More stories

  • in

    Kinship networks of seed exchange shape spatial patterns of plant virus diversity

    1.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).Article 

    Google Scholar 
    2.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.McGuire, S. & Sperling, L. Seed systems smallholder farmers use. Food Secur. 8, 179–195 (2016).Article 

    Google Scholar 
    4.Almekinders, C. J., Louwaars, N. P. & De Bruijn, G. H. Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 78, 207–216 (1994).Article 

    Google Scholar 
    5.McGuire, S. & Sperling, L. Making seed systems more resilient to stress. Global Environ. Chang. 23, 644–653 (2013).Article 

    Google Scholar 
    6.Legg, J. et al. Community phytosanitation to manage Cassava Brown Streak Disease. Virus Res. 241, 236–253 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McQuaid, C. F. et al. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput. Biol. 13, e1005654 (2017a).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Chernela, J. M. Os cultivares de mandioca na área do Uaupés (Tukâno). In Suma Etnológica Brasileira (ed Ribeiro, D.) 151–158 (Finep, Petrópolis, 1986).9.Emperaire, L., Pinton, F. & Second, G. Gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. Nat. Sci. Soc. 6, 27–42 (1998).Article 

    Google Scholar 
    10.Sirbanchongkran, A., Yimyam, N., Boonma, W. & Rerkasem, K. Varietal turnover and seed exchange: implications for conservation of rice genetic diversity on farm. Int. Rice Res. Notes 29, 12–14 (2004).
    Google Scholar 
    11.Delêtre, M., McKey, D. B. & Hodkinson, T. R. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc. Natl Acad. Sci. USA 108, 18249–18254 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Labeyrie, V., Thomas, M., Muthamia, Z. K. & Leclerc, C. Seed exchange networks, ethnicity, and sorghum diversity. Proc. Natl Acad. Sci. USA 113, 98–103 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Brown, J. K. et al. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160, 1593–1619 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Legg, J. P. et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak pandemics in Africa. Virus Res. 159, 161–170 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Harrison, B. D., Zhou, X., Otim‐Nape, G. W., Liu, Y. & Robinson, D. J. Role of a novel type of double infection in the geminivirus‐induced epidemic of severe cassava mosaic in Uganda. Ann. Appl. Biol. 131, 437–448 (1997).Article 

    Google Scholar 
    17.Consultative Group for International Agricultural Research. CGIAR Research Program 3.4: Roots, tubers, and bananas for food security and income. Final revised proposal. September 2011. https://hdl.handle.net/10947/5314.18.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Fauquet, C. & Fargette, D. African cassava mosaic virus: etiology, epidemiology and control. Plant Dis. 74, 404–411 (1990).Article 

    Google Scholar 
    22.Zhou, X. et al. Evidence that DNA A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Pita, J. S. et al. Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82, 655–665 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lefeuvre, P. & Moriones, E. Recombination as a motor of host switches and virus emergences: geminiviruses as case studies. Curr. Opin. Virol. 10, 14–19 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Tiendrébéogo, F. et al. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. Virol. J. 9, 67 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Syrjala, S. E. A statistical test for a difference between the spatial distributions of two populations. Ecology 77, 75–80 (1996).Article 

    Google Scholar 
    27.Chevenet, F., Jung, M., Peeters, M., de Oliveira, T. & Gascuel, O. Searching for virus phylotypes. Bioinformatics 29, 561–570 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    29.Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user‐defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. 56, 585–599 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Legg, J. P., Ndjelassili, F. & Okao-Okuja, G. First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathol. 53, 232 (2004).Article 

    Google Scholar 
    33.Legg, J. P. Bemisia tabaci: the whitefly vector of cassava mosaic geminiviruses in Africa: an ecological perspective. Afr. Crop Sci. J. 2, 437–448 (1994).
    Google Scholar 
    34.Fargette, D. & Thresh, J. M. The ecology of African cassava mosaic geminivirus. In Ecology of Plant Pathogens (eds Blakeman, J. P. & Williamson, B.) 269–282 (CAB International, Oxford, 1994).35.Anderson, P. K. & Morales, F. Whitefly and whitefly borne viruses in the tropics: building a knowledge base for global action (International Center for Tropical Agriculture, Cali, 2005).36.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. 44, 6–12 (2013).Article 

    Google Scholar 
    37.Delêtre, M. The ins and outs of manioc diversity in Gabon, Central Africa: a pluridisciplinary approach to the dynamics of genetic diversity of Manihot esculenta Crantz (Euphorbiaceae) (Trinity College Dublin, 2010).38.Messe Mbega, C. Y. Les régions transfrontalières: un exemple d’intégration sociospatiale de la population en Afrique centrale? Éthique publique 17, http://ethiquepublique.revues.org/1724 (2015).39.Akinbade, S. A. et al. First report of the East African cassava mosaic virus-Uganda (EACMV-UG) infecting cassava (Manihot esculenta) in Cameroon. N. Dis. Rep. 22, 2044–0588 (2010).
    Google Scholar 
    40.Valam-Zango, A. et al. First report of cassava mosaic geminiviruses and the Uganda strain of East African cassava mosaic virus (EACMV-UG) associated with cassava mosaic disease in Equatorial Guinea. N. Dis. Rep. 32, 29 (2015).Article 

    Google Scholar 
    41.Trovão, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. 1, vev016 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sallinen, S. et al. Intraspecific host variation plays a key role in virus community assembly. Nat. Commun. 11, 5610 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Patil, B. L., Legg, J. P., Kanju, E. & Fauquet, C. M. Cassava brown streak disease: a threat to food security in Africa. J. Gen. Virol. 96, 956–968 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Maruthi, M. N., Jeremiah, S. C., Mohammed, I. U. & Legg, J. P. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. J. Phytopathol. 165, 707–717 (2017).CAS 
    Article 

    Google Scholar 
    45.McQuaid, C. F., Gilligan, C. A. & van den Bosch, F. Considering behaviour to ensure the success of a disease control strategy. R. Soc. Open Sci. 4, 170721 (2017b).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Almekinders, C. J. et al. Understanding the relations between farmers’ seed demand and research methods: the challenge to do better. Outlook Agric. 48, 16–21 (2019a).Article 

    Google Scholar 
    47.Almekinders, C. J. et al. Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Secur. 11, 23–42 (2019b).Article 

    Google Scholar 
    48.R Foundation for Statistical Computing. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2018).49.Zeileis, A. ineq: Measuring inequality, concentration, and poverty. R package version 0.2-13. https://CRAN.R-project.org/package=ineq (2014).50.Alabi, O. J., Kumar, P. L. & Naidu, R. A. Multiplex PCR method for the detection of African cassava mosaic virus and East African cassava mosaic Cameroon virus in cassava. J. Virol. Methods 154, 111–120 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).PubMed 
    Article 

    Google Scholar 
    55.Rambaut, A., Lam, T. T., de Carvalho, L. M. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst. Virus Evol. 2, vew007 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ragonnet-Cronin, M. et al. Automated analysis of phylogenetic clusters. BMC Bioinforma. 14, 317 (2013).Article 

    Google Scholar 
    57.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    58.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    59.Scherer, R. & Pallmann, P. Simboot: simultaneous inference for diversity indices. R package version 0.2-6. https://CRAN.R-project.org/package=simboot (2017).60.Oksanen J. et al. vegan: Community Ecology Package. R package version 2.4-1. https://CRAN.R-project.org/package=vegan (2016).61.Prost, S. & Anderson, C. N. K. TempNet: a method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).Article 

    Google Scholar 
    62.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. TRENDS Ecol. Evol. 16, 37–45 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinforma. 9, 539 (2008).Article 
    CAS 

    Google Scholar 
    64.Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.De la Cruz, M. Métodos para analizar datos puntuales. In Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones (eds Maestre, F. T., Escudero, A. & Bonet, A.) 76–127. (Asociación Española de Ecología Terrestre, Universidad Rey Juan Carlos y Caja de Ahorros del Mediterráneo, Madrid, 2008).66.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    67.Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land‐cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).Article 

    Google Scholar 
    68.Guthrie, M. The Classification of the Bantu Languages (Oxford Univ. Press for the International African Institute, London, 1948).69.Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19, 153–170 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Rogers, J. S. Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. Syst. Biol. 35, 297–310 (1986).Article 

    Google Scholar  More

  • in

    Seasonality and landscape characteristics impact species community structure and temporal dynamics of East African butterflies

