1.Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J. & Urbaneja, A. biological control using invertebrates and microorganisms: Plenty of new opportunities. Biocontrol 63, 39–59 (2018).Article
Google Scholar
2.Koch, R. The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. J. Insect Sci. 3, 1–16 (2003).Article
Google Scholar
3.Huang, N.-X. et al. Long-term, large-scale releases of Trichogramma promote pesticide decrease in maize in northeastern China. Entomol. Gen. 40, 331–335 (2020).Article
Google Scholar
4.Gibert, J. P. Temperature directly and indirectly influences food web structure. Sci. Rep. 9, 1–8 (2019).CAS
Article
Google Scholar
5.Wootton, J. T. & Emmerson, M. Measurement of interaction strength in nature. Annu. Rev. Ecol. Evol. Syst. 36, 419–444 (2005).Article
Google Scholar
6.Novak, M. & Wootton, J. T. Using experimental indices to quantify the strength of species interactions. Oikos 119, 1057–1063 (2010).Article
Google Scholar
7.Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).Article
Google Scholar
8.Fathipour, Y., Maleknia, B., Bagheri, A., Soufbaf, M. & Reddy, G. V. Functional and numerical responses, mutual interference, and resource switching of Amblyseius swirskii on two-spotted spider mite. Biol. Control 146, 104266 (2020).CAS
Article
Google Scholar
9.Van Lenteren, J. C. et al. Pest kill rate as aggregate evaluation criterion to rank biological control agents: A case study with Neotropical predators of Tuta absoluta on tomato. Bull. Entomol. Res. 109, 812–820 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
10.Xia, P.-L., Yu, X.-L., Li, Z.-T. & Feng, Y. The impacts of Harmonia axyridis cues on foraging behavior of Aphidius gifuensis to Myzus persicae. J. Asia Pac. Entomol. 24, 278–284 (2021).Article
Google Scholar
11.Juliano, S. A. Non-linear curve fitting: Predation and functional response curve. Design and analysis of ecological experiment (eds Scheiner, S.M. & Gurevitch, J.), 178–196. (Chapman and Hall, London, 2001).12.Jeschke, J. M. & Tollrian, R. Effects of predator confusion on functional responses. Oikos 111, 547–555 (2005).Article
Google Scholar
13.Pervez, A. Functional responses of coccinellid predators: An illustration of a logistic approach. J. Insect Sci. 5, 5 (2005).PubMed
PubMed Central
Article
Google Scholar
14.Uiterwaal, S. F. & DeLong, J. P. Multiple factors, including arena size, shape the functional responses of ladybird beetles. J. Appl. Ecol. 55, 2429–2438 (2018).CAS
Article
Google Scholar
15.Parajulee, M., Shrestha, R., Leser, J., Wester, D. & Blanco, C. Evaluation of the functional response of selected arthropod predators on bollworm eggs in the laboratory and effect of temperature on their predation efficiency. Environ. Entomol. 35, 379–386 (2006).Article
Google Scholar
16.Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).Article
Google Scholar
17.Diamond, S. E. Contemporary climate-driven range shifts: Putting evolution back on the table. Funct. Ecol. 32, 1652–1665 (2018).Article
Google Scholar
18.Andrew, N. R. et al. Assessing insect responses to climate change: What are we testing for? Where should we be heading?. PeerJ 1, e11 (2013).PubMed
PubMed Central
Article
Google Scholar
19.Jalali, M. A., Tirry, L. & De Clercq, P. Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. Biocontrol 55, 261–269 (2010).Article
Google Scholar
20.Moezipour, M., Kafil, M. & Allahyari, H. Functional response of Trichogramma brassicae at different temperatures and relative humidities. Bull. Insectol. 61, 245–250 (2008).
Google Scholar
21.Effect of temperature. Clercq, D. Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas)(Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hübner) (Lep., Noctuidae). J. Appl. Entomol. 125, 131–134 (2001).Article
Google Scholar
22.Da Silva Nunes, G. et al. Temperature-dependent functional response of Euborellia annulipes (Dermaptera: Anisolabididae) preying on Plutella xylostella (Lepidoptera: Plutellidae) larvae. J. Therm. Biol. 93, 102686 (2020).PubMed
Article
CAS
PubMed Central
Google Scholar
23.Işikber, A. A. Functional response of two coccinellid predators, Scymnus levaillanti and Cycloneda sanguinea, to the cotton aphid, Aphis gossypii. Turk. J. Agric. For. 29, 347–355 (2005).
