Ecological and evolutionary approaches to improving crop variety mixtures
1.Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).Article
Google Scholar
2.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
3.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed
Article
PubMed Central
Google Scholar
4.Weiner, J. Applying plant ecological knowledge to increase agricultural sustainability. J. Ecol. 105, 865–870 (2017).Article
Google Scholar
5.Sadras, V. et al. Making science more effective for agriculture. Adv. Agron. 163, 153–177 (2020).Article
Google Scholar
6.Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 4, 229–240 (2020).PubMed
PubMed Central
Article
Google Scholar
7.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed
PubMed Central
Article
Google Scholar
8.Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. N. Phytol. 206, 107–117 (2015).Article
Google Scholar
9.Bullock, D. G. Crop rotation. Crit. Rev. Plant Sci. 11, 309–326 (1992).Article
Google Scholar
10.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).CAS
PubMed
Article
Google Scholar
11.Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).CAS
PubMed
Article
Google Scholar
12.Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).CAS
PubMed
Article
Google Scholar
13.Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS
PubMed
Article
Google Scholar
14.Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).CAS
Article
Google Scholar
15.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Blüthgen, N. et al. Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 7, 10697 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
18.Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).PubMed
Article
PubMed Central
Google Scholar
19.Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Chacón-Labella, J., García Palacios, P., Matesanz, S., Schöb, C. & Milla, R. Plant domestication disrupts biodiversity effects across major crop types. Ecol. Lett. 22, 1472–1482 (2019).PubMed
PubMed Central
Article
Google Scholar
21.Finckh, M. R. et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20, 813–837 (2000).Article
Google Scholar
22.Newton, A. C. Exploitation of diversity within crops—the key to disease tolerance? Front. Plant Sci. 7, 665 (2016).PubMed
PubMed Central
Article
Google Scholar
23.Newton, A. C., Begg, G. S. & Swanston, J. S. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).Article
Google Scholar
24.Frankel, O. H. Analytical yield investigations on New Zealand wheat: IV. Blending varieties of wheat. J. Agric. Sci. 29, 249–261 (1939).Article
Google Scholar
25.Kristoffersen, R., Jørgensen, L. N., Eriksen, L. B., Nielsen, G. C. & Kiær, L. P. Control of Septoria tritici blotch by winter wheat cultivar mixtures: meta-analysis of 19 years of cultivar trials. Field Crops Res. 249, 107696 (2020).Article
Google Scholar
26.Mundt, C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).CAS
PubMed
Article
Google Scholar
27.Wolfe, M. S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23, 251–273 (1985).Article
Google Scholar
28.Finckh, M. R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 121, 399–409 (2008).Article
Google Scholar
29.Reiss, E. R. & Drinkwater, L. E. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 28, 62–77 (2018).PubMed
Article
Google Scholar
30.Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).Article
Google Scholar
31.McDonald, B. A., Allard, R. W. & Webster, R. K. Responses of two-, three-, and four-component barley mixtures to a variable pathogen population. Crop Sci. 28, 447–452 (1988).Article
Google Scholar
32.Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
33.Kiær, L. P., Skovgaard, I. M. & Østergård, H. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica 185, 123–138 (2012).Article
Google Scholar
34.Creissen, H. E., Jorgensen, T. H. & Brown, J. K. M. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes. Crop Prot. 85, 1–8 (2016).PubMed
PubMed Central
Article
Google Scholar
35.Borg, J. et al. Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Res. 221, 298–313 (2018).Article
Google Scholar
36.Kiær, L. P., Skovgaard, I. M. & Østergård, H. Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res. 114, 361–373 (2009).Article
Google Scholar
37.Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 37, 13 (2017).Article
Google Scholar
38.Chateil, C. et al. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric. Ecosyst. Environ. 171, 25–32 (2013).Article
Google Scholar
39.Litrico, I. & Violle, C. Diversity in plant breeding: a new conceptual framework. Trends Plant Sci. 20, 604–613 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Van Der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed
Article
PubMed Central
Google Scholar
41.Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 87–202 (2018).Article
CAS
Google Scholar
42.Montazeaud, G. et al. Multifaceted functional diversity for multifaceted crop yield: towards ecological assembly rules for varietal mixtures. J. Appl. Ecol. 57, 2285–2295 (2020).Article
Google Scholar
43.Von Felten, S., Niklaus, P. A., Scherer-Lorenzen, M., Hector, A. & Buchmann, N. Do grassland plant communities profit from N partitioning by soil depth? Ecology 93, 2386–2396 (2012).Article
Google Scholar
44.Zhang, W. P. et al. Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Funct. Ecol. 31, 469–479 (2017).Article
Google Scholar
45.Spehn, E. M. et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98, 205–218 (2002).Article
Google Scholar
46.Griffiths, M. & York, L. M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiol. 182, 1854–1868 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).PubMed
Article
PubMed Central
Google Scholar
48.Mikaberidze, A., Mcdonald, B. A. & Bonhoeffer, S. Developing smarter host mixtures to control plant disease. Plant Pathol. 64, 996–1004 (2015).Article
Google Scholar
49.Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).PubMed
Article
PubMed Central
Google Scholar
50.Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).Article
Google Scholar
51.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article
Google Scholar
52.Zhang, C., Postma, J. A., York, L. M. & Lynch, J. P. Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Ann. Bot. 110, 521–534 (2014).
