More stories

  • in

    Bat aggregational response to pest caterpillar emergence

    1.Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18(1), 1–35 (1949).Article 

    Google Scholar 
    2.Sinclair, A. R. E. & Krebs, C. J. Complex numerical responses to top–down and bottom–up processes in vertebrate populations. Philos. Trans. R. Soc. B 357(1425), 1221–1231 (2002).CAS 
    Article 

    Google Scholar 
    3.Readshaw, J. L. The numerical response of predators to prey density. J. Appl. Biol. 10, 342–351 (1973).
    Google Scholar 
    4.Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332(6025), 41–42 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Taylor, P. J., Grass, I., Alberts, A. J., Joubert, E. & Tscharntke, T. Economic value of bat predation services—a review and new estimates from macadamia orchards. Ecosyst. Serv. 30, 372–381 (2018).Article 

    Google Scholar 
    6.Kunz, T. H., BraundeTorrez, E., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Russo, D., Bosso, L. & Ancillotto, L. Novel perspectives on bat insectivory highlight the value of this ecosystem service in farmland: Research frontiers and management implications. Agric. Ecosyst. Environ. 266, 31–38 (2018).Article 

    Google Scholar 
    8.Boyles, J. G., Sole, C. L., Cryan, P. M. & McCracken, G. F. On estimating the economic value of insectivorous bats: prospects and priorities for biologists. In Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 501–515 (Springer, 2013).Chapter 

    Google Scholar 
    9.Kemp, J. et al. Bats as potential suppressors of multiple agricultural pests: a case study from Madagascar. Agric. Ecosyst. Environ. 269, 88–96 (2019).Article 

    Google Scholar 
    10.Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. 10(1), 371–388 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Weier, S. M. et al. Insect pest consumption by bats in macadamia orchards established by molecular diet analyses. Glob. Ecol. Conserv. 18, e00626 (2019).Article 

    Google Scholar 
    12.Bohmann, K. et al. Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE 6(6), e21441 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Razgour, O. et al. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol. Evol. 1(4), 556–570 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Cleveland, C. J. et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4(5), 238–243 (2006).Article 

    Google Scholar 
    15.McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7(8), e43839 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. 91(4), 1081–1101 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. USA 112(40), 12438–12443 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Hill, D. S. Pests of Crops in Warmer Climates and Their Control (Springer, 2008).Book 

    Google Scholar 
    19.Zhang, B. C. Index of Economically Important Lepidoptera (CAB International, Wallingford, 1994).
    Google Scholar 
    20.Riccucci, M. & Lanza, B. Bats and insect pest control: a review. Vespertilio 17, 161–169 (2014).
    Google Scholar 
    21.Andreas, M., Reiter, A. & Benda, P. Dietary composition, resource partitioning and trophic niche overlap in three forest foliage-gleaning bats in Central Europe. Acta Chiropterol. 14(2), 335–345 (2012).Article 

    Google Scholar 
    22.Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Table for five, please: dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Hope, R. P. et al. Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter. Front. Zool. 11, 39 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Pray oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).Article 

    Google Scholar 
    25.Garin, I. et al. Bats from different foraging guilds prey upon the pine processionary moth. PeerJ 7, e7169 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245 (2015).Article 

    Google Scholar 
    27.Elgar, M. A. Predator vigilance and group size in mammals and birds: a critical review of the evidence. Biol. Rev. 64, 13–33 (1989).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Fukui, D., Murakami, M., Nakano, S. & Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 75(6), 1252–1258 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Partridge, D. R., Parkins, K. L., Elbin, S. B. & Clark, J. A. Bat activity correlates with moth abundance on an urban green roof. Northeast Nat. 27(1), 77–89 (2020).Article 

    Google Scholar 
    30.Charbonnier, Y., Barbaro, L., Theillout, A. & Jactel, H. Numerical and functional responses of forest bats to a major insect pest in pine plantations. PLoS ONE 9(10), e109488 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Krauel, J. J., Ratcliffe, J. M., Westbrook, J. K. & McCracken, G. F. Brazilian free-tailed bats (Tadarida brasiliensis) adjust foraging behaviour in response to migratory moths. Can. J. Zool. 96(6), 513–520 (2018).Article 

    Google Scholar 
    32.Gregor, F. & Bauerová, Z. The role of Diptera in the diet of Natterer’s bat, Myotis nattereri. Folia. Zool. 36(1), 13–19 (1987).
    Google Scholar 
    33.Swift, S. & Racey, P. Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behav. Ecol. Sociobiol. 52(5), 408–416 (2002).Article 

    Google Scholar 
    34.Taake, K. H. Resource utilization strategies of vespertilionid bats hunting over water in forests. Myotis 30, 7–74 (1992).
    Google Scholar 
    35.Vaughan, N. The diets of British bats (Chiroptera). Mammal. Rev. 27(2), 77–94 (1997).Article 

    Google Scholar 
    36.Siemers, B. & Swift, S. M. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav. Ecol. Sociobiol. 59, 373–380 (2006).Article 

    Google Scholar 
    37.Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight Performance, foraging strategy and echolocation. Philos. Trans. R. Soc. B 316(1179), 335–427 (1987).ADS 

    Google Scholar 
    38.Entwistle, A. C., Racey, P. A. & Speakman, J. R. Habitat exploitation by a gleaning bat, Plecotus auritus. Philos. Trans. R. Soc. B 351(1342), 921–931 (1996).ADS 
    Article 

    Google Scholar 
    39.Kerth, G., Wagner, M. & König, B. Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein’s bats (Myotis bechsteinii). Behav. Ecol. Sociobiol. 50, 283–291 (2001).Article 

    Google Scholar 
    40.Rydell, J. Food habits of northern (Eptesicus nilssoni) and brown long-eared (Plecotus auritus) bats in Sweden. Holarct. Ecol. 12(1), 16–20 (1989).
    Google Scholar 
    41.Anderson, M. E. & Racey, P. A. Feeding behaviour of captive brown long-eared bats, Plecotus auritus. Anim. Behav. 42(3), 489–493 (1991).Article 

    Google Scholar 
    42.Andreas, M. Feeding ecology of a bat community. Ph.D. Thesis, Czech Agriculture University, Prague (2002).43.Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. Forest. Res. 124, 319–333 (2005).Article 

    Google Scholar 
    44.Keena, M. A., Côté, M. J., Grinberg, P. S. & Wallner, W. E. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 37(3), 636–649 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Melin, M., Viiri, H., Tikkanen, O. P., Elfving, R. & Neuvonen, S. From a rare inhabitant into a potential pest—status of the nun moth in Finland based on pheromone trapping. Silva. Fenn. 54(1), 1–9 (2020).Article 

    Google Scholar 
    46.Kuhlman, H. M. Effects of insect defoliation on growth and mortality of trees. Annu. Rev. Entomol. 16, 289–324 (1971).Article 

    Google Scholar 
    47.Bogacheva, I. A. Repeated damage of leaves by phyllophagous insects: is it influenced by rapid inducible resistance? In Forest Insect Guilds: Patterns of Interaction with Host Trees. (eds. Baranchikov, Y.N., Mattson, W.J., Hain, F.P. & Payne, T.L.) 113–122 (U.S. Dep. Agric. For. Serv. Gen. Tech. Rep. NE-153, 1991).48.Zvereva, E. L. & Kozlov, M. V. Effects of herbivory on leaf life span in woody plants: a meta-analysis. J. Ecol. 102(4), 873–881 (2014).Article 

    Google Scholar 
    49.Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006).Article 

    Google Scholar 
    50.Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352 (2016).ADS 
    Article 

    Google Scholar 
    51.Delb, H. Eichenschädlinge im Klimawandel in Südwestdeutschland. FVA-einblick. 2/2012, 11–14 (2012).52.Hittenbeck, A., Bialozyt, R. & Schmidt, M. Modelling the population fluctuation of winter moth and mottled umber moth in central and northern Germany. For. Ecosyst. 6, 4 (2019).Article 

    Google Scholar 
    53.Ims, R. A., Yoccoz, N. G. & Hagen, S. B. Do sub-Arctic winter moth populations in coastal birch forest exhibit spatially synchronous dynamics?. J. Anim. Ecol. 73, 1129–1136 (2004).Article 

    Google Scholar 
    54.Böhm, S. M., Wells, K. & Kalko, E. K. V. Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur). PLoS ONE 6(4), e17857 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Patočka, J. Caterpillars on oaks in Czechoslovakia. (Štátne pôdohospodárske nakladateľstvo: 262, 1954).56.Hausmann, A. The geometrid moths of Europe, Volume 1: Introduction, Archiearinae, Orthostixinae, Desmobathrinae, Alsophilinae, Geometrinae, (Apollo Books, 2001).57.Zahradník, P. Calamities in Czech forests—past and present. In: Facts and myths about Czech agricultural forestry. Proceedings of papers (ed Stonawski, J.) 31–51 (Česká zemědělská univerzita, 2008).58.Macek, J., Procházka, J. & Traxler, L. Butterflies and caterpillars of Central Europe: Moths III. – Geometrids. (Academia, 2012).59.Liška, J. Winter moth, Operophtera brumata L. Lesnická Práce, 11: I–IV (2002).60.Basset, Y., Springate, N. D., Aberlenc, H. P. & Delvare, G. A review of methods for sampling arthropods in tree canopies. In Canopy Arthropods (eds Stork, N. E. et al.) 567 (Chapman & Hall, 1997).
    Google Scholar 
    61.Kimber, I. UKMOTHS. https://ukmoths.org.uk (2015).62.Bartonička, T., Miketová, N. & Hulva, P. High throughput bioacoustic monitoring and phenology of the greater noctule bat (Nyctalus lasiopterus) compared to other migratory species. Acta Chiropterol. 21(1), 75–85 (2019).Article 

    Google Scholar 
    63.Lemen, C., Freeman, P. W., White, J. A. & Andersen, B. R. The problem of low agreement among automated identification programs for acoustical surveys of bats. West. N. Am. Naturalist. 75(2), 218–225 (2015).Article 

    Google Scholar 
    64.Barataud, M. Acoustic Ecology of European Bats. Species Identification and Studies of Their Habitats and Foraging Behaviour (Biotope & National Museum of Natural History, 2015).65.McAney, C., Shiel, C., Sullivan, C. & Fairley, J. The analysis of bat droppings (An occasional publication of the Mammal society; no. 14, 1991).66.Zeale, M. R., Butlin, R. K., Barker, G. L., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11(2), 23–44 (2011).Article 
    CAS 

    Google Scholar 
    67.Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).
    Google Scholar 
    69.Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 35, 21–25 (2007).Article 

    Google Scholar 
    70.R Core Team. R: language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/ (2019). More

  • in

    Ecological and evolutionary approaches to improving crop variety mixtures

    1.Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).Article 

    Google Scholar 
    2.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Weiner, J. Applying plant ecological knowledge to increase agricultural sustainability. J. Ecol. 105, 865–870 (2017).Article 

    Google Scholar 
    5.Sadras, V. et al. Making science more effective for agriculture. Adv. Agron. 163, 153–177 (2020).Article 

    Google Scholar 
    6.Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 4, 229–240 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. N. Phytol. 206, 107–117 (2015).Article 

    Google Scholar 
    9.Bullock, D. G. Crop rotation. Crit. Rev. Plant Sci. 11, 309–326 (1992).Article 

    Google Scholar 
    10.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).CAS 
    Article 

    Google Scholar 
    15.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Blüthgen, N. et al. Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 7, 10697 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Chacón-Labella, J., García Palacios, P., Matesanz, S., Schöb, C. & Milla, R. Plant domestication disrupts biodiversity effects across major crop types. Ecol. Lett. 22, 1472–1482 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Finckh, M. R. et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20, 813–837 (2000).Article 

    Google Scholar 
    22.Newton, A. C. Exploitation of diversity within crops—the key to disease tolerance? Front. Plant Sci. 7, 665 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Newton, A. C., Begg, G. S. & Swanston, J. S. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).Article 

    Google Scholar 
    24.Frankel, O. H. Analytical yield investigations on New Zealand wheat: IV. Blending varieties of wheat. J. Agric. Sci. 29, 249–261 (1939).Article 