Google Scholar
24.Walker, R., Wilder, S. M. & González, A. L. Temperature dependency of predation: Increased killing rates and prey mass consumption by predators with warming. Ecol. Evol. 10, 9696–9706 (2020).PubMed
PubMed Central
Article
Google Scholar
25.Davidson, A. T., Hamman, E. A., McCoy, M. W. & Vonesh, J. R. Asymmetrical effects of temperature on stage-structured predator–prey interactions. Funct. Ecol. 35, 1041–1054 (2021).Article
Google Scholar
26.Murrell, E. G. & Barton, B. T. Warming alters prey density and biological control in conventional and organic agricultural systems. Integr. Comp. Biol. 57, 1–13 (2017).PubMed
Article
PubMed Central
Google Scholar
27.Damien, M. & Tougeron, K. Prey–predator phenological mismatch under climate change. Curr. Opin. Insect. Sci. 35, 60–68 (2019).PubMed
Article
PubMed Central
Google Scholar
28.Daugaard, U., Petchey, O. L. & Pennekamp, F. Warming can destabilize predator–prey interactions by shifting the functional response from Type III to Type II. J. Anim. Ecol. 88, 1575–1586 (2019).PubMed
Article
PubMed Central
Google Scholar
29.Thomas, C. A list of the species of the tribe Aphidini, family Aphidae, found in the United States, which have been heretofore named, with descriptions of some new species. Bull. Ill. Nat. Hist. Surv. 1, 3–16 (1878).Article
Google Scholar
30.Elbakidze, L., Lu, L. & Eigenbrode, S. Evaluating vector-virus-yield interactions for peas and lentils under climatic variability: A limited dependent variable analysis. J. Agric. Resour. Econ. 36, 504–520 (2011).
Google Scholar
31.Aznar-Fernández, T., Cimmino, A., Masi, M., Rubiales, D. & Evidente, A. Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid (Acyrthosiphon pisum) as potential biocontrol strategy. Nat. Prod. Res. 33, 2471–2479 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
32.Holman, J. Host Plant Catalogue of Aphids (Springer, Berlin, 2009).Book
Google Scholar
33.Sandhi, R. K. & Reddy, G. V. Biology, ecology, and management strategies for pea aphid (Hemiptera: Aphididae) in pulse crops. J. Integr. Pest Manag. 11, 18 (2020).Article
Google Scholar
34.Anuj, B. Efficacy and economics of some insecticides and a neem formulation on incidence of pea aphid (Acyrthosiphum pisum) on pea, Pisum sativum. Ann. Plant. Protect. Sci. 4, 131–133 (1996).
Google Scholar
35.Slusher, E. K., Cottrell, T. & Acebes-Doria, A. L. Effects of aphicides on pecan aphids and their parasitoids in pecan orchards. Insects 12, 241 (2021).PubMed
PubMed Central
Article
Google Scholar
36.Soleimani, S. & Madadi, H. Seasonal dynamics of: The pea aphid, Acyrthosiphon pisum (Harris), its natural enemies the seven spotted lady beetle Coccinella septempunctata Linnaeus and variegated lady beetle Hippodamia variegata Goeze, and their parasitoid Dinocampus coccinellae (Schrank). J. Plant Prot. Res. 55, 2015 (2015).Article
CAS
Google Scholar
37.Roy, H. E. et al. The harlequin ladybird, Harmonia axyridis: Global perspectives on invasion history and ecology. Biol. Invasions 18, 997–1044 (2016).Article
Google Scholar
38.Roy, H., Brown, P. & Majerus, M. In: An ecological and societal approach to biological control (eds. Hokkanen H and Eilenberg J) 295–309 (Kluwer Academic Publishers), Springer, (2006).39.Rasheed, M. A. et al. Lethal and sublethal effects of chlorpyrifos on biological traits and feeding of the aphidophagous predator Harmonia axyridis. Insects 11, 491 (2020).PubMed Central
Article
Google Scholar
40.Gao, G., Liu, S., Feng, L., Wang, Y. & Lu, Z. Effect of temperature on predation by Harmonia axyridis (Pall.)(Coleoptera: Coccinellidae) on the walnut aphids Chromaphis juglandicola Kalt. and Panaphis juglandis (Goeze). Egypt. J. Biol. Pest Control 30, 1–6 (2020).Article
Google Scholar
41.Islam, Y. et al. Temperature-dependent functional response of Harmonia axyridis (Coleoptera: Coccinellidae) on the eggs of Spodoptera litura (Lepidoptera: Noctuidae) in laboratory. Insects 11, 583 (2020).PubMed Central
Article
Google Scholar
42.Ge, Y. et al. Different predation capacities and mechanisms of Harmonia axyridis (Coleoptera: Coccinellidae) on two morphotypes of pear psylla Cacopsylla chinensis (Hemiptera: Psyllidae). PLoS ONE 14, e0215834 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Ünlü, A. G., Terlau, J. F. & Bucher, R. Predation and avoidance behavior of the pea aphid Acyrthosiphon pisum confronted with native and invasive lady beetles in Europe. Biol. Invasions 2020, 1–10 (2020).
