More stories

  • in

    The young and the vestless

    1.Walcott, C. D. Smithson. Misc. Collect. 57, 17–40 (1911).
    Google Scholar 
    2.Sepkoski, J. J. Jr. Paleobiology 10, 246–267 (1984).Article 

    Google Scholar 
    3.Hughes, N. C. Curr. Sci. 110, 774–775 (2016).
    Google Scholar 
    4.Kühl, G., Briggs, D. E. G. & Rust, J. Science 323, 771–773 (2009).Article 

    Google Scholar 
    5.Moysiuk, J., Smith, M. R. & Caron, J.-B. Nature 541, 394–397 (2017).CAS 
    Article 

    Google Scholar 
    6.Yang, X. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01490-4 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Sánchez, M. Embryos in Deep Time (Univ. California Press, 2012).8.Fusco, G., Hong, P. S. & Hughes, N. C. Proc. R. Soc. Lond. B 281, 20133037 (2014).
    Google Scholar 
    9.Hughes, N. C., Hong, P. S., Hou, J. & Fusco, G. Front. Ecol. Evol. 5, 37 (2017).Article 

    Google Scholar 
    10.Hopkins, M. J. Pap. Palaeontol. 7, 985–1002 (2020).Article 

    Google Scholar 
    11.Moczek, A. P. et al. Evol. Dev. 17, 198–219 (2015).Article 

    Google Scholar 
    12.Walossek, D. & Müller, K. J. Lethaia 23, 409–427 (1990).Article 

    Google Scholar 
    13.Fu, D., Ortega-Hernández, J., Daley, A. C., Zhang, X. & Shu, D. BMC Evol. Biol. 18, 147 (2018).Article 

    Google Scholar 
    14.Hughes, N. C., Kříž, J., MacQuaker, J. H. S. & Huff, W. D. Bull. Geosci. 89, 219–238 (2014).Article 

    Google Scholar 
    15.Hartnoll, R. G. & Bryant, A. D. J. Crustac. Biol 10, 14–19 (1990).Article 

    Google Scholar 
    16.Minelli, A. & Fusco, G. Evolving Pathways–Key Themes in Evolutionary Developmental Biology (Cambridge Univ. Press, 2008). More

  • in

    Leaf morphology and chlorophyll fluorescence characteristics of mulberry seedlings under waterlogging stress

    Effects of waterlogging stress on leaf morphology in mulberry seedlingsFigure 1 shows the change in the leaf morphology of mulberry seedlings under different submergence depths. The results showed that the seedlings under both SS and HS could grow well, and there were 3 slightly wilted leaves on average under FS. There were 3 wilted leaves and 2 defoliated leaves on average in the HS group after 10 days of flooding, and a few adventitious roots began to appear at the base of the stem. In the SS group, there slight wilting and falling of mulberry leaves were observed on the 15th day after submergence, and there were 5 wilting leaves and a few adventitious roots per plant. In the SS group, there were 3 defoliated leaves and 2 wilted leaves per mulberry seedling, and no adventitious roots developed. The HS group showed an average of 7 adventitious roots per plant. Additionally, there were 8 wilted leaves, 10 defoliated leaves and 4 brown spots per plant under HS.Figure 1Effect of submergence stress on leaf morphology in Morus alba: (a) The number of curled or wilted leaves per plant; (b) The number of brown spots or rotten leaves per plant; (c) The number of fallen leaves per plant; (d) The number of adventitious roots. This figure was drawn using Origin Pro 2021 v. 9.8.0.200.Full size imageEffects of waterlogging stress on initial fluorescence (Fo), and maximum fluorescence (Fm) under dark adaptation in mulberry leavesThe initial fluorescence value (Fo) and the maximum fluorescence value (Fm) of mulberry seedlings significantly decreased over time. Figure 2a shows that the Fo values of mulberry seedlings under SS, HS, and FS decreased by 31.27%, 22.51%, and 42.45%, respectively, on day 4 and were significantly different (p  More

  • in

    No support for carbon storage of >1,000 GtC in northern peatlands

    1.Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).Article 

    Google Scholar 
    2.Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    3.Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).Article 

    Google Scholar 
    4.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).Article 

    Google Scholar 
    5.Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present day soils. Nature 560, 219–222 (2019).Article 

    Google Scholar 
    6.Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).Article 

    Google Scholar 
    7.Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–921 (2019).Article 

    Google Scholar 
    8.Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan‐Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosciences 121, 78–94 (2016).Article 

    Google Scholar 
    9.Nichols, J. E. et al. A probabilistic method of assessing carbon accumulation rate at Imnavait Creek Peatland, Arctic Long Term Ecological Research Station, Alaska. J. Quat. Sci. 32, 579–586 (2017).Article 

    Google Scholar 
    10.Joos, D. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).Article 

    Google Scholar 
    11.Elsig, J. et al. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461, 507–510 (2009).Article 

    Google Scholar 
    12.Menviel, L. & Joos, F. Toward explaining the Holocene carbon dioxide and carbon isotope records: results from transient ocean carbon cycle-climate simulations. Paleoceanography 27, PA1207 (2012).Article 

    Google Scholar 
    13.Stocker, B. D., Yu, Z., Massa, C. & Joos, F. Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proc. Natl Acad. Sci. USA 114, 1492–1497 (2017).Article 

    Google Scholar 
    14.Tschumi, T., Joos, F., Gehlen, M. & Heinze, C. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise. Clim. Past 7, 771–800 (2011).Article 

    Google Scholar 
    15.Yu, J., Anderson, R. F. & Rohling, E. J. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes. Oceanography 27, 16–25 (2014).Article 

    Google Scholar 
    16.Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).17.Monnin, E. et al. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet. Sci. Lett. 224, 45–54 (2004).18.Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711–714 (2012).19.Peterson, C. D. & Lisiecki, L. E. Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka). Clim. Past 14, 1229–1252 (2018).20.Lisiecki, L. E., Raymo, M. E. & Curry, W. B. Atlantic overturning responses to Late Pleistocene climate forcings. Nature 456, 85-88 (2008).21.Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).Article 

    Google Scholar  More

  • in

    Lateral expansion of northern peatlands calls into question a 1,055 GtC estimate of carbon storage

    1.Loisel, J. et al. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Sci. Rev. 165, 59–80 (2017).Article 

    Google Scholar 
    2.Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–922 (2019).Article 

    Google Scholar 
    3.Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    4.Ruppel, M., Väliranta, M., Virtanen, T. & Korhola, A. Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. Holocene 23, 1596–1606 (2013).Article 

    Google Scholar 
    5.Ireland, A. W., Booth, R. K., Hotchkiss, S. C. & Schmitz, J. E. A comparative study of within-basin and regional peatland development: implications for peatland carbon dynamics. Quat. Sci. Rev. 61, 85–95 (2013).Article 

    Google Scholar 
    6.Almquist-Jacobson, H. & Foster, D. R. Toward an integrated model for raised-bog development: theory and field evidence. Ecology 76, 2503–2516 (1995).Article 

    Google Scholar 
    7.Loisel, J., Yu, Z., Parsekian, A., Nolan, J. & Slater, L. Quantifying landscape morphology influence on peatland lateral expansion using ground-penetrating radar (GPR) and peat core analysis. J. Geophys. Res. Biogeosciences 118, 373–384 (2013).Article 

    Google Scholar 
    8.Pluchon, N., Hugelius, G., Kuusinen, N. & Kuhry, P. Recent paludification rates and effects on total ecosystem carbon storage in two boreal peatlands of northeast European Russia. Holocene 24, 1126–1136 (2014).Article 

    Google Scholar 
    9.Gorham, E., Lehman, C., Dyke, A., Janssens, J. & Dyke, L. Temporal and spatial aspects of peatland initiation following deglaciation in North America. Quat. Sci. Rev. 26, 300–311 (2007).Article 

    Google Scholar 
    10.Malmström, C. Degerö Stormyr: en botanisk hydrologisk och utvecklingshistorisk undersokning av ett nordsvenskt myrkomplex no. 20 (Meddelanden fran Statens Skogsforsoksanstalt, 1923).11.Weckström, J., Seppä, H. & Korhola, A. Climatic influence on peatland formation and lateral expansion in sub-Arctic Fennoscandia. Boreas 39, 761–769 (2010).Article 

    Google Scholar 
    12.Joosten, H. The Global Peatland CO2 Picture: Peatland Status and Emissions in All Countries of the World (Wetlands International, 2009).13.Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).Article 

    Google Scholar 
    14.Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).Article 

