviaBonifacio MostacedoNatural History Museum, University of Oslo, Postboks 1172, 0318, Oslo, NorwayRafael L. AssisCentro de Investigaciones Ecológicas de Guayana, Universidad Nacional Experimental de Guayana, Calle Chile, Urbaniz Chilemex, Puerto Ordaz, Bolivar, VenezuelaHernán Castellanos & Lionel HernandezPrédio da Botânica e Ecologia, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte, Brasilia, DF, 70770-917, BrazilMarcelo Brilhante de Medeiros & Marcelo Fragomeni SimonProjeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo 2936, Petrópolis, Manaus, AM, 69067-375, BrazilAna Andrade & José Luís CamargoLaboratório de Ecologia de Doenças Transmissíveis da Amazônia (EDTA), Instituto Leônidas e Maria Deane, Fiocruz, Rua Terezina, 476, Adrianópolis, Manaus, AM, 69060-001, BrazilEmanuelle de Sousa FariasPrograma de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz – IOC/FIOCRUZ, Pav. Arthur Neiva – Térreo, Av. Brasil, 4365 – Manguinhos, Rio de Janeiro, RJ, 21040-360, BrazilEmanuelle de Sousa FariasInstituto de Ciências Biológicas, Universidade Federal do Pará, Av. Augusto Corrêa 01, Belém, PA, 66075-110, BrazilMaria Aparecida LopesPrograma de Pós-Graduação em Ecologia, Universidade Federal do Pará, Av. Augusto Corrêa 01, Belém, PA, 66075-110, BrazilJosé Leonardo Lima MagalhãesEmbrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro S/nº, Belém, PA, 66095-100, BrazilJosé Leonardo Lima Magalhães, Joice Ferreira & Ademir R. RuschelDiretoria Técnico-Científica, Instituto de Desenvolvimento Sustentável Mamirauá, Estrada do Bexiga, 2584, Tefé, AM, 69470-000, BrazilHelder Lima de QueirozPrograma de Ciencias del Agro y el Mar, Herbario Universitario (PORT), UNELLEZ-Guanare, Guanare, Portuguesa, 3350, VenezuelaGerardo A. C. AymardInstituto de Biociências – Department of Botanica, Universidade de Sao Paulo – USP, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, BrazilBruno Barçante Ladvocat CintraLaboratorio de Ecología de Bosques Tropicales y Primatología, Universidad de los Andes, Carrera 1 # 18a- 10, 111711, Bogotá, DC, ColombiaPablo R. Stevenson, Angela Cano, Diego F. Correa, Sasha Cárdenas & Luisa Fernanda CasasPrograma de Pós-Graduação Em Biologia (Botânica), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilYuri Oliveira FeitosaInstitute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, Amsterdam, 1098 XH, The NetherlandsJoost F. DuivenvoordenEndangered Species Coalition, 8530 Geren Rd., Silver Spring, MD, 20901, USAHugo F. MogollónInventory and Monitoring Program, National Park Service, 120 Chatham Lane, Fredericksburg, VA, 22405, USAJames A. ComiskeyCenter for Conservation and Sustainability, Smithsonian Conservation Biology Institute, 1100 Jefferson Dr. SW, Suite 3123, Washington, DC, 20560-0705, USAJames A. Comiskey, Alfonso Alonso, Francisco Dallmeier & Reynaldo Linares-PalominoDepartment of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA, 94305, USAFreddie DraperUniversidade Federal do Amapá, Ciências Ambientais, Rod. Juscelino Kubitschek km2, Macapá, AP, 68902-280, BrazilJosé Julio de Toledo & Renato Richard HilárioDepartment of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USAGabriel Damasco, Paul V. A. Fine & Italo MesonesBiologia Vegetal, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, SP, 13.083-970, BrazilNállarett DávilaDepartment of Ecology and Evolutionary Biology, Cornell University, Corson Hall, 215 Tower Road, Ithaca, NY, 14850, USARoosevelt García-VillacortaPeruvian Center for Biodiversity and Conservation (PCBC), Iquitos, PeruRoosevelt García-VillacortaDepartment of Ecology, University of Brasilia, Brasilia, DF, 70904-970, BrazilAline LopesICNHS, Federal University of Mato Grosso, Av. Alexandre Ferronato 1200, Setor Industrial, Sinop, MT, 78.557-267, BrazilJanaína Costa Noronha, Flávia Rodrigues Barbosa, Rainiellen de Sá Carpanedo & Domingos de Jesus RodriguesNatural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, Surrey, UKThaise Emilio & William MillikenPrograma de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilCarolina LevisForest Ecology and Forest Management Group, Wageningen University and Research, Droevendaalsesteeg 3, P.O. Box 47, Wageningen, 6700 AA, The NetherlandsCarolina Levis & Lourens PoorterEscola de Negócios Tecnologia e Inovação, Centro Universitário do Pará, Belém, PA, BrazilVitor H. F. GomesUniversidade Federal do Pará, Rua Augusto Corrêa 01, Belém, PA, 66075-110, BrazilVitor H. F. GomesFaculty of Natural Sciences, Department of Life Sciences, Imperial College London, South Kensington Campus, Silwood ParkLondon, SW7 2AZ, UKJon LloydEcosistemas, Biodiversidad y Conservación de Especies, Universidad Estatal Amazónica, Km. 2 1/2 Vía a Tena (Paso Lateral), Puyo, Pastaza, EcuadorDavid NeillMuseo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Avenida Irala 565 Casilla Post Al 2489, Santa Cruz, Santa Cruz, BoliviaAlejandro Araujo-Murakami, Luzmila Arroyo & Daniel VillarroelDepartamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, 31270-901, BrazilFernanda Antunes CarvalhoDepartment of Biology, University of Miami, Coral Gables, FL, 33146, USAKenneth J. FeeleyFairchild Tropical Botanic Garden, Coral Gables, FL, 33156, USAKenneth J. FeeleyInstituto de Biociências – Dept. Ecologia, Universidade de Sao Paulo – USP, Rua do Matão, Trav. 14, No. 321, Cidade Universitária, São Paulo, SP, 05508-090, BrazilMarcelo Petratti Pansonato, Alexandre A. Oliveira & Cláudia BaiderLancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, Lancashire, UKJos Barlow & Erika BerenguerEnvironmental Change Institute, University of Oxford, Oxford, OX1 3QY, Oxfordshire, UKErika BerenguerEmpresa Brasileira de Pesquisa Agropecuária, Embrapa Amapá, Rod. Juscelino Kubitschek Km 5, Macapá, Amapá, 68903-419, BrazilMarcelino Carneiro Guedes & Janaina Barbosa Pedrosa CostaGrupo de Ecología y Conservación de Fauna y Flora Silvestre, Instituto Amazónico de Investigaciones Imani, Universidad Nacional de Colombia Sede Amazonia, Leticia, Amazonas, ColombiaEliana M. JimenezUniversidad Regional Amazónica IKIAM, Km 7 Via Muyuna, Tena, Napo, EcuadorMaria Cristina Peñuela MoraSchool of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UKCarlos A. PeresDireccíon de Evaluación Forestal y de Fauna Silvestre, Av. Javier Praod Oeste 693, Magdalena del Mar, PeruBoris Eduardo Villa ZegarraEscuela de Biología Herbario Alfredo Paredes, Universidad Central, Ap. Postal 17.01.2177, Quito, Pichincha, EcuadorCarlos CerónDepartment of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA, 95521, USATerry W. HenkelMuseu Universitário / Centro de Ciências Biológicas e da Natureza / Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, 69915-559, BrazilMarcos SilveiraInstitute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceio, AL, 57072-970, BrazilJuliana StroppIwokrama International Centre for Rain Forest Conservation and Development, Georgetown, GuyanaRaquel Thomas-CaesarNew York Botanical Garden, 2900 Southern Blvd, Bronx, New York, NY, 10458-5126, USADoug DalySchool of Geosciences, University of Edinburgh, 201 Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UKKyle G. DexterTropical Diversity Section, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, Scotland, UKKyle G. Dexter & Toby PenningtonServicios de Biodiversidad EIRL, Jr. Independencia 405, Iquitos, Loreto, 784, PeruMarcos Ríos Paredes, Hilda Paulette Dávila Doza, George Pepe Gallardo Gonzales & Linder Felipe Mozombite PintoHerbario Nacional de Bolivia, Universitario UMSA, Casilla 10077 Correo Central, La Paz, La Paz, BoliviaAlfredo FuentesCenter for Conservation and Sustainable Development, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO, 63166-0299, USAAlfredo Fuentes, J. Sebastián Tello & William Farfan-RiosUniversidad Nacional de Jaén, Carretera Jaén San Ignacio Km 23, Jaén, Cajamarca, 06801, PeruJosé Luis Marcelo PenaBiology Department and Center for Energy, Environment and Sustainability, Wake Forest University, 1834 Wake Forest Rd, Winston Salem, NC, 27106, USAMiles R. Silman & Karina Garcia-CabreraLaboratoire Evolution et Diversité Biologique, CNRS and Université Paul Sabatier, UMR 5174 EDB, 31000, Toulouse, FranceJerome ChaveAndes to Amazon Biodiversity Program, Madre de Dios, Madre de Dios, PeruFernando Cornejo ValverdeDepartment of Anthropology, University of Texas at Austin, SAC 5.150, 2201 Speedway Stop C3200, Austin, TX, 78712, USAAnthony Di FioreFundación Puerto Rastrojo, Cra 10 No. 24-76 Oficina 1201, Bogotá, DC, ColombiaJuan Fernando PhillipsColegio de Ciencias Biológicas y Ambientales-COCIBA and Galapagos Institute for the Arts and Sciences-GAIAS, Universidad San Francisco de Quito-USFQ, Quito, Pichincha, EcuadorGonzalo Rivas-TorresDepartment of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USAGonzalo Rivas-TorresBiosystematics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The NetherlandsTinde R. van AndelFundación Estación de Biología, Cra 10 No. 24-76 Oficina, 1201, Bogotá, DC, ColombiaPatricio von HildebrandDirection Régionale de la Guyane, ONF, Cayenne, 97300, French GuianaÉmile FontyPROTERRA, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Av. A. Quiñones Km 2,5, Iquitos, Loreto, 784, PeruRicardo Zárate GómezACEER Foundation, Jirón Cusco N° 370, Puerto Maldonado, Madre de Dios, PeruTherany GonzalesDepartement EV, Muséum National d’histoire Naturelle de Paris, 16 Rue Buffon, Paris, 75005, FranceJean-Louis GuillaumetAmazon Conservation Team, Doekhieweg Oost #24, Paramaribo, SurinameBruce HoffmanInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, SpainAndré Braga JunqueiraEnvironmental Change Institute, Dyson Perrins Building, Oxford University Centre for the Environment, South Parks Road, Oxford, OX1 3QY, England, UKYadvinder MalhiInstituto de Ciencias Naturales, Universidad Nacional de Colombia, 7945, Apartado, Bogotá, DC, ColombiaAdriana Prieto & Agustín RudasInstituto de Ciência Agrárias, Universidade Federal Rural da Amazônia, Av. Presidente Tancredo Neves 2501, Belém, PA, 66.077-830, BrazilNatalino SilvaEscuela Profesional de Ingeniería Forestal, Universidad Nacional de San Antonio Abad del Cusco, Jirón San Martín 451, Puerto Maldonado, Madre de Dios, PeruCésar I. A. VelaUniversidad Autónoma del Beni José Ballivián, Campus Universitario Final, Av. Ejercito, Riberalta, Beni, BoliviaVincent Antoine VosLaboratory of Human Ecology, Instituto Venezolano de Investigaciones Científicas – IVIC, Ado 20632, Caracas, 1020A, DC, VenezuelaEgleé L. Zent & Stanford ZentCambridge University Botanic Garden, 1 Brookside., Cambridge, CB2 1JE, UKAngela CanoSchool of Agriculture and Food Sciences – ARC Centre of Excellence for Environmental Decisions CEED, The University of Queensland, St. Lucia, QLD, 4072, AustraliaDiego F. CorreaPlant Biology Department, Rua Monteiro Lobato, University of Campinas, 255, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, CEP 13083-862, BrazilBernardo Monteiro FloresResource Ecology Group, Wageningen University and Research, Droevendaalsesteeg 3a, Lumen, Building Number 100, Wageningen, Gelderland, 6708 PB, The NetherlandsMilena HolmgrenLaboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Campos dos, Goyatacazes, RJ, 28013-620, BrazilMarcelo Trindade NascimentoInstituto de Investigaciones Para el Desarrollo Forestal (INDEFOR), Universidad de los Andes, Conjunto Forestal, Mérida, Mérida, 5101, VenezuelaHirma Ramirez-Angulo, Emilio Vilanova Torre & Armando Torres-LezamaDepartamento de Biologia, Universidade Federal do Amazonas – UFAM – Instituto de Ciências Biológicas – ICB1, Av General Rodrigo Octavio 6200, Manaus, AM, 69080-900, BrazilVeridiana Vizoni ScudellerGeoIS, el Día 369 y el Telégrafo, 3° Piso, Quito, Pichincha, EcuadorRodrigo Sierra & Milton TiradoDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USAMaria Natalia UmañaUniversity of Nottingham, University Park, Nottingham, NG7 2RD, UKGeertje van der HeijdenSchool of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195-2100, USAEmilio Vilanova TorreEnvironmental Science and Policy, Northern Arizona University, Flagstaff, AZ, 86011, USAOphelia WangGeography and the Environment, University of Texas at Austin, 305 E. 23Rd Street, CLA Building, Austin, TX, 78712, USAKenneth R. YoungMedio Ambiente, PLUSPRETOL, Iquitos, Loreto, PeruManuel Augusto Ahuite ReateguiThe Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, Reduit, 80835, MauritiusCláudia BaiderDepartment of Bioscience, Aarhus University, Building 1540 Ny Munkegade, 8000, Aarhus C, Aarhus, DenmarkHenrik BalslevLiving Earth Collaborative, Washington University in Saint Louis, St. Louis, MO, 63130, USAWilliam Farfan-RiosEscuela de Ciencias Forestales (ESFOR), Universidad Mayor de San Simon (UMSS), Sacta, Cochabamba, BoliviaCasimiro MendozaFOMABO, Manejo Forestal en Las Tierras Tropicales de Bolivia, Sacta, Cochabamba, BoliviaCasimiro MendozaTropenbos International, Lawickse Allee 11, PO Box 232, Wageningen, 6700 AE, The NetherlandsRoderick ZagtSchool of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury, Kent, CT2 7NR, UKMiguel N. AlexiadesHerbario Nacional del Ecuador, Universidad Técnica del Norte, Quito, Pichincha, EcuadorWalter Palacios CuencaInstituto de Biodiversidade e Floresta, Universidade Federal do Oeste do Pará, Rua Vera Paz, Campus Tapajós, Santarém, PA, 68015-110, BrazilDaniela PaulettoFacultad de Biologia, Universidad Nacional de la Amazonia Peruana, Pevas 5Ta Cdra, Iquitos, Loreto, PeruFreddy Ramirez Arevalo & Elvis H. Valderrama SandovalDepartment of Biology, University of Missouri, St. Louis, MO, 63121, USAElvis H. Valderrama SandovalDepartment of Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701, Jena, GermanyGerhard BoenischFunctional Biogeography, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701, Jena, GermanyJens KattgeDepartment of Ecology and Evolutionary Biology, UCLA, 621 Charles E. Young Drive South, Box 951606, Los Angeles, CA, 90095, USANathan KraftE.T.P. and H.T.S. designed the study. E.T.P. performed analyses and took the lead in writing the manuscript, H.T.S. supervised the writing and provided regular feedback both for the manuscript and the interpretation of the results. All other authors provided feedback on the manuscript and provided their data from the Amazon Tree Diversity Network or trait data. Authors E.T.P. to L.V.G. provided tree inventory data, authors G.B., J.K., N.K., A.L., K.M., G.P., L.P. provided data on functional traits, C.B., J.L., A.A.O. and H.T.S. provided both tree inventory and functional trait data. More

