Effects of wood ash and N fertilization on soil chemical properties and growth of Zelkova serrata across soil types
1.Müller, A. et al. The Role of Biomass in the Sustainable Development Goals: A Reality Check and Governance Implications. (Institue for Advances Sustainability Studies, 2015).2.Keesstra, S. et al. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 7, 133 (2018).Article
Google Scholar
3.Li, X., Rubæk, G. H. & Sørensen, P. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes. Sci. Total Environ. 557–558, 851–860 (2016).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
4.Hannam, K. D., Deschamps, C., Kwiaton, M., Venier, L. & Hazlett, P. W. Regulations and Guidelines for the Use of Wood Ash as a Soil Amendment in Canadian Forests (Natural Resources Canada Canadian Forest Service, 2016).5.Nieminen, M., Laiho, R., Sarkkola, S. & Penttilä, T. Whole-tree, stem-only, and stump harvesting impacts on site nutrient capital of a Norway spruce-dominated peatland forest. Eur. J. For. Res. 135, 531–538 (2016).CAS
Article
Google Scholar
6.Adams, M., Burger, J., Jenkins, A. & Zelazny, L. Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests. For. Ecol. Manag. 138, 301–319 (2000).Article
Google Scholar
7.Ågren, A., Buffam, I., Bishop, K. & Laudon, H. Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by forest harvest. Can. J. Fish. Aquat. Sci. 67, 1116–1125 (2010).Article
CAS
Google Scholar
8.Jerabkova, L., Prescott, C. E., Titus, B. D., Hope, G. D. & Walters, M. B. A meta-analysis of the effects of clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Can. J. For. Res. 41, 1852–1870 (2011).CAS
Article
Google Scholar
9.Cronan, C. S. & Grigal, D. F. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J. Environ. Qual. 24, 209–226 (1995).CAS
Article
Google Scholar
10.Augusto, L., Bakker, M. R. & Meredieu, C. Wood ash applications to temperate forest ecosystems—Potential benefits and drawbacks. Plant Soil 306, 181–198 (2008).CAS
Article
Google Scholar
11.Pitman, R. M. Wood ash use in forestry—A review of the environmental impacts. Forestry 79, 563–588 (2006).Article
Google Scholar
12.Pugliese, S. et al. Wood ash as a forest soil amendment: The role of boiler and soil type on soil property response. Can. J. Soil Sci. 94, 621–634 (2014).CAS
Article
Google Scholar
13.Saarsalmi, A., Mälkönen, E. & Kukkola, M. Effect of wood ash fertilization on soil chemical properties and stand nutrient status and growth of some coniferous stands in Finland. Scand. J. For. Res. 19, 217–233 (2004).Article
Google Scholar
14.Zimmermann, S. & Frey, B. Soil respiration and microbial properties in an acid forest soil: Effects of wood ash. Soil Biol. Biochem. 34, 1727–1737 (2002).CAS
Article
Google Scholar
15.Perkiömäki, J. & Fritze, H. Short and long-term effects of wood ash on the boreal forest humus microbial community. Soil Biol. Biochem. 34, 1343–1353 (2002).Article
Google Scholar
16.Etiégni, L. & Campbell, A. G. Physical and chemical characteristics of wood ash. Bioresour. Technol. 37, 173–178 (1991).Article
Google Scholar
17.Saarsalmi, A., Smolander, A., Kukkola, M. & Arola, M. Effect of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes, and stand growth in two coniferous stands in Finland. Plant Soil 331, 329–340 (2010).CAS
Article
Google Scholar
18.Saarsalmi, A. & Levula, T. Wood ash application and liming: Effects on soil chemical properties and growth of Scots pine transplants. Balt. For. 13, 149–157 (2007).