    Google Scholar 
    15.Reyes, A. V. & Cooke, C. A. Northern peatland initiation lagged abrupt increases in deglacial atmospheric CH4. Proc. Natl Acad. Sci. USA 108, 4748–4753 (2011).Article 

    Google Scholar 
    16.Gorham, E., Lehman, C., Dyke, A., Clymo, D. & Janssens, J. Long-term carbon sequestration in North American peatlands. Quat. Sci. Rev. 58, 77–82 (2012).Article 

    Google Scholar  More

  • in

    Invasive Burmese pythons alter host use and virus infection in the vector of a zoonotic virus

    1.Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasions 11, 21–45 (2009).Article 

    Google Scholar 
    2.Kimbro, D. L. et al. Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades. Oecologia 160, 563–575 (2009).PubMed 
    Article 

    Google Scholar 
    3.Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Russell, J. C. In Seabird Islands: Ecology, Invasion, and Restoration (eds Mulder, C. P., Anderson, W. B., Towns, D. R. & Bellingham, P. J.) Ch. 9 (Oxford Univ. Press, 2011).5.Allan, B. F. et al. Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc. Natl Acad. Sci. USA 107, 18523–18527 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Young, H. S., Parker, I. M., Gilbert, G. S., Guerra, A. S. & Nunn, C. L. Introduced species, disease ecology, and biodiversity–disease relationships. Trends Ecol. Evol. 32, 41–54 (2017).PubMed 
    Article 

    Google Scholar 
    7.Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Wood, C. L. et al. Does biodiversity protect humans against infectious disease? Ecology 95, 817–832 (2014).PubMed 
    Article 

    Google Scholar 
    9.LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl Acad. Sci. USA 100, 567–571 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Hamer, G. L. et al. Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission. PLoS ONE 6, e23767 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Schmidt, K. A. & Ostfeld, R. S. Biodiversity and the dilution effect in disease ecology. Ecology 82, 609–619 (2001).Article 

    Google Scholar 
    12.Murray, K. A. & Daszak, P. Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Curr. Opin. Virol. 3, 79–83 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl Acad. Sci. USA 109, 2418–2422 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.McCleery, R. A. et al. Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades. Proc. R. Soc. B Biol. Sci. 282, 20150120 (2015).Article 

    Google Scholar 
    15.Sovie, A. R., McCleery, R. A., Fletcher, R. J. & Hart, K. M. Invasive pythons, not anthropogenic stressors, explain the distribution of a keystone species. Biol. Invasions 18, 3309–3318 (2016).Article 

    Google Scholar 
    16.Reichert, B. E. et al. Urbanization may limit impacts of an invasive predator on native mammal diversity. Diversity Distrib. 23, 355–367 (2017).Article 

    Google Scholar 
    17.Willson, J. D. Indirect effects of invasive Burmese pythons on ecosystems in southern Florida. J. Appl. Ecol. 54, 1251–1258 (2017).Article 

    Google Scholar 
    18.Hoyer, I. J. et al. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease. Biol. Lett. 13, 20170353 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Edman, J. D. Host-feeding patterns of Florida mosquitoes (Diptera: Culicidae) VI. Culex (Melanoconion). J. Med. Entomol. 15, 521–525 (1979).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Chamberlain, R. et al. Arbovirus studies in south Florida, with emphasis on Venezuelan equine encephalomyelitis virus. Am. J. Epidem. 89, 197–210 (1969).CAS 
    Article 

    Google Scholar 
    21.Lord, R. D., Calisher, C. H., Sudia, W. D. & Work, T. H. Ecological investigations of vertebrate hosts of Venezuelan equine encephalomyelitis virus in south Florida. Am. J. Trop. Med. Hyg. 22, 116–123 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Bigler, W. J. Venezuelan encephalitis antibody studies in certain Florida wildlife. Bull. Wildl. Dis. Assoc. 5, 267–270 (1969).CAS 
    Article 

    Google Scholar 
    23.Bigler, W. J., Ventura, A. K., Lewis, A. L. & Ehrenkranz, N. Venezuelan equine encephalomyelitis in Florida: endemic virus circulation in native rodent populations of Everglades hammocks. Am. J. Trop. Med. Hyg. 23, 513–521 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Coffey, L. L. et al. Experimental Everglades virus infection of cotton rats (Sigmodon hispidus). Emerg. Infect. Dis. 10, 8 (2004).Article 

    Google Scholar 
    25.Weaver, S. C., Ferro, C., Barrera, R., Boshell, J. & Navarro, J. C. Venezuelan equine encephalitis. Ann. Rev. Entomol. 49, 141–174 (2004).CAS 
    Article 

    Google Scholar 
    26.Gonzalez, S. C. Documenting changes in mammal communities in the Northern Everglades. Southeast. Naturalist. 18, 619–629 (2019).Article 

    Google Scholar 
    27.Weaver, S. C., Scherer, W. F., Taylor, C. A., Castello, D. A. & Cupp, E. W. Laboratory vector competence of Culex (Melanoconion) cedecei for sympatric and allopatric Venezuelan equine encephalomyelitis viruses. Am. J. Trop. Med. Hyg. 35, 619–623 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Coffey, L. L. & Weaver, S. C. Susceptibility of Ochlerotatus taeniorhynchus and Culex nigripalpus for Everglades virus. Am. J. Trop. Med. Hyg. 73, 11–16 (2005).PubMed 
    Article 

    Google Scholar 
    29.Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).Article 

    Google Scholar 
    30.Brownstein, J. S., Skelly, D. K., Holford, T. R. & Fish, D. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146, 469–475 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Ann. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    32.Dorcas, M. E. & Willson, J. D. In Reptiles in Research: Investigations of Ecology, Physiology, and Behavior from Desert to Sea (ed Lutterschmidt, W. I.) Ch. 19 (Nova Science Publishers, 2013).33.Hoyer, I. J., Acevedo, C., Wiggins, K., Alto, B. W. & Burkett-Cadena, N. D. Patterns of abundance, host use, and Everglades virus infection in Culex (Melanoconion) cedecei mosquitoes, Florida, USA. Emerg. Infect. Dis. 25, 1093 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Burkett-Cadena, N. D., Hoyer, I., Blosser, E. & Reeves, L. Human-powered pop-up resting shelter for sampling cavity-resting mosquitoes. Acta Tropica 190, 288–292 (2019).PubMed 
    Article 

    Google Scholar 
    35.Chandler, R. B., Engebretsen, K., Cherry, M. J., Garrison, E. P. & Miller, K. V. Estimating recruitment from capture–recapture data by modelling spatio-temporal variation in birth and age-specific survival rates. Methods Ecol. Evol. 9, 2115–2130 (2018).Article 

    Google Scholar 
    36.Krebs, C. J. Ecological Methodology (Harper & Row, 1989).37.Oksanen, J. et al. Vegan: community ecology package (R package version 1.17-4, 2010).38.Blosser, E. M., Stenn, T., Acevedo, C. & Burkett-Cadena, N. D. Host use and seasonality of Culex (Melanoconion) iolambdis (Diptera: Culicidae) from eastern Florida, USA. Acta Tropica 164, 352–359 (2016).PubMed 
    Article 

    Google Scholar 
    39.Giry, C., Roquebert, B., Li-Pat-Yuen, G., Gasque, P. & Jaffar-Bandjee, M.-C. Improved detection of genus-specific Alphavirus using a generic TaqMan® assay. BMC Microbiol. 17, 164 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Chiang, C. L. & Reeves, W. C. Statistical estimation of virus infection rates in mosquito vector populations. Am. J. Hyg. 75, 377–391 (1962).CAS 
    PubMed 

    Google Scholar 
    41.Gu, W., Lampman, R. & Novak, R. J. Problems in estimating mosquito infection rates using minimum infection rate. J. Med. Entomol. 40, 595–596 (2003).PubMed 
    Article 

    Google Scholar 
    42.Biggerstaff, B. J. PooledInfRate, Version 4.0: a Microsoft Office Excel Add-In to computer prevalence estimates from pooled samples (ScienceOpen Inc., 2009).43.Biggerstaff, B. J. Confidence intervals for the difference of two proportions estimated from pooled samples. J. Agric. Biol. Environ. Stat. 13, 478–496 (2003).Article 

    Google Scholar 
    44.US Geological Survey. National Gap Analysis Program land cover data‐version 2 (2011).45.Hart, K. M. et al. Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3, 1–13 (2015).Article 

    Google Scholar 
    46.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    47.Zadrozny, B. Learning and evaluating classifiers under sample selection bias. In Proc. 21st International Conference on Machine Learning. (ed. Carla Brodley) 903–910 (Association for Computing Machinery, 2004).48.Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).Article 