Google Scholar
44.Shah, M. A. & Khan, A. Functional response-a function of predator and prey species. The Bioscan 8, 751–758 (2013).
Google Scholar
45.Moradi, M., Hassanpour, M., Fathi, S. A. A. & Golizadeh, A. Foraging behaviour of Scymnus syriacus (Coleoptera: Coccinellidae) provided with Aphis spiraecola and Aphis gossypii (Hemiptera: Aphididae) as prey: Functional response and prey preference. Eur. J. Entomol. 117, 83–92 (2020).Article
Google Scholar
46.Sinclair, B. J., Williams, C. M. & Terblanche, J. S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 85, 594–606 (2012).PubMed
Article
PubMed Central
Google Scholar
47.Noman, Q. M., Shah, F. M., Mahmood, K. & Razaq, M. Population dynamics of Tephritid fruit flies in citrus and mango orchards of Multan, Southern Punjab, Pakistan. https://doi.org/10.17582/journal.pjz/20191021181023 (2021).48.Logan, J. D., Wolesensky, W. & Joern, A. Temperature-dependent phenology and predation in arthropod systems. Ecol. modell. 196, 471–482 (2006).Article
Google Scholar
49.Uiterwaal, S. F. & DeLong, J. P. Functional responses are maximized at intermediate temperatures. Ecology 101, e02975 (2020).PubMed
Article
PubMed Central
Google Scholar
50.Wale, M., Jembere, B. & Seyoum, E. Biology of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on cool-season legumes. Int. J. Trop. Insect. Sci. 20, 171–180 (2000).Article
Google Scholar
51.Seyfollahi, F., Esfandiari, M., Mossadegh, M. & Rasekh, A. Functional response of Hyperaspis polita (Coleoptera, Coccinellidae) to the recently invaded mealybug Phenacoccus solenopsis (Hemiptera, Pseudococcidae). Neotrop. Entomol. 48, 484–495 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
52.Katsarou, I., Margaritopoulos, J. T., Tsitsipis, J. A., Perdikis, D. C. & Zarpas, K. D. Effect of temperature on development, growth and feeding of Coccinella septempunctata and Hippodamia convergens reared on the tobacco aphid, Myzus persicae nicotianae. Biocontrol 50, 565–588 (2005).Article
Google Scholar
53.Koehler, H. Predatory mites (Gamasina, Mesostigmata). Agric. Ecosyst. Environ. 74, 395–410 (1999).Article
Google Scholar
54.Farhadi, R., Allahyari, H. & Juliano, S. A. Functional response of larval and adult stages of Hippodamia variegata (Coleoptera: Coccinellidae) to different densities of Aphis fabae (Hemiptera: Aphididae). Environ. Entomol. 39, 1586–1592 (2010).PubMed
Article
PubMed Central
Google Scholar
55.Aqueel, M. & Leather, S. Nitrogen fertiliser affects the functional response and prey consumption of Harmonia axyridis (Coleoptera: Coccinellidae) feeding on cereal aphids. Ann. Appl. Biol. 160, 6–15 (2012).CAS
Article
Google Scholar
56.Koch, R. L., Hutchison, W. D., Venette, R. & Heimpel, G. E. Susceptibility of immature monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 28, 265–270 (2003).Article
Google Scholar
57.He, J., Ma, E., Shen, Y., Chen, W. & Sun, X. Observations of the biological characteristics of Harmonia axyridis (Pallas)(Coleoptera: Coccinellidae). J. Shanghai Agric. College 12, 119–124 (1994).