  • in

    Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming

    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887 (2009).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Shen, M. et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 3, 633–651 (2022).Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).Article 

    Google Scholar 
    Park, H., Jeong, S.-J., Ho, C.-H., Park, C.-E. & Kim, J. Slowdown of spring green-up advancements in boreal forests. Remote Sens. Environ. 217, 191–202 (2018).Article 

    Google Scholar 
    IPCC. Summary for Policymakers (Cambridge Univ. Press, 2013).Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Change 6, 224–228 (2016).Article 

    Google Scholar 
    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Ye, W., van Dijk, A. I. J. M., Huete, A. & Yebra, M. Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. Int. J. Appl. Earth Obs. Geoinf. 94, 102238 (2021).
    Google Scholar 
    Zhang, J. et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 169, 1–16 (2020).Article 

    Google Scholar 
    Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).Article 

    Google Scholar 
    Shen, M. et al. Greater temperature sensitivity of vegetation greenup onset date in areas with weaker temperature seasonality across the Northern Hemisphere. Agric. For. Meteorol. 313, 108759 (2022).Article 

    Google Scholar 
    Zhang, C., Li, S., Luo, F. & Huang, Z. The global warming hiatus has faded away: an analysis of 2014–2016 global surface air temperatures. Int. J. Climatol. 39, 4853–4868 (2019).Article 

    Google Scholar 
    Gonsamo, A., Chen, J. M. & D’Odorico, P. Deriving land surface phenology indicators from CO2 eddy covariance measurements. Ecol. Indic. 29, 203–207 (2013).Article 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 

    Google Scholar 
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the northern hemisphere during 1982–2012. PLoS ONE 11, e0157134 (2016).Article 

    Google Scholar 
    Chen, L. et al. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Glob. Change Biol. 24, 3969–3975 (2018).Article 

    Google Scholar 
    Ren, S., Yi, S. Peichl, M. & Wang, X. Diverse responses of vegetation phenology to climate change in different grasslands in inner Mongolia during 2000–2016. Remote Sens. 10, 17 (2017).Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. USA 115, 1004–1008 (2018).Article 

    Google Scholar 
    Zhu, Z. et al. The accelerating land carbon sink of the 2000s may not be driven predominantly by the warming Hiatus. Geophys. Res. Lett. 45, 1402–1409 (2018).Article 

    Google Scholar 
    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).Article 

    Google Scholar 
    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845 (2020).Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018). More

  • in

    Identifying ways of producing pigs more sustainably: tradeoffs and co-benefits in land and antimicrobial use

    Herrero, M., Thornton, P. K., Gerber, P. & Reid, R. S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 1, 111–120 (2009).Article 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gerber, P. J. et al. Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities. Food Agric. Organ. U. N. (FAO) Rome https://doi.org/10.1016/j.anifeedsci.2011.04.074 (2013).Article 