    Google Scholar 
    49.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. (Springer, 2002).50.Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).Article 

    Google Scholar 
    51.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019).52.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).Article 

    Google Scholar 
    53.Spiess, A. N. & Ritz, C. qpcR: modelling and analysis of real-time PCR data (R Package Version 1.4-1, 2014).54.Bjornstad, O. N. ncf: spatial covariance functions. (R package Version 1.2-9, 2020).55.Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R² and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Hess, A. D. & Swartz, A. The forage ratio and its use in determining the food grade of streams. Progr. Fish.Culturist 7, 22–23 (1940).Article 

    Google Scholar 
    57.Hess, A. D., Hayes, R. O. & Tempelis, C. H. The use of the forage ratio technique in mosquito host preference studies. Mosq. N. 28, 386–389 (1968).
    Google Scholar  More

  • in

    Methane-dependent selenate reduction by a bacterial consortium

    1.Trotsenko YA, Murrell JC. Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol. 2008;63:183–229.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009;63:311–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Khmelenina VN, Murrell JC, Smith TJ, Trotsenko YA. Physiology and Biochemistry of the Aerobic Methanotrophs. In: Rojo F (editor) Aerobic Utilization of Hydrocarbons, Oils and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer; Cham; 2018;1–25. https://doi.org/10.1007/978-3-319-39782-5_4-1.4.Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun. 2013;4:2785.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov type strain FJG1. Environ Microbiol. 2015;17:3219–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Kits KD, Campbell DJ, Rosana AR, Stein LY. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol. 2015;6:1072.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Gilman A, Fu Y, Hendershott M, Chu F, Puri AW, Smith AL, et al. Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C. PeerJ. 2017;5:5.Article 
    CAS 

    Google Scholar 
    8.Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 2010;464:543–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Devol AH, Ahmed SI. Are high-rates of sulfate reduction associated with anaerobic oxidation of methane. Nature. 1981;291:407–8.CAS 
    Article 

    Google Scholar 
    10.Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000;407:623–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001;293:484–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Ettwig KF, Zhu BL, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA. 2016;113:12792–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Cai C, Leu AO, Xie GJ, Guo J, Feng Y, Zhao JX, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 2018;12:1929–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 2020;14:1030–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013;500:567–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Shi LD, Guo T, Lv PL, Niu ZF, Zhou YJ, Tang XJ, et al. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nat Geosci. 2020;13:799–805. -+Article 
    CAS 

    Google Scholar 
    17.Leu AO, McIlroy SJ, Ye J, Parks DH, Orphan VJ, Tyson GW. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family Methanoperedenaceae. Mbio 2020;11:11.Article 

    Google Scholar 
    18.Lemly AD. Aquatic selenium pollution is a global environmental safety issue. Ecotox Environ Safe. 2004;59:44–56.CAS 
    Article 

    Google Scholar 
    19.Simmons DBD, Wallschlager D. A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ Toxicol Chem. 2005;24:1331–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Reim A, Luke C, Krause S, Pratscher J, Frenzel P. One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. ISME J. 2012;6:2128–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Danilova OV, Suzina NE, Van De Kamp J, Svenning MM, Bodrossy L, Dedysh SN. A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME J. 2016;10:2734–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Smith GJ, Angle JC, Solden LM, Borton MA, Morin TH, Daly RA, et al. Members of the genus methylobacter are inferred to account for the majority of aerobic methane oxidation in oxic soils from a freshwater wetland. Mbio 2018;9:9.
    Google Scholar 
    23.Fernández-Martínez A, Charlet L. Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol. 2009;8:81–110.Article 
    CAS 

    Google Scholar 
    24.Chung J, Nerenberg R, Rittmann BE. Bioreduction of selenate using a hydrogen-based membrane biofilm reactor. Environ Sci Technol. 2006;40:1664–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Lai CY, Wen LL, Shi LD, Zhao KK, Wang YQ, Yang X, et al. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor. Environ Sci Technol. 2016;50:10179–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Luo JH, Chen H, Hu S, Cai C, Yuan Z, Guo J. Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm. Environ Sci Technol. 2018;52:4006–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Shi LD, Lv PL, Wang M, Lai CY, Zhao HP. A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction. Sci Total Environ. 2020;732:139310.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for bacteria and archaea. Nat Biotechnol. 2020;38:1079–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Jakobs G, Labrenz M, Rehder G, Hietanen S, Kießlich K, Vogts A, et al. A bioreactor approach to investigate the linkage between methane oxidation and nitrate/nitrite reduction in the pelagic oxic-anoxic transition zone of the central baltic sea. Front Mar Sci. 2016;3:3.Article 

    Google Scholar 
    30.Naqvi SWA, Lam P, Narvenkar G, Sarkar A, Naik H, Pratihary A, et al. Methane stimulates massive nitrogen loss from freshwater reservoirs in India. Nat Commun. 2018;9:9.Article 
    CAS 

    Google Scholar 
    31.Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, et al. Anaerobic oxidation of methane by aerobic methanotrophs in sub-arctic lake sediments. Sci Total Environ. 2017;607:23–31.PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Zheng Y, Wang H, Liu Y, Zhu B, Li J, Yang Y, et al. Methane-dependent mineral reduction by aerobic methanotrophs under hypoxia. Environ Sci Tech Lett. 2020;7:606–12.33.Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr. 2016;61:S101–S118.Article 

    Google Scholar 
    34.Schroder I, Rech S, Krafft T, Macy JM. Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem. 1997;272:23765–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Ridley H, Watts CA, Richardson DJ, Butler CS. Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Appl Environ Microbiol. 2006;72:5173–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Sabaty M, Avazeri C, Pignol D, Vermeglio A. Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microbiol 2001;67:5122–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Turner RJ, Weiner JH, Taylor DE. Selenium metabolism in Escherichia coli. Biometals 1998;11:223–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Hunter WJ. An Azospira oryzae (syn Dechlorosoma suillum) strain that reduces selenate and selenite to elemental red selenium. Curr Microbiol. 2007;54:376–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Li D, Pang HC, Sun LC, Fan JP, Li YY, Zhang JL. Pseudoxanthomonas wuyuanensis sp. nov., isolated from saline-alkali soil. Int J Syst Evol Microbiol. 2014;64:799–804.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Harrison G, Curle C, Laishley EJ. Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch Microbiol. 1984;138:72–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Basaglia M, Toffanin A, Baldan E, Bottegal M, Shapleigh JP, Casella S. Selenite-reducing capacity of the copper-containing nitrite reductase of Rhizobium sullae. FEMS Microbiol Lett. 2007;269:124–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Li DB, Cheng YY, Wu C, Li WW, Li N, Yang ZC, et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep. 2014;4:3735.43.Song DG, Li XX, Cheng YZ, Xiao X, Lu ZQ, Wang YZ, et al. Aerobic biogenesis of selenium nanoparticles by Enterobacter cloacae Z0206 as a consequence of fumarate reductase mediated selenite reduction. Sci Rep. 2017;7:3239.44.Hunter WJ. A rhizobium selenitireducens protein showing selenite reductase activity. Curr Microbiol. 2014;68:311–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Nancharaiah YV, Lens PNL. Selenium biomineralization for biotechnological applications. Trends Biotechnol. 2015;33:323–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature. 2015;526:531–U146.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–U315.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Kleiner M, Dong X, Hinzke T, Wippler J, Thorson E, Mayer B, et al. Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities. Proc Natl Acad Sci USA. 2018;115:E5576–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Anthony C. How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog. 2011;94:109–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Salem AR, Hacking AJ, Quayle JR. Cleavage of malyl-coenzyme-A into acetyl-coenzyme-A and glyoxylate by Pseudomonas AM1 and other C1-unit utilizing bacteria. Biochem J. 1973;136:89–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Large PJ, Peel D, Quayle JR. Microbial growth on C1 compounds. 3. Distribution of radioactivity in metabolites of methanol-grown Pseudomonas AM1 after incubation with 14C-methanol and 14C-bicarbonate. Biochem J 1962;82:483–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Shi LD, Wang Z, Liu T, Wu M, Lai CY, Rittmann BE, et al. Making good use of methane to remove oxidized contaminants from wastewater. Water Res. 2021;197:117082.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Chistoserdova L, Kalyuzhnaya MG. Current trends in methylotrophy. Trends Microbiol. 2018;26:703–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Karwautz C, Kus G, Stockl M, Neu TR, Lueders T. Microbial megacities fueled by methane oxidation in a mineral spring cave. ISME J. 2018;12:87–100.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Hernandez ME, Beck DAC, Lidstrom ME, Chistoserdova L. Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ. 2015;3:3.Article 