    Study sitesOur study sites are located on the Yatta Plateau in south-eastern Kenya. This region is characterized by dry savannahs. Annual rainfall (average: 810 mm) occurs during two periods, from March to May (average: 330 mm) and from October to January (average 480 mm) (c.f. Jaetzold et al.37). The commonest soil types are ferralsols and luvisols, which are of low fertility37. 97.1% of the human population in our study region depend on subsistence crop farming38, and the population has almost doubled in number from 1999 to 200938. Consequently, fallow periods for fields are omitted, which further decreases soil fertility, and increases pressure on pristine habitats.The dry savannah landscape is traversed by temporary (seasonal) rivers. These rivers are bordered by riparian vegetation, consisting of a diverse and unique plant community. However, this vegetation is frequently exploited for timber, charcoal and brick production39,40. The region is further affected by climate change, with an increase in rainfall variability and mean temperature37. These factors lower the reliability of agricultural production and food security, hence leading to severe destruction of pristine habitats.We selected two study sites, affected by different anthropogenic pressures, but which are subject to identical biotic and abiotic preconditions (including seasonality): Firstly, a highly degraded anthropogenic landscape along Nzeeu River, south of Kitui city. Secondly, a largely intact dryland environment along Kainaini River located near the university campus of the South Eastern Kenya University, north of Kitui city (Fig. 1). The landscape along Nzeeu River is densely populated by subsistence farmers. Thus, the original riparian and savannah vegetation has been mostly transformed into arable fields for the cultivation of maize, sorghum, peas, and mangos. Furthermore, the riparian vegetation, where it still exists, has largely been replaced by invasive exotic plant species (e.g. Lantana camara)12. The landscape of our second study site along Kainaini River represents a still largely intact riparian forest with adjoining dry savannahs. It remains mostly undisturbed, except for some moderate live-stock pasturing by nearby subsistence settlers.Butterfly assessmentsWe counted butterflies in both habitat types along line-transects, each 150 m long. We set 24 transects along each of the two rivers, with eight transects along the river bank, eight 250 m distant to the river, and another eight 500 m distant to the river (in total: 2 × 24 transects = 48 transects). The minimum distance between transects was at least 200 m, to minimize spatial autocorrelation. Exact GPS coordinates of each transect are given in Appendix S2.We recorded all butterflies encountered during transect counts (species, number of individuals of each species). Each transect was visited eight times during the dry season (August/September 2019) and eight times during the rainy season (January/February 2020). Data collection was performed between 9 a.m. and 4 p.m. Each butterfly individual within 5 m of the transect line (horizontally to vertically) was recorded by visual observation and, if needed, a butterfly net (see Pollard15, with modifications). While recording butterflies, the observers walked very slowly and spent about 15 min per transect. Species were identified either immediately while the butterfly was on the wing, or individuals were netted and then determined in the field. Individuals of species for which ad hoc identification was critical (e.g. many blues and skippers) were caught with the net, photographed (upper and under wing side) and released again. The photograph-based identification of these individuals was performed later using literature25. Apart from species and number of individuals per species, we recorded cloud cover during each transect walk (classified as: clear, slightly cloudy, mostly cloudy, overcast), exact time, and date. Field teams comprised two observers and one person making notes of all observations. Transects are displayed in Fig. 1. All butterfly data collected are compiled in Appendix S3.TraitsThe occurrence of a species in a specific environment strongly depends on its ecology, behaviour, and life-history41. Therefore, we considered these characteristics for each butterfly species recorded in the field. These trait data were compiled from Larsen25 and web-sites (e.g. www.gbif.org, www.lepiforum.de/non-eu.pl). We considered the following characteristics: wing span (mm), ratio length/width of the forewing (relative), ratio forewing length/thorax width (relative), geographic distribution (4 categories), savannah index (5 categories), forest index (5 categories), tree index (3 categories), wetness index (3 categories), habitat specialisation (3 categories), larval foodplant specialisation (3 categories), larval food plant type (dicotyledonous, monocotyledonous), and hemeroby index (4 categories). Detailed classifications are provided in Appendix S4.Habitat parametersHabitat structures impact species´ occurrence, abundances and community structures42. In our study, we considered habitat structures for each transect. Habitat parameters were recorded (counted and estimated) every 20 m along each transect. We estimated the following habitat parameters: Canopy cover (percentage of leaf cover vs. sky measured with the CanopeoApp); herb, shrub and tree cover (percentage coverage of each layer within a radius of 3 m); flowers on herbs, shrubs and trees (estimated within a radius of 3 m, and subsequently allocated to the classes 0, 1–10, 11–50, 51–100 and  > 100 flowers); occurrence of Lantana camara shrub, and exotic trees (estimated coverage within a radius of 3 m, and subsequently allocated to the classes 0 (no), 1 (rare), 2 (present) and 3 (dominant), respectively); and water availability (presence/absence) within a radius of 3 m. All raw data of habitat parameters are provided in Appendix S5.StatisticsWe first arranged the raw data in three matrices: a 71 × 14 species × trait matrix T, a 71 × 96 species × transect matrix M, and a 6 × 96 habitat characteristics × transect matrix H. Matrix multiplication of E = T−1MA−1, where A is the vector of total abundances in the transects, returned a matrix E of average trait expression in each transect.To answer the first research question, we compared species richness, abundances, and trait expression between the transects and used general linear modelling (glm) to detect differences in richness and trait expression with respect to the study sites (i.e. the two river systems with their different land-use patterns), season, distance from the rivers, as well as to environmental variables. Some of the habitat variables and trait expressions were highly positively correlated (Appendix S1). Consequently, the glm included only variables correlated by less than r = 0.7 (i.e. shrub cover, tree cover, habitat specialisation, savannah index, larval foodplant specialisation, and hemeroby).To infer differences in community structure between transects (second research question), we first calculated the two most dominant eigenvectors, which explained 91.5% and 3.5% of variance, of a principal components analysis of the M matrix. These eigenvectors cover differences in species composition between and within transects. We used glm and two-way Permanova to relate these differences to season, distance to river, and study sites (i.e. different land-use types in the two river systems). Additionally, we assessed the degree of β-diversity among sets of transects with the proportional turnover metric of Tuomisto43: (beta =1-frac{alpha }{gamma }); where α denotes the average species richness per transect and γ the corresponding total richness.To infer species spill-over effects from the riparian forests into the adjoining savannah (third research question), we calculated the Bray–Curtis similarities for three groups of transects within each season and study site. First, we compared average pairwise Bray–Curtis values between transects of intermediate and greater distance with the near-river transects within each study site. Second, we calculated the average Bray–Curtis similarities between all transects within each study site (2)—season (2)—distance class to river (3) combination. Third, we calculated the average within-transect Bray–Curtis similarity for the rainy season, to infer small scale compositional variability. The latter calculations were impossible for the dry season, due to the overall low number of recorded species. Calculations were done with Statistica 12. More

  • in

    Effects of eliminating interactions in multi-layer culture on survival, food utilization and growth of small sea urchins Strongylocentrotus intermedius at high temperatures