    Google Scholar 
    25.Kristoffersen, R., Jørgensen, L. N., Eriksen, L. B., Nielsen, G. C. & Kiær, L. P. Control of Septoria tritici blotch by winter wheat cultivar mixtures: meta-analysis of 19 years of cultivar trials. Field Crops Res. 249, 107696 (2020).Article 

    Google Scholar 
    26.Mundt, C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Wolfe, M. S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23, 251–273 (1985).Article 

    Google Scholar 
    28.Finckh, M. R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 121, 399–409 (2008).Article 

    Google Scholar 
    29.Reiss, E. R. & Drinkwater, L. E. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 28, 62–77 (2018).PubMed 
    Article 

    Google Scholar 
    30.Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).Article 

    Google Scholar 
    31.McDonald, B. A., Allard, R. W. & Webster, R. K. Responses of two-, three-, and four-component barley mixtures to a variable pathogen population. Crop Sci. 28, 447–452 (1988).Article 

    Google Scholar 
    32.Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kiær, L. P., Skovgaard, I. M. & Østergård, H. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica 185, 123–138 (2012).Article 

    Google Scholar 
    34.Creissen, H. E., Jorgensen, T. H. & Brown, J. K. M. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes. Crop Prot. 85, 1–8 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Borg, J. et al. Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Res. 221, 298–313 (2018).Article 

    Google Scholar 
    36.Kiær, L. P., Skovgaard, I. M. & Østergård, H. Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res. 114, 361–373 (2009).Article 

    Google Scholar 
    37.Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 37, 13 (2017).Article 

    Google Scholar 
    38.Chateil, C. et al. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric. Ecosyst. Environ. 171, 25–32 (2013).Article 

    Google Scholar 
    39.Litrico, I. & Violle, C. Diversity in plant breeding: a new conceptual framework. Trends Plant Sci. 20, 604–613 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Van Der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 87–202 (2018).Article 
    CAS 

    Google Scholar 
    42.Montazeaud, G. et al. Multifaceted functional diversity for multifaceted crop yield: towards ecological assembly rules for varietal mixtures. J. Appl. Ecol. 57, 2285–2295 (2020).Article 

    Google Scholar 
    43.Von Felten, S., Niklaus, P. A., Scherer-Lorenzen, M., Hector, A. & Buchmann, N. Do grassland plant communities profit from N partitioning by soil depth? Ecology 93, 2386–2396 (2012).Article 

    Google Scholar 
    44.Zhang, W. P. et al. Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Funct. Ecol. 31, 469–479 (2017).Article 

    Google Scholar 
    45.Spehn, E. M. et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98, 205–218 (2002).Article 

    Google Scholar 
    46.Griffiths, M. & York, L. M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiol. 182, 1854–1868 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Mikaberidze, A., Mcdonald, B. A. & Bonhoeffer, S. Developing smarter host mixtures to control plant disease. Plant Pathol. 64, 996–1004 (2015).Article 

    Google Scholar 
    49.Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).Article 

    Google Scholar 
    51.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    52.Zhang, C., Postma, J. A., York, L. M. & Lynch, J. P. Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Ann. Bot. 110, 521–534 (2014).
    Google Scholar 
    53.Erktan, A., McCormack, M. L. & Roumet, C. Frontiers in root ecology: recent advances and future challenges. Plant Soil 424, 1–9 (2018).CAS 
    Article 

    Google Scholar 
    54.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    55.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).Article 

    Google Scholar 
    57.Morris, G. P. et al. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems. Glob. Change Biol. Bioenergy 8, 1000–1014 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wuest, S. E. & Niklaus, P. A. A plant biodiversity effect resolved to a single chromosomal region. Nat. Ecol. Evol. 2, 1933–1939 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9, 463–493 (1956).Article 

    Google Scholar 
    61.Lopez, C. G. & Mundt, C. C. Using mixing ability analysis from two-way cultivar mixtures to predict the performance of cultivars in complex mixtures. Field Crops Res. 68, 121–132 (2000).Article 

    Google Scholar 
    62.Forst, E. et al. A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat. Field Crops Res. 242, 107571 (2019).Article 

    Google Scholar 
    63.Harlan, H. V. & Martini, M. L. A composite hybrid mixture. Agron. J. 21, 487–490 (1929).Article 

    Google Scholar 
    64.Suneson, C. A. Evolutionary plant breeding. Crop Sci. 9, 119–121 (1969).Article 

    Google Scholar 
    65.Allard, R. W. & Adams, J. Populations studies in predominantly self-pollinating species. XIII. Intergenotypic competition and population structure in barley and wheat. Am. Nat. 103, 621–645 (1969).Article 

    Google Scholar 
    66.Allard, R. W. & Jain, S. K. Population studies in predominantly self-pollinated species. II. Analysis of quantitative genetic changes in a bulk-hybrid population of barley. Evolution 16, 90–101 (1962).
    Google Scholar 
    67.Döring, T. F., Knapp, S., Kovacs, G., Murphy, K. & Wolfe, M. S. Evolutionary plant breeding in cereals—into a new era. Sustainability 3, 1944–1971 (2011).Article 

    Google Scholar 
    68.Dawson, J. C. & Goldringer, I. in Organic Crop Breeding (eds Lammerts van Bueren, E. T. & Myers, J. R.) 77–98 (Wiley, 2011).69.Goldringer, I. et al. Agronomic evaluation of bread wheat varieties from participatory breeding: a combination of performance and robustness. Sustainability 12, 128 (2020).Article 

    Google Scholar 
    70.Andrew, I. K. S., Storkey, J. & Sparkes, D. L. A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res. 55, 239–248 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Bertholdsson, N. O., Weedon, O., Brumlop, S. & Finckh, M. R. Evolutionary changes of weed competitive traits in winter wheat composite cross populations in organic and conventional farming systems. Eur. J. Agron. 79, 23–30 (2016).Article 

    Google Scholar 
    72.Weiner, J., Du, Y. L., Zhang, C., Qin, X. L. & Li, F. M. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). Ecology 98, 2261–2266 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Weiner, J. Looking in the wrong direction for higher-yielding crop genotypes. Trends Plant Sci. 19, S1360–S1385 (2019).
    Google Scholar 
    74.Denison, R. F., Kiers, E. T. & West, S. A. Darwinian agriculture: When can humans find solutions beyond the reach of natural selection? Q. Rev. Biol. 78, 145–168 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).Article 

    Google Scholar 
    76.Donald, C. M. in Wheat Science—Today and Tomorrow (eds Evans, L. T. & Peacock, W. J.) 223–247 (Cambridge Univ. Press, 1981).77.Knapp, S. et al. Natural selection towards wild-type in composite cross populations of winter wheat. Front. Plant Sci. 10, 1757 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Gersani, M., Brown, J. S., O’Brien, E. E., Maina, G. M. & Abramsky, Z. Tragedy of the commons as a result of root competition. J. Ecol. 89, 660–669 (2001).Article 

    Google Scholar 
    79.Rankin, D. J., Bargum, K. & Kokko, H. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22, 643–651 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Zhang, D. Y., Sun, G. J. & Jiang, X. H. Donald’s ideotype and growth redundancy: a game theoretical analysis. Field Crops Res. 61, 179–187 (1999).Article 

    Google Scholar 
    81.Duvick, D. N., Smith, J. S. C. & Cooper, M. in Plant Breeding Reviews. Part 2. Long Term Selection: Crops, Animals and Bacteria Vol. 24 (ed. Janick, J.) 109–151 (Wiley, 2004); https://doi.org/10.1002/9780470650288.ch482.Tian, J. et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658–664 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Zhu, Y. H., Weiner, J., Yu, M. X. & Li, F. M. Evolutionary agroecology: trends in root architecture during wheat breeding. Evol. Appl. 12, 733–743 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Tsunoda, S. A developmental aanlysis of yielding ability in varieties of field crops: II. The assimilation-system of plants as affected by the form, direction and arrangement of single leaves. Jpn. J. Breed. 9, 237–244 (1959).Article 

    Google Scholar 
    85.Jennings, P. R. Plant type as a rice breeding objective. Crop Sci. 4, 13–15 (1964).Article 

    Google Scholar 
    86.Zhu, L. & Zhang, D. Y. Donald’s ideotype and growth redundancy: a pot experimental test using an old and a modern spring wheat cultivar. PLoS ONE 8, e70006 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Jennings, P. R. & De Jesus, J. J. Studies on competition in rice I. Competition in mixtures of varieties. Evolution 22, 119–124 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Jennings, P. R. & Herrera, R. M. Studies on competition in rice II. Competition in segregating populations. Evolution 22, 332–336 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Borlaug, N. E. Wheat breeding and its impact on world food supply. In Third International Wheat Genetics Symposium 1–36 (1968).90.Vogel, O. A., Craddock, J. C., Muir, C. E., Everson, E. H. & Rohde, C. R. Semidwarf growth habit in winter wheat improvement for the Pacific Northwest. Agron. J. 48, 76–78 (1956).Article 

    Google Scholar 
    91.Reynolds, M. P., Acevedo, E., Sayre, K. D. & Fischer, R. A. Yield potential in modern wheat varieties: its association with a less competitive ideotype. Field Crops Res. 37, 149–160 (1994).Article 

    Google Scholar 
    92.Murphy, G. P., Swanton, C. J., Van Acker, R. C. & Dudley, S. A. Kin recognition, multilevel selection and altruism in crop sustainability. J. Ecol. 105, 930–934 (2017).Article 

    Google Scholar 
    93.Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Maynard Smith, J. Group selection and kin selection. Nature 201, 1145–1147 (1964).Article 

    Google Scholar 
    96.Montazeaud, G. et al. Farming plant cooperation in crops. Proc. Biol. Sci. 287, 20191290 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    97.Brown, J. K. M. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53, 513–539 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Laine, A. L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Karasov, T. L., Shirsekar, G., Schwab, R. & Weigel, D. What natural variation can teach us about resistance durability. Curr. Opin. Plant Biol. 56, 89–98 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Zhan, J., Thrall, P. H., Papaïx, J., Xie, L. & Burdon, J. J. Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53, 19–43 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Smithson, J. B. & Lenné, J. M. Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 128, 127–158 (1996).Article 

    Google Scholar 
    102.Huang, C., Sun, Z., Wang, H., Luo, Y. & Ma, Z. Effects of wheat cultivar mixtures on stripe rust: a meta-analysis on field trials. Crop Prot. 33, 52–58 (2012).Article 

    Google Scholar 
    103.Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Mundt, C. C. Durable resistance: a key to sustainable management of pathogens and pests. Infect. Genet. Evol. 27, 446–455 (2014).PubMed 
    Article 

    Google Scholar 
    105.Finckh, M. R. Stripe rust, yield, and plant competition in wheat cultivar mixtures. Phytopathology 85, 905–913 (1992).Article 

    Google Scholar 
    106.McGrann, G. R. D. et al. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 65, 1025–1037 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Rimbaud, L., Papaïx, J., Barrett, L. G., Burdon, J. J. & Thrall, P. H. Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance? Evol. Appl. 11, 1791–1810 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Zeller, S. L., Kalinina, O., Flynn, D. F. B. & Schmid, B. Mixtures of genetically modified wheat lines outperform monocultures. Ecol. Appl. 22, 1817–1826 (2012).PubMed 
    Article 

    Google Scholar 
    109.Kellerhals, M., Mouron, P., Graf, B., Bousset, L. & Gessler, C. Mischpflanzung von Apfelsorten: Einfluss auf krankheiten, schädlinge und wirtschaftlichkeit. Schweiz. Z. Obs. 13, 10–13 (2003).
    Google Scholar 
    110.Burdon, J. J., Barrett, L. G., Rebetzke, G. & Thrall, P. H. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 7, 609–624 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Mundt, C. C. Pyramiding for resistance durability: theory and practice. Phytopathology 108, 792–802 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).Article 

    Google Scholar 
    113.Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    114.Friedli, C. N., Abiven, S., Fossati, D. & Hund, A. Modern wheat semi-dwarfs root deep on demand: response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica 215, 85 (2019).Article 
    CAS 

    Google Scholar 
    115.DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).Article 

    Google Scholar 
    117.Schweiger, A. K. et al. Spectral niches reveal taxonomic identity and complementarity in plant communities. Preprint at bioRxiv https://doi.org/10.1101/2020.04.24.060483 (2020).118.Pianka, E. R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4, 53–74 (1973).Article 