    Google Scholar 
    56.Oshkin IY, Beck DA, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, et al. Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J. 2015;9:1119–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Hoehler TM, Alperin MJ, Albert DB, Martens CS. Field and laboratory studies of methane oxidation in an anoxic marine sediment—evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycles. 1994;8:451–63.CAS 
    Article 

    Google Scholar 
    58.Nauhaus K, Treude T, Boetius A, Kruger M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol. 2005;7:98–106.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Meulepas RJW, Jagersma CG, Khadem AF, Stams AJM, Lens PNL. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Appl Microbiol Biotechnol 2010;87:1499–506.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Sorensen KB, Finster K, Ramsing NB. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Micro Ecol. 2001;42:1–10.CAS 
    Article 

    Google Scholar 
    61.Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol. 2018;20:1651–66.62.Kaneko M, Poulson SR. Rate of oxygen isotope exchange between selenate and water. Environ Sci Technol. 2012;46:4539–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Volant S, Lechat P, Woringer P, Motreff L, Campagne P, Malabat C, et al. Shaman: a user-friendly website for metataxonomic analysis from raw reads to statistical analysis. BMC Bioinform. 2020;21:345.64.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. Metaspades: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. Megahit v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Dong XL, Strous M. An integrated pipeline for annotation and visualization of metagenomic contigs. Front Genet. 2019;10:999.67.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. Metabat 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Olm MR, Brown CT, Brooks B, Banfield JF. Drep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    71.Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. Mega6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Huang WL, Wilks A. A rapid seamless method for gene knockout in Pseudomonas aeruginosa. BMC Microbiol. 2017;17:199.73.Bru D, Sarr A, Philippot L. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl Environ Microbiol 2007;73:5971–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(t)(-delta delta c) method. Methods. 2001;25:402–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Maeda H, Fujimoto C, Haruki Y, Maeda T, Kokeguchi S, Petelin M, et al. Quantitative real-time PCR using Taqman and SYBR green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol. 2003;39:81–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Tyanova S, Temu T, Cox J. The maxquant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Daims H, Stoecker K, Wagner M. “Fluorescence in situ hybridization for the detection of prokaryotes,”. In: Osborn AM, Smith cJ, editors. Molecular microbial ecology. New york: Taylor & francis; 2005. p. 213–39.78.Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14:136–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Eller G, Stubner S, Frenzel P. Group-specific 16S rRNA targeted probes for the detection of Type I and Type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett. 2001;198:91–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, et al. Imngs: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep. 2016;6:33721.81.Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the pride database and its related tools. Nucleic Acids Res. 2016;44:D447–D456.PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    A review and agenda for integrated disease models including social and behavioural factors

    1.Raude, J., McColl, K., Flamand, C. & Apostolidis, T. Understanding health behavior changes in response to outbreaks: findings from a longitudinal study of a large epidemic of mosquito-borne disease. Soc. Sci. Med. 230, 184–193 (2019).PubMed 
    Article 

    Google Scholar 
    2.Kapiriri, L. & Ross, A. The politics of disease epidemics: a comparative analysis of the SARS, Zika, and Ebola outbreaks. Glob. Soc. Welf. 7, 33–45 (2020).PubMed 
    Article 

    Google Scholar 
    3.Lewis, M. The economics of epidemics. Georget. J. Int. Aff. 2, 25–31 (2001).
    Google Scholar 
    4.Gelfand M. J. et al. The relationship between cultural tightness–looseness and COVID-19 cases and deaths: a global analysis. Lancet Planet. Health https://doi.org/10.1016/S2542-5196(20)30301-6 (2021).5.Marston, C., Renedo, A. & Miles, S. Community participation is crucial in a pandemic. Lancet 395, 1676–1678 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Shultz, J. M. et al. The role of fear-related behaviors in the 2013–2016 West Africa Ebola virus disease outbreak. Curr. Psychiatry Rep. 18, 104 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Abramowitz, S. et al. The opposite of denial: social learning at the onset of the Ebola emergency in Liberia. J. Health Commun. 22, 59–65 (2017).PubMed 
    Article 

    Google Scholar 
    8.Lee, C., Ayers, S. L. & Kronenfeld, J. J. The association between perceived provider discrimination, healthcare utilization and health status in racial and ethnic minorities. Ethn. Dis. 19, 330–337 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    9.Fenton, J. J., Jerant, A. F., Bertakis, K. D. & Franks, P. The cost of satisfaction: a national study of patient satisfaction, health care utilization, expenditures, and mortality. Arch. Intern. Med. 172, 405–411 (2012).PubMed 
    Article 

    Google Scholar 
    10.Carter, S. E. et al. Barriers and enablers to treatment-seeking behavior and causes of high-risk practices in Ebola: a case study from Sierra Leone. J. Health Commun. 22, 31–38 (2017).PubMed 
    Article 

    Google Scholar 
    11.Kretzschmar, M. Disease modeling for public health: added value, challenges, and institutional constraints. J. Public Health Policy 41, 39–51 (2020).PubMed 
    Article 

    Google Scholar 
    12.Brauer, F. Mathematical epidemiology: past, present, and future. Infect. Dis. Model 2, 113–127 (2017).PubMed 

    Google Scholar 
    13.Chowell, G., Sattenspiel, L., Bansal, S. & Viboud, C. Mathematical models to characterize early epidemic growth: a review. Phys. Life Rev. 18, 66–97 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Polonsky, J. A. et al. Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180276 (2019).PubMed 
    Article 

    Google Scholar 
    15.Longini, I. M. Jr et al. Containing pandemic influenza at the source. Science 309, 1083–1087 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Zhang, Q. et al. Spread of Zika virus in the Americas. Proc. Natl Acad. Sci. USA. 114, E4334–E4343 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Chretien, J.-P., Riley, S. & George, D. B. Mathematical modeling of the West Africa Ebola epidemic. eLife 4, e09186 (2015).PubMed 
    Article 

    Google Scholar 
    18.Chowell, G. & Nishiura, H. Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med. 12, 196 (2014).PubMed 
    Article 

    Google Scholar 
    19.Adam, D. Special report: the simulations driving the world’s response to COVID-19. Nature 580, 316–318 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Siegenfeld, A. F., Taleb, N. N. & Bar-Yam, Y. Opinion: what models can and cannot tell us about COVID-19. Proc. Natl Acad. Sci. USA 117, 16092–16095 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Manfredi, P. & D’Onofrio, A., eds. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (Springer-Verlag, 2013).22.Philipson, T. in Handbook of Health Economics (eds Culyer, A. and Newhouse, J.) Vol. 1, Ch. 33, 1761–1799 (Elsevier, 2000).23.Abramowitz, S. A., Hipgrave, D. B., Witchard, A. & Heymann, D. L. Lessons from the West Africa Ebola epidemic: a systematic review of epidemiological and social and behavioral science research priorities. J. Infect. Dis. 218, 1730–1738 (2018).PubMed 

    Google Scholar 
    24.Bedford, J. et al. Application of social science in the response to Ebola, Equateur Province, Democratic Republic of the Congo/Application des sciences sociales dans la riposte a la maladie a virus Ebola, province de l’Equateur, Republique democratique du Congo. Wkly Epidemiological Rec. 94, 19–24 (2019).
    Google Scholar 
    25.Norton, A. et al. A living mapping review for COVID-19 funded research projects: six-month update [version 3; peer review: 2 approved]. Wellcome Open Res. 5, 209 (2021).PubMed 
    Article 

    Google Scholar 
    26.Pedi, D. et al. The development of standard operating procedures for social mobilization and community engagement in sierra leone during the West Africa Ebola outbreak of 2014-2015. J. Health Commun. 22, 39–50 (2017).PubMed 
    Article 

    Google Scholar 
    27.RCCE Collective Service. Operational guide for engaging communities in contact tracing World Health Organization (2021); https://apps.who.int/iris/bitstream/handle/10665/341553/WHO-2019-nCoV-Contact_tracing-Community_engagement-2021.1-eng.pdf?sequence=128.Cellules d’Analyses en Sciences Sociales (CASS). Social Science Support for COVID-19: Lessons Learned Brief 3 7 (2020); https://www.unicef.org/drcongo/media/4131/file/CASS-Brief3-recommendations.pdf29.Xepapadeas, A. The spatial dimension in environmental and resource economics. Environ. Dev. Econ. 15, 747–758 (2010).Article 