    Google Scholar 
    Xu, X. et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2, 724–732 (2021).Article 
    CAS 

    Google Scholar 
    Landers, T. F., Cohen, B., Wittum, T. E. & Larson, E. L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 127, 4–22 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Science (80-) 357, 1350–1352 (2017).Article 
    ADS 

    Google Scholar 
    Henchion, M., Moloney, A. P., Hyland, J., Zimmermann, J. & McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 15, 100287 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lassaletta, L. et al. Future global pig production systems according to the shared socioeconomic pathways. Sci. Total Environ. 665, 739–751 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mehrabi, Z., Gill, M., van Wijk, M., Herrero, M. & Ramankutty, N. Livestock policy for sustainable development. Nat. Food 1(3), 160–165 (2020).Article 

    Google Scholar 
    Godfray, C. J. H. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).Article 
    PubMed 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science (80-) 360, 987–992 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Resare Sahlin, K., Röös, E. & Gordon, L. J. ‘Less but better’ meat is a sustainability message in need of clarity. Nat. Food 1(9), 520–522 (2020).Article 

    Google Scholar 
    van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: Land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).Article 

    Google Scholar 
    Roos, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. Policy Dimens. 47, 1–12 (2017).Article 

    Google Scholar 
    Lipsitch, M., Singer, R. S. & Levin, B. R. Antibiotics in agriculture: When is it time to close the barn door?. Proc. Natl. Acad. Sci. USA 99, 5752–5754 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balmford, A. Concentrating versus spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021).Article 

    Google Scholar 
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ye, X. et al. Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).Article 
    PubMed 

    Google Scholar 
    Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655 (2022).Article 
    CAS 

    Google Scholar 
    Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. & Morris, J. G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA 99, 6434–6439 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albernaz-Gonçalves, R., Antillón, G. O. & Hötzel, M. J. Linking animal welfare and antibiotic use in pig farming—A review. Animals 12, 1–21 (2022).Article 

    Google Scholar 
    Elliott, K. A., Kenny, C. & Madan, J. A global treaty to reduce antimicrobial use in livestock. Cent. Glob. Dev. 102, 27 (2017).
    Google Scholar 
    Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. 112, 5649–5654 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalmar, L. et al. HAM-ART: An optimised culture-free Hi–C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLoS Genet. 18, e1009776 (2021).Article 

    Google Scholar 
    Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 110, 3435–3440 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. & Van Boeckel, T. P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9, 1–14 (2020).Article 

    Google Scholar 
    Rushton, J. et al. Antimicrobial resistance the use of antimicrobials in the livestock sector. https://doi.org/10.1787/5jxvl3dwk3f0-en (2014)Gonzalez-Mejia, A., Styles, D., Wilson, P. & Gibbons, J. Metrics and methods for characterizing dairy farm intensification using farm survey data. Plus One https://doi.org/10.1371/journal.pone.0195286 (2018).Article 

    Google Scholar 
    Struik, P. C. & Kuyper, T. W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 37, 1–15 (2017).Article 

    Google Scholar 
    Vissers, L. S. M., Saatkamp, H. W. & Oude Lansink, A. G. J. M. Analysis of synergies and trade-offs between animal welfare, ammonia emission, particulate matter emission and antibiotic use in Dutch broiler production systems. Agric. Syst. 189, 103070 (2021).Article 

    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science (81-) 341, 33–34 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Bright-Ponte, S. J. Antimicrobial use data collection in animal agriculture. Zoonoses Public Health 67, 1–5 (2020).Article 
    PubMed 

    Google Scholar 
    Price, L. B., Koch, B. J. & Hungate, B. A. Ominous projections for global antibiotic use in food-animal production. Proc. Natl. Acad. Sci. USA 112, 5554–5555 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    EMA. Categorisation of antibiotics in the European Union. Eur. Med. Agency 31, 73 (2019).
    Google Scholar 
    Vellinga, T. V et al. in Title Methodology used in FeedPrint: a tool quantifying greenhouse gas emissions of feed production and utilization. http://www.livestockresearch.wur.nl (2013).Benjamins, D. in Oxford Sandy & Black pigs as a method of weed control. When do they stop being an asset and start becoming a problem? (2002).Henney, J. in An evaluation of the use of pigs as a method of bracken control Dissertation. (2012).Espinosa, R., Tago, D. & Treich, N. Infectious diseases and meat production. Environ. Resour. Econ. 76, 1019–1044 (2020).Article 

    Google Scholar 
    Gilbert, W., Thomas, L. F., Coyne, L. & Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 15, 100123 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    DEFRA. Monthly UK statistics on cattle, sheep and pig slaughter and meat production—Statistics notice (data to March 2022)—GOV.UK. 2022 https://www.gov.uk/government/statistics/cattle-sheep-and-pig-slaughter/monthly-uk-statistics-on-cattle-sheep-and-pig-slaughter-and-meat-production-statistics-notice-data-to-february-2022.Driver, A. Highlighting the differences—How UK welfare standards compare with our competitors. PIGWORLD (2017).DEFRA. in Code of practice for the welfare of PIGS © National Pig Association. www.gov.uk/defra (2020).Red Tractor. Pigs Standards. 17–19 (2017).QMS. 2020 Pig Standards. www.gov.uk/animal-welfare-in-severe-weather%0A. https://assurance.redtractor.org.uk/contentfiles/Farmers-6801.pdf?_=636504999253492650 (2019).RSPCA. RSPCA Welfare Standards for Pigs. (2016).Soil Association. Soil Association organic standards farming and growing. Farming and Growing Organic Standards www.soilassociation.org/organicstandards (2016).Organic Food Federation. Organic food federation production standards. (2016).Moakes, S., Lampkin, N. & Gerrard, C. L. Organic farm incomes in England and Wales 2010/11 (OF 0373). (2012).Hossard, L. et al. A meta-analysis of maize and wheat yields in low-input vs. conventional and organic systems. Agron. J. 108, 1155–1167 (2016).Article 
    CAS 

    Google Scholar 
    De Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).Article 

    Google Scholar 
    FAOSTAT. http://www.fao.org/faostat/en/#home (2022).EMA. Principles on assignment of defined daily dose for animals (DDDvet) and defined course dose for animals (DCDvet). 44, 68 (2015).Ogle, D., Doll, J., Wheeler, P. & Dinno, A. Package ‘FSA’. (2022).Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. (2021).Mangiafico, S. Package ‘ rcompanion ’. (2022).Arnold, J. B. Package ‘ ggthemes ’. (2021).Pedersen, T. L. Patchwork: The Composer of Plots. Cran (2020).Wickham, H. et al. Package ‘ggplot2’. (2021). More

  • in

    Understanding microbial activity with isotope labelling of DNA

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Ultra-small bacteria and archaea exhibit genetic flexibility towards groundwater oxygen content, and adaptations for attached or planktonic lifestyles

