Bat aggregational response to pest caterpillar emergence
1.Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18(1), 1–35 (1949).Article
Google Scholar
2.Sinclair, A. R. E. & Krebs, C. J. Complex numerical responses to top–down and bottom–up processes in vertebrate populations. Philos. Trans. R. Soc. B 357(1425), 1221–1231 (2002).CAS
Article
Google Scholar
3.Readshaw, J. L. The numerical response of predators to prey density. J. Appl. Biol. 10, 342–351 (1973).
Google Scholar
4.Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332(6025), 41–42 (2011).ADS
PubMed
Article
PubMed Central
Google Scholar
5.Taylor, P. J., Grass, I., Alberts, A. J., Joubert, E. & Tscharntke, T. Economic value of bat predation services—a review and new estimates from macadamia orchards. Ecosyst. Serv. 30, 372–381 (2018).Article
Google Scholar
6.Kunz, T. H., BraundeTorrez, E., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).ADS
PubMed
Article
PubMed Central
Google Scholar
7.Russo, D., Bosso, L. & Ancillotto, L. Novel perspectives on bat insectivory highlight the value of this ecosystem service in farmland: Research frontiers and management implications. Agric. Ecosyst. Environ. 266, 31–38 (2018).Article
Google Scholar
8.Boyles, J. G., Sole, C. L., Cryan, P. M. & McCracken, G. F. On estimating the economic value of insectivorous bats: prospects and priorities for biologists. In Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 501–515 (Springer, 2013).Chapter
Google Scholar
9.Kemp, J. et al. Bats as potential suppressors of multiple agricultural pests: a case study from Madagascar. Agric. Ecosyst. Environ. 269, 88–96 (2019).Article
Google Scholar
10.Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. 10(1), 371–388 (2019).PubMed
PubMed Central
Article
Google Scholar
11.Weier, S. M. et al. Insect pest consumption by bats in macadamia orchards established by molecular diet analyses. Glob. Ecol. Conserv. 18, e00626 (2019).Article
Google Scholar
12.Bohmann, K. et al. Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE 6(6), e21441 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
13.Razgour, O. et al. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol. Evol. 1(4), 556–570 (2011).PubMed
PubMed Central
Article
Google Scholar
14.Cleveland, C. J. et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4(5), 238–243 (2006).Article
Google Scholar
15.McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7(8), e43839 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. 91(4), 1081–1101 (2015).PubMed
Article
PubMed Central
Google Scholar
17.Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. USA 112(40), 12438–12443 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
18.Hill, D. S. Pests of Crops in Warmer Climates and Their Control (Springer, 2008).Book
Google Scholar
19.Zhang, B. C. Index of Economically Important Lepidoptera (CAB International, Wallingford, 1994).
Google Scholar
20.Riccucci, M. & Lanza, B. Bats and insect pest control: a review. Vespertilio 17, 161–169 (2014).
Google Scholar
21.Andreas, M., Reiter, A. & Benda, P. Dietary composition, resource partitioning and trophic niche overlap in three forest foliage-gleaning bats in Central Europe. Acta Chiropterol. 14(2), 335–345 (2012).Article
Google Scholar
22.Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Table for five, please: dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).PubMed
PubMed Central
Article
Google Scholar
23.Hope, R. P. et al. Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter. Front. Zool. 11, 39 (2014).PubMed
PubMed Central
Article
Google Scholar
24.Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Pray oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).Article
Google Scholar
25.Garin, I. et al. Bats from different foraging guilds prey upon the pine processionary moth. PeerJ 7, e7169 (2019).PubMed
PubMed Central
Article
Google Scholar
26.Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245 (2015).Article
Google Scholar
27.Elgar, M. A. Predator vigilance and group size in mammals and birds: a critical review of the evidence. Biol. Rev. 64, 13–33 (1989).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Fukui, D., Murakami, M., Nakano, S. & Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 75(6), 1252–1258 (2006).PubMed
Article
PubMed Central
Google Scholar
29.Partridge, D. R., Parkins, K. L., Elbin, S. B. & Clark, J. A. Bat activity correlates with moth abundance on an urban green roof. Northeast Nat. 27(1), 77–89 (2020).Article
Google Scholar
30.Charbonnier, Y., Barbaro, L., Theillout, A. & Jactel, H. Numerical and functional responses of forest bats to a major insect pest in pine plantations. PLoS ONE 9(10), e109488 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
31.Krauel, J. J., Ratcliffe, J. M., Westbrook, J. K. & McCracken, G. F. Brazilian free-tailed bats (Tadarida brasiliensis) adjust foraging behaviour in response to migratory moths. Can. J. Zool. 96(6), 513–520 (2018).Article
Google Scholar
32.Gregor, F. & Bauerová, Z. The role of Diptera in the diet of Natterer’s bat, Myotis nattereri. Folia. Zool. 36(1), 13–19 (1987).
Google Scholar
33.Swift, S. & Racey, P. Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behav. Ecol. Sociobiol. 52(5), 408–416 (2002).Article
Google Scholar
34.Taake, K. H. Resource utilization strategies of vespertilionid bats hunting over water in forests. Myotis 30, 7–74 (1992).