    Google Scholar 
    30.Reed, M. S. et al. What is social learning? Ecol. Soc. 15, r1 (2010).Article 

    Google Scholar 
    31.Kermack, W. O., McKendrick, A. G. & Walker, G. T. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927).Article 

    Google Scholar 
    32.Influenza in a boarding school. Brit. Med. J. 1, 587–587 (1978).33.Funk, S., Salathé, M. & Jansen, V. A. A. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247–1256 (2010).PubMed 
    Article 

    Google Scholar 
    34.Eksin, C., Paarporn, K. & Weitz, J. S. Systematic biases in disease forecasting-the role of behavior change. Epidemics 27, 96–105 (2019).PubMed 
    Article 

    Google Scholar 
    35.Bedford, J. et al. A new twenty-first century science for effective epidemic response. Nature 575, 130–136 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Verelst, F., Willem, L. & Beutels, P. Behavioural change models for infectious disease transmission: a systematic review (2010-2015). J. R. Soc. Interface https://doi.org/10.1098/rsif.2016.0820 (2016).37.Weston, D., Hauck, K. & Amlôt, R. Infection prevention behaviour and infectious disease modelling: a review of the literature and recommendations for the future. BMC Public Health 18, 336 (2018).PubMed 
    Article 

    Google Scholar 
    38.Gersovitz, M. The economics of infection control. Annu. Rev. Resour. Econ. 3, 277–296 (2011).Article 

    Google Scholar 
    39.Perrings, C. et al. Merging economics and epidemiology to improve the prediction and management of infectious disease. Ecohealth 11, 464–475 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Althouse, B. M., Bergstrom, T. C. & Bergstrom, C. T. Evolution in health and medicine Sackler colloquium: a public choice framework for controlling transmissible and evolving diseases. Proc. Natl Acad. Sci. USA 107, 1696–1701 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Ward, C. J. Influenza vaccination campaigns: is an ounce of prevention worth a pound of cure? Am. Econ. J. Appl. Econ. 6, 38–72 (2014).Article 

    Google Scholar 
    42.Fenichel, E. P. Economic considerations for social distancing and behavioral based policies during an epidemic. J. Health Econ. 32, 440–451 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Acemoglu, D., Chernozhukov, V., Werning, I. & Whinston, M. D. Optimal Targeted Lockdowns in a Multi-Group SIR Model Working Paper 27102 (National Bureau of Economic Research, 2020); https://doi.org/10.3386/w2710244.Ahituv, A., Hotz, V. J. & Philipson, T. The responsiveness of the demand for condoms to the local prevalence of AIDS. J. Hum. Resour. 31, 869–897 (1996).Article 

    Google Scholar 
    45.Kremer, M. Integrating behavioral choice into epidemiological models of AIDS. Q. J. Econ. 111, 549–573 (1996).Article 

    Google Scholar 
    46.Justwan, F., Baumgaertner, B., Carlisle, J. E., Carson, E. & Kizer, J. The effect of trust and proximity on vaccine propensity. PLoS ONE 14, e0220658 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Chen, F. H. Rational behavioral response and the transmission of STDs. Theor. Popul. Biol. 66, 307–316 (2004).PubMed 
    Article 

    Google Scholar 
    48.Geoffard, P.-Y. & Philipson, T. Rational epidemics and their public control. Int. Econ. Rev. 37, 603–624 (1996).Article 

    Google Scholar 
    49.Fenichel, E. P. et al. Adaptive human behavior in epidemiological models. Proc. Natl Acad. Sci. USA 108, 6306 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Morin, B. R., Fenichel, E. P. & Castillo-Chavez, C. SIR dynamics with economically driven contact rates. Nat. Resour. Model. 26, 505–525 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fenichel, E. P., Kuminoff, N. V. & Chowell, G. Skip the trip: air travelers’ behavioral responses to pandemic influenza. PLoS ONE 8, e58249 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Hung, Y. W. et al. Impact of a free care policy on the utilisation of health services during an Ebola outbreak in the Democratic Republic of Congo: an interrupted time-series analysis. BMJ Glob. Health 5, e002119 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Modeling Anthropogenic Effects in the Spread of Infectious Diseases (MASpread) Project. EcoServices: Disease Risks. Arizona State University (Accessed 17 April 2021); http://ecoservices.asu.edu/Diseaserisks/DRindex.html54.Morris, M. Network Epidemiology: A Handbook for Survey Design and Data Collection (OUP, 2004).55.Meyers, L. Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull. Am. Math. Soc. 44, 63–86 (2007).Article 

    Google Scholar 
    56.Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015).Article 

    Google Scholar 
    57.Wang, Z. et al. Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016).Article 

    Google Scholar 
    58.Cohen, R., Havlin, S. & Ben-Avraham, D. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Salathé, M. & Jones, J. H. Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6, e1000736 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    60.Hébert-Dufresne, L., Allard, A., Young, J.-G. & Dubé, L. J. Global efficiency of local immunization on complex networks. Sci. Rep. 3, 2171 (2013).PubMed 
    Article 

    Google Scholar 
    61.Rosenblatt, S. F., Smith, J. A., Gauthier, G. R. & Hébert-Dufresne, L. Immunization strategies in networks with missing data. PLoS Comput. Biol. 16, e1007897 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Funk, S., Gilad, E., Watkins, C. & Jansen, V. A. A. The spread of awareness and its impact on epidemic outbreaks. Proc. Natl Acad. Sci. USA 106, 6872–6877 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Funk, S. & Jansen, V. A. A. Interacting epidemics on overlay networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036118 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    64.Hébert-Dufresne, L., Mistry, D. & Althouse, B. M. Spread of infectious disease and social awareness as parasitic contagions on clustered networks. Phys. Rev. Res. 2, 033306 (2020).Article 

    Google Scholar 
    65.Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Modeling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 026105 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    66.Fu, F., Christakis, N. A. & Fowler, J. H. Dueling biological and social contagions. Sci. Rep. 7, 43634 (2017).PubMed 
    Article 

    Google Scholar 
    67.Granell, C., Gómez, S. & Arenas, A. Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 012808 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Fan, C.-J. et al. Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks. Phys. A 461, 523–530 (2016).Article 

    Google Scholar 
    69.Scatà, M., Di Stefano, A., Liò, P. & La Corte, A. The impact of heterogeneity and awareness in modeling epidemic spreading on multiplex networks. Sci. Rep. 6, 37105 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    70.Wang, W. et al. Suppressing disease spreading by using information diffusion on multiplex networks. Sci. Rep. 6, 29259 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Zheng, C., Xia, C., Guo, Q. & Dehmer, M. Interplay between SIR-based disease spreading and awareness diffusion on multiplex networks. J. Parallel Distrib. Comput. 115, 20–28 (2018).Article 

    Google Scholar 
    72.Gross, T. & Blasius, B. Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008).PubMed 
    Article 

    Google Scholar 
    73.Gross, T. & Sayama, H. in Adaptive Networks: Theory, Models and Applications (eds Gross, T. & Sayama, H.) 1–8 (Springer, 2009).74.Wang, Z., Andrews, M. A., Wu, Z.-X., Wang, L. & Bauch, C. T. Coupled disease–behavior dynamics on complex networks: a review. Phys. Life Rev. 15, 1–29 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Valdez, L. D., Macri, P. A. & Braunstein, L. A. Intermittent social distancing strategy for epidemic control. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85, 036108 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Tunc, I., Shkarayev, M. S. & Shaw, L. B. Epidemics in adaptive social networks with temporary link deactivation. J. Stat. Phys. 151, 355–366 (2013).Article 

    Google Scholar 
    77.Epstein, J. M., Parker, J., Cummings, D. & Hammond, R. A. Coupled contagion dynamics of fear and disease: mathematical and computational explorations. PLoS ONE 3, e3955 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    78.Kiss, I. Z., Cassell, J., Recker, M. & Simon, P. L. The impact of information transmission on epidemic outbreaks. Math. Biosci. 225, 1–10 (2010).PubMed 
    Article 

    Google Scholar 
    79.Gross, T., D’Lima, C. J. D. & Blasius, B. Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    80.Zanette, D. H. & Risau-Gusmán, S. Infection spreading in a population with evolving contacts. J. Biol. Phys. 34, 135–148 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Adaptive networks: coevolution of disease and topology. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 036116 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    82.Shaw, L. B. & Schwartz, I. B. Enhanced vaccine control of epidemics in adaptive networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 046120 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Althouse, B. M. & Hébert-Dufresne, L. Epidemic cycles driven by host behaviour. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0575 (2014).84.Scarpino, S. V., Allard, A. & Hébert-Dufresne, L. The effect of a prudent adaptive behaviour on disease transmission. Nat. Phys. 12, 1042–1046 (2016).CAS 
    Article 