    Sea urchins and experimental designSeven hundred small S. intermedius (31.9 ± 0.4 mm of test diameter, mean ± SD) were chosen from an aquaculture farm in Changhai County, Dalian (122° 63′ N, 39° 25′ E) on 23 July 2020. They were subsequently transported to the Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs at Dalian Ocean University (121° 56′ N, 38° 87′ E) and maintained in a fiberglass tank (a closed culture system, length × width × height: 150 × 100 × 60 cm) with aeration for 7 days to acclimatize to laboratory conditions. The kelp Saccharina japonica, which is the most common food used for S. intermedius culture58, was fed ad libitum under the neutral photoperiod (12 h light:12 h dark). One-half of the seawater was changed daily. Water temperature, pH and salinity were 22.6 ± 0.2 °C, 7.7 ± 0.3 and 30.7 ± 0.1 ‰ (Mean ± SD) according to the daily measurement using a portable water quality monitor (YSI Incorporated, OH, USA), respectively.The rearing space was defined as the ratio of culture volume to the number of sea urchins (cm3 ind−1). Rearing assemblage is the main factor being tested in this study. To simulate the currently used rearing assemblage in longline culture, 24 individuals were placed at plastic devices without layer divisions (length × width × height: 24.5 × 16.8 × 6 cm for culture volume; 25 holes of 0.5 cm diameter/100 cm2) as group A (the control group, 102.9 cm3 ind−1 of initial rearing space, Fig. 7a). To investigate whether multi-layer rearing assemblage improves the survival, food utilization and growth, 24 sea urchins were equally put into the cages where were evenly divided into three layers (8 sea urchins in each layer and length × width × height: 24.5 × 16.8 × 6 cm for each layer, 308.7 cm3 ind−1 of initial rearing space; 25 holes of 0.5 cm diameter/100 cm2; group B; Fig. 7b). Further, to evaluate whether eliminating interaction further contributes to the improvement of these commercially important traits of sea urchins in multi-layer rearing assemblage, 8 sea urchins were divided into eight divisions for each layer in the cages as group C (length × width × height: 8.3 × 5.9 × 6 cm for each division, 297.36 cm3 ind−1 of initial rearing space; 25 holes of 0.5 cm diameter/100 cm2; Fig. 7c). Each treatment had 8 replicates. All devices were placed in a fiberglass tank (length × width × height: 150 × 100 × 60 cm) and immersed in water for ~ 30 cm with aeration. They were easily disassembled for the experimental management.Figure 7Diagrams of the experimental cages used for the groups A (a), B (b) and C (c), the sea urchin with the spotting disease (d) and without the disease (e) and the devices used for measuring the Aristotle’s lantern reflex (f).Full size imageThe experimental period was about ~ 7 weeks (from 31 July 2020 to 20 September 2020) under the neutral photoperiod (12 h light: 12 h dark). The kelp, which was regularly collected in the intertidal waters at Heishijiao, Dalian (121° 58′ E, 38° 87′ N), was daily provided to sea urchins in abundance for all the groups. The remained kelp, feces and dead sea urchins were removed daily. One-half of the seawater was replaced daily by the fresh and filtered seawater which was pumped from the coast of Heishijiao, Dalian. Water temperature was not controlled, ranging from 22.2 to 24.5 °C (the natural seasonal cycle of increasing temperature during summer in the region). Water quality parameters were measured weekly as salinity 29.3 ± 0.6 ‰, pH 7.8 ± 0.2 (mean ± SD) using a portable water quality monitor (YSI Incorporated, OH, USA).To ensure the random sampling, sea urchins were taken out from the experimental device and placed in 24 plastic boxes (labeled from number 1 to number 24, length × width × height: 6 × 6 × 4 cm for each box). Individuals were chosen corresponding to the number (within 24) generated by the “sample” function in R studio (1.1.463). Sampling was re-conducted if the number corresponds to empty, dead or diseased sea urchins.Mortality and morbiditySpotting disease, which appears as spotting lesions with red, purple or blackish color on the test (Fig. 7d), is the most common lethal disease in S. intermedius aquaculture12. Sea urchin without disease is shown in Fig. 7e. Dead sea urchins were removed daily and the number of survivor and diseased sea urchins was recorded weekly for each cage during the experiment (N = 8).Food consumptionThe measurement of food consumption (g dry weight) was conducted once a week (24 h from Tuesday to Wednesday) (N = 8). The total supplied and remained diets were weighted wet by an electric balance (G & G Co., San Diego, USA) after the removal of the surface moisture. The dried weights of feces and samples of supplied and uneaten kelp were determined after 4 days at 80 °C in a convection oven (Yiheng Co., Shanghai, China).Food consumption was calculated as follows (revised from Hu et al.9 for being more concise):$${text{F}} = frac{{{text{A}}_{0} times frac{{{text{A}}_{1} }}{{{text{A}}_{2} }} – {text{B}}_{0} times frac{{{text{B}}_{1} }}{{{text{B}}_{2} }}}}{{text{N}}}$$F = dry food intake per sea urchin (g ind−1 day−1), A0 = wet weight of total supplied diets (g), B0 = wet weight of total uneaten diets (g), A1 = dried weight of sample supplied diets (g), A2 = wet weight of sample supplied diets (g), B1 = dry weight of sample uneaten diets (g), B2 = wet weight of sample uneaten diets (g), N = the number of sea urchins.GrowthTest diameter and lantern length were measured using a digital vernier caliper (Mahr Co., Ruhr, Germany). Body, lantern and gut were weighted wet using an electric balance (G & G Co., San Diego, USA). Test diameter and body weight were evaluated every Wednesday. The average value of the three individuals was considered as the trait value for each replicate (N = 8). Lantern length, wet lantern weight and wet gut weight were recorded in week 4 (29 August 2020) and week 7 (20 September 2020) (N = 8).Aristotle’s lantern reflexAristotle’s lantern reflex, which refers to one cycle from the opening to the closing of the teeth59, was measured using a simple device according to the method of Ding et al.38. There were small compartments (length × width × height: 4.8 × 5.6 × 4.5 cm) with a film (made by 3 g agar and 2 g kelp powder) on the bottom of the device38 (Fig. 7f). The frequency of Aristotle’s lantern reflex was counted within 5 min using a digital camera (Canon Co., Shenzhen, China) under the device in week 4 (29 August 2020) and week 7 (20 September 2020). The average value of all the 5 individuals was considered as Aristotle’s lantern reflex for each replicate (N = 8).5-HT concentrationThe 5-HT is a signaling molecule, playing an important role in regulating feeding behavior52. To evaluate whether 5-HT is involved in Aristotle’s lantern reflex, 5-HT concentration of muscle in lantern was measured for each treatment in week 4 and week 7. 5-HT concentration was considered as the average value of all the 3 healthy individuals for each replicate (N = 8).The concentration of 5-HT was measured using ELISA kits (Nanjing Jiancheng Bio-engineering Institute, Nanjing, China) according to the instructions of the manufacturer. After adding the enzyme-labeled antibody, the substrate became a colored product that was directly related to the amount of the substance tested. The concentrations of 5-HT were calculated by comparing the optical density (O.D.) value of the samples to the standard curve and calculated according to the following formula (according to the kit’s instructions):$${text{Y}} = frac{1}{{({text{a }} + {text{bx}}^{{text{c}}} )}}$$Y = the concentration of 5-HT (ng mL−1), x = the O.D. value of the samples, a = 0.00027, b = 0.12086, c = 1.36806.Pepsin activityPepsin is important for sea urchins to digest protein-rich algae40,60. Pepsin activity was analyzed using the pepsin kits (Nanjing Jiancheng Bio-engineering Institute, Nanjing, China) in week 4 and week 7, following the instructions of the manufacturer. The average value of all the 3 individuals was considered as the pepsin activity for each replicate (N = 8). The procedures include enzyme reaction and color development reaction39. The temperature of reaction was 37 °C and pepsin activities were counted as U mg protein−1. The formula of pepsin activity is shown as follows (according to the kit’s instructions):$${text{P}} = frac{{{text{M}}_{0} – {text{M}}_{1} }}{{{text{M}}_{2} – {text{M}}_{3} }} times frac{{{text{S}}_{0} }}{{{text{S}}_{1} }} times frac{{{text{V}}_{1} times {text{V}}_{2} }}{{{text{V}}_{3} }}$$P = pepsin activity (U/mg prot), M0 = the O.D. value of the sample, M1 = the O.D. value of comparison, M2 = the standard O.D. value, M3 = blank O.D. value, S0 = the standard concentration (50 μg mL−1), S1 = reaction time (10 min), V1 = total volume of reaction solution (0.64 mL), V2 = sample protein concentration (0.04 mL), V3 = sampling volume (mg prot/mL).Gut morphological examinationAfter sea urchins were dissected on week 4 and week 7, all gut tissue samples (~ 1 g for each sample) were fixed in Bouin’s solution (glacial acetic acid: formaldehyde: saturated picric acid solution = 1:5:15) according to the method of Wu et al.61. They were subsequently transferred for gradient dehydration, embedding, cutting, staining and observation62 (N = 24).Statistical analysisKolmogorov–Smirnov test and Levene test were used to analyze the normal distribution and homogeneity of the data, respectively. Rearing assemblage was set as the main factor in the one-way ANOVA with three levels: the control system without layer divisions (group A), a second system with divisions in the cages to simulate the three layers cages (group B) and a third system with individual divisions for each sea urchin (group C). One-way ANOVA was used to analyze the mortality (in weeks 3, 4, 5, 6, 7), morbidity (in weeks 3, 6, 7), food consumption (in weeks 2, 5, 7), test diameter (in weeks 1, 2, 3, 4, 5, 6), body weight (in weeks 1, 4, 5, 7), 5-HT, pepsin activity, lantern length, lantern weight and gut weight. Duncan multiple comparison analysis was performed when significant differences were found in the one-way ANOVA. Kruskal–Wallis test was carried out to compare the differences of mortality (weeks 1, 2), morbidity (weeks 1, 2, 4, 5), food consumption (weeks 1, 3, 4, 6), test diameter (week 7), body weight (weeks 2, 3, 6) and Aristotle’s lantern reflex, because of non-normal distribution and/or heterogeneity of variance. A non-parametric post-hoc test was carried out when significant differences were found in the Kruskal–Wallis test. All data analyses were performed using SPSS 19.0 statistical software. A probability level of P  More

  • in

    Shoot-soil ecological stoichiometry of alfalfa under nitrogen and phosphorus fertilization in the Loess Plateau

    1.Bai, X. J., Wang, B. R., An, S. S., Zeng, Q. C. & Zhang, H. X. Response of forest species to C:N:P in the plant–litter–soil system and stoichiometric homeostasis of plant tissue during afforestation on the Loess Plateau, China. CATENA 183, 104186 (2019).CAS 
    Article 

    Google Scholar 
    2.Zhao, X. N., Wu, P. T., Gao, X. D. & Persaud, N. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degrad. Dev. 26(1), 54–61 (2015).Article 

    Google Scholar 
    3.Penuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N, and P in Earth’s life system. GCB Bioenergy 18(1), 3–6 (2012).
    Google Scholar 
    4.Zhao, Z. P. et al. Effects of chemical fertilizer combined with organic manure on Fuji apple quality, yield and soil fertility in apple orchard on the Loess Plateau of China. Int. J. Agric. Biol. Eng. 7(2), 45–55 (2014).CAS 

    Google Scholar 
    5.Treseder, K. K. & Vitousek, P. M. Effects of soil nutrient availability on investment in acquisition of N and P in Havaiian rain forests. Ecology 82(4), 946–954 (2001).Article 

    Google Scholar 
    6.Vitousek, P. M. Nutrient cycling and nutrient use efficiency. Am. Nat. 119(4), 553–573 (1984).Article 

    Google Scholar 
    7.Zhong, Y. Q. W., Yan, W. M., Xu, X. B. & Shangguan, Z. P. Influence of nitrogen fertilization on wheat, and soil carbon, nitrogen and phosphorus stoichiometry characteristics. Int. J. Agric. Biol. 17, 1179–2118 (2015).CAS 
    Article 

    Google Scholar 
    8.Cui, Q., Lü, X. T., Wang, Q. B. & Han, X. G. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant Soil 334, 209–219 (2010).CAS 
    Article 

    Google Scholar 
    9.Louis, A. S. et al. Decadal changes in soil carbon and nitrogen under a range of irrigation and phosphorus fertilizer treatments. Soil Sci. Soc. Am. J. 77(1), 246–256 (2012).
    Google Scholar 
    10.Ostertag, R. Foliar nitrogen and phosphorus accumulation responses after fertilization: An example from nutrient-limited Hawaiian forests. Plant Soil 334, 85–98 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Hu, Q. J., Sheng, M. Y., Bai, Y. X., Jie, Y. & Xiao, H. L. Response of C, N, and P stoichiometry characteristics of Broussonetia papyrifera to altitude gradients and soil nutrients in the karst rocky ecosystem, SW China. Plant Soil https://doi.org/10.1007/s11104-020-04742-7 (2020).Article 

    Google Scholar 
    12.Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    13.Zhang, G. Q., Zhang, P., Peng, S. Z., Chen, Y. M. & Cao, Y. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Sci. Rep. 7(1), 11754 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Pang, Y. et al. The linkages of plant, litter and soil C:N:P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. PeerJ 8(4), e9274 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Heyburn, J., Mckenzie, P., Crawlwy, M. J. & Fornara, D. A. Effects of grassland management on plant C:N:P stoichiomtry: Implications for soil elment cycling and storage. Ecosphere 8(10), e01963 (2017).Article 

    Google Scholar 
    16.Sun, X. et al. Initial responses of grass litter tissue chemistry and N:P stoichiometry to varied N and P input rates and ratios in Inner Mongolia. Agric. Ecosyst. Environ. 252, 114–125 (2018).CAS 
    Article 

    Google Scholar 
    17.Ding, F. et al. Opposite effects of nitrogen fertilization and plastic film mulching on crop N and P stoichiometry in a temperate agroecosystem. J. Plant Ecol. 12(4), 682–692 (2019).Article 