    Google Scholar 
    119.MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).Article 

    Google Scholar 
    120.Colwell, R. K. & Futuyma, D. J. On the measurement of niche breadth and overlap. Ecology 52, 567–576 (1971).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Phylogeography of Prunus armeniaca L. revealed by chloroplast DNA and nuclear ribosomal sequences

    1.Meng, H. H. & Zhang, M. L. Diversification of plant species in arid Northwest China: species-level phylogeographical history of Lagochilus Bunge ex Bentham (Lamiaceae). Mol. Phylogenet. Evol. 68, 398–409. https://doi.org/10.1111/jse.12088 (2015).Article 

    Google Scholar 
    2.Pennington, R. T. et al. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc. Natl. Acad. Sci. USA 107, 13783–13787. https://doi.org/10.1073/pnas.1001317107 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 103, 10334–10339. https://doi.org/10.1073/pnas.0601928103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Johansson, U. S. et al. Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers. Evolution 61, 324–333. https://doi.org/10.1111/j.1558-5646.2007.00024.x (2007).Article 
    PubMed 

    Google Scholar 
    5.Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol. 207, 275–282. https://doi.org/10.1111/nph.13230 (2015).Article 
    PubMed 

    Google Scholar 
    6.Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442. https://doi.org/10.1111/nph.13920 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Ebersbach, J. et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900–910. https://doi.org/10.1111/jbi.12899 (2017).Article 

    Google Scholar 
    8.Zhang, J. Y. & Zhang, Z. In Flora of Chinese Fruit Trees 61–62 (China Forestry Press, 2003).9.Su, Z., Zhang, M. & Sanderson, S. C. Chloroplast phylogeography of Helianthemum songaricum (Cistaceae) from northwestern China: implications for preservation of genetic diversity. Conserv. Genet. 12, 1525–1537. https://doi.org/10.1007/s10592-011-0250-9 (2011).Article 

    Google Scholar 
    10.Xie, K. Q. & Zhang, M. L. The effect of Quaternary climatic oscillations on Ribes meyeri (Saxifragaceae) in northwestern China. Biochem. Syst. Ecol. 50, 39–47. https://doi.org/10.1016/j.bse.2013.03.031 (2013).CAS 
    Article 

    Google Scholar 
    11.Salvi, D., Schembri, P., Sciberras, A. & Harris, D. Evolutionary history of the maltese wall lizard Podarcis filfolensis: insights on the ‘Expansion–Contraction’ model of Pleistocene biogeography. Mol. Ecol. 23, 1167–1187. https://doi.org/10.1111/mec.12668 (2014).Article 
    PubMed 

    Google Scholar 
    12.Liu, J. Q., Sun, Y. S., Ge, X. J., Gao, L. M. & Qiu, Y. X. Phylogeographic studies of plants in China: advances in the past and directions in the future. J. Syst. Evol. 50, 267–275. https://doi.org/10.1111/j.1759-6831.2012.00214.x (2012).Article 

    Google Scholar 
    13.Hewitt, G. The genetic legacy of the quaternary ice ages. Nature 405, 907–913. https://doi.org/10.1038/35016000 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Hewitt, G. M. The structure of biodiversity-insights from molecular phylogeography. Front. Zool. 1, 1–16. https://doi.org/10.1186/1742-9994-1-4 (2004).Article 

    Google Scholar 
    15.Willis, K. J. & Niklas, K. J. The role of quaternary environmental change in plant macroevolution: the exception or the rule?. Philos. Trans. R. Soc. Lond. B 359, 159–172. https://doi.org/10.1098/rstb.2003.1387 (2004).Article 

    Google Scholar 
    16.Schmitt, T. Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front. Zool. 4, 11. https://doi.org/10.1186/1742-9994-4-11 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Shen, L., Chen, X. Y. & Li, Y. Y. Glacial refugia and postglacial recolonization patterns of organisms. Acta Ecol. Sin. 22, 1983–1990. https://doi.org/10.1088/1009-1963/11/5/313 (2002).Article 

    Google Scholar 
    18.Schonswetter, P., Popp, M. & Brochmann, C. Rare arctic-alpine plants of the European Alps have different immigration histories: the snow bed species Minuartia biflora and Ranunculus pygmaeus. Mol. Ecol. 15, 709–720. https://doi.org/10.1111/j.1365-294X.2006.02821.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Guo, Y. P., Zhang, R., Chen, C. Y., Zhou, D. W. & Liu, J. Q. Allopatric divergence and regional range expansion of Juniperus sabina in China. J. Syst. Evol. 48, 153–160. https://doi.org/10.1111/j.1759-6831.2010.00073.x (2010).Article 

    Google Scholar 
    20.Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747. https://doi.org/10.1111/j.1365-294X.2004.02258.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Afzal-Rafii, Z. & Dodd, R. S. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Mol. Ecol. 16, 723–736. https://doi.org/10.1111/j.1365-294X.2006.03183.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Anderson, L., Hu, F., Nelson, D., Petit, R. & Paige, K. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proc. Natl. Acad. Sci. USA 103, 12447–12450. https://doi.org/10.1073/pnas.0605310103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Volkova, P. A., Burlakov, Y. A. & Schanzer, I. A. Genetic variability of Prunus padus (Rosaceae) elaborates “a new Eurasian phylogeographical paradigm”. Plant Syst. Evol. 306, 1–9. https://doi.org/10.1007/s00606-020-01644-0 (2020).CAS 
    Article 

    Google Scholar 
    24.Xu, Z. & Zhang, M. L. Phylogeography of the arid shrub Atraphaxis frutescens (Polygonaceae) in northwestern China: evidence from cpDNA sequences. J. Hered. 106, 184–195. https://doi.org/10.1093/jhered/esu078 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Rehder, A. Manual of Cultivated Trees and Shrubs Hardy in North America, Exclusive of the Subtropical and Warmer Temperate Regions 345–346 (Macmillan, 1927).26.Zhebentyayeva, T. N., Ledbetter, C., Burgos, L., & Llácer, G. Fruit Breeding 415–458 (Springer, 2012).27.Zhebentyayeva, T. N., Reighard, G. L., Gorina, V. M. & Abbott, A. G. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor. Appl. Genet. 106, 435–444. https://doi.org/10.1007/s00122-002-1069-z (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T. & Smith, W. A. Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7, 465–474. https://doi.org/10.1046/j.1365-294x.1998.00318.x (1998).Article 

    Google Scholar 
    29.Avise, J. C. Phylogeography: retrospect and prospect. J. Biogeogr. 36, 3–15. https://doi.org/10.1111/j.1365-2699.2008.02032.x (2009).Article 

    Google Scholar 
    30.Poudel, R. C., Möller, M., Li, D. Z., Shah, A. & Gao, L. M. Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan. Tree Genet. Genom. 10, 653–665. https://doi.org/10.1007/s11295-014-0711-7 (2014).Article 

    Google Scholar 
    31.Dutech, C., Maggia, L. & Joly, H. Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Mol. Ecol. 9, 1427–1432. https://doi.org/10.1046/j.1365-294x.2000.01027.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Li, Y. et al. Rapid intraspecific diversification of the Alpine species Saxifraga sinomontana (Saxifragaceae) in the Qinghai-Tibetan Plateau and Himalayas. Front. Genet. 9, 381. https://doi.org/10.3389/fgene.2018.00381 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Zhang, Q. P. & Liu, W. S. Advances of the apricot resources collection, evaluation and germplasm enhancement. Acta Hortic. Sin. 45, 1642–1660. https://doi.org/10.16420/j.issn.0513-353x.2017-0654 (2018).Article 

    Google Scholar 
    34.Hu, Z. B. et al. Population genomics of pearl millet (Pennisetum glaucum (L). R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16, 1048. https://doi.org/10.1186/s12864-015-2255-0 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 18, 315–322 (1990).
    Google Scholar 
    36.Dong, W. et al. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 5, 8348. https://doi.org/10.1038/srep08348 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Bortiri, E. et al. Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst. Bot. 26, 797–807. https://doi.org/10.1043/0363-6445-26.4.797 (2001).Article 

    Google Scholar 
    38.Zhang, Q. Y. et al. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci. 9, 1876. https://doi.org/10.3389/fpls.2018.01876 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sumo. Ser. 41, 95–98. https://doi.org/10.1021/bk-1999-0734.ch008 (1999).CAS 
    Article 

    Google Scholar 
    40.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381. https://doi.org/10.1080/10635159950173889 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Pons, O. & Petit, R. J. Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144, 1237–1245. https://doi.org/10.1016/S1050-3862(96)00162-3 (1996).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 

    Google Scholar 
    47.Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).CAS 
    PubMed 

    Google Scholar 
    48.Wolfe, K. H., Li, W. H. & Sharp, P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84, 9054–9058. https://doi.org/10.1073/pnas.84.24.9054 (1987).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wang, Z. et al. Phylogeography study of the Siberian apricot (Prunus sibirica L.) in Northern China assessed by chloroplast microsatellite and DNA makers. Front. Plant Sci. 8, 1989. https://doi.org/10.3389/fpls.2017.01989 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Chin, S. W., Shaw, J., Haberle, R., Wen, J. & Potter, D. Diversification of almonds, peaches, plums and cherries-Molecular systematics and biogeographic history of Prunus (Rosaceae). Mol. Phylogenet. Evol. 76, 34–48. https://doi.org/10.1016/j.ympev.2014.02.024 (2014).Article 
    PubMed 

    Google Scholar 
    51.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Yang, J., Vazquez, L., Feng, L., Liu, Z. & Zhao, G. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (Quercus liaotungensis) in Northern China. Front. Plant Sci. 9, 1534. https://doi.org/10.3389/fpls.2018.01534 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Zhang, X., Shen, S., Wu, F. & Wang, Y. Inferring genetic variation and demographic history of Michelia yunnanensis Franch (Magnoliaceae) from chloroplast DNA sequences and microsatellite markers. Front. Plant Sci. 8, 583. https://doi.org/10.3389/fpls.2017.00583 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Li, M., Zhao, Z. & Miao, X. J. Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genet. Resour. Crop Evol. 60, 2293–2302. https://doi.org/10.1007/s10722-013-9996-x (2013).CAS 
    Article 

    Google Scholar 
    55.Li, M., Hu, X., Miao, X. J., Xu, Z. & Zhao, Z. Genetic diversity analysis of wild apricot (Prunus armeniaca) populations in the lli Valley as revealed by SRAP markers. Acta Hortic. Sin. 43, 1980–1988. https://doi.org/10.16420/j.issn.0513-353x.2016-0156 (2016).Article 

    Google Scholar 
    56.Hu, X., Zheng, P., Ni, B., Miao, X. & Li, M. Population genetic diversity and structure analysis of wild apricot (Prunus armeniaca L.) revealed by SSR markers in the Tien-Shan mountains of China. Pak. J. Bot. 50, 609–615 (2018).
    Google Scholar 
    57.Decroocq, S. et al. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol. Ecol. 25, 4712–4729. https://doi.org/10.1111/mec.13772 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Liu, S. et al. The complex evolutionary history of apricots: species divergence, gene flow and multiple domestication events. Mol. Ecol. Notes 28, 5299–5314. https://doi.org/10.1111/mec.15296 (2019).Article 

    Google Scholar 
    59.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol. 16, 37–45. https://doi.org/10.1016/S0169-5347(00)02026-7 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Boulnois, L. Silk Road: Monks, Warriors & Merchants on the Silk Road 115–165 (WW Norton & Co Inc, 2004).61.Zhao, C., Wang, C. B., Ma, X. G., Liang, Q. L. & He, X. J. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol. Phylogen. Evol. 68, 628–643. https://doi.org/10.1016/j.ympev.2013.04.007 (2013).Article 

    Google Scholar 
    62.Ebersbach, J., Schnitzler, J., Favre, A. & Muellner-Riehl, A. N. Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evol. Biol. https://doi.org/10.1186/s12862-017-0967-2 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Favre, A. et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253. https://doi.org/10.1111/brv.12107 (2015).Article 
    PubMed 

    Google Scholar  More

  • in

    Genomic analysis of Shiga toxin-producing Escherichia coli O157:H7 from cattle and pork-production related environments

