Behavior and body size modulate the defense of toxin-containing sawfly larvae against ants
1.Evans, D. L. & Schmidt, J. O. Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators (State University of New York Press, Albany, 1990).
Google Scholar
2.Callow, L. L. Sawfly poisoning in cattle. Queensl. Agric. J. 81, 155–161 (1955).
Google Scholar
3.Oelrichs, P. B., MacLeod, J. K. & Williams, D. H. Lophyrotomin a new hepatotoxic octapeptide from sawfly larvae Lophyrotoma interrupta. Toxicon 21(Suppl.3), 321–323 (1983).Article
Google Scholar
4.Oelrichs, P. B. et al. Unique toxic peptides isolated from sawfly larvae in three continents. Toxicon 37, 537–544 (1999).CAS
PubMed
Article
Google Scholar
5.Dutra, F., Riet-Correa, F., Mendez, M. C. & Paiva, N. Poisoning of cattle and sheep in Uruguay by sawfly (Perreyia flavipes) larvae. Vet. Hum. Toxicol. 39, 281–286 (1997).CAS
PubMed
Google Scholar
6.Kannan, R., Oelrichs, P. B., Thamsborg, S. M. & Williams, D. H. Identification of the octapeptide lophyrotomin in the European birch sawfly (Arge pullata). Toxicon 26, 224–226 (1988).CAS
PubMed
Article
Google Scholar
7.Tessele, B., Brum, J. S., Schild, A. L., Soares, M. P. & Barros, C. S. L. Sawfly larval poisoning in cattle: Report on new outbreaks and brief review of the literature. Pesqui. Vet. Bras. 32, 1095–1102 (2012).Article
Google Scholar
8.Wouters, A. T. B. et al. Brain lesions associated with acute toxic hepatopathy in cattle. J. Vet. Diagn. Investig. 29, 287–292 (2017).Article
Google Scholar
9.Boevé, J.-L., Rozenberg, R., Shinohara, A. & Schmidt, S. Toxic peptides occur frequently in pergid and argid sawfly larvae. PLoS One 9(8), e105301 (2014).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
10.Boevé, J.-L., Nyman, T., Shinohara, A. & Schmidt, S. Endogenous toxins and the coupling of gregariousness to conspicuousness in Argidae and Pergidae sawflies. Sci. Rep. 8, 17636 (2018).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
11.Boevé, J.-L. & Rozenberg, R. Body distribution of toxic peptides in larvae of a pergid and an argid sawfly species. Sci. Nat. 107, 1 (2020).Article
CAS
Google Scholar
12.Maxwell, D. E. The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta). Can. Entomol. 87, 1–132 (1955).Article
Google Scholar
13.Morrow, P. A., Bellas, T. E. & Eisner, T. Eucalyptus oils in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae). Oecologia 24, 193–206 (1976).CAS
PubMed
Article
ADS
Google Scholar
14.Schmidt, S., McKinnon, A. E., Moore, C. J. & Walter, G. H. Chemical detoxification vs mechanical removal of host plant toxins in Eucalyptus feeding sawfly larvae (Hymenoptera: Pergidae). J. Insect Physiol. 56, 1770–1776 (2010).CAS
PubMed
Article
Google Scholar
15.Lorenz, H. & Kraus, M. Die Larvalsystematik der Blattwespen (Tenthredinoidea und Megalodontoidea) (Akademie-Verlag, Berlin, 1957).
Google Scholar
16.Schmidt, S., Walter, G. H., Grigg, J. & Moore, C. J. Sexual communication and host plant associations of Australian pergid sawflies (Hymenoptera: Symphyta: Pergidae). In Recent Sawfly Research: Synthesis and Prospects (eds Blank, S. M. et al.) 173–193 (Goecke & Evers, Krefeld, 2006).
Google Scholar
17.Petre, C.-A., Detrain, C. & Boevé, J.-L. Anti-predator defence mechanisms in sawfly larvae of Arge (Hymenoptera, Argidae). J. Insect Physiol. 53, 668–675 (2007).CAS
PubMed
Article
Google Scholar
18.Boevé, J.-L., Marín-Armijos, D. S., Domínguez, D. F. & Smith, D. R. Sawflies (Hymenoptera: Argidae, Pergidae, Tenthredinidae) from southern Ecuador, with a new record for the country and some ecological data. J. Hymenopt. Res. 51, 55–89 (2016).Article
Google Scholar
19.Shinohara, A., Hara, H. & Kim, J. The species-group of Arge captiva (Insecta, Hymenoptera, Argidae). Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 35, 249–278 (2009).