    Ultra-small prokaryotes were prevalent across diverse aquifer lithologies and anoxic to oxic groundwatersWe used 16S rRNA gene amplicons to assess microbial community composition in 81 groundwater samples. Samples were collected from 59 wells over 10 aquifers in four geographic regions, separated by over a thousand kilometers, and encompassed wide-ranging aquifer chemistries and lithologies (Fig. 1a), comprising primarily shallow sandy-gravel aquifers, but also sand/silt, gravel/peat, volcanic (basalt, ignimbrite) and shell-bed aquifers (Table S1). A large portion of microbial community diversity comprised ultra-small groups of prokaryotes (Fig. 1b). Out of 52,553 OTUs, 21.8% (or 18.4% of 46,713 ASVs) were assigned to seven ultra-small microbial phyla (when considering CPR as the single Patescibacteria phylum). These comprised the bacterial phyla Patescibacteria and Dependentiae, and archaeal DPANN radiation. Altiarchaeota was included in DPANN as previously suggested [63, 64], although its taxonomic placement is uncertain due to genomic under-sampling [65, 66].Fig. 1: Distribution and abundance of ultra-small prokaryotes across groundwater sites.a Distribution of groundwater samples along DOC (0–26 g/m3), DO (0.37–7.5 g/m3) and nitrate-N (0.45–12.6 g/m3) concentrations scaled between 0 and 100. b Top plot: Richness of ultra-small prokaryote variants (rarefied ASVs) at each site. Middle plot: Proportion of ultra-small prokaryotes compared with the total microbial communities (black bars = OTUs, grey crosses = ASVs). Samples are ordered from least to most abundant. Lower plot: Phylum-level breakdown of amplicon based-relative abundance of Patescibacteria, Dependentiae and DPANN archaea (bottom). Symbol bars indicate aquifer lithology (top symbol bar), and oxygen content (lower symbol bar) with dark to light blue shading representing anoxic, suboxic, dysoxic to oxic groundwater. c Class-level rank abundance curve showing the average relative abundance of each genome across sites. The center line of each boxplot represents the median; the top and bottom lines are the first and third quartiles, respectively; and the whiskers show 1.5 times the interquartile range.Full size imageUltra-small prokaryotes were detected in all samples, regardless of lithology, chemistry or geography. They have also been reported from several aquifers and lithologies in the USA (sandy gravel, agriculturally-impacted river sediment, mixed marine sedimentary/metasedimentary rocks, plutonic rock, and sandstone [10, 18, 19, 22], and from a carbonate rock aquifer system in Germany [67, 68]. Collectively these findings demonstrate that ultra-small microorganisms are geographically widespread across diverse aquifer lithologies. Moreover, while ultra-small microorganisms have mostly been detected in anoxic environments [69,70,71,72] or cultivated under anoxic conditions [15, 25], we found representatives in all oxic groundwaters ( >3 mg/L DO) [73] (54/81 samples, Table S1). A few members of DPANN and Patescibacteria lineages have previously been detected in oxic environments [28, 67, 68, 74, 75], suggesting a degree of oxygen tolerance (genetic evidence presented below) or that these organisms are concentrated in anoxic niches within the aquifer substrate.The relative abundance of ultra-small microorganisms was highly variable across the studied aquifers, ranging from 0.04% to 22% of all bacterial and archaeal 16S rRNA gene sequences (7.2% average ±5.5% standard deviation; Fig. 1b). Samples with low relative abundances of ultra-small microorganisms (lower than the average) had overall lower alpha diversity (Shannon diversity indices and OTU or ASV richness) and were mostly from volcanic aquifer sites (Fig. 1b; Table S2). At the phylum level, Patescibacteria and Nanoarchaeota tended to dominate groundwater ultra-small communities (Fig. 1b). However, we found that ultra-small species level diversity overall was considerable with up to 1429 unique OTUs in a single groundwater sample (or up to 653 variants via the more conservative ASV method) (Table S2). Rarefaction curves show most variant diversity was captured across all samples, with curve slopes equaling zero (or approaching zero post rarefaction) (Fig. S1; Table S2). Finally, our results confirm the site specificity of ultra-small prokaryotes [10], with only 16 OTUs common across ≥50% of all 81 groundwater samples, or five ASVs across ≥20% of samples (three Parcubacteria, a Ca. Uhrbacteria, and a Woesearchaeales) (Table S2).High shared phylogenetic and genomic similarity to ultra-small prokaryotes from groundwaters elsewhereTo further assess the phylogeny and assess the genomic attributes and metabolic capacities of groundwater microbial communities, we reconstructed MAGs from 16 groundwater samples (eight wells over four sites and two aquifers). The dataset comprised 7,695 MAGs, including 539 unique MAGs ( >50% complete, 90% complete) (Table S3; Fig. S2). Based on phylogenetic analysis using GTDB [7, 76], MAGs represent 51 phyla, including five ultra-small microbial phyla (Table S3; Fig. S3). The ultra-small MAGs were found at all four sites and accounted for >1/3 of all unique MAGs (216 MAGs 50–100% complete, with 76 MAGs >90% complete). MAGs included 171 assigned to Patescibacteria, six to Dependentiae, and 39 to DPANN archaea (28 Nanoarchaeota, 10 Micrarchaeota, and one Altiarchaeota; Fig. 2a, b). The high representation of ultra-small prokaryotes in the MAG dataset further highlights the prevalence, diversity and abundance of these organisms in groundwater. Consistent with previous studies [6, 9, 77], genomes of ultra-small prokaryotes were small (1 ± 0.4 Mbp on average) with a tendency towards low GC contents (Figs. 3a, S2), and possessed limited metabolic capacities, which significantly differ between ultra-small bacterial and archaeal domains (results in Supplementary Materials; Figs. 3b, S2, S4).Fig. 2: Diversity of groundwater ultra-small microbial communities.Maximum likelihood phylogenetic trees of 177 unique ultra-small bacterial MAGs (a) and 39 unique ultra-small archaeal MAGs (b) recovered in this study. Outer rings indicate the site characteristics where MAGs were enriched. Enrichment factors were calculated as (average relative abundance in oxic and planktonic ultra-small microbial communities, respectively)/(average relative abundance in anoxic-to-dysoxic or sediment-enriched microbial communities, respectively). Trees are based on either 120 concatenated bacterial marker genes or 122 concatenated archaeal marker genes from GTDB-Tk, and were rooted to other groundwater bacterial and archaeal MAGs, respectively (Table S3). Scale bars indicate the number of substitutions per site. Branch background shading denotes Patescibacteria classes (clockwise): Gracilibacteria, Saccharimonadia, UBA1384, Dojkabacteria, Microgenomatia, Doudnabacteria, ABY1, Paceibacteria_A and Paceibacteria. c Proportion of ultra-small microbial OTUs (top) and MAGs (bottom) enriched in low and high oxygen groundwater, and in planktonic and sediment-enriched samples (Table S1). Enrichment factors were calculated as described above.Full size imageFig. 3: Estimated genome size, metabolic content and novelty of groundwater ultra-small prokaryotes.a Estimated genome size of groundwater MAGs calculated as (bin size – (bin size * contamination)) / (completeness), as described by Castelle et al. [9]. Genomes of ultra-small prokaryotes are colored by phylum-level. Other microbial genomes are shown in grey. b Principal Component Analysis (PCA) based on the composition of COG metabolic categories in recovered ultra-small MAGs. c (Right) Range of all pairwise AAI values (grey) and maximum AAI values (blue) between ultra-small prokaryote MAGs recovered in this study and GTDB representative genomes for a given phylum. Red dashed lines represent the AAI range defining the same family of organisms (45–65%) [74]. The number of genomes included in this analysis is indicated for each phylum in brackets. (Left) Proportion of ultra-small prokaryotic MAGs reconstructed in this study classified at each taxonomic level using GTDB-Tk.Full size imageCompared to reference genomes (GTDB species representatives), all recovered ultra-small MAGs are predicted to be novel species [78], and almost half were novel groundwater genera (Fig. 3c, results in Supplementary Materials). Most shared the highest affinity matches with other ultra-small genomes derived from aquifers elsewhere (e.g., in the USA), indicating niche adaptation within these lineages (although ultra-small MAGs from these groundwater ecosystems are over-represented in the GTDB database). Niche-specific phylogenetic conservation among geographically distant microorganisms in groundwater has likewise been reported among geographically distant anammox bacteria in groundwater [30].Ultra-small microbial communities were structured by geography, lithology, and dissolved oxygen concentrationsWhile ultra-small prokaryotes were ubiquitous in groundwater, and overall highly similar to those found in groundwater at different global locations, community compositions varied across sites. To investigate environmental factors (Table S1) influencing ultra-small community composition, we performed distance-based redundancy analysis (Fig. 4a). DO, pH, nitrate-N, sulfate, and DOC were significantly associated with differences in the distribution of 16S rRNA gene amplicon sequences annotated as Patescibacteria, Dependentiae and DPANN (permutation test, p  More

  • in

    Efficacy of cholecalciferol rodenticide to control wood rat, Rattus tiomanicus and its secondary poisoning impact towards barn owl, Tyto javanica javanica

    Bentley, E. W. A review of anticoagulant rodenticides in current use. Bull. Wid Htlh Org. 47, 275–280 (1972).CAS 

    Google Scholar 
    Ravindran, S., Mohd Noor, H. & Salim, H. Anticoagulant rodenticide use in oil palm plantations in Southeast Asia and hazard assessment to non-target animals. Ecotoxicology https://doi.org/10.1007/s10646-022-02559-x (2022).Article 
    PubMed 

    Google Scholar 
    Wood, B. J. & Chung, G. F. A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot. 22, 445–454 (2003).Article 

    Google Scholar 
    Wood, B. J. & Chung, G. F. Warfarin resistance of Rattus tiomanicus in oil palms in Malaysia and the associated increase of Rattus diardii. In Proceedings of the Fourteenth Vertebrate Pest Conference 1990. vol. 81, 129–134 (1990).Buckle, A. Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Manag Sci. 69(3), 334−341 (2012).Article 
    PubMed 

    Google Scholar 
    Greaves, J. H. & Cullen-Ayres, P. B. Genetics of difenacoum resistance in the rat. In Current Advances in Vitamin K Research. 17th Steenbock Symposium (ed. Suttie, J. W.) 387–397 (Elsevier, 1988).
    Google Scholar 
    Marsh, R. E. Bromadiolone, a new anticoagulant rodenticide. EPPO. 7(2), 495–502 (1977).Article 
    CAS 

    Google Scholar 
    Ishizuka, M. et al. Pesticide resistance in wild mammals-mechanisms of anticoagulant resistance in wild rodents. J. Toxicol. Sci. 33, 283–291 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kohn, M. H., Pelz, H.-J. & Wayne, R. K. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations. Genet. Soc. Am. 164, 1055–1070 (2003).CAS 

    Google Scholar 
    Vein, J., Grandemange, A., Cosson, J. F., Benoit, E. & Berny, P. J. Are water vole resistant to anticoagulant rodenticides following field treatments?. Ecotoxicology 20, 1432–1441 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Salim, H. et al. Secondary poisoning of captive barn owls, Tyto alba javanica through feeding with rats poisoned with chlorophacinone and bromadiolone. J. Oil Palm Res. 26(1), 62–72 (2014).CAS 

    Google Scholar 
    Thomas, P. J. et al. Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterization of toxic liver concentrations and implications for predatory bird populations in Canada. Environ. Int. 37(5), 914–920 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, E. F. Cholecalciferol: A unique toxicant for rodent control. In Proceedings, Eleventh Vertebrate Pest Conference (ed. Clark, D. O.) 95–98 (University of California, 1984).
    Google Scholar 
    Tobin, M. E., Matschke, C. H., Sugihara, R. T., McCann, C. R., Koehler, A. E. & Andrews, K. T. Laboratory efficacy of cholecalciferol against field rodents. DWRC Research Report No. 11–55–002. (U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 1993).Bull, J. O. Urban pest management, the past, the present, the future. Pest Manag. 2(3), 8–12 (1983).
    Google Scholar 
    Eason, C. T., Frampton, C. M., Henderson, R., Thomas, M. D. & Morgan, D. R. Sodium monofluoroacetate and alternative toxins for possum control. N. Z. J. Zool. 20, 329–334 (1993).Article 