Google Scholar
35.Vaughan, N. The diets of British bats (Chiroptera). Mammal. Rev. 27(2), 77–94 (1997).Article
Google Scholar
36.Siemers, B. & Swift, S. M. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav. Ecol. Sociobiol. 59, 373–380 (2006).Article
Google Scholar
37.Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight Performance, foraging strategy and echolocation. Philos. Trans. R. Soc. B 316(1179), 335–427 (1987).ADS
Google Scholar
38.Entwistle, A. C., Racey, P. A. & Speakman, J. R. Habitat exploitation by a gleaning bat, Plecotus auritus. Philos. Trans. R. Soc. B 351(1342), 921–931 (1996).ADS
Article
Google Scholar
39.Kerth, G., Wagner, M. & König, B. Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein’s bats (Myotis bechsteinii). Behav. Ecol. Sociobiol. 50, 283–291 (2001).Article
Google Scholar
40.Rydell, J. Food habits of northern (Eptesicus nilssoni) and brown long-eared (Plecotus auritus) bats in Sweden. Holarct. Ecol. 12(1), 16–20 (1989).
Google Scholar
41.Anderson, M. E. & Racey, P. A. Feeding behaviour of captive brown long-eared bats, Plecotus auritus. Anim. Behav. 42(3), 489–493 (1991).Article
Google Scholar
42.Andreas, M. Feeding ecology of a bat community. Ph.D. Thesis, Czech Agriculture University, Prague (2002).43.Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. Forest. Res. 124, 319–333 (2005).Article
Google Scholar
44.Keena, M. A., Côté, M. J., Grinberg, P. S. & Wallner, W. E. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 37(3), 636–649 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Melin, M., Viiri, H., Tikkanen, O. P., Elfving, R. & Neuvonen, S. From a rare inhabitant into a potential pest—status of the nun moth in Finland based on pheromone trapping. Silva. Fenn. 54(1), 1–9 (2020).Article
Google Scholar
46.Kuhlman, H. M. Effects of insect defoliation on growth and mortality of trees. Annu. Rev. Entomol. 16, 289–324 (1971).Article
Google Scholar
47.Bogacheva, I. A. Repeated damage of leaves by phyllophagous insects: is it influenced by rapid inducible resistance? In Forest Insect Guilds: Patterns of Interaction with Host Trees. (eds. Baranchikov, Y.N., Mattson, W.J., Hain, F.P. & Payne, T.L.) 113–122 (U.S. Dep. Agric. For. Serv. Gen. Tech. Rep. NE-153, 1991).48.Zvereva, E. L. & Kozlov, M. V. Effects of herbivory on leaf life span in woody plants: a meta-analysis. J. Ecol. 102(4), 873–881 (2014).Article
Google Scholar
49.Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006).Article
Google Scholar
50.Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352 (2016).ADS
Article
Google Scholar
51.Delb, H. Eichenschädlinge im Klimawandel in Südwestdeutschland. FVA-einblick. 2/2012, 11–14 (2012).52.Hittenbeck, A., Bialozyt, R. & Schmidt, M. Modelling the population fluctuation of winter moth and mottled umber moth in central and northern Germany. For. Ecosyst. 6, 4 (2019).Article
Google Scholar
53.Ims, R. A., Yoccoz, N. G. & Hagen, S. B. Do sub-Arctic winter moth populations in coastal birch forest exhibit spatially synchronous dynamics?. J. Anim. Ecol. 73, 1129–1136 (2004).Article
Google Scholar
54.Böhm, S. M., Wells, K. & Kalko, E. K. V. Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur). PLoS ONE 6(4), e17857 (2011).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
55.Patočka, J. Caterpillars on oaks in Czechoslovakia. (Štátne pôdohospodárske nakladateľstvo: 262, 1954).56.Hausmann, A. The geometrid moths of Europe, Volume 1: Introduction, Archiearinae, Orthostixinae, Desmobathrinae, Alsophilinae, Geometrinae, (Apollo Books, 2001).57.Zahradník, P. Calamities in Czech forests—past and present. In: Facts and myths about Czech agricultural forestry. Proceedings of papers (ed Stonawski, J.) 31–51 (Česká zemědělská univerzita, 2008).58.Macek, J., Procházka, J. & Traxler, L. Butterflies and caterpillars of Central Europe: Moths III. – Geometrids. (Academia, 2012).59.Liška, J. Winter moth, Operophtera brumata L. Lesnická Práce, 11: I–IV (2002).60.Basset, Y., Springate, N. D., Aberlenc, H. P. & Delvare, G. A review of methods for sampling arthropods in tree canopies. In Canopy Arthropods (eds Stork, N. E. et al.) 567 (Chapman & Hall, 1997).
Google Scholar
61.Kimber, I. UKMOTHS. https://ukmoths.org.uk (2015).62.Bartonička, T., Miketová, N. & Hulva, P. High throughput bioacoustic monitoring and phenology of the greater noctule bat (Nyctalus lasiopterus) compared to other migratory species. Acta Chiropterol. 21(1), 75–85 (2019).Article
Google Scholar
63.Lemen, C., Freeman, P. W., White, J. A. & Andersen, B. R. The problem of low agreement among automated identification programs for acoustical surveys of bats. West. N. Am. Naturalist. 75(2), 218–225 (2015).Article
Google Scholar
64.Barataud, M. Acoustic Ecology of European Bats. Species Identification and Studies of Their Habitats and Foraging Behaviour (Biotope & National Museum of Natural History, 2015).65.McAney, C., Shiel, C., Sullivan, C. & Fairley, J. The analysis of bat droppings (An occasional publication of the Mammal society; no. 14, 1991).66.Zeale, M. R., Butlin, R. K., Barker, G. L., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11(2), 23–44 (2011).Article
CAS
Google Scholar
67.Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).
Google Scholar
69.Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 35, 21–25 (2007).Article
Google Scholar
70.R Core Team. R: language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/ (2019). More