Google Scholar
20.Hara, H. & Shinohara, A. Arge enkianthus n. sp. (Hymenoptera, Argidae) feeding on Enkianthus campanulatus in Japan. Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 38, 21–32 (2012).
Google Scholar
21.Shinohara, A., Kojima, H. & Hara, H. New host plant records and life history notes on Spinarge flavicostalis (Hymenoptera: Argidae) in Japan. Bull. Natl. Museum Nat. Sci. Ser. A (Zoology) Tokyo 39, 185–191 (2013).
Google Scholar
22.Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack. The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry (Oxford University Press, Oxford, 2004).Book
Google Scholar
23.Boevé, J.-L., Blank, S. M., Meijer, G. & Nyman, T. Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies. BMC Evol. Biol. 13, 198 (2013).PubMed
PubMed Central
Article
Google Scholar
24.Benson, R. B. An introduction to the natural history of British sawflies. Trans. Soc. Br. Entomol. 10, 45–142 (1950).
Google Scholar
25.Codella, S. G. & Raffa, K. F. Defense strategies of folivorous sawflies. In Sawfly Life History Adaptations to Woody Plants (eds Wagner, M. & Raffa, K. F.) 261–294 (Academic Press, Cambridge, 1993).
Google Scholar
26.Schwerdtfeger, F. Untersuchungen über die Wirkung von Ameisen-Ansiedlungen auf die Dichte der Kleinen Fichtenblattwespe. Z. Angew. Entomol. 66, 187–206 (1970).
Google Scholar
27.Woodman, R. L. & Price, P. W. Differential larval predation by ants can influence willow sawfly community structure. Ecology 73, 1028–1037 (1992).Article
Google Scholar
28.Boevé, J.-L. & Schaffner, U. Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134, 104–111 (2003).PubMed
Article
ADS
Google Scholar
29.Dettner, K. Toxins, defensive compounds and drugs from insects. In Insect Molecular Biology and Ecology (ed. Hoffmann, K. H.) 39–93 (Taylor & Francis, Boca Raton, 2015).
Google Scholar
30.Taeger, A., Blank, S. M. & Liston, A. D. World Catalog of Symphyta (Hymenoptera). Zootaxa 2580, 1–1064 (2010).Article
Google Scholar
31.Boevé, J.-L. & Rozenberg, R. Berberis sawfly contains toxic peptides not only at larval stage. Sci. Nat. 106, 14 (2019).Article
CAS
Google Scholar
32.Schoenly, K. The predators of insects. Ecol. Entomol. 15, 333–345 (1990).Article
Google Scholar
33.Way, M. J. & Khoo, K. C. Role of ants in pest managment. Annu. Rev. Entomol. 37, 479–503 (1992).Article
Google Scholar
34.Dyer, L. A. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata. J. Insect Sci. 2, 18 (2002).PubMed
PubMed Central
Article
Google Scholar
35.Jervis, M. & Kidd, N. Insect Natural Enemies. Practical Approaches to their Study and Evaluation (Chapman & Hall, London, 1996).Book
Google Scholar
36.Philpott, S. M., Greenberg, R., Bichier, P. & Perfecto, I. Impacts of major predators on tropical agroforest arthropods: Comparisons within and across taxa. Oecologia 140, 140–149 (2004).PubMed
Article
ADS
Google Scholar
37.Rosumek, F. B. et al. Ants on plants: A meta-analysis of the role of ants as plant biotic defenses. Oecologia 160, 537–549 (2009).PubMed
Article
ADS
PubMed Central
Google Scholar
38.Fittkau, E. J. & Klinge, H. On biomass and trophic structure of the Central Amazonian rain forest ecosystem. Biotropica 5, 2–14 (1973).Article
Google Scholar
39.Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Harvard, 1990).Book
Google Scholar
40.Ryder Wilkie, K. T., Mertl, A. L. & Traniello, J. F. A. Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS One 5, e13146 (2010).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
41.Wills, B. D. & Landis, D. A. The role of ants in north temperate grasslands: A review. Oecologia 186, 323–338 (2018).CAS
PubMed
Article
ADS
Google Scholar
42.Pasteels, J. M., Grégoire, J.-C. & Rowell-Rahier, M. The chemical ecology of defense in arthropods. Annu. Rev. Entomol. 28, 263–289 (1983).CAS
Article
Google Scholar
43.Whitman, D. W., Blum, M. R. & Alsop, D. W. Allomones: Chemicals for defense. In Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 289–351 (State University of New York Press, Albany, 1990).