    Google Scholar 
    Eason, C. T. et al. Toxicity of cholecalciferol to rats in a multi-species bait. N. Z. J. Ecol. 34(2), 233–236 (2010).
    Google Scholar 
    Pospischil, R. & Schnorbach, H. J. Racumin plus, a new promising rodenticide against rats and mice. In Proceedings of the 16th Vertebrate Pest Conference University of Nebraska, Lincoln, 180–187 (1994.Baldwin, R. A., Meinerz, R. & Witmer, G. W. Cholecalciferol plus diphacinone baits for vole control: A novel approach to a historic problem. J. Pestic. Sci. 89, 129–135 (2016).Article 

    Google Scholar 
    Eason, C. T., Wickstrom, M., Henderson, R., Milne, L. & Arthur, D. Non-target and secondary poisoning risks associated with cholecalciferol. N. Z. Plant Prot. 53, 299–304 (2000).CAS 

    Google Scholar 
    Baldwin, R. A., Meinerz, R. & Witmer, G. W. Are cholecalciferol plus anticoagulant rodenticides a viable option for field rodents? In Proceeding of 27th Vertebrate Pest Conference, 407–410 (University of California Davis, 2016).British Pest Control Association. BASF introduces new Cholecalciferol-based rodenticide bait in Europe. https://bpca.org.uk/News-and-Blog/basf-introduces-new-cholecalciferol-based-rodenticide (2020).Horst, R. L., Napoli, J. L. & Littledike, E. T. Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem. J. 204, 185–189 (1982).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beasley, V. R., Dorman, D. C., Fikes, J. D., Diana, S. G. & Woshner, V. Cholecalciferol-based rodenticides and other vitamin d-containing products. In A Systems Affected Approach to Veterinary Toxicology 445–450 (University of Illinois Press, 1997).
    Google Scholar 
    Jolly, S. E., Eason, C. T. & Frampton, C. Serum calcium levels in response to cholecalciferol and calcium carbonate in the Australian brush-tailed possum. Pestic. Biochem. Physiol. 47, 159–164 (1993).Article 
    CAS 

    Google Scholar 
    Marsh, R. & Tunberg, A. Characteristics of cholecalciferol. Rodent control: Other options. Pest Control Technol. 14, 43–45 (1986).
    Google Scholar 
    Morgan, D. R. & Rhodes, A. T. Feracol® paste bait for possum control—a cage trial. N. Z. Plant Prot. 53, 305–309 (2000).CAS 

    Google Scholar 
    Zainal Abidin, C. M. R. et al. Comparison of effectiveness of introduced barn owls, Tyto javanica javanica, and rodenticide treatments on rat control in oil palm plantations. J. Pest. Sci. 95, 1009–1022. https://doi.org/10.1007/s10340-021-01423-x (2022).Article 
    CAS 

    Google Scholar 
    Erickson, W. & Urban, D. Potential risks of nine rodenticides to birds and nontarget mammals: a comparative approach (United States Environmental Protection Agency, Office of Pesticides Programs Environmental Fate and Effects Division, 2004).Khoo, K. C., Peter, A. C. O. & Ho, C. T. Crop Pests and Their Management in Malaysia (Tropical Press Sdn. Bhd, 1991).
    Google Scholar 
    Fisher, P., Eason, C., O’Connor, C., Lee, C. H. & Endepols, S. Coumatetralyl residues in rats and hazards to barn owls. In Rats, Mice and People: Rodent Biology and Management (eds Singleton, G. R. et al.) 457–461 (Australia Centre for International Agricultural Research, 2003).
    Google Scholar 
    Lee, C. H. Secondary Toxicity of Some Rodenticides to Barn Owls. In 4th International Conference of Plant Protection in the Tropics, 28–31 March, Kuala Lumpur, Malaysia 161–163 (1994).Mendenhall, V. M. & Pank, L. F. Secondary poisoning of owls by anticoagulant rodenticides. Wildl. Soc. Bull. 8, 311–315 (1980).
    Google Scholar 
    Saravanan, K. & Kanakasabai, R. Evaluation of secondary poisoning of difethialone, a new second-generation anticoagulant rodenticide to Barn owl, Tyto alba Hartert under captivity. Indian J. Exp. Biol. 42, 1013–1016 (2004).CAS 
    PubMed 

    Google Scholar 
    Eason, C. T., Wright, G. R., Meikle, L. & Elder, P. The persistence and secondary poisoning risks of sodium monofluoroacetate (1080), brodifacoum, and cholecalciferol in possum. In Proc. 17th Vertebr. Pest Conf. 54–58 (1996).Malaysia Standard: MS1256. Household Insecticide Products-Rat Bait-Chemical, Physical and Biological Efficacy Requirements. (Department of Standard Malaysia, 2007).Swenson, J. & Bradley, G. A. Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. J. Avian Med. Surg. 27(2), 136–147 (2013).Article 
    PubMed 

    Google Scholar 
    PMEP (Pesticide Management Education Program). Chlorophacinone (Rozol) chemical profile 1/85. Pesticide Management Education Program, Cornell University. http://pmep.cce.cornell.edu/profiles/rodent/chlorophacinone/rodprofchlorophacinone.html (2001).Kaukeinen, D. E., Spragins, C. W. & Hobson, J. F. Risk-benefit considerations in evaluating commensal anticoagulant rodenticide impacts to wildlife. In Proceedings of the Nineteenth Vertebrate Pest Conference, USA (eds Salmon, T. P. & Crabb, A. C.) 245–256 (University of California, 2000).
    Google Scholar 
    Lund, M. The toxicity of chlorophacinone and warfarin to house mice (Mus musculus). J. Hyg. Camb. 69, 69 (1971).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hix, H. The Effectiveness of a Low Dose Cholecalciferol Bait at Killing Rats and Mice (2009).Wood, B. J. & Liau, S. S. Preliminary studies on the toxicity of anti-coagulants to rats of oil palms, with special reference to the prospect of resistance. In International Development in Oil Palm. The Proceedings of the Malaysian International Agricultural of Oil Palm Conference (eds. Earp, DA & Newall, Z). Kuala Lumpur, 14–17 June 1995. The Incorporated Society of Planters, 641–659 (1977).Lee, C. H. & Mustafa, M. D. D. Laboratory evaluation of 0.025% warfarin against Rattus tiomanicus. MARDI Res. 11(2), 132–135 (1983).
    Google Scholar 
    Hagan, E. C. & Radomski, J. L. The toxicity of 3-(acetonylbenzyl)-4-hydroxycoumarin (warfarin) to laboratory animals. J. Am. Pharm. Assoc. 42(379), 382 (1953).
    Google Scholar 
    Hafidzi, M. N; Zulkifli, A. & Kamaruddin, A. A. Barn owl as a biological control agent of rats in paddy fields. In Symposium on Biological Control in the Tropics, 85–88 (Mardi Training Centre, 1999).Lenton, G. M. The feeding and breeding ecology of Barn Owls Tyto alba in Peninsular Malaysia. Int. J. Avian Sci. 126(4), 551–575 (1984).
    Google Scholar 
    Eason, C. T. & Ogilvie, S. A re-evaluation of potential rodenticides for aerial control of rodents. Department of Conservation Research and Development Series 312, Wellington, New Zealand (2009).Gunther, R., Felice, L. J. & Nelson, R. K. Cholecalciferol rodenticide toxicity. J. Am. Vet. Med. Assoc. 193, 211–214 (1988).CAS 
    PubMed 

    Google Scholar 
    Gray, A., Eadsforth, C. V., Dutton, A. J. & Vaughan, J. A. Toxicity of three second generation rodenticides to barn owls. Pestic. Sci. 42, 179–184 (1994).Article 
    CAS 

    Google Scholar 
    Lutz, W. Study on the possible secondary-poisoning hazard to buzzards (Buteo buteo) by the rodenticide bromadiolone. Unpubl. Report for BBA, Forschungsstelle für Jagdkunde und Wildschadenverhütung. Bonn (DE) (in German) (1986).Grolleau, G., Lorgue, G. & Nahas, K. Toxicitd secondaire, en laboratoire, d’un rodenticide anticoagulant (bromadiolone) pour des pr6dateurs de rongeurs champétres: Buse variable (Buteo buteo) et hermine (Mustela erminea). OEPP/EPPO. 19, 633–648 (1989).Article 

    Google Scholar 
    Riedel, M., Riedel, B. & Schlegelmilch, H. Risk of secondary intoxication for birds of prey and owls following use of chlorophacinone baits against common voles. Unpubl. Report (in German) (1991.).Radvanyi, A., Weaver, P., Massari, C., Bird, D. & Broughton, E. Effects of chlorophacinone on captive kestrels. Environ. Contam. Toxicol. 41, 441–448 (1988).Article 
    CAS 

    Google Scholar 
    Rattner, B. A. et al. Toxicity reference values for chlorophacinone and their application for assessing anticoagulant rodenticide risk to raptors. Ecotoxicology 24, 720–734. https://doi.org/10.1007/s10646-015-1418-8 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rattner, B. A., Horak, K. E., Lazarus, R. S., Goldade, D. A. & Johnston, J. J. Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ. Toxicol. Chem. 33(1), 8 (2014).Article 

    Google Scholar 
    Sánchez-Barbudo, I. S., Camarero, P. R. & Mateo, R. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 420, 280–288 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Evans, J. & Ward, A. L. Secondary poisoning associated with anticoagulant-killed nutria. JAVMA 151, 856–861 (1967).CAS 
    PubMed 