    Google Scholar 
    18.Ye, Y. S. et al. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements. PLoS ONE 9(7), e101776 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Sistla, S. A., Appling, A. P., Lewandowska, A. M., Taylor, B. N. & Wolf, A. A. Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 124(7), 949–959 (2015).CAS 
    Article 

    Google Scholar 
    20.Ladanai, S., Ågren, G. I. & Olsson, B. A. Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13(2), 302–316 (2010).CAS 
    Article 

    Google Scholar 
    21.Lu, J. Y. et al. Leaf resorption and stoichiometry of N and P of 1, 2 and 3 year-old alfalfa under one-time P fertilization. Soil Till. Res. 197, 104481 (2020).Article 

    Google Scholar 
    22.Lu, J. Y., Yang, M., Liu, M. G., Lu, Y. X. & Yang, H. M. Nitrogen and phosphorus fertilizations alter nitrogen, phosphorus and potassium resorption of alfalfa in the Loess Plateau of China. J. Plant Nutr. 42(18), 2234–2246 (2019).CAS 
    Article 

    Google Scholar 
    23.Jiang, H. M., Jiang, J. P., Jia, Y., Li, F. M. & Xu, J. Z. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biol. Biochem. 38(8), 2350–2358 (2006).CAS 
    Article 

    Google Scholar 
    24.Gu, Y. J. et al. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop Res. 215, 94–103 (2018).Article 

    Google Scholar 
    25.Herbert, D. A., Williams, M. & Rastetter, E. B. A model analysis of N and P limitaiton on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry 65, 121–150 (2003).CAS 
    Article 

    Google Scholar 
    26.Zhang, L. X., Bai, Y. F. & Han, X. G. Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Bot. Sin. 46, 259–270 (2004).
    Google Scholar 
    27.Stewart, J. R., Kennedy, G. J., Landes, R. D. & Dawson, J. Foliar-nitrogen and phosphorus resorption patterns differ among nitrogen-fixing and nonfixing temperate-deciduous trees and shrubs. Int. J. Plant Sci. 169(4), 495–502 (2008).CAS 
    Article 

    Google Scholar 
    28.Vance, C. P., Uhde-Stone, C. & Allan, D. L. Phosphorus acquisition and use: Critical adaptations by plant for securing a non renewable resource. New Phytol. 157, 423–447 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Han, W. X., Fang, J. Y., Guo, D. L. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168(2), 377–385 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Ma, H. M. et al. Moderate clipping stimulates over-compensatory growth of Leymus chinensis under saline-alkali stress throuth high allocation of biomass and nitrogen to shoots. Plant Growth Regul. 92, 95–106 (2020).CAS 
    Article 

    Google Scholar 
    31.Sophie, Z. B. et al. The application of ecological stoichiometry to plant–microbial-soil organic matter transformations. Ecol. Monogr. 85(2), 133–155 (2015).Article 

    Google Scholar 
    32.Schmitt, A., Pausch, J. & Kuzyakov, Y. C and N allocation in soil under ryegrass and alfalfa extimated by 13C and 15N labelling. Plant Soil 368, 581–590 (2013).CAS 
    Article 

    Google Scholar 
    33.Koerselman, W. & Meuleman, A. F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    34.Tian, H. G., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 98, 139–151 (2010).CAS 
    Article 

    Google Scholar 
    35.Ding, X. Q. et al. Establishing P fertilization reconmendation index of different vegetables by STP with the “3414” field experiments in South China. Int. J. Agric. Biol. 16, 603–608 (2014).CAS 

    Google Scholar 
    36.Suo, Y. Y. et al. Local-scale determinants of elemental stoichiometry of soil in an old-growth temperate forest. Plant Soil 408, 401–414 (2016).CAS 
    Article 

    Google Scholar 
    37.Qiu, W. H., Liu, J. S., Li, B. Y. & Wang, Z. H. N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N and bacterial community. Environ. Sci. Pollut. Res. 27, 8673–8683 (2020).CAS 
    Article 

    Google Scholar 
    38.Appelhans, S. C., Barbagelata, P. A., Melchiori, R. J. M. & Boem, F. G. Assessing soil P fractions changes with long-term phosphorus fertilization related to crop yield of soybean and maize. Soil Use Manag. 36(3), 524–535 (2020).Article 

    Google Scholar 
    39.Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Chen, X. D. et al. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs. Geoderma 349, 36–44 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Van Huysen, T. L., Perakis, S. S. & Harmon, M. K. Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant Soil 406(1–2), 1–14 (2016).Article 
    CAS 

    Google Scholar 
    42.Li, M. et al. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoichiometry in leaves and fine roots. Plant Soil 445, 231–242 (2019).Article 
    CAS 

    Google Scholar 
    43.Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in fresh water, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    44.Shaver, G. R. & Melillo, J. M. Nutrient budgets of marsh plant: Efficiency concepts and relation to availability. Ecology 65, 1491–1510 (1984).Article 

    Google Scholar 
    45.De Vos, B., Van Meirvenne, M., Quataert, P. & Muys, B. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci. Soc. Am. J. 69(2), 500–510 (2005).Article 

    Google Scholar  More

  • in

    Powered flight in hatchling pterosaurs: evidence from wing form and bone strength

    1.Bennett, S. C. The ontogeny of Pteranodon and other pterosaurs. Paleobiology 19, 92–106 (1993).Article 

    Google Scholar 
    2.Bennett, S. C. A statistical study of Rhamphorhynchus from the Solnhofen Limestone of Germany: Year-classes of a single large species. J. Paleontol. 69, 569–580 (1995).Article 

    Google Scholar 
    3.Bennett, S. C. Year-classes of pterosaurs from the Solnhofen Limestone of Germany: Taxonomic and systematic implications. J. Vertebr. Paleontol. 16, 432–444 (1996).Article 

    Google Scholar 
    4.Bennett, S. C. New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs. J. Paleontol. 92, 254–271 (2018).Article 

    Google Scholar 
    5.Kellner, A. W. A. Comments on Triassic pterosaurs with discussion about ontogeny and description of new taxa. An. Acad. Bras. Ciênc. 87, 669–689 (2015).PubMed 
    Article 

    Google Scholar 
    6.Chiappe, L. M., Codorniú, L., Grellet-Tinner, G. & Rivarola, D. Argentinian unhatched pterosaur fossil. Nature 432, 571–572 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Wang, X. & Zhou, Z. Pterosaur embryo from the Early Cretaceous. Nature 429, 521 (2004).Article 
    CAS 

    Google Scholar 
    8.Manzig, P. C. et al. Discovery of a rare pterosaur bone bed in a Cretaceous desert with insights on ontogeny and behavior of flying reptiles. PLoS ONE 9, e100005. https://doi.org/10.1371/journal.pone.0100005 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Wang, X. et al. Sexually dimorphic tridimensionally preserved pterosaurs and their eggs from China. Curr. Biol. 24, 1323–1330 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Codorniú, L., Chiappe, L. & Rivarola, D. Neonate morphology and development in pterosaurs: evidence from a ctenochasmatid embryo from the Early Cretaceous of Argentina. In New Perspectives on Pterosaur Palaeobiology Vol. 455 (eds Hone, D. W. E. et al.) 83–94 (Geological Society London Special Publications, 2018).11.Wang, X. et al. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur. Science 358, 1197–1201 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Unwin, D. M. The Pterosaurs from Deep Time (Pi Press, 2005).13.Prondvai, E., Stein, K., Ősi, A. & Sander, M. P. Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies. PLoS ONE 7, e31392. https://doi.org/10.1371/journal.pone.0031392 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Heij, C. J., Rompas, C. F. E. & Moeliker, C. W. The biology of the Mollucan megapode Eulipoa wallacei (Aves, Galliformes, Megapodiidae) on Haruku and other Mollucan Islands; part 2. Deinsea 3, 1–120 (1997).
    Google Scholar 
    15.Jackson, B. E., Segre, P. & Dial, K. P. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): Negotiating a three-dimensional terrestrial environment. Proc. R. Soc. B 276, 3457–3466 (2009).PubMed 
    Article 

    Google Scholar 
    16.Healey, C. Dispersal of newly hatched orange-footed scrubfowl Megapodius reinwardt. Emu 94, 220–221 (1994).Article 

    Google Scholar 
    17.Starck, J. M. Structural variants and invariants in avian embryonic and postnatal development. Oxford Ornithol. Ser. 8, 59–88 (1998).
    Google Scholar 
    18.Chinsamy, A., Codorniú, L. & Chiappe, L. Developmental growth patterns of the filter-feeder pterosaur, Pterodaustro guinazui. Biol. Lett. 4, 282–285 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Hone, D. W. E., Ratcliffe, J. M., Riskin, D. K., Hermanson, J. W. & Reisz, R. R. Unique near isometric ontogeny in the pterosaur Rhamphorhynchus suggests hatchlings could fly. Lethaia 54, 106–112 (2020).Article 

    Google Scholar 
    20.Habib, M. B. Comparative evidence for quadrupedal launch in pterosaurs. Zitteliana B28, 159–166 (2008).
    Google Scholar 
    21.Codorniú, L. & Chiappe, L. M. Early juvenile pterosaurs (Pterodactyloidea: Pterodaustro guinazui) from the Lower Cretaceous of central Argentina. Can. J. Earth Sci. 41, 9–18 (2004).ADS 
    Article 

