The energy allocation trade-offs underlying life history traits in hypometabolic strepsirhines and other primates
1.van Schaik, C. P. & Isler, K. Life-history evolution. In The Evolution of Primate Societies (eds Mitani, J., Call, J., Kappeler, P. M. et al.) 220–244 (Chicago University Press, 2012).
Google Scholar
2.Pontzer, H. et al. Primate energetics and life history. Proc. Natl. Acad. Sci. USA 111, 1433–1437. https://doi.org/10.1073/pnas.1316940111 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
3.Burger, J. R., Hou, C. & Brown, J. H. Toward a metabolic theory of life history. Proc. Natl. Acad. Sci. USA 116, 26653–26661. https://doi.org/10.1073/pnas.1907702116 (2019).CAS
Article
PubMed Central
Google Scholar
4.Charnov, E. L. & Berrigan, D. Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evol. Anthropol. 1, 191–194. https://doi.org/10.1002/evan.1360010604 (1993).Article
Google Scholar
5.Jones, J. H. Primates and the evolution of long, slow life histories. Curr. Biol. 21, R708–R717. https://doi.org/10.1016/j.cub.2011.08.025 (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
6.Speakman, J. R. Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717–1730. https://doi.org/10.1242/jeb.01556 (2005).Article
PubMed
Google Scholar
7.Martin, R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60. https://doi.org/10.1038/293057a0 (1981).ADS
CAS
Article
PubMed
Google Scholar
8.Read, A. F. & Harvey, P. H. Life history differences among the eutherian radiations. J. Zool. 219, 329–353. https://doi.org/10.1111/j.1469-7998.1989.tb02584.x (1989).Article
Google Scholar
9.Harvey, P. H., Pagel, M. D. & Rees, J. A. Mammalian metabolism and life histories. Am. Nat. 137, 556–566 (1991).Article
Google Scholar
10.Kappeler, P. Causes and consequences of life-history variation among strepsirhine primates. Am. Nat. 148, 868–891 (1996).Article
Google Scholar
11.Dausmann, K.H. Flexible patterns in energy savings: heterothermy in primates. J. Zool. 292, 101–111, https://doi.org/10.1111/jzo.12104 (2014)12.Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. Mass change, environmental variability and female fertility in wild Propithecus verreauxi. J. Hum. Evol. 39, 381–391. https://doi.org/10.1006/jhev.2000.0427 (2000).CAS
Article
PubMed
Google Scholar
13.Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. Life in the slow lane? Demography and life histories of male and female sifaka (Propithecus verreauxi verreauxi). J. Zool. (London) 256, 421–436. https://doi.org/10.1017/S0952836902000468 (2002).Article
Google Scholar
14.Kappeler, P. K. & Fichtel, C. Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation? Front. Zool. 12, S15. https://doi.org/10.1186/1742-9994-12-S1-S15 (2015).Article
PubMed
PubMed Central
Google Scholar
15.Dewar, R. E. & Richard, A. F. Evolution in the hypervariable environment of Madagascar. Proc. Natl. Acad. Sci. USA 104, 13723–13727. https://doi.org/10.1073/pnas.0704346104 (2007).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
16.Wright, P. C. Lemur traits and Madagascar ecology: coping with an island environment. Yearb. Phys. Anthropol. 42, 31–72. (1999).Article
Google Scholar
17.Ganzhorn, J. U. et al. Possible fruit protein effects on primate communities in Madagascar and the Neotropics. PLoS ONE 4, e8253. https://doi.org/10.1371/journal.pone.0008253 (2009).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
18.Pontzer, H., Raichlen, D. A., Shumaker, R. W., Ocobock, C. & Wich, S. A. Metabolic adaptation for low energy throughput in orangutans. Proc. Natl. Acad. Sci. USA 107, 14048–14052. https://doi.org/10.1073/pnas.1001031107 (2010).ADS