    Google Scholar 
    Prier, M. S. & Derse, P. H. Evaluation of the hazard of secondary poisoning by warfarin poisoned rodents. JAVMA 140, 351–354 (1962).CAS 
    PubMed 

    Google Scholar 
    Townsend, M. G., Bunyan, P. J., Odam, E. M., Stanley, P. I. & Wardall, H. P. Assessment of secondary poisoning hazard of warfarin to least weasels. J. Wildl. Manag. 48, 628–632 (1984).Article 
    CAS 

    Google Scholar  More

  • in

    Optimization of green and environmentally-benign synthesis of isoamyl acetate in the presence of ball-milled seashells by response surface methodology

    McElroy, C. R., Constantinou, A., Jones, L. C., Summerton, L. & Clark, J. H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 17, 3111–3121. https://doi.org/10.1039/C5GC00340G (2015).Article 
    CAS 

    Google Scholar 
    Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400. https://doi.org/10.1126/science.aay3060 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sheldon, R. A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 6, 32–48. https://doi.org/10.1021/acssuschemeng.7b03505 (2018).Article 
    CAS 

    Google Scholar 
    Anastas, P. T. & Williamson, T. C. in Green Chemistry, Vol. 626 ACS Symposium Series Ch. 1, 1–17 (American Chemical Society, 1996). https://doi.org/10.1021/bk-1996-0626.ch001.Clark, H. J. Green chemistry: Challenges and opportunities. Green Chem. 1, 1–8. https://doi.org/10.1039/A807961G (1999).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G. & Eslami, M. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans under mechanochemical ball milling. Green Chem. 16, 4914–4921 (2014).Article 
    CAS 

    Google Scholar 
    Eze, A. A. et al. Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Sci. Rep. 11, 1–8 (2021).Article 

    Google Scholar 
    Gorrasi, G. & Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17, 2610–2625 (2015).Article 
    CAS 

    Google Scholar 
    Li, L. H., Glushenkov, A. M., Hait, S. K., Hodgson, P. & Chen, Y. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 
    Mac Naughton, G. E., Rolfe, S. A. & Siraj-Blatchford, I. E. Doing Early Childhood Research: International Perspectives on Theory and Practice (Open University Press, 2001).Evangelisti, L. et al. The borderline between reactivity and pre-reactivity of binary mixtures of gaseous carboxylic acids and alcohols. Angew. Chem. 129, 3930–3933 (2017).Article 
    ADS 

    Google Scholar 
    Gaspa, S., Porcheddu, A. & De Luca, L. Metal-free oxidative cross esterification of alcohols via acyl chloride formation. Adv. Synth. Catal. 358, 154–158 (2016).Article 
    CAS 

    Google Scholar 
    Fiorio, J. L., Braga, A. H., Guedes, C. L. S. B. & Rossi, L. M. Reusable heterogeneous tungstophosphoric acid-derived catalyst for green esterification of carboxylic acids. ACS Sustain. Chem. Eng. 7, 15874–15883 (2019).Article 
    CAS 

    Google Scholar 
    Karimi, B., Mirzaei, H. M. & Mobaraki, A. Periodic mesoporous organosilica functionalized sulfonic acids as highly efficient and recyclable catalysts in biodiesel production. Catal. Sci. Technol. 2, 828–834 (2012).Article 
    CAS 

    Google Scholar 
    Tran, T. T. V. et al. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 484, 110724 (2020).Article 
    CAS 

    Google Scholar 
    Afshar, S. et al. Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology. Mon. Chem. Chem. Mon. 146, 1949–1957 (2015).Article 
    CAS 

    Google Scholar 
    Chng, L. L., Yang, J. & Ying, J. Y. Efficient synthesis of amides and esters from alcohols under aerobic ambient conditions catalyzed by a Au/mesoporous Al2O3 nanocatalyst. Chemsuschem 8, 1916–1925 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lozano, P., Bernal, J. M. & Navarro, A. A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chem. 14, 3026–3033 (2012).Article 
    CAS 

    Google Scholar 
    Su, L., Hong, R., Guo, X., Wu, J. & Xia, Y. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase. Food Chem. 206, 131–136 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Güvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö. & Mehmetoğlu, Ü. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785 (2007).Article 

    Google Scholar 
    Torres, S., Baigorí, M. D., Swathy, S., Pandey, A. & Castro, G. R. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454–460 (2009).Article 
    CAS 

    Google Scholar 
    Ando, H., Kurata, A. & Kishimoto, N. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794 (2006).Article 
    CAS 

    Google Scholar 
    Romero, M., Calvo, L., Alba, C., Daneshfar, A. & Ghaziaskar, H. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb. Technol. 37, 42–48 (2005).Article 
    CAS 

    Google Scholar 
    Borges, M. E. & Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012).Article 
    CAS 

    Google Scholar 
    Li, K.-T., Wang, C.-K., Wang, I. & Wang, C.-M. Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl. Catal. A 392, 180–183 (2011).Article 
    CAS 

    Google Scholar 
    Clark, J. H. & Rhodes, C. N. In Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents, Vol. 4, (Royal Society of Chemistry, London, 2000). https://doi.org/10.1039/9781847550569Dekamin, M. G. et al. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol. 87, 172–179 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Melfi, D. T., dos Santos, K. C., Ramos, L. P. & Corazza, M. L. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15. J. Supercrit. Fluids 158, 104736 (2020).Article 
    CAS 

    Google Scholar 
    Azudin, N. Y., Mashitah, M. & Abd Shukor, S. R. Optimization of isoamyl acetate production in a solvent-free system. J. Food Qual. 36, 441–446 (2013).Article 
    CAS 

    Google Scholar 
    Ćorović, M. et al. Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst. Eng. 40, 23–34 (2017).Article 
    PubMed 

    Google Scholar 
    Liu, C. & Luo, G. Synthesis of isoamyl acetate catalyzed by ferric tri-dodecylsulfonate. Riyong Huaxue Gongye 34, 403–405 (2004).
    Google Scholar 
    Narwal, S. K., Saun, N. K., Dogra, P. & Gupta, R. Green synthesis of isoamyl acetate via silica immobilized novel thermophilic lipase from Bacillus aerius. Russ. J. Bioorg. Chem. 42, 69–73 (2016).Article 
    CAS 

    Google Scholar 
    Pizzio, L., Vázquez, P., Cáceres, C. & Blanco, M. Tungstophosphoric and molybdophosphoric acids supported on zirconia as esterification catalysts. Catal. Lett. 77, 233–239 (2001).Article 
    CAS 

    Google Scholar 
    Saha, B., Alqahtani, A. & Teo, H. T. R. Production of iso-Amyl Acetate: Heterogeneous Kinetics and Techno-feasibility Evaluation for Catalytic Distillation. Int. J. Chem. React. Eng. 3(1), https://doi.org/10.2202/1542-6580.1231 (2005).Osorio-Viana, W., Ibarra-Taquez, H. N., Dobrosz-Gomez, I. & Gómez-García, M. Á. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. 76, 70–82 (2014).Article 
    CAS 

    Google Scholar 
    Fang, M. et al. Synthesis of isoamyl acetate using polyoxometalate-based sulfonated ionic liquid as catalyst. Indian J. Chem. Sect. A 53A, 1485–1492 (2014).Yang, Z., Zhou, C., Zhang, W., Li, H. & Chen, M. β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis. Colloids Surf., A 356, 134–139 (2010).Article 
    CAS 

    Google Scholar 
    Yang, Z. et al. Kinetic study and process simulation of transesterification of methyl acetate and isoamyl alcohol catalyzed by ionic liquid. Ind. Eng. Chem. Res. 54, 1204–1215 (2015).Article 
    CAS 

    Google Scholar 
    Dohendou, M., Pakzad, K., Nezafat, Z., Nasrollahzadeh, M. & Dekamin, M. G. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int. J. Biol. Macromol. 192, 771–819. https://doi.org/10.1016/j.ijbiomac.2021.09.162 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Alirezvani, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol. 129, 407–421. https://doi.org/10.1016/j.ijbiomac.2019.01.027 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G., Kazemi, E., Karimi, Z., Mohammadalipoor, M. & Naimi-Jamal, M. R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol. 93, 767–774. https://doi.org/10.1016/j.ijbiomac.2016.09.012 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Bondarian, S. Sulfamic acid grafted to cross-linked chitosan by dendritic units: A bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Adv. 13, 320–334. https://doi.org/10.1039/D2RA07319F (2023).Article 
    ADS 
    CAS 

    Google Scholar 
    Dekamin, M. G., Azimoshan, M. & Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem. 15, 811–820. https://doi.org/10.1039/C3GC36901C (2013).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep. 9, 17758 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rostami, N., Dekamin, M., Valiey, E. & Fanimoghadam, H. Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci. Rep. 12, 8642–8642 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frindy, S., el Kadib, A., Lahcini, M., Primo, A. & García, H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross-coupling. ChemCatChem 7, 3307–3315 (2015).Article 
    CAS 

    Google Scholar 
    Pettignano, A. et al. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction. New J. Chem. 39, 4222–4226 (2015).Article 
    CAS 

    Google Scholar 
    Schnepp, Z. Biopolymers as a flexible resource for nanochemistry. Angew. Chem. Int. Ed. 52, 1096–1108 (2013).Article 
    CAS 

