1.Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).PubMed
PubMed Central
Google Scholar
2.Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).CAS
PubMed
PubMed Central
Google Scholar
3.Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: a regional meta-analysis. Sci. Rep. 7, 8940 (2017).PubMed
PubMed Central
Google Scholar
4.Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).
Google Scholar
5.Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).CAS
PubMed
PubMed Central
Google Scholar
6.Hansen, A. J. & Defries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2016).
Google Scholar
7.Roberts, C. M., Halpern, B., Palumbi, S. R. & Warner, R. R. Designing marine reserve networks. Why small, isolated protected areas are not enough. Conserv. Pract. 2, 10–17 (2001).
Google Scholar
8.Walters, C. Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas: how large should protected areas be? Bull. Mar. Sci. 66, 745–757 (2000).
Google Scholar
9.Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
Google Scholar
10.Guidetti, P. et al. Large-scale assessment of Mediterranean marine protected areas effects on fish assemblages. PLoS One 9, e91841 (2014).PubMed
PubMed Central
Google Scholar
11.Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
Google Scholar
12.Di Lorenzo, M., Claudet, J. & Guidetti, P. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. J. Nat. Conserv. 32, 62–66 (2016).
Google Scholar
13.Harmelin-Vivien, M. et al. Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: evidence of fish spillover? Biol. Conserv. 141, 1829–1839 (2008).
Google Scholar
14.Abesamis, R. A. & Russ, G. R. Density-dependent spillover from a marine reserve: long-term evidence. Ecol. Appl. 15, 1798–1812 (2005).
Google Scholar
15.Murawski, S. A., Wigley, S. E., Fogarty, M. J., Rago, P. J. & Mountain, D. G. Effort distribution and catch patterns adjacent to temperate MPAs. ICES J. Mar. Sci. 62, 1150–1167 (2005).
Google Scholar
16.Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007).PubMed
PubMed Central
Google Scholar
17.Stelzenmüller, V. et al. Spatial assessment of fishing effort around European marine reserves: implications for successful fisheries management. Mar. Pollut. Bull. 56, 2018–2026 (2008).PubMed
PubMed Central
Google Scholar
18.Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2010).
Google Scholar
19.Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).
Google Scholar
20.Defries, R., Hansen, A., Newton, A. C. & Hansen, M. C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 15, 19–26 (2005).
Google Scholar
21.MPAtlas (Marine Conservation Institute, accessed 4 July 2020); http://www.mpatlas.org22.Willis, T. J., Millar, R. B., Babcock, R. C. & Tolimieri, N. Burdens of evidence and the benefits of marine reserves: putting Descartes before des horse? Environ. Conserv. 30, 97–103 (2003).
Google Scholar
23.Roberts, C. M. et al. Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol. Appl. 13, 215–228 (2003).
Google Scholar
24.Huntington, B. E., Karnauskas, M., Babcock, E. A. & Lirman, D. Untangling natural seascape variation from marine reserve effects using a landscape approach. PLoS One 5, e12327 (2010).PubMed
PubMed Central
Google Scholar
25.Miller, K. I. & Russ, G. R. Studies of no-take marine reserves: methods for differentiating reserve and habitat effects. Ocean Coast. Manag. 96, 51–60 (2014).
Google Scholar
26.Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–671 (2017).CAS
PubMed
PubMed Central
Google Scholar
27.Brill, G. C. & Raemaekers, S. J. P. N. A decade of illegal fishing in Table Mountain National Park (2000–2009): trends in the illicit harvest of abalone Haliotis midae and West Coast rock lobster Jasus lalandii. African. J. Mar. Sci. 35, 491–500 (2013).
Google Scholar
28.Harasti, D., Davis, T. R., Jordan, A., Erskine, L. & Moltschaniwskyj, N. Illegal recreational fishing causes a decline in a fishery targeted species (snapper: Chrysophrys auratus) within a remote no-take marine protected area. PLoS One 14, e0209926 (2019).CAS
PubMed
PubMed Central
Google Scholar
29.Kleiven, P. J. N. et al. Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area. Proc. R. Soc. B Biol. Sci. 286, 20182455 (2019).
Google Scholar
30.Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544 (2016).CAS
PubMed
PubMed Central
Google Scholar
31.Sarà, G. et al. Effect of boat noise on the behavior of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 331, 243–253 (2007).
Google Scholar
32.Tran, D. S. C., Langel, K. A., Thomas, M. J. & Blumstein, D. T. Spearfishing-induced behavioral changes of an unharvested species inside and outside a marine protected area. Curr. Zool. 62, 39–44 (2016).PubMed
PubMed Central
Google Scholar
33.Jiao, J., Pilyugin, S. S., Riotte-Lambert, L. & Osenberg, C. W. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 99, 2485–2495 (2018).PubMed
PubMed Central
Google Scholar
34.Potts, J. R., Hillen, T. & Lewis, M. A. The ‘edge effect’ phenomenon: deriving population abundance patterns from individual animal movement decisions. Theor. Ecol. 9, 233–247 (2016).
Google Scholar
35.Gerber, L. R. et al. Population models for marine reserve design: a retrospective and prospective synthesis. Ecol. Appl. 13, 47–64 (2003).
Google Scholar
36.Malvadkar, U. & Hastings, A.Persistence of mobile species in marine protected areas. Fish. Res. 91, 69–78 (2008).
Google Scholar
37.Di Lorenzo, M., Guidetti, P., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta-analytical approach. Fish Fish. 21, 906–915 (2020).
Google Scholar
38.Goñi, R., Quetglas, A. & Reñones, O. Spillover of spiny lobsters Palinurus elephas from a marine reserve to an adjoining fishery. Mar. Ecol. Prog. Ser. 308, 207–219 (2006).
Google Scholar
39.Stamoulis, K. A. & Friedlander, A. M. A seascape approach to investigating fish spillover across a marine protected area boundary in Hawai’i. Fish. Res. 144, 2–14 (2013).
Google Scholar
40.Protected Planet: the World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed July 2020); http://www.protectedplanet.net41.Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS One 8, e81847 (2013).PubMed
PubMed Central
Google Scholar
42.Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).
Google Scholar
43.Froese, R. & Pauly, D. (eds). FishBase (accessed May 2020); http://www.fishbase.org44.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Google Scholar
45.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).46.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed
PubMed Central
Google Scholar
47.R Core Team. R: a language and environment for statistical computing. v.3.6.1 (2019).48.QGIS Geographic Information System. Open Source Geospatial Foundation Project (QGIS Development Team, 2020); http://qgis.osgeo.org49.Harmelin-Vivien, M. et al. Species richness, abundance and biomass data for assessing fish spillover from Mediterranean marine protected areas. SEANOE https://doi.org/10.17882/74396 (2020). More