    1.Gill, A. et al. Review of the state of knowledge on verotoxigenic Escherichia coli and the role of whole genome sequencing as an emerging technology supporting regulatory food safety in Canada. (2020).2.Thorpe, C. M. Shiga toxin-producing Escherichia coli infection. Clin. Infect. Dis. 38, 1298–1303 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Valilis, E., Ramsey, A., Sidiq, S. & DuPont, H. L. Non-O157 Shiga toxin-producing Escherichia coli-A poorly appreciated enteric pathogen: systematic review. Int. J. Infect. Dis. 76, 82–87 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Karmali, M. A., Steele, B. T., Petric, M. & Lim, C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1, 619–620 (1983).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.O’Brien, A. O., Lively, T. A., Chen, M. E., Rothman, S. W. & Formal, S. B. Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (SHIGA) like cytotoxin. Lancet 1, 702 (1983).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Gill, A. & Gill, C. O. Non-O157 verotoxigenic Escherichia coli and beef: a Canadian perspective. Can. J. Vet. Res 74, 161–169 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    7.Heiman, K. E., Mody, R. K., Johnson, S. D., Griffin, P. M. & Gould, L. H. Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerg. Infect. Dis. 21, 1293–1301 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Callaway, T. R., Carr, M. A., Edrington, T. S., Anderson, R. C. & Nisbet, D. J. Diet, Escherichia coli O157:H7, and cattle: a review after 10 years. Curr. Issues Mol. Biol. 11, 67–79 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Tseng, M., Fratamico, P. M., Manning, S. D. & Funk, J. A. Shiga toxin-producing Escherichia coli in swine: the public health perspective. Anim. Health Res. Rev. 15, 63–75 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Waddell, T. E., Coomber, B. L. & Gyles, C. L. Localization of potential binding sites for the edema disease verotoxin (VT2e) in pigs. Can. J. Vet. Res. 62, 81–86 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Omer, M. K. et al. A systematic review of bacterial foodborne outbreaks related to red meat and meat products. Foodborne Pathog. Dis. 15, 598–611 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Honish, L. et al. Escherichia coli O157:H7 infections associated with contaminated pork products – Alberta, Canada, July–October 2014. Mmwr. Morbidity Mortal. Wkly. Rep. 65, 1477–1481 (2017).Article 

    Google Scholar 
    13.AHS. E. coli outbreak linked to certain pork products in Alberta declared over, https://www.albertahealthservices.ca/news/releases/2018/Page14457.aspx (2018).14.News, F. S. Alberta outbreak prompts raw pork and pork organ recall, https://www.foodsafetynews.com/2016/02/alberta-e-coli-outbreak-prompts-raw-pork-and-pork-organ-recall/ (2016).15.Essendoubi, S. et al. Prevalence and characterization of Escherichia coli O157:H7 on pork carcasses and in swine colon content from provincially-licensed abattoirs in Alberta, Canada. J Food Prot, (2020).16.Colello, R. et al. From farm to table: follow-up of Shiga toxin-producing Escherichia coli throughout the pork production chain in Argentina. Front Microbiol. 7, 93 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Tseng, M., Fratamico, P. M., Bagi, L., Manzinger, D. & Funk, J. A. Shiga toxin-producing E. coli (STEC) in swine: prevalence over the finishing period and characteristics of the STEC isolates. Epidemiol. Infect. 143, 505–514 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Rajkhowa, S. & Sarma, D. K. Prevalence and antimicrobial resistance of porcine O157 and non-O157 Shiga toxin-producing Escherichia coli from India. Trop. Anim. Health Prod. 46, 931–937 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Meng, Q. et al. Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China. BMC Microbiol 14, 5 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ho, W. S., Tan, L. K., Ooi, P. T., Yeo, C. C. & Thong, K. L. Prevalence and characterization of verotoxigenic-Escherichia coli isolates from pigs in Malaysia. BMC Vet. Res. 9, 109 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Choi, Y. M. et al. Changes in microbial contamination levels of porcine carcasses and fresh pork in slaughterhouses, processing lines, retail outlets, and local markets by commercial distribution. Res. Vet. Sci. 94, 413–418 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Farzan, A., Friendship, R. M., Cook, A. & Pollari, F. Occurrence of Salmonella, Campylobacter, Yersinia enterocolitica, Escherichia coli O157 and Listeria monocytogenes in swine. Zoonoses Public Health 57, 388–396 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lenahan, M. et al. The potential use of chilling to control the growth of Enterobacteriaceae on porcine carcasses and the incidence of E. coli O157:H7 in pigs. J. Appl. Microbiol. 106, 1512–1520 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Milnes, A. S. et al. Factors related to the carriage of Verocytotoxigenic E. coli, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica in cattle, sheep and pigs at slaughter. Epidemiol. Infect. 137, 1135–1148 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Kaufmann, M. et al. Escherichia coli O157 and non-O157 Shiga toxin-producing Escherichia coli in fecal samples of finished pigs at slaughter in Switzerland. J. Food Prot. 69, 260–266 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Fratamico, P. M., Bagi, L. K., Bush, E. J. & Solow, B. T. Prevalence and characterization of Shiga toxin-producing Escherichia coli in swine feces recovered in the National Animal Health Monitoring System’s Swine 2000 study. Appl Environ. Microbiol 70, 7173–7178 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Bonardi, S. et al. Detection of Salmonella spp., Yersinia enterocolitica and verocytotoxin-producing Escherichia coli O157 in pigs at slaughter in Italy. Int J. Food Microbiol 85, 101–110 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Eriksson, E., Nerbrink, E., Borch, E., Aspan, A. & Gunnarsson, A. Verocytotoxin-producing Escherichia coli O157:H7 in the Swedish pig population. Vet. Rec. 152, 712–717 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Feder, I. et al. Isolation of Escherichia coli O157:H7 from intact colon fecal samples of swine. Emerg. Infect. Dis. 9, 380–383 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Johnsen, G., Wasteson, Y., Heir, E., Berget, O. I. & Herikstad, H. Escherichia coli O157:H7 in faeces from cattle, sheep and pigs in the southwest part of Norway during 1998 and 1999. Int J. Food Microbiol 65, 193–200 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Leung, P. H., Yam, W. C., Ng, W. W. & Peiris, J. S. The prevalence and characterization of verotoxin-producing Escherichia coli isolated from cattle and pigs in an abattoir in Hong Kong. Epidemiol. Infect. 126, 173–179 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Nakazawa, M. & Akiba, M. Swine as a potential reservoir of Shiga toxin-producing Escherichia coli O157:H7 in Japan. Emerg. Infect. Dis. 5, 833–834 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Chapman, P. A., Siddons, C. A., Gerdan Malo, A. T. & Harkin, M. A. A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry. Epidemiol. Infect. 119, 245–250 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Tang, S. et al. Assessment and comparison of molecular subtyping and characterization methods for Salmonella. Front Microbiol. 10, 1591 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Schurch, A. C., Arredondo-Alonso, S., Willems, R. J. L. & Goering, R. V. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin. Microbiol Infect. 24, 350–354 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.McNally, A. et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet. 12, e1006280 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Kaas, R. S., Friis, C., Ussery, D. W. & Aarestrup, F. M. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13, 577 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Rusconi, B. et al. Whole genome sequencing for genomics-guided investigations of Escherichia coli O157:H7 outbreaks. Front Microbiol 7, 985 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rumore, J. et al. Evaluation of whole-genome sequencing for outbreak detection of Verotoxigenic Escherichia coli O157:H7 from the Canadian perspective. BMC Genomics 19, 870 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Manning, S. D. et al. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl Acad. Sci. USA 105, 4868–4873 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Yang, Z. et al. Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ. Microbiol. 70, 6846–6854 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ. Microbiol Rep. 5, 58–65 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Latif, H., Li, H. J., Charusanti, P., Palsson, B. O. & Aziz, R. K. A gapless, unambiguous genome sequence of the enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Genome Announc. 2, e00821-14 (2014).44.Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon 11, 33–40, (1962).45.Pightling, A. W. et al. Interpreting whole-genome sequence analyses of foodborne bacteria for regulatory applications and outbreak investigations. Front Microbiol. 9, 1482 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic acids Res. 43, D261–269 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Batisson, I. et al. Characterization of the novel factor paa involved in the early steps of the adhesion mechanism of attaching and effacing Escherichia coli. Infect. Immun. 71, 4516–4525 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Tatsuno, I. et al. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect. Immun. 69, 6660–6669 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Wells, T. J. et al. EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation. Environ. Microbiol. 10, 589–604 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Paton, A. W., Srimanote, P., Woodrow, M. C. & Paton, J. C. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect. Immun. 69, 6999–7009 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Galli, L., Torres, A. G. & Rivas, M. Identification of the long polar fimbriae gene variants in the locus of enterocyte effacement-negative Shiga toxin-producing Escherichia coli strains isolated from humans and cattle in Argentina. FEMS Microbiol Lett. 308, 123–129 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Tarr, P. I. et al. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect. Immun. 68, 1400–1407 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Stanley, P., Koronakis, V. & Hughes, C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol. Biol. Rev. 62, 309–333 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Veilleux, S. & Dubreuil, J. D. Presence of Escherichia coli carrying the EAST1 toxin gene in farm animals. Vet. Res 37, 3–13 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Savarino, S. J. et al. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc. Natl Acad. Sci. USA 90, 3093–3097 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Paton, A. W., Srimanote, P., Talbot, U. M., Wang, H. & Paton, J. C. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J. Exp. Med 200, 35–46 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Thomas, C. M. & Summers, D. Encyclopedia of life sciences. (John Wiley & Sons, Ltd, 2008).58.Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Lim, J. Y., Yoon, J. & Hovde, C. J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol Biotechnol. 20, 5–14 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kim, J. Y. et al. Isolation and identification of Escherichia coli O157:H7 using different detection methods and molecular determination by multiplex PCR and RAPD. J. Vet. Sci. 6, 7–19 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Jaros, P. et al. Geographic divergence of bovine and human Shiga toxin–producing Escherichia coli O157: H7 genotypes. NZ 20, 1980 (2014).CAS 

    Google Scholar 
    62.Mellor, G. E. et al. Geographically distinct Escherichia coli O157 isolates differ by lineage, Shiga toxin genotype, and total shiga toxin production. J. Clin. Micro. 53, 579–586 (2015).CAS 
    Article 

    Google Scholar 
    63.Pianciola, L. & Rivas, M. Genotypic features of clinical and bovine Escherichia coli O157 strains isolated in countries with different associated-disease incidences. Microorganisms 6, 36 (2018).64.Strachan, N. J. et al. Whole genome sequencing demonstrates that geographic variation of Escherichia coli O157 genotypes dominates host association. Sci. Rep. 5, 14145 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Touchon, M. et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5, e1000344 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Wochtl, B. et al. Comparison of clinical and immunological findings in gnotobiotic piglets infected with Escherichia coli O104:H4 outbreak strain and EHEC O157:H7. Gut Pathog. 9, 30 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Booher, S. L., Cornick, N. A. & Moon, H. W. Persistence of Escherichia coli O157:H7 in experimentally infected swine. Vet. Microbiol. 89, 69–81 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Moxley, R. A. Edema disease. Vet. Clin. North Am. Food Anim. Pr. 16, 175–185 (2000).CAS 
    Article 

    Google Scholar 
    69.Melton-Celsa, A. R. Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr. 2, EHEC-0024-2013 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    70.Fuller, C. A., Pellino, C. A., Flagler, M. J., Strasser, J. E. & Weiss, A. A. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun. 79, 1329–1337 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Tesh, V. L. et al. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 61, 3392–3402 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Tarr, G. A. M. et al. Contribution and interaction of Shiga toxin genes to Escherichia coli O157:H7 virulence. Toxins (Basel) 11, 607 (2019).CAS 
    Article 