    Google Scholar 
    85.Shaw, L. B. & Schwartz, I. B. Fluctuating epidemics on adaptive networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 066101 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    86.Sayama, H. et al. Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 1645–1664 (2013).Article 

    Google Scholar 
    87.Do, A.-L., Rudolf, L. & Gross, T. Patterns of cooperation: fairness and coordination in networks of interacting agents. N. J. Phys. 12, 063023 (2010).Article 

    Google Scholar 
    88.Van Segbroeck, S., Santos, F. C., Lenaerts, T. & Pacheco, J. M. Selection pressure transforms the nature of social dilemmas in adaptive networks. N. J. Phys. 13, 013007 (2011).Article 

    Google Scholar 
    89.Zhan, X.-X. et al. Coupling dynamics of epidemic spreading and information diffusion on complex networks. Appl. Math. Comput. 332, 437–448 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    90.Hatfield, E., Cacioppo, J. T. & Rapson, R. L. Emotional contagion. Curr. Dir. Psychol. Sci. 2, 96–100 (1993).Article 

    Google Scholar 
    91.Epstein, J. M. Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science (Princeton Univ. Press, 2014).92.Barton, C. M. et al. Call for transparency of COVID-19 models. Science 368, 482–483 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    93.Hammond, R., Ornstein, J. T., Purcell, R., Haslam, M. D., & Kasman, M. Modeling robustness of COVID-19 containment policies. Preprint at OSF https://doi.org/10.31219/osf.io/h5ua7 (2021).94.Cooley, P. C. et al. The model repository of the models of infectious disease agent study. IEEE Trans. Inf. Technol. Biomed. 12, 513–522 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Eubank, S. et al. Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Burke, D. S. et al. Individual-based computational modeling of smallpox epidemic control strategies. Acad. Emerg. Med. 13, 1142–1149 (2006).PubMed 
    Article 

    Google Scholar 
    97.Ferguson, N. M. et al. Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Germann, T. C., Kadau, K., Longini, I. M. Jr & Macken, C. A. Mitigation strategies for pandemic influenza in the United States. Proc. Natl Acad. Sci. USA 103, 5935–5940 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Longini, I. M. Jr et al. Containing a large bioterrorist smallpox attack: a computer simulation approach. Int. J. Infect. Dis. 11, 98–108 (2007).PubMed 
    Article 

    Google Scholar 
    100.Hammond, R. A. Considerations and Best Practices in Agent-Based Modeling to Inform Policy (National Academies Press, 2015).101.Wallace, R et al. Assessing the Use of Agent-Based Models for Tobacco Regulation (National Academies Press, 2015).102.Pedro, S. A. et al. Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes. Front. Phys. 8, 574514 (2020).Article 

    Google Scholar 
    103.Walters, C. E., Meslé, M. M. I. & Hall, I. M. Modelling the global spread of diseases: a review of current practice and capability. Epidemics 25, 1–8 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Li, Y., Lawley, M. A., Siscovick, D. S., Zhang, D. & Pagán, J. A. Agent-based modeling of chronic diseases: a narrative review and future research directions. Prev. Chronic Dis. 13, E69 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    105.Weston, D., Ip, A. & Amlôt, R. Examining the application of behaviour change theories in the context of infectious disease outbreaks and emergency response: a review of reviews. BMC Public Health 20, 1483 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    106.Ripoll, S., Gercama, I., Jones, T. & Wilkinson, A. Social Science in Epidemics: Ebola Virus Disease Lessons Learned Background Report, UNICEF, IDS & Anthrologica https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/14160 (Institute of Development Studies, 2018).107.DuBois, M., Wake, C., Sturridge, S. & Bennett, C. The Ebola Response in West Africa: Exposing the Politics and Culture of International Aid (Overseas Development Institute, 2015).108.Hird, T. et al. Lessons From Ebola Affected Communities: Being Prepared for Future Health Crises (Africa All Party Parliamentary Group, 2016).109.WHO. Report of the Ebola Interim Assessment Panel—July 2015 (2020).110.Ashworth, H. C., Dada, S., Buggy, C. & Lees, S. The importance of developing rigorous social science methods for community engagement and behavior change during outbreak response. Disaster Med. Public Health Prep. 1–6 (2020).111.Wenham, C. et al. Women are most affected by pandemics—lessons from past outbreaks. Nature 583, 194–198 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    112.Schwartz, D. A., Anoko, J. N. & Abramowitz, S. A. Pregnant in the Time of Ebola: Women and Their Children in the 2013-2015 West African Epidemic (Springer International Publishing, 2019).113.Moore, M. D. Historicising ‘containment and delay’: COVID-19, the NHS and high-risk patients. Wellcome Open Res. 5, 130 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    114.Marcis, F. L., Enria, L., Abramowitz, S., Saez, A.-M. & Faye, S. L. B. Three acts of resistance during the 2014–16 West Africa Ebola epidemic. J. Humanitarian Aff. 1, 23–31 (2019).Article 

    Google Scholar 
    115.Parker, M., Hanson, T. M., Vandi, A., Babawo, L. S. & Allen, T. Ebola and public authority: saving loved ones in Sierra Leone. Med. Anthropol. 38, 440–454 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Vinck, P., Pham, P. N., Bindu, K. K., Bedford, J. & Nilles, E. J. Institutional trust and misinformation in the response to the 2018–19 Ebola outbreak in North Kivu, DR Congo: a population-based survey. Lancet Infect. Dis. 19, 529–536 (2019).PubMed 
    Article 

    Google Scholar 
    117.Ripoll, S., Gercama, I. & Jones, T. Rapid Appraisal of Key Health-Seeking Behaviours in Epidemics. SSHAP Practical Approaches brief 5, UNICEF, IDS & Anthrologica https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/15430 (Institute of Development Studies, 2020).118.Bielicki, J. A. et al. Monitoring approaches for health-care workers during the COVID-19 pandemic. Lancet Infect. Dis. 20, e261–e267 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Chu, I. Y.-H., Alam, P., Larson, H. J. & Lin, L. Social consequences of mass quarantine during epidemics: a systematic review with implications for the COVID-19 response. J. Travel Med. 27, taaa192 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    120.R&D Good Participatory Practice for COVID-19 Clinical Trials: a Toolbox (World Health Organization, 2020); https://www.who.int/publications/m/item/r-d-good-participatory-practice-for-covid-19-clinical-trials-a-toolbox121.Hankins, C. Good Participatory Practice Guidelines for Trials of Emerging (and Re-emerging) Pathogens That are Likely to Cause Severe Outbreaks in the Near Future and For Which Few or No Medical Countermeasures Exist (GPP-EP) (WHO, 2016).122.Sigfrid, L. et al. Addressing challenges for clinical research responses to emerging epidemics and pandemics: a scoping review. BMC Med. 18, 190 (2020).PubMed 
    Article 

    Google Scholar 
    123.Gobat, N. H. et al. Talking to the people that really matter about their participation in pandemic clinical research: a qualitative study in four European countries. Health Expect. 21, 387–395 (2018).PubMed 
    Article 

    Google Scholar 
    124.Richards, P. et al. Social pathways for ebola virus disease in rural Sierra Leone, and some implications for containment. PLoS Negl. Trop. Dis. 9, e0003567 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    125.Jalloh, M. F. et al. National survey of Ebola-related knowledge, attitudes and practices before the outbreak peak in Sierra Leone: August 2014. BMJ Glob. Health 2, e000285 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    126.Bedford, J. Social science and behavioral data compilation, DRC Ebola outbreak, November 2018 – February 2019. Social Science in Humanitarian Action and GOARN Research Social Science Group (2019); https://opendocs.ids.ac.uk/opendocs/bitstream/handle/20.500.12413/14144/SSHAP_data_compilation_brief_November_2018_updated.pdf127.Pinchoff, J. et al. Evidence-based process for prioritizing positive behaviors for promotion: Zika prevention in Latin America and the Caribbean and applicability to future health emergency responses. Glob. Health Sci. Pr. 7, 404–417 (2019).Article 

    Google Scholar 
    128.Guirguis, S., Obregon, R., Coleman, M., Hickler, B. & SteelFisher, G. Placing human behavior at the center of the fight to eradicate polio: lessons learned and their application to other life-saving interventions. J. Infect. Dis. 216, S331–S336 (2017).PubMed 
    Article 