Google Scholar
58.Huang, Z. et al. Predation and functional response of the multi-coloured Asian ladybeetle Harmonia axyridis on the adult Asian citrus psyllid Diaphorina citri. Biocontrol Sci. Technol. 29, 293–307 (2019).Article
Google Scholar
59.Lee, J.-H. & Kang, T.-J. Functional response of Harmonia axyridis (Pallas)(Coleoptera: Coccinellidae) to Aphis gossypii Glover (Homoptera: aphididae) in the laboratory. Biol. Control 31, 306–310 (2004).Article
Google Scholar
60.Xue, Y. et al. Predation by Coccinella septempunctata and Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Homoptera: Aphididae). Environ. Entomol. 38, 708–714 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Obrycki, J. J. & Kring, T. J. Predaceous Coccinellidae in biological control. Annu. Rev. Entomol. 43, 295–321 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Feng, Y., Zhou, Z.-X., An, M.-R., Yu, X.-L. & Liu, T.-X. The effects of prey distribution and digestion on functional response of Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 124, 74–81 (2018).Article
Google Scholar
63.Dai, C. et al. Can contamination by major systemic insecticides affect the voracity of the harlequin ladybird?. Chemosphere 256, 126986 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
64.Qin, D. et al. Treating green pea aphids, Myzus persicae, with azadirachtin affects the predatory ability and protective enzyme activity of harlequin ladybirds. Harmonia axyridis. Ecotoxicol. Environ. Saf. 212, 111984 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Shah, F. M., Razaq, M., Ali, A., Han, P. & Chen, J. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan. PLoS ONE 12, e0184639 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
66.Shah, F. M. et al. Action threshold development in cabbage pest management using synthetic and botanical insecticides. Entomol. Gen. 40, 157–172 (2020).Article
Google Scholar
67.Shah, F. M. et al. Field evaluation of synthetic and neem-derived alternative insecticides in developing action thresholds against cauliflower pests. Sci. Rep. 9, 7684 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
68.Naeem, A. et al. Laboratory induced selection of pyriproxyfen resistance in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae): Cross-resistance potential, realized heritability, and fitness costs determination using age-stage, two-sex life table. Chemosphere 269, 129367. https://doi.org/10.1016/j.chemosphere.122020.129367 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
69.Rix, R. & Cutler, G. Low Doses of a Neonicotinoid stimulate reproduction in a beneficial predatory insect. J. Econ. Entomol. 113, 2179–2186 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
70.Atlıhan, R. & Güldal, H. Prey density-dependent feeding activity and life history of Scymnus subvillosus. Phytoparasitica 37, 35–41 (2009).Article
Google Scholar
71.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article
Google Scholar
72.Vucic-Pestic, O., Ehnes, R. B., Rall, B. C. & Brose, U. Warming up the system: Higher predator feeding rates but lower energetic efficiencies. Glob. Change Biol. 17, 1301–1310 (2011).ADS
Article
Google Scholar
73.Lang, B., Rall, B. C. & Brose, U. Warming effects on consumption and intraspecific interference competition depend on predator metabolism. J. Anim. Ecol. 81, 516–523 (2012).PubMed
Article
PubMed Central
Google Scholar
74.Wu, P., Zhang, J., Haseeb, M., Yan, S. & Kanga, L. Functional responses and intraspecific competition in the ladybird Harmonia axyridis (Coleoptera: Coccinellidae) provided with Melanaphis sacchari (Homoptera: Aphididae) as prey. Eur. J. Entomol. 115, 232–241 (2018).Article
Google Scholar
75.Hodek, I., van Emden, H. F. & Honěk, A. Diapause/dormancy. Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley Blackwell, Chichester, (2012).76.Li, Y. et al. The effect of different dietary sugars on the development and fecundity of Harmonia axyridis. Front. Physiol. 11, 574851 (2020).PubMed
PubMed Central
Article
Google Scholar
77.Sharma, P., Verma, S., Chandel, R., Shah, M. & Gavkare, O. Functional response of Harmonia dimidiata (fab.) to melon aphid, Aphis gossypii Glover under laboratory conditions. Phytoparasitica 45, 373–379 (2017).Article
Google Scholar
78.Feng, Y. et al. Conspecific and heterospecific interactions modify the functional response of Harmonia axyridis and Propylea japonica to Aphis citricola. Entomol. Exp. Appl. 166, 873–882 (2018).CAS
Article
Google Scholar
79.Hassanzadeh-Avval, M., Sadeghi-Namaghi, H. & Fekrat, L. Factors influencing functional response, handling time and searching efficiency of Anthocoris minki Dohrn (Hem.: Anthocoridae) as predator of Psyllopsis repens Loginova (Hem.: Psyllidae). Phytoparasitica 47, 341–350 (2019).Article
Google Scholar
80.Banihashemi, A. S., Seraj, A. A., Yarahmadi, F. & Rajabpour, A. Effect of host plants on predation, prey preference and switching behaviour of Orius albidipennis on Bemisia tabaci and Tetranychus turkestani. Int. J. Trop. Insect Sci. 37, 176–182 (2017).Article
Google Scholar
81.Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).CAS
Article
Google Scholar
82.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2014).83.Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369–383 (1972).Article
Google Scholar
84.Pritchard, D. W., Paterson, R., Bovy, H. C. & Barrios-O’Neill, D. Frair: An R package for fitting and comparing consumer functional responses. Methods Ecol. Evol. 8, 1528–1534 (2017).Article
Google Scholar
85.Hassell, M. The spatial and temporal dynamics of host-parasitoid interactions (Oxford University Press, 2000).
Google Scholar More