    Google Scholar 
    73.Chui, L. et al. Molecular profiling of Escherichia coli O157:H7 and non-O157 strains isolated from humans and cattle in Alberta, Canada. J. Clin. Microbiol. 53, 986–990 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Goma, M. K. E., Indraswari, A., Haryanto, A. & Widiasih, D. A. Detection of Escherichia coli O157:H7 and Shiga toxin 2a gene in pork, pig feces, and clean water at Jagalan slaughterhouse in Surakarta, Central Java Province, Indonesia. Vet. World 12, 1584–1590 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Baranzoni, G. M. et al. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli. Front Microbiol. 7, 574 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Mohlatlole, R. P. et al. Virulence profiles of enterotoxigenic, Shiga toxin and enteroaggregative Escherichia coli in South African pigs. Trop. Anim. Health Prod. 45, 1399–1405 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Blanco, M. et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-xi). J. Clin. Microbiol. 42, 645–651 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Kobayashi, N. et al. Virulence gene profiles and population genetic analysis for exploration of pathogenic serogroups of Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 51, 4022–4028 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Meng, J., Zhao, S. & Doyle, M. P. Virulence genes of Shiga toxin-producing Escherichia coli isolated from food, animals and humans. Int J. Food Microbiol 45, 229–235 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Mora, A. et al. Phage types, virulence genes and PFGE profiles of Shiga toxin-producing Escherichia coli O157:H7 isolated from raw beef, soft cheese and vegetables in Lima (Peru). Int J. Food Microbiol. 114, 204–210 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Sallam, K. I., Mohammed, M. A., Ahdy, A. M. & Tamura, T. Prevalence, genetic characterization and virulence genes of sorbitol-fermenting Escherichia coli O157:H- and E. coli O157:H7 isolated from retail beef. Int J. Food Microbiol 165, 295–301 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Solomakos, N. et al. Occurrence, virulence genes and antibiotic resistance of Escherichia coli O157 isolated from raw bovine, caprine and ovine milk in Greece. Food Microbiol. 26, 865–871 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Tóth, I. et al. Virulence genes and molecular typing of different groups of Escherichia coli O157 strains in cattle. Appl. Environ. Microbiol. 75, 6282 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Rao, S. et al. Antimicrobial drug use and antimicrobial resistance in enteric bacteria among cattle from Alberta feedlots. Foodborne Pathog. Dis. 7, 449–457 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Benedict, K. M. et al. Antimicrobial resistance in Escherichia coli recovered from feedlot fattle and associations with antimicrobial use. PLoS ONE 10, e0143995 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Stanford, K., Johnson, R. P., Alexander, T. W., McAllister, T. A. & Reuter, T. Influence of season and feedlot location on prevalence and virulence factors of seven serogroups of Escherichia coli in feces of western-Canadian slaughter cattle. PLoS ONE 11, e0159866 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Mercer, R. G. et al. Genetic determinants of heat resistance in Escherichia coli. Front Microbiol. 6, 932 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Stanford, K. et al. Monitoring Escherichia coli O157:H7 in inoculated and naturally colonized feedlot cattle and their environment. J. Food Prot. 68, 26–33 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Munns, K. D. et al. Comparative genomic analysis of Escherichia coli O157:H7 isolated from super-shedder and low-shedder cattle. PLoS ONE 11, e0151673 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Bach, S. J. et al. Electrolyzed oxidizing anode water as a sanitizer for use in abattoirs. J. Food Prot. 69, 1616–1622 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Stanford, K., Gibb, D. & McAllister, T. A. Evaluation of a shelf-stable direct-fed microbial for control of Escherichia coli O157 in commercial feedlot cattle. Can. J. Anim. Sci. 93, 535–542 (2013).Article 

    Google Scholar 
    92.Stanford, K., Hannon, S., Booker, C. W. & Jim, G. K. Variable efficacy of a vaccine and direct-fed microbial for controlling Escherichia coli O157:H7 in feces and on hides of feedlot cattle. Foodborne Pathog. Dis. 11, 379–387 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Berenger, B. M. et al. The utility of multiple molecular methods including whole genome sequencing as tools to differentiate Escherichia coli O157:H7 outbreaks. Euro Surveill. 20, 30073 (2015).94.Stephens, T. P., McAllister, T. A. & Stanford, K. Perineal swabs reveal effect of super shedders on the transmission of Escherichia coli O157:H7 in commercial feedlots. J. Anim. Sci. 87, 4151–4160 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Zhang, P. et al. Genome sequences of 104 Escherichia coli O157:H7 isolates from pigs, cattle, and pork production environments in Alberta, Canada. Microbiol. Resour. Announc. 10, (2021).96.Riordan, J. T., Viswanath, S. B., Manning, S. D. & Whittam, T. S. Genetic differentiation of Escherichia coli O157:H7 clades associated with human disease by real-time PCR. J. Clin. Microbiol. 46, 2070–2073 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15–e15 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinforma. (Oxf., Engl.) 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    99.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96 (2020).Article 

    Google Scholar 
    101.Silva, M. et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Micro. Genom. 4, e000166 (2018).
    Google Scholar 
    102.Zhou, Z. et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 28, 1395–1404 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxf., Engl.) 30, 2068–2069 (2014).CAS 
    Article 

    Google Scholar 
    104.Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics (Oxf., Engl.) 31, 3691–3693 (2015).CAS 
    Article 

    Google Scholar 
    105.Zhang, P., Gänzle, M. & Yang, X. Complementary antibacterial effects of bacteriocins and organic acids as revealed by comparative analysis of Carnobacterium spp. from meat. Appl. Environ. Microbiol. 85, e01227-19 (2019).106.Zheng, J., Zhao, X., Lin, X. B. & Ganzle, M. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci. Rep. 5, 18234 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Schliep, K., Potts, A. J., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 8, 1212–1220 (2017).Article 

    Google Scholar 
    108.Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501–1510 (2014).109.Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020). More

  • in

    Phytotoxic effects of invasive Ageratina adenophora on two native subtropical shrubs in Nepal

    1.Cronk, Q. C. B. & Fuller, J. L. Plant Invaders: The Threat to Natural Ecosystems (Chapman and Hall, 1995).
    Google Scholar 
    2.Tererai, F. & Wood, A. R. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. S. Afr. J. Bot. 95, 152–158 (2014).Article 

    Google Scholar 
    3.Yu, F., Akin-Fajiye, M., Thapa Magar, K., Ren, J. & Gurevitch, J. A global systematic review of ecological field studies on two major invasive plant species, Ageratina adenophora and Chromolaena odorata. Divers. Distrib. 22, 1174–1185 (2016).Article 

    Google Scholar 
    4.Niu, H. B., Liu, W. X., Wan, F. H. & Liu, B. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294, 73–85 (2007).CAS 
    Article 

    Google Scholar 
    5.Wang, J. J. Ageratina adenophora (Spreng.). In Biology and Management of Invasive Alien Species in Agriculture and Forestry (eds Wan, F. H. et al.) 651–661 (Science Press, 2005).
    Google Scholar 
    6.Yang, G., Gui, F., Liu, W. & Wan, F. Crofton weed Ageratina adenophora (Sprengel). In Biological Invasions and Its Management in China (eds Wan, F. et al.) 111–129 (Springer, 2017).Chapter 

    Google Scholar 
    7.Shrestha, B. B. Invasive alien plant species in Nepal. In Frontiers of Botany (eds Jha, P. K. et al.) 269–284 (Tribhuvan University, 2016).
    Google Scholar 
    8.Alka, C., Adhikari, B. S., Joshi, N. C. & Rawat, G. S. Patterns of invasion by crofton weed (Ageratina adenophora) in Kailash sacred landscape region of western Himalaya (India). Environ. Conserv. J. 20, 9–17 (2019).
    Google Scholar 
    9.Balami, S. & Thapa, L. B. Herbivory damage in native Alnus nepalensis and invasive Ageratina adenophora. Bot. Orient. 11, 7–11 (2017).Article 

    Google Scholar 
    10.Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Plant communities and Ageratina adenophora invasion in lower montane vegetation, central Nepal. Int. J. Ecol. Dev. 31, 35–49 (2016).
    Google Scholar 
    11.Thapa, L. B., Thapa, H. & Magar, B. G. Perception, trends and impacts of climate change in Kailali District, Far West Nepal. Int. J. Environ. 4, 62–76 (2015).Article 

    Google Scholar 
    12.Thapa, N. & Maharjan, M. Invasive alien species: Threats and challenges for biodiversity conservation (A case study of Annapurna Conservation Area, Nepal). In Proc. International Conference on Invasive Alien Species Management, Chitwan, March 25–27, 2014 (eds Thapa, G. J. et al.) 18–22 (National Trust for Nature Conservation, 2014).
    Google Scholar 
    13.Tiwari, S., Adhikari, B., Siwakoti, M. & Subedi, K. An Inventory and Assessment of Invasive Alien Plant Species of Nepal (IUCN Nepal, 2005).
    Google Scholar 
    14.Tripathi, R. S., Yadav, A. S. & Kushwaha, S. P. S. Biology of Chromolaena odorata and Ageratina adenophora. In Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent (eds Bhatt, J. R. et al.) 43–56 (CAB International Publishing, 2012).
    Google Scholar 
    15.Fu, D., Wu, X., Huang, N. & Duan, C. Effects of the invasive herb Ageratina adenophora on understory plant communities and tree seedling growth in Pinus yunnanensis forests in Yunnan, China. J. For. Res. 23, 112–119 (2018).CAS 
    Article 

    Google Scholar 
    16.Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. “Soaked in rainwater” effect of Ageratina adenophora on seedling growth and development of native tree species in Nepal. Flora 263, 151554 (2020).Article 

    Google Scholar 
    17.Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Airborne and belowground phytotoxicity of invasive Ageratina adenophora on native species in Nepal. Plant Ecol. 221, 883–892 (2020).Article 

    Google Scholar 
    18.Wan, F. et al. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Sci. China Life Sci. 53, 1291–1298 (2010).PubMed 
    Article 

    Google Scholar 
    19.Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Plant invasiveness and target plant density: High densities of native Schima wallichii seedlings reduce negative effects of invasive Ageratina adenophora. Weed Res. 57, 72–80 (2017).CAS 
    Article 

    Google Scholar 
    20.Wan, H., Liu, W. & Wan, F. Allelopathic effect of Ageratina adenophora (Spreng.) leaf litter on four herbaceous plants in invaded regions. Chin. J. Eco-Agric. 19, 130–134 (2011).ADS 
    Article 

    Google Scholar 
    21.Yang, G. Q., Wan, F. H., Guo, J. Y. & Liu, W. X. Cellular and ultrastructural changes in the seedling roots of upland rice (Oryza sativa) under the stress of two allelochemicals from Ageratina adenophora. Weed Biol. Manage. 11, 152–159 (2011).CAS 
    Article 

    Google Scholar 
    22.Zhang, F., Guo, J., Chen, F., Liu, W. & Wan, F. Identification of volatile compounds released by leaves of the invasive plant croftonweed (Ageratina adenophora, Compositae), and their inhibition of rice seedling growth. Weed Sci. 60, 205–211 (2012).CAS 
    Article 

    Google Scholar 
    23.Inderjit, E. H. et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Yang, G. Q., Qiu, W. R., Jin, Y. N. & Wan, F. H. Potential allelochemicals from root exudates of invasive Ageratina adenophora. Allelopathy J. 32, 233 (2013).
    Google Scholar 
    25.Zhu, X. Z., Guo, J., Shao, H. & Yang, G. Q. Effects of allelochemicals from Ageratina adenophora (Spreng.) on its own autotoxicity. Allelopathy J. 34, 253 (2014).
    Google Scholar 
    26.Latif, S., Chiapusio, G. & Weston, L. A. Allelopathy and the role of allelochemicals in plant defence. Adv. Bot. Res. 82, 19–54 (2017).CAS 
    Article 

    Google Scholar 
    27.Siggia, S. Importance of functional group determination in organic quantitative analysis. J. Chem. Educ. 27(3), 141 (1950).Article 

    Google Scholar 
    28.Rogers, E. R., Zalesny, R. S., Hallett, R. A., Headlee, W. L. & Wiese, A. H. Relationships among root–shoot ratio, early growth, and health of hybrid poplar and willow clones grown in different landfill soils. Forests 10, 49 (2019).Article 

    Google Scholar 
    29.Thornley, J. H. M. A balanced quantitative model for root: Shoot ratios in vegetative plants. Ann. Bot. 36, 431–441 (1972).Article 