Google Scholar
44.Eisner, T., Eisner, M. & Siegler, M. Secret Weapons: Defenses of Insects, Spiders, Scorpions, and other Many-Legged Creatures (Harvard University Press, Harvard, 2005).
Google Scholar
45.Morton, T. C. & Vencl, F. V. Larval beetles form a defense from recycled host-plant chemicals discharged as fecal wastes. J. Chem. Ecol. 24, 765–785 (1998).CAS
Article
Google Scholar
46.Zhang, S. et al. A novel property of spider silk: Chemical defence against ants. Proc. R. Soc. B Biol. Sci. 279, 1824–1830 (2011).Article
CAS
Google Scholar
47.Hilker, M. Protective devices of early developmental stages in Pyrrhalta viburni (Coleoptera, Chrysomelidae). Oecologia 92, 71–75 (1992).PubMed
Article
ADS
PubMed Central
Google Scholar
48.Gross, J., Eben, A., Müller, I. & Wensing, A. A well protected intruder: The effective antimicrobial defense of the invasive ladybird Harmonia axyridis. J. Chem. Ecol. 36, 1180–1188 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Gentry, G. L. & Dyer, L. A. On the conditional nature of Neotropical caterpillar defenses against their natural enemies. Ecology 83, 3108–3119 (2009).Article
Google Scholar
50.Rojas, B. et al. How to fight multiple enemies: Target-specific chemical defences in an aposematic moth. Proc. R. Soc. B Biol. Sci. 284, 20171424 (2017).Article
Google Scholar
51.Boevé, J.-L. & Pasteels, J. M. Modes of defense in nematine sawfly larvae. Efficiency against ants and birds. J. Chem. Ecol. 11, 1019–1036 (1985).PubMed
Article
Google Scholar
52.Schaffner, U., Boevé, J.-L., Gfeller, H. & Schlunegger, U. P. Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J. Chem. Ecol. 20, 3233–3250 (1994).CAS
PubMed
Article
Google Scholar
53.Boevé, J.-L. Some sawfly larvae survive predator-prey interactions with pentatomid Picromerus bidens. Sci. Nat. 108, 8 (2021).Article
CAS
Google Scholar
54.Remmel, T., Davison, J. & Tammaru, T. Quantifying predation on folivorous insect larvae: The perspective of life-history evolution. Biol. J. Linn. Soc. 104, 1–18 (2011).Article
Google Scholar
55.Verhaagh, M. „Parasitierung” einer Ameisen-Pflanzen-Symbiose in neotropischen Regenwald? Carolinea 46, 150 (1988).
Google Scholar
56.Boevé, J.-L. & Heilporn, S. Secretion of the ventral glands in Craesus sawfly larvae. Biochem. Syst. Ecol. 36, 836–841 (2008).Article
CAS
Google Scholar
57.Aili, S. R. et al. Diversity of peptide toxins from stinging ant venoms. Toxicon 92, 166–178 (2014).CAS
PubMed
Article
Google Scholar
58.Boevé, J.-L. & Müller, C. Defence effectiveness of easy bleeding sawfly larvae towards invertebrate and avian predators. Chemoecology 15, 51–58 (2005).Article
CAS
Google Scholar
59.Chevin, H. Notes sur les Hyménoptères Tenthredoides. 2. Identification des larves d’Arge pagana (Panz.) et d’Arge ochropa (Gmel.). Bull. Mens. la Société Linnéenne Lyon 1, 2–5 (1972).Article
Google Scholar
60.Schmidt, S. & Smith, D. R. Pergidae of the World – An online catalogue of the sawfly family Pergidae (Insecta, Hymenoptera, Symphyta). World Wide Web electronic publication (2018). Available at: http://pergidae.snsb-zsm.de. (Accessed: 25th July 2016)61.Olofsson, E. Predation by Formica polyctena Förster (Hym., Formicidae) on newly emerged larvae of Neodiprion sertifer (Geoffroy) (Hym., Diprionidae). J. Appl. Entomol. 114, 315–319 (1992).Article
Google Scholar
62.Hughes, L., Westoby, M. & Jurado, E. Convergence of elaiosomes and insect prey: Evidence from ant foraging behaviour and fatty acid composition. Funct. Ecol. 8, 358–365 (1994).Article
Google Scholar More