    Google Scholar 
    22.Kellner, A. W. A. Pterosaur phylogeny and comments on the evolutionary history of the group. In Evolution and Palaeobiology of Pterosaurs Vol. 217 (eds Buffetaut, E. & Mazin, J.-M.) 105–137 (Geol. Soc. Spec. Publ, 2003).23.Wang, X., Kellner, A. W. A., Zhou, Z. & Campos, D. D. A. Discovery of a rare arboreal forest-dwelling flying reptile (Pterosauria, Pterodactyloidea) from China. Proc. Natl. Acad. Sci. USA 105, 1983–1987 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Andres, B., Clark, J. & Xu, X. The earliest pterodactyloid and the origin of the group. Curr. Biol. 24, 1011–1016 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Witton, M. P. Pterosaurs: Natural History, Evolution, Anatomy (Princeton University Press, 2013).26.Hone, D. W. E., Farke, A. A. & Wedel, M. J. Ontogeny and the fossil record: What, if anything, is an adult dinosaur?. Biol. Lett. 12, 20150947 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Campione, N. E., Brink, K. S., Freedman, E. A., McGarrity, C. T. & Evans, D. C. ‘Glishades ericksoni’, an indeterminate juvenile hadrosaurid from the Two Medicine Formation of Montana: Implications for hadrosauroid diversity in the latest Cretaceous (Campanian-Maastrichtian) of western North America. Palaeobio. Palaeoenv. 93, 65–75 (2013).
    Google Scholar 
    28.Wellnhofer, P. & Kellner, A. W. A. The skull of Tapejara wellnhoferi Kellner (Reptilia, Pterosauria) from the Lower Cretaceous Santana Formation of the Araripe Basin, Northeastern Brazil. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 31, 89–106 (1991).
    Google Scholar 
    29.Unwin, D. M. On the phylogeny and evolutionary history of pterosaurs. In Evolution and Palaeobiology of Pterosaurs Vol. 217 (eds Buffetaut, E. & Mazin, J.-M.) 139–190 (Geol. Soc. Spec. Publ, 2003).30.Kellner, A. W. A. New information on the Tapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade. Ameghiniana 41, 521–534 (2004).
    Google Scholar 
    31.Lü, J. et al. A new species of Huaxiapterus (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Western Liaoning, China with comments on the systematics of tapejarid pterosaurs. Acta Geol. Sin. 80, 315–326 (2006).
    Google Scholar 
    32.Eck, K., Elgin, R. & Frey, E. On the osteology of Tapejara wellnhoferi KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the Santana Formation, Araripe Basin, NE-Brazil. Swiss J. Paleontol. 130, 277–296 (2011).Article 

    Google Scholar 
    33.Bennett, S. C. Sexual dimorphism in Pteranodon and other pterosaurs, with comments on cranial crests. J. Vertebr. Paleontol. 12, 422–434 (1992).Article 

    Google Scholar 
    34.Tomkins, J. L., LeBas, N. R., Witton, M. P., Martill, D. M. & Humphries, S. Positive allometry and the prehistory of sexual selection. Am. Nat. 176, 141–148 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Pinheiro, F. L. & Rodrigues, T. Anhanguera taxonomy revisited: Is our understanding of Santana Group pterosaur diversity biased by poor biological and stratigraphic control?. PeerJ 5, e3285. https://doi.org/10.7717/peerj.3285 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Li, J. J., Lü, J. & Zhang, B. K. A new sinopterid pterosaur from the Mesozoic of western Liaoning Province, China. Acta Palaeontologica Sinica 42, 442–447 (2003).
    Google Scholar 
    37.Bennett, S. C. Juvenile specimens of the pterosaur Germanodactylus cristatus, with a review of the genus. J. Vertebr. Paleontol. 26, 872–878 (2006).Article 

    Google Scholar 
    38.Bennett, S. C. New information on body size and cranial display structures of Pterodactylus antiquus, with a revision of the genus. Palaeontol. Z. 87, 269–289 (2013).Article 

    Google Scholar 
    39.Bennett, S. C. Soft tissue preservation of the cranial crest of the pterosaur Germanodactylus from Solnhofen. J. Vertebr. Paleontol. 22, 43–48 (2002).Article 

    Google Scholar 
    40.Wang, X. & Zhou, Z. A new pterosaur (Pterodactyloidea, Tapejaridae) from the Early Cretaceous Jiufotang Formation of western Liaoning, China and its implications for biostratigraphy. Chin. Sci. Bull. 48, 16–23 (2003).Article 

    Google Scholar 
    41.Jouve, S. Description of the skull of a Ctenochasma (Pterosauria) from the latest Jurassic of eastern France, with a taxonomic revision of European Tithonian Pterodactyloidea. J. Vertebr. Paleontol. 24, 542–554 (2004).Article 

    Google Scholar 
    42.McGuire, J. A. Allometric prediction of locomotor performance: An example from Southeast Asian flying lizards. Am. Nat. 161, 337–349 (2003).PubMed 
    Article 

    Google Scholar 
    43.McGuire, J. A. & Dudley, R. The biology of gliding in flying lizards (genus Draco) and their fossil and extant analogs. Integr. Comp. Biol. 51, 983–990 (2011).PubMed 
    Article 

    Google Scholar 
    44.Witton, M. P. A new approach to determining pterosaur body mass and its implications for pterosaur flight. Zitteliana B28, 143–158 (2008).
    Google Scholar 
    45.Henderson, D. M. Pterosaur body mass estimates from three-dimensional mathematical slicing. J. Vertebr. Paleontol. 30, 768–785 (2010).Article 

    Google Scholar 
    46.Witton, M. P. Flight performance and lifestyle of Dimorphodon macronyx. Flugsaurier 2015 Portsmouth abstract volume, 57–60 (2015).47.Martin, E. G. & Palmer, C. A novel method of estimating pterosaur skeletal mass using computed tomography scans. J. Vertebr. Paleontol. 34, 1466–1469 (2014).Article 

    Google Scholar 
    48.Martin-Silverstone, E. et al. Exploring the relationship between skeletal mass and total body mass in birds. PLoS ONE 10, e0141794. https://doi.org/10.1371/journal.pone.0141794 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Elgin, R., Hone, D. W. E. & Frey, E. The extent of the pterosaur flight membrane. Acta Palaeontol. Pol. 56, 99–111 (2011).Article 

    Google Scholar 
    50.Pennycuick, C. J. Modelling the Flying Bird (Academic, 2008).51.Witton, M. P. & Habib, M. B. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness. PLoS ONE 5, e13982. https://doi.org/10.1371/journal.pone.0013982 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bennett, S. C. New interpretation of the wings of the pterosaur Rhamphorhynchus muensteri based on the Zittel and Marsh specimens. J. Paleont. 1, 1–25 (2016).
    Google Scholar 
    53.Palmer, C. & Dyke, G. J. Biomechanics of the unique pterosaur pteroid. P. Roy. Soc. B 277, 1121–1127 (2010).
    Google Scholar 
    54.Currey, J. D. Bones: Structure and Mechanics (Princeton University Press, 2002).55.Vernes, K. Gliding performance of the Northern flying squirrel (Glaucomys sabrinus) in mature mixed forest of eastern Canada. J. Mammal. 82, 1026–1033 (2001).Article 

    Google Scholar 
    56.Socha, J. J. Gliding flight in the paradise tree snake. Nature 418, 603–604 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Jackson, S. M. Gliding Mammals of the World (Csiro Publishing, 2012).58.Alexander, D. E. Nature’s Flyers: Birds, Insects, and the Biomechanics of Flight (JHU Press, 2004).59.Socha, J. J., Jafari, F., Munk, Y. & Byrnes, G. How animals glide: From trajectory to morphology. Can. J. Zoo. 93, 901–924 (2015).Article 

    Google Scholar 
    60.Biewener, A. A. Bone strength in small mammals and bipedal birds: Do safety factors change with body size?. J. Exp. Biol. 98, 289–301 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Currey, J. D. & Alexander, R. M. The thickness of the walls of tubular bones. J. Zool. 206, 453–468 (1985).Article 

    Google Scholar 
    62.Habib, M. Constraining the air giants: Limits on size in flying animals as an example of constraint-based biomechanical theories of form. Biol. Theory 8, 245–252 (2013).Article 

    Google Scholar 
    63.Vidovic, S. U. & Martill, D. M. Pterodactylus scolopaciceps Meyer, 1860 (Pterosauria, Pterodactyloidea) from the Upper Jurassic of Bavaria, Germany: The problem of cryptic pterosaur taxa in early ontogeny. PLoS ONE 9, e110646. https://doi.org/10.1371/journal.pone.0110646 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015).65.Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G. & Hellgren, O. Flight speeds among bird species: Allometric and phylogenetic effects. PLoS Biol. 5, e197. https://doi.org/10.1371/journal.pbio.0050197 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Dial, K. P. & Jackson, B. E. When hatchlings outperform adults: locomotor development in Australian brush turkeys (Alectura lathami, Galliformes). Proc. R. Soc. B 278, 1610–1616 (2010).PubMed 
    Article 

    Google Scholar 
    67.Rayner, J. M. Form and function in avian flight. Curr. Ornithol. 5, 1–66 (1988).
    Google Scholar 
    68.Marden, J. H. From damselflies to pterosaurs: How burst and sustainable flight performance scale with size. Am. J. Physiol. Reg. I 266, R1077–R1084 (1994).CAS 
    Article 

    Google Scholar 
    69.Tobalske, B. W., Altshuler, D. L. & Powers, D. R. Take-off mechanics in hummingbirds (Trochilidae). J. Exp. Biol. 207, 1345–1352 (2004).PubMed 
    Article 

    Google Scholar 
    70.Unwin, D. M. & Deeming, D. C. Pterosaur eggshell structure and its implications for pterosaur reproductive biology. Zitteliana B28, 199–207 (2008).
    Google Scholar 
    71.Unwin, D. M. & Martill, D. M. Pterosaurs of the Crato formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 475–524 (Cambridge University Press, 2007).72.Lü, J. et al. An egg-adult association, gender, and reproduction in pterosaurs. Science 331, 321–324 (2011).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Naish, D. & Witton, M. P. Neck biomechanics indicate that giant Transylvanian azhdarchid pterosaurs were short-necked arch predators. PeerJ 5, e2908. https://doi.org/10.7717/peerj.2908 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Wellnhofer, P. The Illustrated Encyclopedia of Pterosaurs (Crescent Books, 1991).75.Witton, M. P. & Naish, D. A reappraisal of azhdarchid pterosaur functional morphology and paleoecology. PLoS ONE 3, e2271. https://doi.org/10.1371/journal.pone.0002271 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Alpha and beta diversity patterns of macro-moths reveal a breakpoint along a latitudinal gradient in Mongolia