    Google Scholar 
    30.Mašková, T. & Herben, T. Root: Shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol. Evol. 8, 7143–7150 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Das, M. B. B., Acharya, B. D., Saquib, M. & Chettri, M. K. Effect of aqueous extract and compost of invasive weed Ageratina adenophora on seed germination and seedling growth of some crops and weeds. J. Biodivers. Conserv. Bioresour. Manage. 4, 11–20 (2018).CAS 
    Article 

    Google Scholar 
    32.Zhou, Z. Y. et al. Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J. Agric. Food Chem. 61, 11792–11799 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Zhang, M. et al. Bioactive quinic acid derivatives from Ageratina adenophora. Molecules 18, 14096–14104 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Dong, L. M. et al. Two new thymol derivatives from the roots of Ageratina adenophora. Molecules 22, 592 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    35.Zhao, X. et al. Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination. J. Agric. Food Chem. 57, 478–482 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Kollmann, J., Brink-Jensen, K., Frandsen, S. I. & Hansen, M. K. Uprooting and burial of invasive alien plants: A new tool in coastal restoration? Restor. Ecol. 19(3), 371–378 (2011).Article 

    Google Scholar 
    37.Jiao, Y. et al. In situ aerobic composting eliminates the toxicity of Ageratina adenophora to maize and converts it into a plant-and soil-friendly organic fertilizer. J. Hazard. Mater. 410, 124554 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Chen, X. et al. (2015) Impacts of four invasive Asteraceae on soil physico-chemical properties and AM fungi community. Am. J. Plant Sci. 6, 2734 (2009).Article 
    CAS 

    Google Scholar 
    39.Yu, F. K. et al. Impacts of Ageratina adenophora invasion on soil physical–chemical properties of Eucalyptus plantation and implications for constructing agro-forest ecosystem. Ecol. Eng. 64, 130–135 (2014).Article 

    Google Scholar 
    40.Nirola, R. & Jha, P. K. Phytodiversity and soil study of Shiwalik Hills of Ilam, Nepal: An ecological perspective. Ecoprint 18, 77–83 (2011).Article 

    Google Scholar 
    41.Lu, J. S., Shen, T., Guo, Z., Shen, X. W. & Zheng, S. Z. The chemical constituents of Elsholtzia blanda. Acta Bot. Sin. 43, 545–550 (2001).CAS 

    Google Scholar 
    42.Singh, T. T., Sharma, H. M., Devi, A. R. & Sharma, H. R. Plants used in the treatment of piles by the scheduled caste community of Andro village in Imphal East District, Manipur (India). J. Plant Sci. 2, 113–119 (2014).
    Google Scholar 
    43.Malla, B. & Chhetri, R. B. Indigenous knowledge on medicinal non-timber forest products (NTFP) in Parbat district of Nepal. Indo. Glob. J. Pharm. Sci. 2, 213–225 (2012).
    Google Scholar 
    44.Climate-data.org. Chitlang Climate (Nepal) (2021). https://en.climate-data.org/asia/nepal/central-development-region/chitlang-1061755/ (Accessed 2 April 2021).45.Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis, Part 2 (eds Page, A. L. et al.) 595–624 (American Society of Agronomy, 1982).
    Google Scholar 
    47.Olsen, S. R., Cole, C. V., Watanable, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939 (U.S. Govt Printing Office, 1954).
    Google Scholar 
    48.Toth, S. J. & Prince, A. L. Estimation of cation-exchange capacity and exchangeable Ca, K, and Na contents of soils by flame photometer techniques. Soil Sci. 67(6), 439–446 (1949).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Bajracharya, D. Experiments in Plant Physiology. 51-52 (Narosa Publishing House, New Delhi, India, 1999). More

  • in

    The rise and fall of proboscidean ecological diversity

    1.Surovell, T., Waguespack, N. & Brantingham, P. J. Global archaeological evidence for proboscidean overkill. Proc. Natl Acad. Sci. USA 102, 6231–6236 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Faith, J. T., Rowan, J., Du, A. & Barr, W. A. The uncertain case for human-driven extinctions prior to Homo sapiens. Quat. Res. 96, 88–104 (2020).Article 

    Google Scholar 
    4.Cuvier, G. Mémoires sur les Espèces d’Éléphants Vivants et Fossiles. Mémoires de l’Institut des Sciences et Arts 2, 1–22 (1800); https://www.biodiversitylibrary.org/page/16303001#page/175/mode/1up5.Osborn, H. F. The ancestral tree of the Proboscidea. Discovery, evolution, migration and extinction over a 50,000,000 year period. Proc. Natl Acad. Sci. USA 21, 404–412 (1935).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.International Union for Conservation of Nature. The IUCN Red List of Threatened Species Version 2021-1 (IUCN, 2021); https://www.iucnredlist.org7.Maglio, V. J. Origin and evolution of the Elephantidae. Trans. Am. Philos. Soc. 63, 1–149 (1973).Article 

    Google Scholar 
    8.Zhang, H., Wang, Y., Janis, C. M., Goodall, R. H. & Purnell, M. A. An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. Quat. Int. 445, 60–70 (2017).Article 

    Google Scholar 
    9.Saegusa, H. Stegodontidae and Anancus: keys to understanding dental evolution in Elephantidae. Quat. Sci. Rev. 231, 106176 (2020).Article 

    Google Scholar 
    10.Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article 

    Google Scholar 
    12.Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).Article 

    Google Scholar 
    13.Cantalapiedra, J. L., Hernández Fernández, M., Azanza, B. & Morales, J. Congruent phylogenetic and fossil signatures of mammalian diversification dynamics driven by Tertiary abiotic change. Evolution 69, 2941–2953 (2015).PubMed 
    Article 

    Google Scholar 
    14.Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4, 223–251 (1978).Article 

    Google Scholar 
    16.Tassy, P. in European Neogene Mammal Chronology (eds Lindsay, E. H. et al.) 237–252 (Plenus Press, 1989).17.van der Made, J. in Elefantentreich: eine Fossilwelt in Europa (ed. Meller, H.) 340–360 (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, 2010).18.Saarinen, J. J. et al. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. Biol. Sci. 281, 20132049 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    19.Fortelius, M. et al. Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annu. Rev. Earth Planet Sci. 42, 579–604 (2014).CAS 
    Article 

    Google Scholar 
    20.Marshall, C. R. & Quental, T. B. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. R. Soc. Lond. B 371, 20150217 (2016).Article 
    CAS 

    Google Scholar 
    21.Vrba, E. S. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76, 61–84 (1980).
    Google Scholar 
    22.Cantalapiedra, J. L., Prado, J. L., Hernández Fernández, M. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Calandra, I., Göhlich, U. B. & Merceron, G. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften 95, 831–838 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Sanders, W. J. Proboscidea from Kanapoi, Kenya. J. Hum. Evol. 140, 102547 (2020).PubMed 
    Article 

    Google Scholar 
    25.Wang, S. et al. Evolution of Protanancus (Proboscidea, Mammalia) in East Asia. J. Vertebr. Paleontol. 35, e881830 (2015).Article 

    Google Scholar 
    26.Lister, A. M. The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500, 331–334 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Lister, A. M., Sher, A. V., van Essen, H. & Wei, G. The pattern and process of mammoth evolution in Eurasia. Quat. Int. 126, 49–64 (2005).Article 

    Google Scholar 
    28.Wei, G. et al. New materials of the steppe mammoth, Mammuthus trogontherii, with discussion on the origin and evolutionary patterns of mammoths. Sci. China Earth Sci. 53, 956–963 (2010).Article 

    Google Scholar 
    29.Stanley, S. M. Macroevolution: Patterns and Processes (W. H. Freeman and Company, 1979).30.Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).PubMed 
    Article 

    Google Scholar 
    33.Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).Article 

    Google Scholar 
    34.Rivals, F., Semprebon, G. M. & Lister, A. M. Feeding traits and dietary variation in Pleistocene proboscideans: a tooth microwear review. Quat. Sci. Rev. 219, 145–153 (2019).Article 

    Google Scholar 
    35.Vrba, E. S. in Living Fossils (eds Eldredge, N. & Stanley, S. M.) 62–79 (Springer, 1984).36.Herrera‐Flores, J. A., Stubbs, T. L. & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319–328 (2017).Article 

    Google Scholar 
    37.Todd, N. E. Trends in proboscidean diversity in the African Cenozoic. J. Mamm. Evol. 13, 1–10 (2006).Article 

    Google Scholar 
    38.Rivals, F., Mol, D., Lacombat, F., Lister, A. M. & Semprebon, G. M. Resource partitioning and niche separation between mammoths (Mammuthus rumanus and Mammuthus meridionalis) and gomphotheres (Anancus arvernensis) in the Early Pleistocene of Europe. Quat. Int. 379, 164–170 (2015).Article 

    Google Scholar 
    39.Sanders, W. J. & Haile-Selassie, Y. A new assemblage of mid-Pliocene proboscideans from the Woranso-Mille area, Afar region, Ethiopia: taxonomic, evolutionary, and paleoecological considerations. J. Mamm. Evol. 19, 105–128 (2012).Article 

    Google Scholar 
    40.van der Geer, A. A. E. et al. The effect of area and isolation on insular dwarf proboscideans. J. Biogeogr. 43, 1656–1666 (2016).Article 

    Google Scholar 
    41.Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Vrba, E. S. in African Biogeography, Climate Change, and Hominid Evolution (eds Bromage, T. G. & Shrenk, F.) 19–39 (Oxford Univ. Press, 1999).43.Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).Article 

    Google Scholar 
    44.Jukar, A. M., Lyons, S. K., Wagner, P. J. & Uhen, M. D. Late Quaternary extinctions in the Indian subcontinent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110137 (2021).Article 

    Google Scholar 
    45.Raup, D. M. Extinction: Bad Genes or Bad Luck? (Norton, 1991).46.Cantalapiedra, J. L. et al. Conserving evolutionary history does not result in greater diversity over geological time scales. Proc. Biol. Sci. 286, 20182896 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul? Proc. Natl Acad. Sci. USA 115, 8482–8490 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 584, 87–92 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Paradis, E. Analysis of Phylogenetics and Evolution with R (Springer, 2012).52.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    53.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    54.MacLatchy, L. M., Desilva, J., Sanders, W. J. & Wood, B. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 471–545 (Univ. California Press, 2010). More