    Google Scholar 
    129.Research Guides: Social Science Data Resources: COVID-19 https://guides.library.yale.edu/covid19impacts (Accessed 17 April 2021).130.Rohan, H., Bausch, D. G. & Blanchet, K. Action not justification: how to use social science to improve outbreak response. PLoS Blogs (2018); https://collectionsblog.plos.org/action-not-justification-how-to-use-social-science-to-improve-outbreak-response/131.Bardosh, K. et al. Towards People-Centred Epidemic Preparedness and Response: From Knowledge to Action (Wellcome/DFID, 2019).132.UNICEF Minimum Quality Standards and Indicators for Community Engagement. Guidance Towards High Quality, Evidence-Based Community Engagement in The Development and Humanitarian Contexts. (2020); https://www.unicef.org/mena/reports/community-engagement-standards133.Hennessey Lavery, S. et al. The community action model: a community-driven model designed to address disparities in health. Am. J. Public Health 95, 611–616 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Boyce, M. R. & Katz, R. Community health workers and pandemic preparedness: current and prospective roles. Front. Public Health 7, 62 (2019).PubMed 
    Article 

    Google Scholar 
    135.Baggio, O. Real-Time Ebola Community Feedback Mechanism (SSHAP Case Study 10, UNICEF, IDS and Anthrologica, 2020).136.Collective Communication and Community Engagement in Humanitarian Action: How to Guide for Leaders and Responders (CDAC Network, 2019).137.Ackerman Gulaid, L. & Kiragu, K. Lessons learnt from promising practices in community engagement for the elimination of new HIV infections in children by 2015 and keeping their mothers alive: summary of a desk review. J. Int. AIDS Soc. 15, 17390 (2012).PubMed 

    Google Scholar 
    138.Gilmore, B. et al. Community engagement for COVID-19 prevention and control: a rapid evidence synthesis. BMJ Glob. Health 5, e003188 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.O’Mara-Eves, A. et al. The effectiveness of community engagement in public health interventions for disadvantaged groups: a meta-analysis. BMC Public Health 15, 129 (2015).PubMed 
    Article 

    Google Scholar 
    140.Milton, B., Attree, P., French, B., Povall, S. L. & Popay, J. The impact of community engagement on health and social outcomes: a systematic review. 47, 316–334 (2011).141.Abramowitz, S. et al. Data Sharing in Public Health Emergencies: Anthropological and Historical Perspectives on Data Sharing During the 2014-2016 Ebola Epidemic and the 2016 Yellow Fever Epidemic (Wellcome Trust, 2018); https://www.glopid-r.org/wp-content/uploads/2019/07/data-sharing-in-public-health-emergencies-yellow-fever-and-ebola.pdf142.Bedson, J. et al. Community engagement in outbreak response: lessons from the 2014-2016 Ebola outbreak in Sierra Leone. BMJ Glob. Health 5, e002145 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    143.Jalloh, M. Design and implementation of an integrated digital system for community engagement and community-based surveillance during the 2014-2016 Ebola outbreak in Sierra Leone. BMJ Global Health 5, e003936 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    144.McComas, K. A. Defining moments in risk communication research: 1996-2005. J. Health Commun. 11, 75–91 (2006).PubMed 
    Article 

    Google Scholar 
    145.Glik, D. C. Risk communication for public health emergencies. Annu. Rev. Public Health 28, 33–54 (2007).PubMed 
    Article 

    Google Scholar 
    146.WHO General Information on Risk Communication (2015).147.Tworek, H., Beacock, I. & Ojo, E. Democratic health communications during Covid-19: a RAPID response (UBC Centre for the Study of Democratic Institutions, 2020); https://democracy.arts.ubc.ca/2020/09/14/covid-19/148.Winters, M. et al. Risk communication and ebola-specific knowledge and behavior during 2014-2015 outbreak, Sierra Leone. Emerg. Infect. Dis. 24, 336–344 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    149.Novetta. Social Media Analysis of ‘Tu vois Les Retombées’ Facebook Page (Insecurity Insight, 2020); http://insecurityinsight.org/wp-content/uploads/2020/06/Social-Media-Analysis-Novetta-June-2020.pdf150.Ghenai, A. & Mejova, Y. Catching Zika Fever: Application of Crowdsourcing and Machine Learning for Tracking Health Misinformation on Twitter. Preprint at arXiv https://arxiv.org/abs/1707.03778 (2017).151.Taggart, T., Grewe, M. E., Conserve, D. F., Gliwa, C. & Roman Isler, M. Social media and HIV: a systematic review of uses of social media in HIV communication. J. Med. Internet Res. 17, e248 (2015).PubMed 
    Article 

    Google Scholar 
    152.Smith, R. D. Responding to global infectious disease outbreaks: lessons from SARS on the role of risk perception, communication and management. Soc. Sci. Med. 63, 3113–3123 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    153.Li, C. et al. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Euro Surveill. 25, 2000199 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    154.Lu, Y. & Zhang, L. Social media WeChat infers the development trend of COVID-19. J. Infect. 81, e82–e83 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    155.Effenberger, M. et al. Association of the COVID-19 pandemic with Internet search volumes: a Google TrendsTM Analysis. Int. J. Infect. Dis. 95, 192–197 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    156.Gallotti, R., Valle, F., Castaldo, N., Sacco, P. & De Domenico, M. Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics. Nat. Hum. Behav. 4, 1285–1293 (2020).PubMed 
    Article 

    Google Scholar 
    157.Bhattacharjee, S. & Dotto, C. Case study: understanding the impact of polio vaccine disinformation in Pakistan. First Draft (20 February 2020); https://firstdraftnews.org/long-form-article/first-draft-case-study-understanding-the-impact-of-polio-vaccine-disinformation-in-pakistan/158.Krause, N. M., Freiling, I., Beets, B. & Brossard, D. Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19. J. Risk Res. 23, 1052–1059 (2020).Article 

    Google Scholar 
    159.Eysenbach, G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J. Med. Internet Res. 11, e11 (2009).PubMed 
    Article 

    Google Scholar 
    160.Eysenbach, G. Infodemiology: the epidemiology of (mis)information. Am. J. Med. 113, 763–765 (2002).PubMed 
    Article 

    Google Scholar 
    161.Islam, M. S. et al. COVID-19-related infodemic and its impact on public health: a global social media analysis. Am. J. Trop. Med. Hyg. 103, 1621–1629 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    162.Funk, S. et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics 10, 21–25 (2015).PubMed 
    Article 

    Google Scholar 
    163.Davis, P. K., O’Mahony, A., Gulden, T. R., Sieck, K. & Osoba, O. A. Priority Challenges for Social and Behavioral Research and Its Modeling (RAND, 2018).164.WHO Guidance For Managing Ethical Issues In Infectious Disease Outbreaks (2016).165.Bruine de Bruin, W., Parker, A. M., Galesic, M. & Vardavas, R. Reports of social circles’ and own vaccination behavior: a national longitudinal survey. Health Psychol. 38, 975–983 (2019).PubMed 
    Article 

    Google Scholar 
    166.Facebook. COVID-19 Interactive Map & Dashboard (Accessed 14 April 2020); https://dataforgood.facebook.com/covid-survey/?region=WORLD167.Pruyt, E., Auping, W. L. & Kwakkel, J. H. Ebola in west Africa: model-based exploration of social psychological effects and interventions: Ebola in West Africa. Syst. Res. Behav. Sci. 32, 2–14 (2015).Article 

    Google Scholar 
    168.Schmidt-Hellerau, K. et al. Homecare for sick family members while waiting for medical help during the 2014-2015 Ebola outbreak in Sierra Leone: a mixed methods study. BMJ Glob. Health 5, e002732 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    169.Baggio, O. Case Study, Real-Time Ebola Community Feedback Mechanism (Social Science in Humanitarian Action, 2020); https://core.ac.uk/download/pdf/326024204.pdf170.WHO, UNICEF and IFRC. The Collective Service (2020); https://www.who.int/teams/risk-communication/the-collective-service171.WHO. COVID-19 Knowledge Hub (2020); https://extranet.who.int/goarn/COVID19Hub172.Giles-Vernick, T. et al. A new social sciences network for infectious threats. Lancet Infect. Dis. 19, 461–463 (2019).PubMed 
    Article 