    1.Díaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    3.Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Valtonen, A. et al. Long-term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    6.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Thomas, C., Jones, T. H. & Hartley, S. E. “Insectageddon”: A call for more robust data and rigorous analyses. Glob. Change Biol. 25,1891–1892 (2019).ADS 
    Article 

    Google Scholar 
    8.Enkhtur, K., Boldgiv, B. & Pfeiffer, M. Diversity and distribution patterns of geometrid moths (Geometridae, Lepidoptera) in Mongolia. Diversity 12, 186 (2020).Article 

    Google Scholar 
    9.Pullaiah, T. Global Biodiversity: Volume 1: Selected Countries in Asia (CRC Press, 2018).Book 

    Google Scholar 
    10.Knyazev, S. A., Makhov, I. A., Matov, A. Y. & Yakovlev, R. V. Check-list of Macroheterocera (Insecta, Lepidoptera) collected in 2019 in Mongolia by Russian entomological expeditions. Ecol. Montenegrina 38, 186–204 (2020).Article 

    Google Scholar 
    11.Ustjuzhanin, P., Kovtunovich, V. & Yakovlev, R. Alucitidae (Lepidoptera), a new family for the Mongolian fauna. Nota Lepidopterol. 39, 61 (2016).Article 

    Google Scholar 
    12.Volynkin, A. V. & Gyulai, P. A new species of Athaumasta Hampson, 1906 (Lepidoptera, Noctuidae, Bryophilinae) from the Altai Mountains of Mongolia and China. Zootaxa 4508, 594–600 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Saldaitis, A. Review of the genus Kerzhnerocossus Yakovlev, 2011 (Lepidoptera: Cossidae) with descriptions of two new species from Russia and Mongolia. Zootaxa 4294, 389–394 (2017).Article 

    Google Scholar 
    14.Yakovlev, R. V. & Doroshkin, V. V. Hyles svetlana Shovkoon, 2010 (Lepidoptera: Sphingidae)—new species for Mongolian fauna and new records of Hawk-moths in Western Mongolia. Russian Entomological Journal. 26(3), 263–266 (2017).Article 

    Google Scholar 
    15.Volynkin, A. V., Titov, S. V. & Černila, M. Anarta insolita umay, a new subspecies from Russian Altai and Mongolia, with re-characterization of Anarta insolita uigurica (Hacker, 1998) (Lepidoptera, Noctuidae, Noctuinae). Ecol. Montenegrina 35, 115–122 (2020).Article 

    Google Scholar 
    16.Gershenson, Z. S. New Records of Yponomeutoid Moths (Lepidoptera, Yponomeutidae, Argyrestiidae Ypsolophidae, Plutelliidae) from the Palaearctic Region. Vestnik  Zoologii 50(1), 23–30 (2016).17.GBIF.org. GBIF Occurrence Download data. https://doi.org/10.15468/dl.h5ebh7 (2021).18.Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    19.Daniel, B., Francois, G. & Legendre, P. Numerical Ecology with R (Springer, 2011).MATH 

    Google Scholar 
    20.Jurasinski, G., Retzer, V. & Beierkuhnlein, C. Inventory, differentiation, and proportional diversity: A consistent terminology for quantifying species diversity. Oecologia 159, 15–26 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    21.Bachand, M. et al. Species indicators of ecosystem recovery after reducing large herbivore density: Comparing taxa and testing species combinations. Ecol. Indic. 38, 12–19 (2014).Article 

    Google Scholar 
    22.Enkhtur, K., Pfeiffer, M., Lkhagva, A. & Boldgiv, B. Response of moths (Lepidoptera: Heterocera) to livestock grazing in Mongolian rangelands. Ecol. Indic. 72, 667–674 (2017).Article 

    Google Scholar 
    23.Baselga, A., Gómez-Rodríguez, C. & Lobo, J. M. Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLoS ONE 7, e32341 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).Article 

    Google Scholar 
    25.Whittaker, R. J., Nogués-Bravo, D. & Araújo, M. B. Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob. Ecol. Biogeogr. 16, 76–89 (2007).Article 

    Google Scholar 
    26.Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ahlborn, J. et al. Climate–grazing interactions in Mongolian rangelands: Effects of grazing change along a large-scale environmental gradient. J. Arid Environ. 173, 104043 (2020).ADS 
    Article 

    Google Scholar 
    28.Bai, Y. et al. Positive linear relationship between productivity and diversity: Evidence from the Eurasian Steppe. J. Appl. Ecol. 44, 1023–1034 (2007).Article 

    Google Scholar 
    29.Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).Article 

    Google Scholar 
    32.Hoffmann, S. et al. Remote sensing of β-diversity: Evidence from plant communities in a semi-natural system. Appl. Veg. Sci. 22, 13–26 (2019).Article 

    Google Scholar 
    33.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    34.Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    35.Pfeiffer, M., Dulamsuren, C., Jäschke, Y. & Wesche, K. Grasslands of China and Mongolia:Spatial Extent, Land Use and Conservation. In Grasslands of the World: Diversity, Management and Conservation. (CRC Press, 2018).36.Pfeiffer, M., Dulamsuren, C. & Wesche, K. Grasslands and Shrublands of Mongolia. In Reference Module in Earth Systems and Environmental Sciences. 759–772 (Elsevier, 2019).37.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 

    Google Scholar 
    38.Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. 28, 65–82 (1986).Article 

    Google Scholar 
    40.Wang, Y., Ding, P., Chen, S. & Zheng, G. Nestedness of bird assemblages on urban woodlots: Implications for conservation. Landsc. Urban Plan. 111, 59–67 (2013).Article 

    Google Scholar 
    41.Hylander, K., Nilsson, C., Gunnar Jonsson, B. & Göthner, T. Differences in habitat quality explain nestedness in a land snail meta-community. Oikos 108, 351–361 (2005).Article 

    Google Scholar 
    42.Osório, N. C., Cunha, E. R., Tramonte, R. P., Mormul, R. P. & Rodrigues, L. Habitat complexity drives the turnover and nestedness patterns in a periphytic algae community. Limnology 20, 297–307 (2019).Article 
    CAS 

    Google Scholar 
    43.St. Pierre, J. I. & Kovalenko, K. E. Effect of habitat complexity attributes on species richness. Ecosphere 5, 1–10 (2014).Article 

    Google Scholar 
    44.Wright, D. H. & Reeves, J. H. On the meaning and measurement of nestedness of species assemblages. Oecologia 92, 416–428 (1992).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Paknia, O., Grundler, M. & Pfeiffer, M. Species richness and niche differentiation of darkling beetles (Coleoptera: Tenebrionidae) in Mongolian steppe ecosystems. In Steppe Ecosyst. Biol. Divers. Manag. Restor. 47–72 (Nova Sci. Publ.,2013).46.Rabl, D., Gottsberger, B., Brehm, G., Hofhansl, F. & Fiedler, K. Moth assemblages in Costa Rica rain forest mirror small-scale topographic heterogeneity. Biotropica 52, 288–301 (2020).Article 

    Google Scholar 
    47.McGeachie, W. J. The effects of moonlight illuminance, temperature and wind speed on light-trap catches of moths. Bull. Entomol. Res. 79, 185–192 (1989).Article 

    Google Scholar 
    48.Antão, L. H., Pöyry, J., Leinonen, R. & Roslin, T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 29, 896–907 (2020).Article 

    Google Scholar 
    49.Steiner, A. Die Nachtfalter Deutschlands: ein Feldführer: sämtliche nachtaktiven Großschmetterlinge in Lebendfotos und auf Farbtafeln (Bugbook Publishing, 2014).
    Google Scholar 
    50.Spalding, A., Young, M. & Dennis, R. L. The importance of host plant-habitat substrate in the maintenance of a unique isolate of the Sandhill Rustic: Disturbance, shingle matrix and bare ground indicators. J. Insect Conserv. 16, 839–846 (2012).Article 

    Google Scholar 
    51.Betzholtz, P.-E. & Franzen, M. Mobility is related to species traits in noctuid moths. Ecol. Entomol. 36, 369–376 (2011).Article 

    Google Scholar 
    52.Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article 

    Google Scholar 
    53.Holt, R. D. & Hoopes, M. F. Food web dynamics in a metacommunity context. In Metacommunities. Spat. Dyn. Ecol. Communities (ed. Holyoak, M.) 68–94 (Univ. of Chicago Press, 2005).54.Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernández LM. HOSTS—a database of the World’s Lepidopteran hostplants https://www.nhm.ac.uk/our-science/data/hostplants (2010).55.Moreno, C., Cianciaruso, M. V., Sgarbi, L. F. & Ferro, V. G. Richness and composition of tiger moths (Erebidae: Arctiinae) in a Neotropical savanna: Are heterogeneous habitats richer in species?. Nat. Conserv. 12, 138–143 (2014).Article 

    Google Scholar 
    56.von Wehrden, H., Hanspach, J., Kaczensky, P., Fischer, J. & Wesche, K. Global assessment of the non-equilibrium concept in rangelands. Ecol. Appl. 22, 393–399 (2012).Article 

    Google Scholar 
    57.Ashton, L. A. et al. Altitudinal patterns of moth diversity in tropical and subtropical Australian rainforests. Austral. Ecol. 41, 197–208 (2016).Article 

    Google Scholar 
    58.Liu, Y. Y. et al. Changing climate and overgrazing are decimating Mongolian steppes. PLoS ONE 8, e57599 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lang, B. et al. Grazing effects on intraspecific trait variability vary with changing precipitation patterns in Mongolian rangelands. Ecol. Evol. 10(2),678-691 (2020).60.Brehm, G. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. Nota Lepidopterol. 40, 87 (2017).Article 

