1.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article
Google Scholar
2.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).Article
Google Scholar
3.Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article
Google Scholar
4.Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).Article
Google Scholar
5.Aragao, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).Article
Google Scholar
6.Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).Article
Google Scholar
7.Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).Article
Google Scholar
8.Kunert, N., Teophilo Aparecido, L. M., Higuchi, N., dos Santos, J. & Trumbore, S. Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric. For. Meteorol. 213, 183–192 (2015).Article
Google Scholar
9.Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).Article
Google Scholar
10.Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).Article
Google Scholar
11.Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).Article
Google Scholar
12.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e150005 (2015).Article
Google Scholar
13.Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).Article
Google Scholar
14.Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).Article
Google Scholar
15.FAOSTAT Database (FAO, 2020); http://www.fao.org/faostat/en/#data/FO16.World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).17.Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).Article
Google Scholar
18.Hufkens, K. et al. Historical aerial surveys map long-term changes of forest cover and structure in the central Congo basin. Remote Sens. 12, 638 (2020).Article
Google Scholar
19.van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).Article
Google Scholar
20.Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article
Google Scholar
21.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article
Google Scholar
22.Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Preprint at Copernicus https://doi.org/10.5194/essd-2020-148 (2020).23.Santoro, M. & Cartus, O. GlobBiomass dataset of forest biomass, Africa (25 m). Zenodo https://doi.org/10.5281/zenodo.4725667 (2020).24.Chuvieco, E., Pettinari, L. M., Lizundia Loiola, J., Storm, T. & Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Grid Product Version 5.1 (Centre for Environmental Data Analysis, 2019).25.Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.00626.Laurance, W. F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141, 1731–1744 (2008).Article
Google Scholar
27.Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).Article
Google Scholar
28.Kato, S. et al. Surface irradiances of edition 4.0 Clouds and the Earth’s radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Clim. 31, 4501–4527 (2018).Article
Google Scholar
29.Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2017); https://doi.org/10.5067/MODIS/MOD16A2.00630.Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).Article
Google Scholar
31.Gaviria, J., Turner, B. L. & Engelbrecht, B. M. J. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8, e01712 (2017).Article
Google Scholar
32.Alemayehu, T., van Griensven, A., Woldegiorgis, B. T. & Bauwens, W. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 21, 4449–4467 (2017).Article
Google Scholar
33.Kotto-Same, J., Woomer, P. L., Appolinaire, M. & Louis, Z. Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agric. Ecosyst. Environ. 65, 245–256 (1997).Article
Google Scholar
34.Tyukavina, A. et al. Congo basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).Article
Google Scholar
35.Rejou-Mechain, M. et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11, 6827–6840 (2014).Article
Google Scholar
36.Tropek, R. et al. Comment on “high-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).Article
Google Scholar
37.Global Forest Watch (World Resources Institute, 2019); https://data.globalforestwatch.org/datasets/planted-forests38.Roteta, E., Bastarrika, A., Padilla, M., Storm, T. & Chuvieco, E. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 222, 1–17 (2019).Article
Google Scholar
39.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article
Google Scholar
40.Laurance, S. G. W. Responses of understory rain forest birds to road edges in central Amazonia. Ecol. Appl. 14, 1344–1357 (2004).Article
Google Scholar
41.Cochrane, M. A. & Laurance, W. F. Synergisms among fire, land use, and climate change in the Amazon. AMBIO 37, 522–527 (2008).Article
Google Scholar
42.Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).Article
Google Scholar
43.Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).Article
Google Scholar More