Article
PubMed
PubMed Central
Google Scholar
19.Simmen, B., Darlu, P., Hladik, C. M. & Pasquet, P. Scaling of free-ranging primate energetics with body mass predicts low energy expenditure in humans. Physiol. Behav. 138, 193–199. https://doi.org/10.1016/j.physbeh.2014.10.018 (2015).CAS
Article
PubMed
Google Scholar
20.Pontzer, H. et al. Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390–392. https://doi.org/10.1038/nature17654 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
21.Chevillard, M.-C. Capacités thermorégulatrices d’un lémurien malgache, Microcebus murinus. Ph.D. Thesis, University Paris VII, Paris (1976).22.Genoud, M., Martin, R. D. & Glaser, D. Rate of metabolism in the smallest simian primate, the pygmy marmoset (Cebuella pygmaea). Am. J. Primatol. 41, 229–245. (1997).CAS
Article
Google Scholar
23.Snodgrass, J. J., Leonard, W. R. & Robertson, M. L. Primate bioenergetics: An evolutionary perspective. In Primate Origins: Adaptations and Evolution (eds Ravosa, M. J. & Dagosto, M.) 703–737 (Springer, Boston, 2007). https://doi.org/10.1007/978-0-387-33507-0_20.24.Kurland, J. A. & Pearson, J. D. Ecological significance of hypometabolism in nonhuman primates: allometry, adaptation, and deviant diets. Am. J. Phys. Anthropol. 71, 445–457. https://doi.org/10.1002/ajpa.1330710408 (1986).CAS
Article
PubMed
Google Scholar
25.Harvey, P. H., Martin, R. D. & Clutton- Brock, T. H. Life histories in a comparative perspective. In Primate Societies (eds Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W. & Struhsaker, T. T.) 181– 196 (University of Chicago Press, Chicago, 1987).26.Isler, K. et al. Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J. Hum. Evol. 55, 967–978. https://doi.org/10.1016/j.jhevol.2008.08.004 (2008).Article
PubMed
Google Scholar
27.Simmen, B., Tarnaud, L., Marez, A. & Hladik, A. Leaf chemistry as a predictor of primate biomass and the mediating role of food selection: A case study in a folivorous lemur (Propithecus verreauxi). Am. J. Primatol. 76, 563–575. https://doi.org/10.1002/ajp.22249 (2014).CAS
Article
PubMed
Google Scholar
28.Lewis, R. J. & Kappeler, P. M. Seasonality, body condition, and timing of reproduction in Propithecus verreauxi verreauxi. Am. J. Primatol. 66, 1–18. https://doi.org/10.1002/ajp.20187 (2005).Article
Google Scholar
29.Donati, D., Ricci, E., Baldi, N., Morelli, V. & Borgognini-Tarli, S. M. Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: Effects of climatic and dietary-related factors. Am. J. Phys. Anthrop. 144, 355–364. https://doi.org/10.1002/ajpa.21415 (2011).Article
PubMed
Google Scholar
30.Simmen, B. & Rasamimanana, H. Energy (im-)balance in frugivorous lemurs in southern Madagascar: a preliminary study in Lemur catta and Eulemur rufifrons x collaris. Folia Primatol. 89, 382–396. https://hal.archives-ouvertes.fr/hal-02349627/(2018).31.Simmen, B. et al. Total energy expenditure and body composition in two free-living sympatric lemurs. PLoS ONE 5, e9860. https://doi.org/10.1371/journal.pone.0009860 (2010).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