    Google Scholar 
    61.Brehm, G. & Axmacher, J. C. A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. Environ. Entomol. 35, 757–764 (2006).Article 

    Google Scholar 
    62.Rennwald, E. & Rodeland, E. Lepiforum: Bestimmung von Schmetterlingen (Lepidoptera) und ihren Präimaginalstadien. http://www.lepiforum.de (2002).63.Knyazev, S. A. Electronic atlas of Lepidoptera in Omsk region. http://omflies.ru/ (2017).64.Yang, M. et al. The first mitochondrial genome of the family Epicopeiidae and higher-level phylogeny of Macroheterocera (Lepidoptera: Ditrysia). Int. J. Biol. Macromol. 136, 123–132 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    66.Mongolian Statistical Information Service. Livestock. http://1212.mn/stat.aspx?LIST_ID=976_L10_1 (2020).67.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).68.Linlin Yan. ggvenn: Draw Venn Diagram by ‘ggplot2’. R package version 0.1.8. https://CRAN.R-project.org/package=ggvenn (2021).69.Baselga, A. et al. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.2. https://CRAN.R-project.org/package=betapart (2020).70.Crawley, M. J. The R Book (Wiley, 2012).MATH 
    Book 

    Google Scholar 
    71.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar  More

  • in

    International fisheries threaten globally endangered sharks in the Eastern Tropical Pacific Ocean: the case of the Fu Yuan Yu Leng 999 reefer vessel seized within the Galápagos Marine Reserve

    1.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. U. S. A. 114, E6089–E6096 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Briggs, J. C. Marine extinctions and conservation. Mar. Biol. 158, 485–488 (2011).Article 

    Google Scholar 
    3.Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).ADS 
    Article 

    Google Scholar 
    4.TRAFFIC East Asia. Shark product trade in Hong Kong and mainland China and implementation of the CITES shark listings. TRAFFIC East Asia (2004).5.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, 1–34 (2014).Article 

    Google Scholar 
    7.Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 480-489.e5 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 1–6 (2013).Article 

    Google Scholar 
    9.Cabral, R. B. et al. A global network of marine protected areas for food. Proc. Natl. Acad. Sci. U. S. A. 117, 28134–28139 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Camhi, M. D., Fordham, S. V. & Fowler, S. L. Domestic and International Management for Pelagic Sharks. in Sharks of the Open Ocean: Biology, Fisheries and Conservation (eds. M. D. Camhi, E. K. Pikitch & E. A. Babcock) 418–444 (Blackwell, 2009). https://doi.org/10.1002/9781444302516.ch34.11.Schiller, L., Alava, J. J., Grove, J., Reck, G. & Pauly, D. The demise of Darwin’s fishes: evidence of fishing down and illegal shark finning in the Galápagos Islands. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 431–446 (2015).Article 

    Google Scholar 
    12.Feitosa, L. M. et al. DNA-based identification reveals illegal trade of threatened shark species in a global elasmobranch conservation hotspot. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    13.Reck, G. Development of the Galápagos Marine Reserve. in The Galapagos Marine Reserve. Social and Ecological Interactions in the Galapagos Islands (ed. Denkinger J, V. L.) 139‒158 (Springer, 2014).14.PNG (Parque Nacional Galápagos). Barco chino deberá pagar 6 millones por daño ambiental dispone Sala de lo Penal. https://www.galapagos.gob.ec/barco-chino-debera-pagar-6-millones-por-dano-ambiental-dispone-sala-de-lo-penal/ (2017).15.Fiscalía General del Estado Ecuatoriano. Boletín de Prensa FGE N. 096-DC-2019: Corte Nacional aceptó recurso de casación por delito contra la flora y fauna silvestres en Galápagos. https://www.fiscalia.gob.ec/corte-nacional-acepto-recurso-de-casacion-por-delito-contra-la-flora-y-fauna-silvestres-en-galapagos/ (2019).16.D’Afflisio, E., Braca, P., Millefiori, L. M. & Willett, P. Maritime Anomaly Detection Based on Mean-Reverting Stochastic Processes Applied to a Real-World Scenario. in 2018 21st International Conference on Information Fusion, FUSION 2018 1171–1177 (Institute of Electrical and Electronics Engineers Inc., 2018). https://doi.org/10.23919/ICIF.2018.8455854.17.Cutlip, K. Our Data Suggests Transhippment Involved in Refrigerated Cargo Vessel Just Sentenced to $5.9 Million and Jail Time for Carrying Illegal Sharks. https://globalfishingwatch.org/impacts/policy-compliance/transhippment-involved-in-reefer-sentenced-for-carrying-illegal-sharks/ (2017).18.Compagno, L., Dando, M. & Fowler, S. Sharks of the World (Princeton University Press, 2005).
    Google Scholar 
    19.Bradley, D. et al. Leveraging satellite technology to create true shark sanctuaries. Conserv. Lett. 12, 1–8 (2019).Article 

    Google Scholar 
    20.Cardeñosa, D. et al. Species composition of the largest shark fin retail-market in mainland China. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    21.IATTC. Resolution C-11-10. Resolution on the conservation of oceanic whitetip sharks caught in association with fisheries in the Antigua convention area. (IATCC, 2011).22.Gonzalez-Pestana, A., Kouri J., C. & Velez-Zuazo, X. Shark fisheries in the Southeast Pacific: A 61-year analysis from Peru. F1000Research 3, 164 (2014).23.Martínez-Ortiz, J., Aires-Da-silva, A. M., Lennert-Cody, C. E. & Maunderxs, M. N. The ecuadorian artisanal fishery for large pelagics: Species composition and spatio-temporal dynamics. PLoS ONE 10, 1–29 (2015).Article 
    CAS 

    Google Scholar 
    24.Bustamante, C. & Bennett, M. B. Insights into the reproductive biology and fisheries of two commercially exploited species, shortfin mako (Isurus oxyrinchus) and blue shark (Prionace glauca), in the south-east Pacific Ocean. Fish. Res. 143, 174–183 (2013).Article 

    Google Scholar 
    25.Hinton, M. G. et al. Stock Status Indicators for Fisheries of the Eastern Pacific Ocean. INTER-AMERICAN TROPICAL TUNA COMISSION, 19, 142–182 (2011).26.Duffy, L. M., Lennert-Cody, C. E., Olson, R. J., Minte-Vera, C. V. & Griffiths, S. P. Assessing vulnerability of bycatch species in the tuna purse-seine fisheries of the eastern Pacific Ocean. Fish. Res. 219, 105316 (2019).Article 

    Google Scholar 
    27.Clarke, S. C., Harley, S. J., Hoyle, S. D. & Rice, J. S. Population trends in Pacific Oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).PubMed 
    Article 

    Google Scholar 
    28.Martinez Ortiz, J. et al. Abundancia estacional de Tiburones desembarcados en Manta-Ecuador. EPESPO-PMRC, 9–27 (2007).29.Román-Verdesoto, M. Updated summary regarding hammerhead sharks caught in the tuna fisheries in the Eastern Pacific Ocean 6th Meeting of the Scientific Advisory Committee IATTC. (2015).30.IATTC. Resolution C-16-06: Conservation Measures for Shark Species, with Special Emphasis on the Silky Shark (Carcharhinus falciformis), for the years 2017, 2018, and 2019. (IATTC, 2016).31.Alava, J. J. Massive Chinese Fleet Jeopardizes Threatened Shark Species around the Galápagos Marine Reserve and Waters off Ecuador. Int. J. Fish. Sci. Res. 1, 8–10 (2017).
    Google Scholar 
    32.El Universo. Se detectan tres flotas pesqueras chinas cerca de Galápagos . https://Www.Eluniverso.Com/Noticias/2019/03/21/Nota/7244318/Se-Detectan-Tres-Flotas-Pesqueras-Chinas-Cerca-Galapagos (2019).33.El Universo. Armada del Ecuador detecta flota pesquera con 260 barcos en las cercanías de Galápagos. https://www.eluniverso.com/noticias/2020/07/16/nota/7908768/armada-ecuador-detecta-flota-pesquera-260-barcos-cercanias. (2020).34.El Universo. Varios barcos chinos, que integran la flota extranjera que pesca cerca de Ecuador, estarían emitiendo ‘falsas coordenadas’; aparecen en Nueva Zelanda. https://www.eluniverso.com/noticias/2020/08/06/nota/7932429/flota-china-pesquera-galapagos-ecuador-nueva-zelanda-ecuador#cxrecs_s. (2020)35.Stuff. Chinese vessels off Galapagos ‘cloaking’ in New Zealand. https://www.stuff.co.nz/environment/122339295/chinese-vessels-off-galapagos-cloaking-in-new-zealand. (2020).36.Mas, F., Forselledo, R. & Domingo, A. Length-length relationships for six pelagic shark species. Collect. Vol. Sci. Pap. ICCAT 70, 2441–2450 (2014).
    Google Scholar 
    37.D’Alberto, B. M. et al. Age, growth and maturity of oceanic whitetip shark (Carcharhinus longimanus) from Papua New Guinea. Mar. Freshw. Res. 68, 1118–1129 (2017).Article 

    Google Scholar 
    38.Oshitani, S., Nakano, H. & Tanaka, S. Age and growth of the silky shark Carcharhinus falciformis from the Pacific Ocean. Fish. Sci. 69, 456–464 (2003).CAS 
    Article 

    Google Scholar 
    39.Joung, S. J., Chen, N. F., Hsu, H. H. & Liu, K. M. Estimates of life history parameters of the oceanic whitetip shark, Carcharhinus longimanus, in the Western North Pacific Ocean. Mar. Biol. Res. 12, 758–768 (2016).Article 

    Google Scholar 
    40.Naylor, G. J. P. et al. A DNA sequencebased approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Museum Nat. Hist. 21, 1–262 (2012).
    Google Scholar 
    41.Peñafiel, N., Flores, D. M., Rivero De Aguilar, J., Guayasamin, J. M. & Bonaccorso, E. A cost-effective protocol for total DNA isolation from animal tissue. Neotrop. Biodivers. 5, 69–74 (2019).42.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2018).Article 
    CAS 