    Google Scholar 
    Khrunyk, Y., Lach, S., Petrenko, I. & Ehrlich, H. Progress in modern marine biomaterials research. Mar. Drugs 18, 589 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, I. Molecular self-assembly: Smart design of surface and interface via secondary molecular interactions. Langmuir 29, 2476–2489. https://doi.org/10.1021/la304123b (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaheed, N., Javanshir, S., Esmkhani, M., Dekamin, M. G. & Naimi-Jamal, M. R. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci. Rep. 11, 18553 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, M. A. et al. Processing Aspects and biomedical and environmental applications of sustainable nanocomposites containing nanofillers. In Sustainable Polymer Composites and Nanocomposites, (eds Inamuddin et al.) 727–757 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-05399-4_25Dekamin, M. G. et al. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Adv. 4, 56658–56664. https://doi.org/10.1039/C4RA11801D (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ilkhanizadeh, S., Khalafy, J. & Dekamin, M. G. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int. J. Biol. Macromol. 140, 605–613. https://doi.org/10.1016/j.ijbiomac.2019.08.154 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G. et al. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol. 108, 1273–1280. https://doi.org/10.1016/j.ijbiomac.2017.11.050 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rostami, N., Dekamin, M. G. & Valiey, E. Chitosan-EDTA-cellulose bio-based network: A recyclable multifunctional organocatalyst for green and expeditious synthesis of Hantzsch esters. Carbohydr. Polym. Technol. Appl. 5, 100279. https://doi.org/10.1016/j.carpta.2022.100279 (2023).Article 
    CAS 

    Google Scholar 
    Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. & Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hill, W. J. & Hunter, W. G. A review of response surface methodology: A literature survey. Technometrics 8, 571–590. https://doi.org/10.1080/00401706.1966.10490404 (1966).Article 
    MathSciNet 

    Google Scholar 
    Hamidi, F. et al. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Han, X.-X. et al. Syntheses of novel halogen-free Brønsted–Lewis acidic ionic liquid catalysts and their applications for synthesis of methyl caprylate. Green Chem. 17, 499–508 (2015).Article 
    CAS 

    Google Scholar 
    Rehman, K. et al. Operational parameters optimization for remediation of crude oil-polluted water in floating treatment wetlands using response surface methodology. Sci. Rep. 12, 1–11 (2022).Article 

    Google Scholar 
    Kamari, S., Ghorbani, F. & Sanati, A. M. Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: Modeling and optimization by response surface methodology. Sustain. Chem. Pharm. 13, 100153. https://doi.org/10.1016/j.scp.2019.100153 (2019).Article 

    Google Scholar 
    Sanati, A. M., Kamari, S. & Ghorbani, F. Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surf. Interfaces 17, 100374. https://doi.org/10.1016/j.surfin.2019.100374 (2019).Article 
    CAS 

    Google Scholar 
    Guner, S. G. & Dericioglu, A. Nacre-mimetic epoxy matrix composites reinforced by two-dimensional glass reinforcements. RSC Adv. 6, 33184–33196 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Shao, Y., Zhao, H.-P. & Feng, X.-Q. Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Adv. 4, 32451–32456 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Jaji, A. Z. et al. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnol. Sci. Appl. 10, 23 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Çam, M. & Aaby, K. Optimization of extraction of apple pomace phenolics with water by response surface methodology. J. Agric. Food Chem. 58, 9103–9111 (2010).Article 
    PubMed 

    Google Scholar 
    Iwuchukwu, I. J. et al. Optimization of photosynthetic hydrogen yield from platinized photosystem I complexes using response surface methodology. Int. J. Hydrog. Energy 36, 11684–11692 (2011).Article 
    CAS 

    Google Scholar 
    Hu, C. et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl. Catal. A 253, 389–396 (2003).Article 
    CAS 

    Google Scholar 
    Noda, L. K., de Almeida, R. M., Probst, L. F. D. & Gonçalves, N. S. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J. Mol. Catal. A Chem. 225, 39–46 (2005).Article 
    CAS 

    Google Scholar 
    Jalali-Heravi, M., Parastar, H. & Ebrahimi-Najafabadi, H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J. Chromatogr. A 1216, 6088–6097 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sendzikiene, E., Sinkuniene, D., Kazanceva, I. & Kazancev, K. Optimization of low quality rapeseed oil transesterification with butanol by applying the response surface methodology. Renew. Energy 87, 266–272 (2016).Article 
    CAS 

    Google Scholar 
    Das, R., Sarkar, S. & Bhattacharjee, C. Photocatalytic degradation of chlorhexidine—a chemical assessment and prediction of optimal condition by response surface methodology. J. Water Process Eng. 2, 79–86 (2014).Article 

    Google Scholar 
    Nandiwale, K. Y., Galande, N. D. & Bokade, V. V. Process optimization by response surface methodology for transesterification of renewable ethyl acetate to butyl acetate biofuel additive over borated USY zeolite. RSC Adv. 5, 17109–17116 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Soltani, R. D. C. & Safari, M. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization. Ultrason. Sonochem. 32, 181–190 (2016).Article 

    Google Scholar 
    Tan, K. T., Lee, K. T. & Mohamed, A. R. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology. Biores. Technol. 101, 965–969 (2010).Article 
    CAS 

    Google Scholar 
    Nagaraju, N., Peeran, M. & Prasad, D. Synthesis of isoamyl acetate usin NaX and NaY zeolites as catalysts. React. Kinet. Catal. Lett. 61, 155–160 (1997).Article 
    CAS 

    Google Scholar 
    Pizzio, L. R. & Blanco, M. N. Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Appl. Catal. A 255, 265–277 (2003).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Karimi, Z. & Farahmand, M. Tetraethylammonium 2-(N-hydroxycarbamoyl)benzoate: A powerful bifunctional metal-free catalyst for efficient and rapid cyanosilylation of carbonyl compounds under mild conditions. Catal. Sci. Technol. 2, 1375–1381. https://doi.org/10.1039/C2CY20037F (2012).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Sagheb-Asl, S. & Reza Naimi-Jamal, M. An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst. Tetrahedron Lett. 50, 4063–4066. https://doi.org/10.1016/j.tetlet.2009.04.090 (2009).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently functionalized MCM-41: An efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives. ACS Omega 4, 20618–20633. https://doi.org/10.1021/acsomega.9b02755 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Metagenomic mapping of cyanobacteria and potential cyanotoxin producing taxa in large rivers of the United States

    Hallegraeff, G. M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge 1. J. Phycol. 46, 220–235 (2010).Article 
    CAS 

    Google Scholar 
    Itakura, S. & Imai, I. Economic impacts of harmful algal blooms on fisheries and aquaculture in western Japan—An overview of interannual variability and interspecies comparison. PICES Sci. Rep. 47, 17 (2014).
    Google Scholar 
    Haigh, N. & Esenkulova, S. Economic losses to the British Columbia salmon aquaculture industry due to harmful algal blooms, 2009–2012. PICES Sci. Rep. 47, 2 (2014).
    Google Scholar 
    Sharma, N. K. et al. (eds) Cyanobacteria: An Economic Perspective 245–256 (Wiley, 2014).
    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 (2012).Article 
    CAS 

    Google Scholar 
    Paerl, H. W. & Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hallegraeff, G. M. et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2, 117. https://doi.org/10.1038/s43247-021-00178-8 (2021).Article 
    ADS 

    Google Scholar 
    Hennon, G. M. M. & Dyhrman, S. T. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. Harmful Algae 91, 101587. https://doi.org/10.1016/j.hal.2019.03.005 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kudela, R., Berdalet, E. & Urban, E. Harmful Algal Blooms: A Scientific Summary for Policy Makers (2015).Lezcano, M., Velázquez, D., Quesada, A. & El-Shehawy, R. Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: An interplay between microcystin producers and degraders. Water Res. 125, 52–61. https://doi.org/10.1016/j.watres.2017.08.025 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scherer, P. I. et al. Temporal dynamics of the microbial community composition with a focus on toxic cyanobacteria and toxin presence during harmful algal blooms in two South German Lakes. Front. Microbiol. 8, 02387. https://doi.org/10.3389/fmicb.2017.02387 (2017).Article 

    Google Scholar 
    Woodhouse, J. N. et al. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 10, 1337–1351. https://doi.org/10.1038/ismej.2015.218 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beaver, J. R. et al. Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: A preliminary evaluation. Harmful Algae 36, 57–62. https://doi.org/10.1016/j.hal.2014.03.005 (2014).Article 
    CAS 

    Google Scholar 
    Loftin, K. A. et al. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 56, 77–90. https://doi.org/10.1016/j.hal.2016.04.001 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casero, M. C., Velázquez, D., Medina-Cobo, M., Quesada, A. & Cirés, S. Unmasking the identity of toxigenic cyanobacteria driving a multi-toxin bloom by high-throughput sequencing of cyanotoxins genes and 16S rRNA metabarcoding. Sci. Total Environ. 665, 367–378. https://doi.org/10.1016/j.scitotenv.2019.02.083 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaffin, J. D., Sigler, V. & Bridgeman, T. B. Connecting the blooms: Tracking and establishing the origin of the record-breaking Lake Erie Microcystis bloom of 2011 using DGGE. Aquat. Microb. Ecol. 73, 29–39 (2014).Article 

    Google Scholar 
    Stanley, E. H. & Jones, J. B. (eds) Stream Ecosystems in a Changing Environment 321–348 (Elsevier, 2016).Book 