  • in

    Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection

    System overviewTo address the open-set novel species detection problem, our system leverages a two-step image recognition process. Given an image of a mosquito specimen, the first step uses CNNs trained for species classification to extract relevant features from the image. The second step is a novelty detection algorithm, which evaluates the features extracted by the CNNs in order to detect whether the mosquito is a member of one of the sixteen species known to the CNNs of the system. The second step consists of two stages of machine learning algorithms (tier II and tier III) that evaluate the features generated in step one to separate known species from unknown species. Tier II components evaluate the features directly and are trained using known and unknown species. Tier III evaluates the answers provided by the tier II components to determine the final answer, and is trained using known species, unknown species used for training tier II components, and still more unknown species not seen by previous components. If the mosquito is determined by tier III not to be a member of one of the known species, it is classified as an unknown species, novel to the CNNs. This detection algorithm is tested on truly novel mosquito species, never seen by the system in training, as well as the species used in training. If a mosquito is recognized by the system as belonging to one of the sixteen known species (i.e. not novel), the image proceeds to species classification with one of the CNNs used to extract features.Unknown detection accuracyIn distinguishing between unknown species and known species, the algorithm achieved an average accuracy of 89.50 ± 5.63% and 87.71 ± 2.57%, average sensitivity of 92.18 ± 6.34% and 94.09 ± 2.52%, and specificity of 80.79 ± 7.32% and 75.82 ± 4.65%, micro-averaged and macro-averaged respectively, evaluated over twenty-five-fold validation (Table 1). Here, micro-average refers to the metric calculated without regard to species, such that each image sample has an equal weight, considered an image sample level metric. Macro-average refers to the metric first calculated within a species, then averaged between all species within the relevant class (known or unknown). Macro-average can be considered a species level metric, or a species normalized metric. Macro-averages tend to be lower than the micro-averages when species with higher sample sizes have the highest metrics, whereas micro-averages are lower when species with lower sample sizes have the highest metrics. Cross validation by mixing up which species were known and unknown produced variable sample sizes in each iteration, because each species had a different number of samples in the generated image dataset. Further sample size variation occurred as a result of addressing class imbalance in the training set. The mean number of samples varied for each of the 25 iterations because of the mix-up in data partitioning for cross-validation (see Table 1 for generalized metrics; see Supplementary Table 1, Datafolds for detailed sampling data).Table 1 Micro- and macro-averaged metrics of the novelty detection algorithm on the test set using 50-fold validation.Full size tableDifferences within the unknown species dictated by algorithm structureThe fundamental aim of novelty detection is to determine if the CNN in question is familiar with the species, or class, shown in the image. CNNs are designed to identify visually distinguishable classes, or categories. In our open-set problem, the distinction between known and unknown species is arbitrary from a visual perspective; it is only a product of the available data. However, the known or unknown status of a specimen is a determinable product of the feature layer outputs, or features, produced by the CNN’s visual processing of the image. Thus, we take a tiered approach, where CNNs trained on a specific set of species extract a specimen’s features, and independent classifiers trained on a wider set of species analyze the features produced by the CNNs to assess whether the CNNs are familiar with the species in question. The novelty detection algorithm consists of three tiers, hereafter referred to as Tier I, II, and III, intended to determine if the specimen being analyzed is from a closed set of species known to the CNN:Tier I: two CNNs used to extract features from the images.Tier II: a set of classifiers, such as SVMs, random forests, and neural networks, which independently process the features from Tier I CNNs to distinguish a specimen as either known or unknown species.Tier III: soft voting of the Tier II classifications, with a clustering algorithm, in this case a Gaussian Mixture Model (GMM), which is used to make determinations in the case of unconfident predictions.The tiered architecture necessitated partitioning of groups of species between the tiers, and an overview of the structure is summarized in Fig. 2A. The training schema resulted in three populations of unknown species: set U1, consisting of species used to train Tier I, also made available for training subsequent Tiers II and III; set U2, consisting of additional species unknown to the CNNs used to train Tiers II and III; and set N, consisting of species used only for testing (see Fig. 2B). Species known to the CNNs are referred to as set K. It is critical to measure the difference between these species sets, as any of the species may be encountered in the wild. U1 achieved 97.85 ± 2.81% micro-averaged accuracy and 97.34 ± 3.52% macro-averaged accuracy; U2 achieved 97.05 ± 1.94% micro-averaged accuracy and 97.30 ± 1.41% macro-averaged accuracy; N achieved 80.83 ± 19.91% micro-averaged accuracy and 88.72 ± 5.42% macro-averaged accuracy. The K set achieved 80.79 ± 7.32% micro-averaged accuracy and 75.83 ± 5.42% macro-averaged accuracy (see Table 2). The test set sample sizes for each of the twenty five folds are as follows, (formatted [K-taxa,K-samples;U1-taxa,U1-samples;U2-taxa,U2-samples;N-taxa,N-samples]): [16,683;8,51;10,536;13,456], [16,673;8,51;9,537;13,485], [16,673;8,51;8,523;13,508], [16,673;8,46;6,159;11,869], [16,694;8,51;7,483;10,548], [15,409;9,62;11,2906;8,546], [15,456;9,62;9,2458;12,1024], [15,456;10,67;13,2359;9,1115], [15,456;9,62;8,3189;12,306], [15,456;10,67;10,2874;10,601], [16,543;10,56;12,1450;10,1052], [16,484;9,52;11,2141;10,312], [16,492;10,54;11,2185;12,263], [16,512;8,45;15,2292;10,189], [16,480;9,49;9,1652;13,790], [16,442;9,44;11,1253;11,665], [16,494;10,54;14,1727;10,228], [16,442;9,55;13,1803;10,96], [16,538;10,60;8,1509;9,502], [16,489;10,60;13,1764;9,184], [16,462;8,47;13,1415;11,452], [16,437;8,54;9,1548;11,320], [16,447;8,55;11,654;10,1193], [16,547;8,44;9,1437;11,531], [16,548;7,52;7,1464;11,499]. See Supplementary Table 1, Datafolds for more detailed sample information.Figure 2The novelty detection architecture was designed with three tiers to assess whether the CNNs were familiar with the species shown in each image. (A) Tier I consisted of two CNNs used as feature extractors. Tier II consisted of initial classifiers making an initial determination about whether the specimen is known or unknown by analyzing the features of one of the Tier I CNNs, and the logits in the case of the wide and deep neural network (WDNN). In this figure, SVM refers to a support vector machine, and RF refers to a random forest. Tier III makes the final classification, first with soft voting of the Tier II outputs, then sending high confidence predictions as the final output and low confidence predictions to a Gaussian Mixture Model (GMM) to serve as the arbiter for low confidence predictions. (B) Data partitioning for training each component of the architecture is summarized: Tier I is trained on the K set of species, known to the algorithm; Tier I open-set CNN is also trained on the U1 set of species, the first set of unknown species used in training; Tier II is trained on K set, U1 set, and the U2 set of species, the second set of unknown species used in training; Tier III is trained on the same species and data-split as Tier II. Data-split ratios were variable for each species over each iteration (Xs,m where s represents a species, m represents a fold, and X is a percentage of the data devoted to training) for Tiers II and III; Xs,m was adjusted to manage class imbalance within genus across known and unknown classes. Testing was performed on each of the K, U1, and U2 sets, as well as the N set, the final set of unknown species reserved for testing the algorithm, such that it is tested on previously unseen taxa, replicating the plausible scenario to be encountered in deployment of CNNs for species classification. Over the twenty-five folds, each known species was considered unknown for at least five folds and included as novel for at least one-fold.Full size imageTable 2 Accuracy metrics for the known, unknown, and novel unknown species sets over twenty-five-fold validation.Full size tableSubsequent species classificationFollowing the novelty detection algorithm, species identified as known are sent for species classification to the closed-set Xception model used in Tier I of the novelty detection algorithm. Figure 3A shows the species classification results independently over the five folds of Tier I, which achieved a micro-averaged accuracy 97.04 ± 0.87% and a macro F1-score of 96.64 ± 0.96%. Figure 3B shows the species classification cascaded with the novelty detection methods where all unknown species are grouped into a single unknown class alongside the known classes in an aggregated mean confusion matrix over the twenty-five folds of the full methods, yielding a micro-averaged accuracy of 89.07 ± 5.58%, and a macro F1-score of 79.74 ± 3.65%. The confusion matrix is normalized by species and shows the average classification accuracy and error distribution. The independent accuracy for classifying a single species ranged from 72.44 ± 13.83% (Culex salinarius) to 100 ± 0% (Aedes dorsalis, Psorophora cyanescens), and 15 of the 20 species maintained an average sensitivity above 95%. Test set sample size for each species were as follows (formatted as species, [fold1,fold2,fold3,fold4,fold5]): Ae. aegypti: [127,0,133,132,126]; Ae. albopictus: [103,90,0,99,102]; Ae. dorsalis: [43,41,42,0,41]; Ae. japonicus: [162,159,154,156,0]; Ae. sollicitans: [57,0,60,58,60]; Ae. taeniorhynchus: [0,25,27,25,24]; Ae. vexans: [50,48,0,46,49]; An. coustani: [29,21,18,0,22]; An. crucians s.l.: [56,58,61,61,0]; An. freeborni: [87,0,77,79,80]; An. funestus s.l.: [158, 174,0,173,175]; An. gambiae s.l.: [182,178,178,0,166]; An. punctipennis: [0,36,31,34,33]; An. quadrimaculatus: [0,28,28,28,30]; Cx. erraticus: [47,47,44,49,0]; Cx. pipiens s.l.: [212,0,218,219,205]; Cx. salinarius: [25,26,0,26,25]; Ps. columbiae: [66,59,67,0, 64]; Ps. cyanescens: [0,55,56,54,56]; Ps. ferox: [40,31,41,34,0].Figure 3Mean normalized confusion matrices for species classification shows the distribution of error within species. The species classification in these confusion matrices was performed by the Tier I CNN, the closed-set Xception model. The confusion matrix conveys the ground truth of the sample horizontally, labels on the left, and the prediction of the full methods vertically, labels on the bottom. Accurate classification is across the diagonal, where ground truth and prediction match, and all other cells on the matrix describe the error. Sixteen species were known for a given fold, and 51 species were considered unknown for a given fold, with each of the twenty known species considered unknown for one fold. (A) The species classification independent of novelty detection shows an average accuracy of 97.04 ± 0.87% and a macro F1-score of 96.64 ± 0.96%, calculated over the five folds of Tier I classifiers, trained and tested over an average of 7174.8 and 1544.6 samples. Of the error, 73.5% occurred with species of the same genus as the true species. (B) The species classification as a subsequent step after novelty detection yielded 89.07 ± 5.58% average accuracy, and a macro F1-score of 79.74 ± 3.65% trained and tested on an average of 7174.8 and 519.44 samples, evaluated over the twenty-five folds of the novelty detection methods. First, a sample was sent to the novelty detection algorithm. If the sample was predicted to be known to the species classifier, which was the closed-set Xception algorithm used in Tier I, then the sample was sent to the algorithm for classification.Full size imageMany of the species which were a part of the unknown datasets had enough data to perform preliminary classification experiments. Thirty-nine of the 67 species had more than 40 image samples. Species classification on these 39 species yielded an unweighted accuracy of 93.06 ± 0.50% and a macro F1-score of 85.07 ± 1.81% (see Fig. 4A). The average F1-score for any one species was plotted against the number of specimens representing the samples in the species, which elucidates the relationship between the training data available and the accuracy (see Fig. 4B). No species with more than 100 specimens produced an F1-score below 93%.Figure 4Species classification across 39 species shows the strength of CNNs for generalized mosquito classification, and elucidates a guideline for the number of specimens required for confident classification. Classification achieved unweighted accuracy of 93.06 ± 0.50% and a macro F1-score of 85.07 ± 1.81%, trained, validated, and tested over an average of 9080, 1945, and 1945 samples over five folds. (A) The majority of the error in this confusion matrix shows confusion between species of the same genera. Some of the confusion outside of genera is more intuitive from an entomologist perspective, such as the 10.2% of Deinocerites cancer samples classified as Culex spp. Other errors are less intuitive, such as the 28.61% of Culiseta incidens samples classified as Aedes atlanticus. (B) This plot of average F1-score of a species against the number of specimens which made up the samples available for training and testing shows the relationship between the available data for a given specimen and classification accuracy. When following the database development methods described in this work, a general guideline of 100 specimens’ worth of data can be extrapolated as a requirement for confident mosquito species classification.Full size imageTest set sample size for each species in the 39 species closed-set classification were as follows (formatted as species, [fold1,fold2,fold3,fold4, fold5]): Ae. aegypti: [131,127,127,124,133]; Ae. albopictus: [99,99,107,97,95]; Ae. atlanticus: [15,13,14,14,15]; Ae. canadensis: [17,21,21,21,20]; Ae. dorsalis: [42,41,43,40,43]; Ae. flavescens: [13,14,14,14,14]; Ae. infirmatus: [17,15,19,18,16]; Ae. japonicus: [155,153,151,160,150]; Ae. nigromaculis: [6,6,5,5,5]; Ae. sollicitans: [63,61,58,57,60]; Ae. taeniorhynchus: [30,25,27,25,25]; Ae. triseriatus s.l.: [14,16,17,14,13]; Ae. trivittatus: [28,24,25,24,23]; Ae. vexans: [46,58,57,51,50]; An. coustani: [25,32,27,33,27]; An. crucians s.l.: [64,57,60,59,62]; An. freeborni s.l.: [85,77,82,74,89]; An. funestus s.l.: [181,187,166,175,161]; An. gambiae s.l.: [191,182,178,185,194]; An. pseudopunctipennis: [10,8,12,9,9]; An. punctipennis: [32,28,38,32,32]; An. quadrimaculatus: [30,33,26,37,35]; Coquillettidia perturbans: [31,29,30,32,35]; Cx. coronator: [10,9,10,11,10]; Cx. erraticus: [48,51,49,53,50]; Cx. nigripalpus: [14,14,13,13,13]; Cx. pipiens s.l.: [205,203,216,208,216]; Cx. restuans: [12,13,12,14,12]; Cx. salinarius: [24,25,24,23,24]; Cus. incidens: [9,9,9,9,8]; Cus. inornata: [9,9,8,9,9]; Deinocerites cancer: [10,10,10,10,9]; De. sp. Cuba-1: [16,14,15,14,15]; Mansonia titillans: [15,16,15,14,13]; Ps. ciliata: [29,26,24,23,28]; Ps. columbiae: [62,59,63,60,61]; Ps. cyanescens: [55,54,57,55,55]; Ps. ferox: [32,48,31,36,34]; Ps. pygmaea: [24,25,25,24,25].Comparison to alternative methodsSome intuitive simplifications of our methods, along with some common direct methods for novel species detection, are compared to our full methods. All compared methods were found to be statistically different from the full methods using McNemar’s test. The compared methods tested, along with their macro F1-score, standard deviation, and p-value as compared to the full methods, were as follows: (1) soft voting of all Tier II component outputs, without a GMM arbiter (86.87 ± 3.11%, p  More