    Google Scholar 
    44.Maddison, W. P. & Maddison, D. R. Mesquite: A modular system for evolutionary Mesquite installation for evolutionary analysis. (2003).45.Aparicio-Puerta, E. et al. SRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression. Nucleic Acids Res. 47, W530–W535 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Seki, T., Taniuchi, T., Nakano, H. & Shimizu, M. Age, growth and reproduction of the oceanic Whitetip shark from the Pacific Ocean. Fish. Sci. 64, 14–20 (1998).CAS 
    Article 

    Google Scholar 
    50.Bergman, B. Reefer Fined $5.9 Million for Endangered Catch in Galapagos Recently Rendezvoused with Chinese Longliners. https://skytruth.org/2017/08/galapagos-reefer-fined-5-9-million/ (2017).51.Romero-Caicedo, A. F., Galván-Magaña, F. & Martínez-Ortiz, J. Reproduction of the pelagic thresher shark Alopias pelagicus in the equatorial Pacific. J. Mar. Biol. Assoc. U. K. 94, 1501–1507 (2014).Article 

    Google Scholar 
    52.Chen, C., Liu, K. & Chang, Y. Reproductive biology of the bigeye thresher shark, Alopias superciliosus (Lowe, 1839) (Chondrichthyes: Alopiidae), in the northwestern Pacific. Ichthyol. Res. 44, 227–236 (1997).Article 

    Google Scholar 
    53.Bradley, D. et al. Growth and life history variability of the grey reef shark (Carcharhinus amblyrhynchos) across its range. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    54.Holmes, B. J. et al. Age and growth of the tiger shark Galeocerdo cuvier off the east coast of Australia. J. Fish Biol. 87, 422–448 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Nakano, H Stevens, J. The biology and ecology of the blue shark, Prionace glauca. in Sharks of the open ocean: Biology, fisheries and conservation (Vol. 1) (ed. Camhi, Merry D Pikitch, E K Babcock, E. A.) 140‒151 (Blackwell Scientific Publications, 2008).56.Gubanov, Y. E. The reproduction of some species of pelagic sharks from the equatorial zone of the Indian Ocean. J. Ichthyol. 18, 781–792 (1978).
    Google Scholar 
    57.Fahmi & Sumadhiharga, K. Size, sex and length at maturity of four common sharks caught from Western Indonesia. Mar. Res. Indones. 32, 7–19 (2007).58.Nava, P. N. & Márquez-Farías, J. F. Talla de madurez del tiburón martillo, Sphyrna zygaena, capturado en el Golfo de California. Hidrobiologica 24, 129–135 (2014).
    Google Scholar 
    59.Saïdi, B., Bradaï, M. N. & Bouaïn, A. Reproductive biology of the smooth-hound shark Mustelus mustelus (L.) in the Gulf of Gabès (south-central Mediterranean Sea). J. Fish Biol. 72, 1343–1354 (2008). More

  • in

    Prolonged drought imparts lasting compositional changes to the rice root microbiome

    1.Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).CAS 

    Google Scholar 
    2.Zhang, J. et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int. J. Environ. Res. Public Health 15, 839 (2018).3.Hirasawa, T., in Genetic Improvement of Rice for Water-Limited Environments (eds Ito, O, O’Toole, J. C. & Hardy, B.) 89–98 (International Rice Research Institute, 1999).4.Pandey, V. & Shukla, A. Acclimation and tolerance strategies of rice under drought stress. Rice Sci. 22, 147–161 (2015).
    Google Scholar 
    5.Compant, S., van der Heijden, M. G. A. & Sessitsch, A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 73, 197–214 (2010).CAS 

    Google Scholar 
    6.de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).
    Google Scholar 
    7.Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    8.Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B. & Sundaresan, V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio 8, e00764-17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    9.Naylor, D., DeGraaf, S., Purdom, E. & Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. https://doi.org/10.1038/ismej.2017.118 (2017).10.Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1717617115 (2018).11.Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    12.Zhang, J. et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci. China Life Sci. 61, 613–621 (2018).
    Google Scholar 
    13.Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Liechty, Z. et al. Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters. mSystems 5, e00897-19 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    15.Rong, X. & Huang, Y. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int. J. Syst. Evol. Microbiol. 60, 696–703 (2010).CAS 

    Google Scholar 
    16.Lin, L. & Xu, X. Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr. Microbiol. 67, 209–217 (2013).CAS 

    Google Scholar 
    17.Legault, G. S., Lerat, S., Nicolas, P. & Beaulieu, C. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology 101, 1045–1051 (2011).CAS 

    Google Scholar 
    18.Guo, J. et al. Seed-borne, endospheric and rhizospheric core microbiota as predictor for plant functional traits across rice cultivars are dominated by deterministic processes. New Phytol. https://doi.org/10.1111/nph.17297 (2021).19.de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    20.de Vries, F. T. & Shade, A. Controls on soil microbial community stability under climate change. Front. Microbiol. 4, 265 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    21.Borken, W. & Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824 (2009).
    Google Scholar 
    22.Lueders, T. & Friedrich, M. W. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl. Environ. Microbiol. 68, 2484–2494 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Linquist, B. A. et al. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Change Biol. 21, 407–417 (2015).
    Google Scholar 
    24.Speirs, L. B. M., Rice, D. T. F., Petrovski, S. & Seviour, R. J. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge. Front. Microbiol. 10, 2015 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    25.Thomas, S. H. et al. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS ONE 3, e2103 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    26.Yang, T. H., Coppi, M. V., Lovley, D. R. & Sun, J. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb. Cell Fact. 9, 90 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Keller, K. L. & Wall, J. D. Genetics and molecular biology of the electron flow for sulfate respiration in desulfovibrio. Front. Microbiol. 2, 135 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. https://doi.org/10.1038/s41564-018-0129-3 (2018).29.Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).
    Google Scholar 
    30.Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 224, 132–145 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    31.Casartelli, A. et al. Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice 11, 9 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    32.Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. https://doi.org/10.1038/ismej.2017.85 (2017).33.Kang, D.-J. & Futakuchi, K. Effect of moderate drought-stress on flowering time of interspecific hybrid progenies (Oryza sativa L. × Oryza glaberrima Steud.). J. Crop Sci. Biotechnol. 22, 75–81 (2019).
    Google Scholar 
    34.Guo, X. et al. Host-associated quantitative abundance profiling reveals the microbial load variation of root microbiome. Plant Commun. 1, 100003 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    35.Varoquaux, N. et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1907500116 (2019).36.Li, P. et al. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front. Genet. 10, 55 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
    Google Scholar 
    39.Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).
    Google Scholar 
    40.Suralta, R. R. et al. Plasticity in nodal root elongation through the hardpan triggered by rewatering during soil moisture fluctuation stress in rice. Sci. Rep. 8, 4341 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    41.Hamedi, J. & Mohammadipanah, F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J. Ind. Microbiol. Biotechnol. 42, 157–171 (2015).CAS 

    Google Scholar 
    42.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).
    Google Scholar 
    43.Aznar, A. & Dellagi, A. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J. Exp. Bot. 66, 3001–3010 (2015).CAS 

    Google Scholar 
    44.Viaene, T., Langendries, S., Beirinckx, S., Maes, M. & Goormachtig, S. Streptomyces as a plant’s best friend? FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw119 (2016).45.Meena, K. K. et al. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front. Plant Sci. 8, 172 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    46.Mukamuhirwa, A. et al. Effect of intermittent drought on grain yield and quality of rice (Oryza sativa L.) grown in Rwanda. J. Agro Crop Sci. 206, 252–262 (2020).CAS 

    Google Scholar 
    47.Fleta-Soriano, E. & Munné-Bosch, S. Stress memory and the inevitable effects of drought: a physiological perspective. Front. Plant Sci. 7, 143 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    48.Ding, Y., Fromm, M. & Avramova, Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 3, 740 (2012).
    Google Scholar 
    49.de la Fuente Cantó, C. et al. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103, 951–964 (2020).
    Google Scholar 
    50.Kittas, C., Bartzanas, T. & Jaffrin, A. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosyst. Eng. 85, 87–94 (2003).
    Google Scholar 
    51.Edwards, J. et al. Soil domestication by rice cultivation results in plant–soil feedback through shifts in soil microbiota. Genome Biol. 20, 221 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    52.Edwards, J., Santos-Medellín, C. & Sundaresan, V. Extraction and 16S rRNA sequence analysis of microbiomes associated with rice roots. Bio. Protoc. 8, e2884 (2018).53.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).CAS 

    Google Scholar 
    54.Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. 13, 31 (2012).CAS 

    Google Scholar 
    55.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Weimer, B. C. 100K Pathogen Genome Project. Genome Announc. 5, e00594-17 (2017).59.Kong, N. et al. Draft genome sequences of 1,183 Salmonella strains from the 100K Pathogen Genome Project. Genome Announc. 5, e00518–17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    60.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 

    Google Scholar 
    63.Medema, M. H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/65.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    68.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    69.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Oksanen, J. et al. vegan: Community Ecology Package (2018).71.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).72.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).
    Google Scholar 
    73.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: estimated marginal means, aka least-squares means. R package v.1, 3 (R Foundation for Statistical Computing, 2018).74.Kassambara, A. Rstatix: pipe-friendly framework for basic statistical tests. R package v.0.6.0 (R Foundation for Statistical Computing, 2020).75.Graves, S., Piepho, H.-P., Selzer, L. & Dorai-Raj, S. multcompView: visualizations of paired comparisons. R package v.0.1-7 (R Foundation for Statistical Computing, 2015).76.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Liaw, A. & Wiener, M. Classification and regression by randomForest. R. News 2, 18–22 (2002).
    Google Scholar 
    78.Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More