    Google Scholar 
    Giblin, S. M. & Gerrish, G. A. Environmental factors controlling phytoplankton dynamics in a large floodplain river with emphasis on cyanobacteria. River Res. Appl. 36, 1137–1150. https://doi.org/10.1002/rra.3658 (2020).Article 

    Google Scholar 
    Graham, J. L., Ziegler, A. C., Loving, B. L. & Loftin, K. A. Fate and Transport of Cyanobacteria and Associated Toxins and Taste-and-Odor Compounds from Upstream Reservoir Releases in the Kansas River, Kansas, September and October 2011 65 (US Geological Survey, 2012).
    Google Scholar 
    Knowlton, M. F. & Jones, J. R. Seston, light, nutrients and chlorophyll in the lower Missouri River, 1994–1998. J. Freshw. Ecol. 15, 283–297. https://doi.org/10.1080/02705060.2000.9663747 (2000).Article 

    Google Scholar 
    Otten, T. G., Crosswell, J. R., Mackey, S. & Dreher, T. W. Application of molecular tools for microbial source tracking and public health risk assessment of a Microcystis bloom traversing 300 km of the Klamath River. Harmful Algae 46, 71–81 (2015).Article 

    Google Scholar 
    Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45. https://doi.org/10.1016/j.hal.2016.11.006 (2017).Article 
    CAS 

    Google Scholar 
    Reinl, K. L., Sterner, R. W., Lafrancois, B. M. & Brovold, S. Fluvial seeding of cyanobacterial blooms in oligotrophic Lake Superior. Harmful Algae 100, 101941. https://doi.org/10.1016/j.hal.2020.101941 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bridgeman, T. B. et al. From River to Lake: Phosphorus partitioning and algal community compositional changes in Western Lake Erie. J. Great Lakes Res. 38, 90–97 (2012).Article 
    CAS 

    Google Scholar 
    Brown, B. L. et al. Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River. Stand Genomic Sci. 10, 65. https://doi.org/10.1186/s40793-015-0062-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamner, S. et al. Metagenomic profiling of microbial pathogens in the Little Bighorn River, Montana. Int. J. Environ. Res. Public Health 16, 071097. https://doi.org/10.3390/ijerph16071097 (2019).Article 
    CAS 

    Google Scholar 
    Staley, C. et al. Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J. Appl. Microbiol. 115, 1147–1158. https://doi.org/10.1111/jam.12323 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Winter, C., Hein, T., Kavka, G., Mach, R. L. & Farnleitner, A. H. Longitudinal changes in the bacterial community composition of the Danube River: A whole-river approach. Appl. Environ. Microbiol. 73, 421–431. https://doi.org/10.1128/aem.01849-06 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jackson, C. R., Millar, J. J., Payne, J. T., Ochs, C. A. & Wommack, K. E. Free-living and particle-associated bacterioplankton in large rivers of the Mississippi River basin demonstrate biogeographic patterns. Appl. Environ. Microbiol. 80, 7186–7195. https://doi.org/10.1128/AEM.01844-14 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, J. T., Jackson, C. R., Millar, J. J. & Ochs, C. A. Timescales of variation in diversity and production of bacterioplankton assemblages in the Lower Mississippi River. PLoS ONE 15, e0230945. https://doi.org/10.1371/journal.pone.0230945 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, J. T., Millar, J. J., Jackson, C. R. & Ochs, C. A. Patterns of variation in diversity of the Mississippi river microbiome over 1,300 kilometers. PLoS ONE 12, e0174890. https://doi.org/10.1371/journal.pone.0174890 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Read, D. S. et al. Catchment-scale biogeography of riverine bacterioplankton. ISME J. 9, 516–526. https://doi.org/10.1038/ismej.2014.166 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Reddington, K. et al. Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function. GigaScience 9, 53. https://doi.org/10.1093/gigascience/giaa053 (2020).Article 
    CAS 

    Google Scholar 
    Staley, C. et al. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front. Microbiol. 5, 414 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staley, C. et al. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci. Total Environ. 505, 435–445. https://doi.org/10.1016/j.scitotenv.2014.10.012 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Van Rossum, T. et al. Year-long metagenomic study of river microbiomes across land use and water quality. Front. Microbiol. 6, 1405 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kim, K. H. et al. Application of metagenome analysis to characterize the molecular diversity and saxitoxin-producing potentials of a cyanobacterial community: A case study in the North Han River, Korea. Appl. Biol. Chem. 61, 153–161. https://doi.org/10.1007/s13765-017-0342-4 (2018).Article 
    CAS 

    Google Scholar 
    Graham, J. L. et al. Cyanotoxin occurrence in large rivers of the United States. Inland Waters 10, 109–117. https://doi.org/10.1080/20442041.2019.1700749 (2020).Article 
    CAS 

    Google Scholar 
    Zuellig, R. E., Graham, J. L., Stelzer, E. A., Loftin, K. A. & Rosen, B. H. Cyanobacteria, Cyanotoxin Synthetase Gene, and Cyanotoxin Occurrence Among Selected Large River Sites of the Conterminous United States, 2017–18 22 (US Geological Survey, 2021).
    Google Scholar 
    Kramer, B. J. et al. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. PLoS ONE 13, e0196278 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouma-Gregson, K. et al. Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin-a producing cyanobacteria within a river network. ISME J. 13, 1618–1634. https://doi.org/10.1038/s41396-019-0374-3 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tillett, D. et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide–polyketide synthetase system. Chem. Biol. 7, 753–764 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dittmann, E., Fewer, D. P. & Neilan, B. A. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43. https://doi.org/10.1111/j.1574-6976.2012.12000.x (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jungblut, A. D. & Neilan, B. A. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch. Microbiol. 185, 107–114. https://doi.org/10.1007/s00203-005-0073-5 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Meriluoto, J. et al. (eds) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis 501–525 (Wiley, 2017).Book 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Graham, J. L., Dubrovsky, N. M., Loftin, K. A., Rosen, B. H. & Stelzer, E. A. Cyanotoxin, Chlorophyll-a, and Cyanobacterial Toxin Genetic Data for Samples Collected at Twelve Large River Sites Throughout the United States, June Through October 2019 (U.S. Geological Survey, 2022).
    Google Scholar 
    Dodds, W. K. & Smith, V. H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6, 155–164. https://doi.org/10.5268/IW-6.2.909 (2016).Article 
    CAS 

    Google Scholar 
    Debroas, D. et al. Overview of freshwater microbial eukaryotes diversity: A first analysis of publicly available metabarcoding data. FEMS Microbiol. Ecol. 93, 23. https://doi.org/10.1093/femsec/fix023 (2017).Article 
    CAS 

    Google Scholar 
    Henson, M. W. et al. Nutrient dynamics and stream order influence microbial community patterns along a 2914 kilometer transect of the Mississippi River. Limnol. Oceanogr. 63, 1837–1855. https://doi.org/10.1002/lno.10811 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ghai, R. et al. Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE 6, e23785. https://doi.org/10.1371/journal.pone.0023785 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liao, J. et al. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use. Sci. Rep. 6, 36357. https://doi.org/10.1038/srep36357 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324. https://doi.org/10.1038/s41559-017-0407-0 (2018).Article 
    PubMed 

    Google Scholar 
    Pessi, I. S., Maalouf, P. D. C., LaughinghouseBaurain, H. D. D. & Wilmotte, A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. J. Phycol. 52, 356–368. https://doi.org/10.1111/jpy.12399 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tanvir, R. U., Hu, Z., Zhang, Y. & Lu, J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environ. Pollut. 290, 118056. https://doi.org/10.1016/j.envpol.2021.118056 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chételat, J., Pick, F. R. & Hamilton, P. B. Potamoplankton size structure and taxonomic composition: Influence of river size and nutrient concentrations. Limnol. Oceanogr. 51, 681–689 (2006).Article 
    ADS 

    Google Scholar 
    Heiskary, S. & Markus, H. Establishing relationships among nutrient concentrations, phytoplankton abundance, and biochemical oxygen demand in Minnesota, USA, rivers. Lake Reserv. Manag. 17, 251–262 (2001).Article 
    CAS 

    Google Scholar 
    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 10, 126–139 (2003).Article 
    CAS 

    Google Scholar 
    Verspagen, J. M. et al. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS ONE 9, e104325 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zepernick, B. N. et al. Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilaria crotonensis and natural diatoms in Lake Erie. Front. Microbiol. 12, 598736. https://doi.org/10.3389/fmicb.2021.598736 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urban, L. et al. Freshwater monitoring by nanopore sequencing. Elife 10, 61504. https://doi.org/10.7554/eLife.61504 (2021).Article 

    Google Scholar 
    Lee, C. J. & Henderson, R. J. Tracking Water-Quality in U.S. Streams and Rivers: U.S. Geological Survey National Water Quality Network. https://nrtwq.usgs.gov/nwqn (2020).Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu, J. B. F., Thielen, P. & Salzberg, S. L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, 104. https://doi.org/10.7717/peerj-cs.104 (2017).Article 

    Google Scholar 
    Bagley, M. et al. High-throughput environmental DNA analysis informs a biological assessment of an urban stream. Ecol. Ind. 104, 378–389. https://doi.org/10.1016/j.ecolind.2019.04.088 (2019).Article 
    CAS 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nübel, U., Garcia-Pichel, F. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997 (1997).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neilan, B. A. et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 47, 693–697. https://doi.org/10.1099/00207713-47-3-693 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Team R Core. R: A Language and Environment for Statistical Computing (2013).McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.5-2 (2018).Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    U.S. Geological Survey. National Water Information System Database. https://doi.org/10.5066/F7P55KJN (2022). More