  • in

    Emerging satellite observations for diurnal cycling of ecosystem processes

    1.Hennessey, T. L., Freeden, A. L. & Field, C. B. Environmental effects on circadian rhythms in photosynthesis and stomatal opening. Planta 189, 369–376 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Steed, G., Ramirez, D. C., Hannah, M. A. & Webb, A. A. R. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science 372, eabc9141 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Zhao, T. B. & Dai, A. G. The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Clim. 28, 4490–4512 (2015).Article 

    Google Scholar 
    4.Perkins-Kirkpatrick, S. E. & Gibson, P. B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 7, 12256 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Bates, L. M. & Hall, A. E. Stomatal closure with soil-water depletion not associated with changes in bulk leaf water status. Oecologia 50, 62–65 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Roessler, P. G. & Monson, R. K. Midday depression in net photosynthesis and stomatal conductance in Yucca-Glauca—relative contributions of leaf temperature and leaf-to-air water-vapor concentration difference. Oecologia 67, 380–387 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tenhunen J. D., Pearcy R. W. & Lange O. L. in Stomatal Function (eds Zeiger, E. et al.) Ch. 15 (Stanford Univ. Press, 1987).8.Tucci, M. L. S., Erismann, N. M., Machado, E. C. & Ribeiro, R. V. Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions. Photosynthetica 48, 421–429 (2010).CAS 
    Article 

    Google Scholar 
    9.Kosugi, Y. & Matsuo, N. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiol. 26, 1173–1184 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Koch, G. W., Amthor, J. S. & Goulden, M. L. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain-forest canopy in Cameroon—measurements from the Radeau-Des-Cimes. Tree Physiol. 14, 347–360 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Olioso, A., Carlson, T. N. & Brisson, N. Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop. Agric. For. Meteorol. 81, 41–59 (1996).Article 

    Google Scholar 
    12.Cowan, I. R. & Farquhar, G. D. Stomatal function in relation to leaf metabolism and environment: stomatal function in the regulation of gas exchange. Symposia Soc. Exp. Biol. 31, 471–505 (1977).CAS 

    Google Scholar 
    13.Bollig, C. & Feller, U. Impacts of drought stress on water relations and carbon assimilation in grassland species at different altitudes. Agric. Ecosyst. Environ. 188, 212–220 (2014).Article 

    Google Scholar 
    14.Koyama, K. & Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 4, 4389 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Nelson, J. A., Carvalhais, N., Migliavacca, M., Reichstein, M. & Jung, M. Water-stress-induced breakdown of carbon–water relations: indicators from diurnal FLUXNET patterns. Biogeosciences 15, 2433–2447 (2018).CAS 
    Article 

    Google Scholar 
    16.Xu, H., Xiao, J. F. & Zhang, Z. Q. Heatwave effects on gross primary production of northern mid-latitude ecosystems. Environ. Res. Lett. 15, 074027 (2020).Article 

    Google Scholar 
    17.Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).Article 

    Google Scholar 
    18.Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    19.Xiao, J. F. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).Article 

    Google Scholar 
    20.Anderson, M. C., Allen, R. G., Morse, A. & Kustas, W. P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 122, 50–65 (2012).Article 

    Google Scholar 
    21.Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536 (2007).Article 

    Google Scholar 
    23.Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, 1–20 (2020).Article 

    Google Scholar 
    24.Hook, S. J. et al. In-flight validation of ECOSTRESS, Landsat 7 and 8 thermal infrared spectral channels using the Lake Tahoe CA/NV and Salton Sea CA automated validation sites. IEEE Trans. Geosci. Remote Sens. 58, 1294–1302 (2019).Article 

    Google Scholar 
    25.Hulley, G., Shivers, S., Wetherley, E. & Cudd, R. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: a case study for Los Angeles County, California. Remote Sens. 11, 2136 (2019).Article 

    Google Scholar 
    26.Anderson, M. C. et al. Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sens. Environ. 252, 112189 (2021).Article 

    Google Scholar 
    27.Anderson, M. C. et al. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US drought monitor classifications. J. Hydrometeorol. 14, 1035–1056 (2013).Article 

    Google Scholar 
    28.Li, X., Xiao, J., Fisher, J. B. & Baldocchi, D. D. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sens. Environ. 258, 112360 (2021).Article 

    Google Scholar 
    29.Hulley, G. C. et al. Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product. IEEE Trans. Geosci. Remote Sens. https://doi.org/10.1109/TGRS.2021.3079879 (2021).30.Aragon, B., Houborg, R., Tu, K., Fisher, J. B. & McCabe, M. CubeSats enable high spatiotemporal retrievals of crop-water use for precision agriculture. Remote Sens. 10, 1867 (2018).Article 

    Google Scholar 
    31.Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).Article 

    Google Scholar 
    32.Turner, N. C., Schulze, E.-D. & Gollan, T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia 65, 348–355 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Moore, G. W. & Heilman, J. L. Proposed principles governing how vegetation changes affect transpiration. Ecohydrology 4, 351–358 (2011).Article 

    Google Scholar 
    34.Hulley, G. C. & Hook, S. J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Trans. Geosci. Remote Sens. 49, 1304–1315 (2011).Article 

    Google Scholar 
    35.Fisher, J. B., Whittaker, R. H. & Malhi, Y. ET Come Home: a critical evaluation of the use of evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 20, 1–18 (2011).Article 

    Google Scholar 
    36.Talsma, C. J. et al. Partitioning of evapotranspiration in remote sensing-based models. Agric. For. Meteorol. 260, 131–143 (2018).Article 

    Google Scholar 
    37.Otkin, J. A. et al. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeorol. 14, 1057–1074 (2013).Article 

    Google Scholar 
    38.Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evolution 1, 0194 (2017).Article 

    Google Scholar 
    39.Taylor, T. E. et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sens. Environ. 251, 112032 (2020).Article 

    Google Scholar 
    40.Frankenberg, C. et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmos. Meas. Tech. 8, 301–313 (2015).CAS 
    Article 

    Google Scholar 
    41.Bilger, W., Schreiber, U. & Bock, M. Determination of the quantum efficiency of photosystem-II and of nonphotochemical quenching of chlorophyll fluorescence in the field. Oecologia 102, 425–432 (1995).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Maguire, A. J. et al. On the functional relationship between fluorescence and photochemical yields in complex evergreen needleleaf canopies. Geophys. Res. Lett. 47, e2020GL087858 (2020).Article 

    Google Scholar 
    43.Marrs, J. K. et al. Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophys. Res. Lett. 47, e2020GL087956 (2020).CAS 
    Article 

    Google Scholar 
    44.Li, X. et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: first global analysis based on OCO-2 and flux tower observations. Glob. Change Biol. 24, 3990–4008 (2018).Article 

    Google Scholar 
    45.Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).Article 
    CAS 

    Google Scholar 
    46.Li, X. & Xiao, J. F. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 11, 2563 (2019).Article 

    Google Scholar 
    47.Liu, J. J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Nino. Science 358, eaam5690 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Parazoo, N. C. et al. Towards a harmonized long-term spaceborne record of far-red solar-induced fluorescence. J. Geophys. Res. 124, 2518–2539 (2019).Article 

    Google Scholar 
    49.He, L. Y. et al. Tracking seasonal and interannual variability in photosynthetic downregulation in response to water stress at a temperate deciduous forest. J. Geophys. Res. 125, e2018JG005002 (2020).
    Google Scholar 
    50.Lin, C. J. et al. Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes. Agric. For. Meteorol. 278, 107642 (2019).Article 

    Google Scholar 
    51.Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Yang, X. et al. FluoSpec 2—an automated field spectroscopy system to monitor canopy solar-induced fluorescence. Sensors (Basel) 18, 2063 (2018).Article 
    CAS 

    Google Scholar 
    53.Miura, T., Nagai, S., Takeuchi, M., Ichii, K. & Yoshioka, H. Improved characterisation of vegetation and land surface seasonal dynamics in central Japan with Himawari-8 hypertemporal data. Sci. Rep. 9, 15692 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Bessho, K. et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorological Soc. Jpn 94, 151–183 (2016).Article 

    Google Scholar 
    55.Schmit, T. J. et al. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 98, 681–698 (2017).Article 

    Google Scholar 
    56.Oh, S. M., Borde, R., Carranza, M. & Shin, I. C. Development and intercomparison study of an atmospheric motion vector retrieval algorithm for GEO-KOMPSAT-2A. Remote Sens. 11, 2054 (2019).Article 

    Google Scholar 
    57.Yang, J., Zhang, Z. Q., Wei, C. Y., Lu, F. & Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 98, 1637–1658 (2017).Article 

    Google Scholar 
    58.Ouaknine, J. et al. The FCI on Board MTG: optical design and performances. In International Conference on Space Optics—ICSO 2014 (eds Sodnik, Z. et al.) 1056323 (SPIE, 2014).59.Wang, W. et al. An introduction to the Geostationary-NASA Earth Exchange (GeoNEX) products: 1. Top-of-atmosphere reflectance and brightness temperature. Remote Sens. 12, 1267 (2020).Article 

    Google Scholar 
    60.Yamamoto, Y., Ishikawa, H., Oku, Y. & Hu, Z. Y. An algorithm for land surface temperature retrieval using three thermal infrared bands of Himawari-8. J. Meteorological Soc. Jpn. 96B, 59–76 (2018).Article 

    Google Scholar 
    61.Yu, Y. & Yu, P. in The GOES-R Series. A New Generation of Geostationary Environmental Satellites (eds Goodman, S. J. et al.) Ch. 12 (2020).62.Takenaka, H. et al. Estimation of solar radiation using a neural network based on radiative transfer. J. Geophys. Res. 116, D08215 (2011).
    Google Scholar 
    63.Hashimoto, H. et al. Hourly GPP estimation in Australia using Himawari-8 AHI products. In IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium 4513–4515 (IEEE, 2020).64.Yan, K. et al. Evaluation of MODIS LAI/FPAR product collection 6. Part 1: consistency and improvements. Remote Sens. 8, 359 (2016).CAS 
    Article 

    Google Scholar 
    65.Moore, B. et al. The potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00109 (2018).66.Zoogman, P. et al. Tropospheric emissions: monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 186, 17–39 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Courrèges-Lacoste, G. B. et al. Knowing what we Breathe: Sentinel 4: a Geostationary Imaging UVN Spectrometer for Air Quality Monitoring. In International Conference on Space Optics—ICSO 2016 (eds Karafolas, N. et al.) 105621J (SPIE, 2017).68.Wekerle, T., Pessoa, J. B., da Costa, L. & Trabasso, L. G. Status and trends of smallsats and their launch vehicles—an up-to-date review. J. Aerosp. Technol. Manag. 9, 269–286 (2017).Article 

    Google Scholar 
    69.Ryswyk, M. V. Planet announces 50 cm SkySat imagery, tasking dashboard and up to 12× revisit. Planet (9 June 2020); https://www.planet.com/pulse/tasking-dashboard-50cm-12x-revisit-announcement/70.Blackwell, W. J. et al. An overview of the TROPICS NASA Earth Venture mission. Q. J. R. Meteorol. Soc. 144, 16–26 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Gao, F., Masek, J., Schwaller, M. & Hall, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207–2218 (2006).Article 

    Google Scholar 
    72.Franco, A. C. & Luttge, U. Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131, 356–365 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Keller, M., Schimel, D. S., Hargrove, W. W. & Hoffman, F. M. A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ. 6, 282–284 (2008).Article 

    Google Scholar  More