32.Rasamimanana, H. R., Andrianome, V. N., Rambeloarivony, H. & Pasquet, P. Male and female ringtailed lemurs’ energetic strategy does not explain female dominance. In Ringtailed Lemur Biology: Lemur catta in Madagascar (eds Jolly, A., Sussman, R. W., Koyama, N. & Rasamimanana, H.) 271–95 (Springer, Chicago, 2006). https://doi.org/10.1007/978-0-387-34126-2_1633.Irwin, M. T. Ecologically enigmatic lemurs: The sifakas of the eastern forests (Propithecus candidus, P. diadema, P. edwardsi, P. perrieri, and P. tattersalli). In Lemurs: Ecology and Adaptation (eds Gould, L. & Sauther, M.L.) 305–326 (Springer, New York, 2006). https://doi.org/10.1007/978-0-387-34586-4_1434.Vuarin, P. et al. When to initiate torpor use? Food availability times the transition to winter phenotype in a tropical heterotherm. Oecologia 179, 43–53. https://doi.org/10.1007/s00442-015-3328-0 (2015).ADS
Article
PubMed
Google Scholar
35.Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277. https://doi.org/10.1146/annurev.nutr.19.1.247 (1999).CAS
Article
PubMed
Google Scholar
36.Pontzer, H. Energy expenditure in humans and other primates: A new synthesis. Annu. Rev. Anthropol. 44, 169–187. https://doi.org/10.1146/annurev-anthro-102214-013925 (2015).Article
Google Scholar
37.Schmid, J. & Speakman, J. R. Daily energy expenditure of the grey mouse lemur (Microcebus murinus): A small primate that uses torpor. J. Comp. Physiol. B 170, 633–641. https://doi.org/10.1007/s003600000146 (2000).CAS
Article
PubMed
Google Scholar
38.Stalenberg E. Biophysical ecology of the white-footed sportive lemur (Lepilemur leucopus) of southern Madagascar, Ph.D. Thesis, The Australian National University, Canberra (2019).39.Schmid, J. & Speakman, J. Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): A comparison of dry and wet forests. Naturwissenschaften 96, 609–620. https://doi.org/10.1007/s00114-009-0515-z (2009).ADS
CAS
Article
PubMed
Google Scholar
40.Westerterp, K. & Speakman, J. R. Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int. J. Obes. (London) 32, 1256–1263. https://doi.org/10.1038/ijo.2008.74 (2008).CAS
Article
Google Scholar
41.Muchlinski, M. N., Snodgrass, J. J. & Terranova, C. J. Muscle mass scaling in primates: An energetic and ecological perspective. Am. J. Primatol. 74, 395–407. https://doi.org/10.1002/ajp.21990 (2012).Article
PubMed
Google Scholar
42.Thompson, S. D., MacMillen, R. E., Burke, E. M. & Taylor, C. R. The energetic cost of bipedal hopping in small mammals. Nature 287, 223–224. https://doi.org/10.1038/287223a0 (1980).ADS
CAS
Article
PubMed
Google Scholar
43.Demes, B., Jungers, W. L., Gross, T. S. & Fleagle, J. G. Kinetics of leaping primates: Influence of substrate orientation and compliance. Am. J. Phys. Anthropol. 96, 419–429. https://doi.org/10.1002/ajpa.1330960407 (1995).CAS
Article
PubMed
Google Scholar
44.Webster, K. N. & Dawson, T. J. Locomotion energetics and gait characteristics of a rat-kangaroo, Bettongia penicillata, have some kangaroo-like features. J. Comp. Physiol. B 173, 549–557. https://doi.org/10.1007/s00360-003-0364-6 (2003).CAS
Article
PubMed
Google Scholar
45.Pontzer, H., Raichlen, D. A. & Sockol, M. D. From treadmill to tropics: Calculating ranging cost in chimpanzees. In Primate Locomotion: Linking Field and Laboratory Research, Developments in Primatology: Progress and Prospects (eds D’Août, K., Vereecke & E. E.) 289–309 (Springer, New York, 2011). https://doi.org/10.1007/978-1-4419-1420-0_1546.Hladik, C. M. Diet and the evolution of feeding strategies among forest primates. In Omnivorous Primates. Gathering and Hunting in Human Evolution (eds Harding, R. S. O. & Teleki, G.) 215–254 (Columbia University Press, New York, 1981). https://hal.archives-ouvertes.fr/hal-0057868747.Oates, J. F. (1987) Food distribution and foraging behavior. In Primate Societies (eds Smuts, B. B. et al.) 197–209 (University of Chicago Press, 1987).