Google Scholar
19.Demeyer, A., Voundi Nkana, J. & Verloo, M. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 77, 287–295 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Zhou, H. Reducing, reusing and recycling solid wastes from wood fibre processing. In Towards Sustainable Management of the Boreal Forest (eds Burton, P. J. et al.) 759–798 (NRC Research Press, 2003) https://doi.org/10.1139/9780660187624.Chapter
Google Scholar
21.Rosenberg, O., Persson, T., Högbom, L. & Jacobson, S. Effects of wood-ash application on potential carbon and nitrogen mineralisation at two forest sites with different tree species, climate and N status. For. Ecol. Manag. 260, 511–518 (2010).Article
Google Scholar
22.Saarsalmi, A., Smolander, A., Kukkola, M., Moilanen, M. & Saramäki, J. 30-Year effects of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes and stand growth in a Scots pine stand. For. Ecol. Manag. 278, 63–70 (2012).Article
Google Scholar
23.McDonald, M. A., Hawkins, B. J., Prescott, C. E. & Kimmins, J. P. Growth and foliar nutrition of western red cedar fertilized with sewage sludge, pulp sludge, fish silage, and wood ash on northern Vancouver Island. Can. J. For. Res. 24, 297–301 (1994).Article
Google Scholar
24.Park, B. B., Yanai, R. D., Sahm, J. M., Lee, D. K. & Abrahamson, L. P. Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy. 28, 355–365 (2005).CAS
Article
Google Scholar
25.Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).CAS
Article
Google Scholar
26.Nohrstedt, H. -Ö. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences. Scand. J. For. Res. 16, 555–573 (2001).Article
Google Scholar
27.Rennenberg, H. & Dannenmann, M. Nitrogen nutrition of trees in temperate forests—The significance of nitrogen availability in the pedosphere and atmosphere. Forests 6, 2820–2835 (2015).Article
Google Scholar
28.Solla-Gullón, F., Santalla, M., Pérez-Cruzado, C., Merino, A. & Rodríguez-Soalleiro, R. Response of Pinus radiata seedlings to application of mixed wood-bark ash at planting in a temperate region: Nutrition and growth. For. Ecol. Manag. 255, 3873–3884 (2008).Article
Google Scholar
29.Saarsalmi, A., Kukkola, M., Moilanen, M. & Arola, M. Long-term effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. For. Ecol. Manag. 235, 116–128 (2006).Article
Google Scholar
30.Ohno, T. Neutralization of soil acidity and release of phosphorus and potassium by wood ash. J. Environ. Qual. 21, 433–438 (1992).Article
Google Scholar
31.Bang-Andreasen, T. et al. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Front. Microbiol. 8, 1400 (2017).PubMed
PubMed Central
Article
Google Scholar
32.Clapham, W. M. & Zibilske, L. M. Wood ash as a liming amendment. Commun. Soil Sci. Plant Anal. 23, 1209–1227 (1992).CAS
Article
Google Scholar
33.Ulery, A. L., Graham, R. C. & Amrhein, C. Wood-ash composition and soil pH following intense burning. Soil Sci. 156, 358–364 (1993).ADS
CAS
Article
Google Scholar
34.Muse, J. K. & Mitchell, C. C. Paper mill boiler ash and lime by-products as soil liming materials. Agron. J. 87, 432–438 (1995).Article
Google Scholar
35.Bramryd, T. & Fransman, B. Silvicultural use of wood ashes – Effects on the nutrient and heavy metal balance in a pine (Pinus sylvestris, L) forest soil. Water Air Soil Pollut. 85, 1039–1044 (1995).ADS
CAS
Article
Google Scholar
36.Jones, D. L. & Quilliam, R. S. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application. J. Hazard. Mater. 276, 362–370 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Kim, K.-D. Species alterations caused by nitrogen and carbon addition in nutrient-deficient municipal waste landfills. J. Ecol. Environ. 30, 161–170 (2007).Article
Google Scholar
38.Jacobson, S. Addition of stabilized wood ashes to Swedish coniferous stands on mineral soils—Effects on stem growth and needle nutrient concentrations. Silva Fenn. 37, 437–450 (2003).Article
Google Scholar
39.Hånell, B. & Magnusson, T. An evaluation of land suitability for forest fertilization with biofuel ash on organic soils in Sweden. For. Ecol. Manag. 209, 43–55 (2005).Article
Google Scholar
40.Hannam, K. D. et al. Wood ash as a soil amendment in Canadian forests: What are the barriers to utilization?. Can. J. For. Res. 48, 442–450 (2018).Article
Google Scholar
41.Woods, S. W. & Balfour, V. N. The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA. Int. J. Wildl. Fire 17, 535–548 (2008).Article
Google Scholar
42.Someshwar, A. Wood and combination wood-fired boiler ash characterization. J. Environ. Qual. 25, 962–972 (1996).CAS
Article
Google Scholar
43.National Institute of Agricultural Science and Technology. Methods of Soil and Plant Analysis (ed. Im, J.-N.) 202 (National Institute of Agricultural Science and Technology, RDA, 2000).44.Sparks, D. L., Page, A. L., Helmke, P. A. & Leoppert, R. H. Methods of Soil Analysis Part3—Chemical Methods, SSSA Book Ser. 5.3. (Soil Science Society of America, American Society of Agronomy, 1996) https://doi.org/10.2136/sssabookser5.3.45.Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS
CAS
Article
Google Scholar
46.Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part3—Chemical Methods, SSSA Book Ser. 5.3 (eds Sparks, D. L. et al.) 961–1010 (Soil Science Society of America, American Society of Agronomy, 1996) https://doi.org/10.2136/sssabookser5.3.c34.Chapter
Google Scholar
47.Bremner, J. M. Nitrogen-total. In Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Ser. 5.3 (eds Sparks, D. L. et al.) 1085–1121 (Soil Science Society of America, American Society of Agronomy, 1996) https://doi.org/10.2136/sssabookser5.3.c37.Chapter
Google Scholar
48.Kuo, S. Phosphorus. In Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Ser. 5.3 (eds Sparks, D. L. et al.) 869–919 (Soil Science Society of America, American Society of Agronomy, 1996) https://doi.org/10.2136/sssabookser5.3.c32.Chapter
Google Scholar
49.Cox, M. S. The Lancaster soil test method as an alternative to the Mehlich 3 soil test method1. Soil Sci. 166, 484–489 (2001).ADS
CAS
Article
Google Scholar
50.Sumner, M. E. & Miller, W. P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part 3—Chemical Methods, SSSA Book Ser. 5.3 (eds Sparks, D. L. et al.) 1201–1229 (Soil Science Society of America, American Society of Agronomy, 1996).
Google Scholar More