    Google Scholar 
    173.Preventive Health Survey (Facebook, 2020); https://dataforgood.fb.com/tools/preventive-health-survey/174.COVID-19 Community Mobility Reports (Google, 2020).175.Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 20, 1247–1254 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    176.WHO. Early AI-supported Response with Social Listening (2020); https://whoinfodemic.citibeats.com/?cat=fYJ1oBNEUQtfbExrkGvsyr177.WHO. Ebola or Marburg Case Investigation and Recording Sheet (16 June 2020); https://www.who.int/publications/m/item/ebola-or-marburg-case-investigation-and-recording-sheet178.CDC. Investigating a COVID-19 Case (2020); https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/investigating-covid-19-case.html179.WHO. Disease Case Investigation Forms (Accessed 14 April 2021); https://www.who.int/emergencies/outbreak-toolkit/data-collection-standards/disease-case-investigation-forms180.Social Science Support for COVID-19: Lessons Learned Brief 1 (Cellule D’analyse en Sciences Sociales, 2020).181.Rivers, C., Pollett, S. & Viboud, C. The opportunities and challenges of an Ebola modeling research coordination group. PLoS Negl. Trop. Dis. 14, e0008158 (2020).PubMed 
    Article 

    Google Scholar 
    182.WHO. Global Health Observatory (Accessed 14 April 2021); https://www.who.int/data/gho183.Data Portal (RCCE Collective Service: Risk Communication and Community Engagement, 2020); https://www.rcce-collective.net/data/184.Richards, P. Ebola: How a People’s Science Helped End an Epidemic (Zed Books, 2016).185.Social Science in Humanitarian Action Platform Social Science in Humanitarian Action, Key Considerations: Engaging Twa communities in Equateur Province (2018).186.Heesterbeek, H. et al. Modeling infectious disease dynamics in the complex landscape of global health. Science 347, aaa4339 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    187.Skrip, L., Fallah, M. P., Bedson, J., Hébert-Dufresne, L. & Althouse, B. M. Coordinated support for local action: a modeling study of strategies to facilitate behavior adoption in urban poor communities of Liberia for sustained COVID-19 suppression. Preprint at medRxiv https://doi.org/10.1101/2020.08.11.20172031 (2020).188.Online Database of Training on Social Dimensions of Infectious Threats (Sonar Global, Accessed 14 April 2021); https://www.sonar-global.eu/trainings/189.OpenWHO. https://openwho.org (Accessed 14 April 2021).190.Gwynn, S. Access to Research in the Global South: Reviewing the Evidence (International Network for the Availability of Scientific Publications, 2019).191.Urassa, M. et al. Cross-cultural research must prioritize equitable collaboration. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01076-x (2021).192.Bonino, F., Jean, I. & Knox-Clarke, P. Closing the Loop: Effective Feedback in Humanitarian Contexts (ALNAP/ODI, 2014).193.Metcalf, C. J. E., Edmunds, W. J. & Lessler, J. Six challenges in modelling for public health policy. Epidemics 10, 93–96 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    194.Cobey, S. Modeling infectious disease dynamics. Science 368, 713–714 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    195.Ordway, D.-M. Epidemiological Models: 10 Things to Know About Coronavirus Research (Harvard Kennedy School, 2020); https://journalistsresource.org/tip-sheets/research/epidemiological-models-coronavirus/196.Knight, G. M. et al. Bridging the gap between evidence and policy for infectious diseases: how models can aid public health decision-making. Int. J. Infect. Dis. 42, 17–23 (2016).PubMed 
    Article 

    Google Scholar  More

  • in

    Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia

    1.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    2.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    Article 

    Google Scholar 
    3.Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).Article 

    Google Scholar 
    4.Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).CAS 
    Article 

    Google Scholar 
    5.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).CAS 
    Article 

    Google Scholar 
    6.Curran, L. M. et al. Lowland forest loss in protected areas of Indonesian Borneo. Science 303, 1000–1003 (2004).CAS 
    Article 

    Google Scholar 
    7.Friedl, A. et al. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets, 2001–2012 Collection 5.1 (Boston University, 2010).8.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    9.Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730–735 (2014).Article 

    Google Scholar 
    10.Turubanova, S. et al. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).Article 

    Google Scholar 
    11.Searchinger, T. et al. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050 (World Resources Institute, 2019).12.Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS 
    Article 

    Google Scholar 
    13.Tyukavina, A. et al. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).Article 

    Google Scholar 
    14.Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).Article 

    Google Scholar 
    15.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).CAS 
    Article 

    Google Scholar 
    16.Aide, T. M. et al. Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: satellite image interpretation and expert validation. Glob. Change Biol. 25, 2112–2126 (2019).Article 

    Google Scholar 
    17.Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).CAS 
    Article 

    Google Scholar 
    18.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    19.Zeng, Z. et al. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562 (2018).CAS 
    Article 

    Google Scholar 
    20.Zeng, Z., Gower, D. B. & Wood, E. F. Accelerating forest loss in Southeast Asian Massif in the 21st century: a case study in Nan Province, Thailand. Glob. Change Biol. 24, 4682–4695 (2018).Article 

    Google Scholar 
    21.Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Change Biol. 22, 1336–1347 (2016).Article 

    Google Scholar 
    22.Spracklen, D. & Righelato, R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11, 2741–2754 (2014).CAS 
    Article 

    Google Scholar 
    23.Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).Article 

    Google Scholar 
    24.Austin, K. G. et al. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).Article 

    Google Scholar 
    25.Hansen, M. et al. Response to comment on ‘high-resolution global maps of 21st-century forest cover change’. Science 344, 981–981 (2014).CAS 
    Article 

    Google Scholar 
    26.Chan, N., Xayvongsa, L. & Takeda, S. in Environmental Resources Use and Challenges in Contemporary Southeast Asia (eds Lopez, M. I. & Suryomenggolo, J.) 231–246 (Springer, 2018).27.Thompson, J. R., Carpenter, D. N., Cogbill, C. V. & Foster, D. R. Four centuries of change in northeastern United States forests. PLoS ONE 8, e72540 (2013).CAS 
    Article 

    Google Scholar 
    28.Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).Article 

    Google Scholar 
    29.Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).CAS 
    Article 

    Google Scholar 
    30.Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 24, 1267–1278 (2018).Article 

    Google Scholar 
    31.Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).Article 

    Google Scholar 
    32.Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).Article 

    Google Scholar 
    33.Ahrends, A. et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Change 34, 48–58 (2015).Article 

    Google Scholar 
    34.Edwards, D. P. et al. Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc. R. Soc. B 278, 82–90 (2011).Article 

    Google Scholar 
    35.Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land-use change. Ecography 42, 2084–2094 (2019).Article 

    Google Scholar 
    36.Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).CAS 
    Article 

    Google Scholar 
    37.Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).Article 
    CAS 

    Google Scholar 
    38.Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).CAS 
    Article 

    Google Scholar 
    39.Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).CAS 
    Article 

    Google Scholar 
    40.Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon Basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).Article 

    Google Scholar 
    41.Cheng, L. et al. Quantifying the impacts of vegetation changes on catchment storage–discharge dynamics using paired-catchment data. Water Resour. Res. 53, 5963–5979 (2017).Article 

    Google Scholar 
    42.Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187–191 (2015).Article 
    CAS 

    Google Scholar 
    43.Yue, Y. et al. Lateral transport of soil carbon and land–atmosphere CO2 flux induced by water erosion in China. Proc. Natl Acad. Sci. USA 113, 6617–6622 (2016).CAS 
    Article 

    Google Scholar 
    44.Ziegler, A. D. et al. Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD+ policy implications. Glob. Change Biol. 18, 3087–3099 (2012).Article 

    Google Scholar 
    45.Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).CAS 
    Article 

    Google Scholar 
    46.Fox, J., Castella, J. C. & Ziegler, A. D. Swidden, rubber and carbon: can REDD+ work for people and the environment in montane mainland Southeast Asia? Glob. Environ. Change 29, 318–326 (2014).Article 

    Google Scholar 
    47.Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00976-6 (2021).48.Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 3657–3660 (IEEE, 2011).49.Burrough, P. A., McDonnell, R., McDonnell, R. A. & Lloyd, C. D. Principles of Geographical Information Systems (Oxford Univ. Press, 2015).50.Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root : shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).Article 

    Google Scholar 
    51.Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).Article 
    CAS 

    Google Scholar 
    52.Ryan, S. E. & Porth, L. S. A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data (CreateSpace, 2015).53.Toms, J. D. & Lesperance, M. L. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    54.Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).Article 

    Google Scholar 
    55.Zaiontz, C. Real Statistics Using Excel (accessed 16 June 2021); http://www.real-statistics.com/ More