Google Scholar
48.Clutton-Brock, T. H. & Harvey, P. H. Primate ecology and social organization. J. Zool., (London) 183, 1–39, https://doi.org/10.1111/j.1469-7998.1977.tb04171.x (1977).49.Harvey, P. & Bennett, P. Evolutionary biology: Brain size, energetics, ecology and life history patterns. Nature 306, 314–315. https://doi.org/10.1038/306314a0 (1983).ADS
CAS
Article
PubMed
Google Scholar
50.Milton, K. & May, M. L. Body weight, diet and home range area in primates. Nature 259, 459–462. https://doi.org/10.1038/259459a0 (1976).ADS
CAS
Article
PubMed
Google Scholar
51.Snaith, T. V. & Chapman, C. A. Primate group size and interpreting socioecological models: Do folivores really play by different rules?. Evol. Anthropol. 16, 94–106. https://doi.org/10.1002/evan.20132 (2007).Article
Google Scholar
52.Tecot, S. R. It’s all in the timing: Birth seasonality and infant survival in Eulemur rubriventer. Int. J. Primatol. 31, 715–735. https://doi.org/10.1007/s10764-010-9423-5 (2010).Article
Google Scholar
53.van Woerden, J. T., van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: Evidence from strepsirhine primates. Am. Nat. 176, 758–776. https://doi.org/10.1086/657045 (2010).Article
PubMed
Google Scholar
54.Edwards, W., Lonsdorf, E. V. & Pontzer, H. Total energy expenditure in captive capuchins (Sapajus apella). Am. J. Primatol. 79, e22638. https://doi.org/10.1002/ajp.22638 (2017).CAS
Article
Google Scholar
55.Dugas, L. R. et al. Energy expenditure in adults living in developing compared with industrialized countries: A meta-analysis of doubly labeled water studies. Am. J. Clin. Nutr. 93, 427–441. https://doi.org/10.3945/ajcn.110.007278 (2011).CAS
Article
PubMed
Google Scholar
56.Barrickman, N. L. & Lin, M. J. Encephalization, expensive tissues, and energetics: An examination of the relative costs of brain size in strepsirhines added with new data. Am. J. Phys. Anthropol. 143, 579–590. https://doi.org/10.1002/ajpa.21354 (2010).Article
PubMed
Google Scholar
57.Benedict, F. G. Vital Energetics: A Study in Comparative Basal Metabolism, Carnegie Institution, Washington, 1938), Publication No 503.58.Schoeller, D. A. et al. Energy expenditure by the doubly labeled water: validation in humans and proposed calculations. Am. J. Physiol. 250, R823–R830. https://doi.org/10.1152/ajpregu.1986.250.5.R823 (1986).ADS
CAS
Article
PubMed
Google Scholar
59.Speakman, J. R. Doubly Labelled Water: Theory and Practice (Chapman, Hall, London, 1997). https://doi.org/10.1046/j.1365-2656.2001.00515-4.x60.Chery, I., Zahariev, A., Simon, C. & Blanc, S. Analytical aspects of measuring (2)H/(1)H and (18)O/(16)O ratios in urine from doubly labelled water studies by high-temperature conversion elemental analyser-isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 29, 562–572. https://doi.org/10.1002/rcm.7135 (2015).ADS
CAS
Article
PubMed
Google Scholar
61.Drack, S. et al. Field metabolic rate and the cost of ranging of the red-tailed sportive lemur (Lepilemur ruficaudatus). In New Directions in Lemur Studies (eds Rakotosamimanana B. et al) 83–91 (Kluwer Academic/Plenum Publishers, 1999). https://doi.org/10.1007/978-1-4615-4705-1_562.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684. https://doi.org/10.1080/10635150490522232 (2004).Article
PubMed
Google Scholar
63.Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: A new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).Article
Google Scholar
64.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (2020).65.RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL https://www.rstudio.com/. More