Google Scholar
53.Erktan, A., McCormack, M. L. & Roumet, C. Frontiers in root ecology: recent advances and future challenges. Plant Soil 424, 1–9 (2018).CAS
Article
Google Scholar
54.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
55.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).Article
Google Scholar
57.Morris, G. P. et al. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems. Glob. Change Biol. Bioenergy 8, 1000–1014 (2016).PubMed
PubMed Central
Article
Google Scholar
58.Wuest, S. E. & Niklaus, P. A. A plant biodiversity effect resolved to a single chromosomal region. Nat. Ecol. Evol. 2, 1933–1939 (2018).PubMed
PubMed Central
Article
Google Scholar
59.Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9, 463–493 (1956).Article
Google Scholar
61.Lopez, C. G. & Mundt, C. C. Using mixing ability analysis from two-way cultivar mixtures to predict the performance of cultivars in complex mixtures. Field Crops Res. 68, 121–132 (2000).Article
Google Scholar
62.Forst, E. et al. A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat. Field Crops Res. 242, 107571 (2019).Article
Google Scholar
63.Harlan, H. V. & Martini, M. L. A composite hybrid mixture. Agron. J. 21, 487–490 (1929).Article
Google Scholar
64.Suneson, C. A. Evolutionary plant breeding. Crop Sci. 9, 119–121 (1969).Article
Google Scholar
65.Allard, R. W. & Adams, J. Populations studies in predominantly self-pollinating species. XIII. Intergenotypic competition and population structure in barley and wheat. Am. Nat. 103, 621–645 (1969).Article
Google Scholar
66.Allard, R. W. & Jain, S. K. Population studies in predominantly self-pollinated species. II. Analysis of quantitative genetic changes in a bulk-hybrid population of barley. Evolution 16, 90–101 (1962).
Google Scholar
67.Döring, T. F., Knapp, S., Kovacs, G., Murphy, K. & Wolfe, M. S. Evolutionary plant breeding in cereals—into a new era. Sustainability 3, 1944–1971 (2011).Article
Google Scholar
68.Dawson, J. C. & Goldringer, I. in Organic Crop Breeding (eds Lammerts van Bueren, E. T. & Myers, J. R.) 77–98 (Wiley, 2011).69.Goldringer, I. et al. Agronomic evaluation of bread wheat varieties from participatory breeding: a combination of performance and robustness. Sustainability 12, 128 (2020).Article
Google Scholar
70.Andrew, I. K. S., Storkey, J. & Sparkes, D. L. A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res. 55, 239–248 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Bertholdsson, N. O., Weedon, O., Brumlop, S. & Finckh, M. R. Evolutionary changes of weed competitive traits in winter wheat composite cross populations in organic and conventional farming systems. Eur. J. Agron. 79, 23–30 (2016).Article
Google Scholar
72.Weiner, J., Du, Y. L., Zhang, C., Qin, X. L. & Li, F. M. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). Ecology 98, 2261–2266 (2017).PubMed
Article
PubMed Central
Google Scholar
73.Weiner, J. Looking in the wrong direction for higher-yielding crop genotypes. Trends Plant Sci. 19, S1360–S1385 (2019).
Google Scholar
74.Denison, R. F., Kiers, E. T. & West, S. A. Darwinian agriculture: When can humans find solutions beyond the reach of natural selection? Q. Rev. Biol. 78, 145–168 (2003).PubMed
Article
PubMed Central
Google Scholar
75.Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).Article
Google Scholar
76.Donald, C. M. in Wheat Science—Today and Tomorrow (eds Evans, L. T. & Peacock, W. J.) 223–247 (Cambridge Univ. Press, 1981).77.Knapp, S. et al. Natural selection towards wild-type in composite cross populations of winter wheat. Front. Plant Sci. 10, 1757 (2020).PubMed
PubMed Central
Article
Google Scholar
78.Gersani, M., Brown, J. S., O’Brien, E. E., Maina, G. M. & Abramsky, Z. Tragedy of the commons as a result of root competition. J. Ecol. 89, 660–669 (2001).Article
Google Scholar
79.Rankin, D. J., Bargum, K. & Kokko, H. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22, 643–651 (2007).PubMed
Article
PubMed Central
Google Scholar
80.Zhang, D. Y., Sun, G. J. & Jiang, X. H. Donald’s ideotype and growth redundancy: a game theoretical analysis. Field Crops Res. 61, 179–187 (1999).Article
Google Scholar
81.Duvick, D. N., Smith, J. S. C. & Cooper, M. in Plant Breeding Reviews. Part 2. Long Term Selection: Crops, Animals and Bacteria Vol. 24 (ed. Janick, J.) 109–151 (Wiley, 2004); https://doi.org/10.1002/9780470650288.ch482.Tian, J. et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658–664 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
83.Zhu, Y. H., Weiner, J., Yu, M. X. & Li, F. M. Evolutionary agroecology: trends in root architecture during wheat breeding. Evol. Appl. 12, 733–743 (2019).PubMed
Article
PubMed Central
Google Scholar
84.Tsunoda, S. A developmental aanlysis of yielding ability in varieties of field crops: II. The assimilation-system of plants as affected by the form, direction and arrangement of single leaves. Jpn. J. Breed. 9, 237–244 (1959).Article
Google Scholar
85.Jennings, P. R. Plant type as a rice breeding objective. Crop Sci. 4, 13–15 (1964).Article
Google Scholar
86.Zhu, L. & Zhang, D. Y. Donald’s ideotype and growth redundancy: a pot experimental test using an old and a modern spring wheat cultivar. PLoS ONE 8, e70006 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Jennings, P. R. & De Jesus, J. J. Studies on competition in rice I. Competition in mixtures of varieties. Evolution 22, 119–124 (1968).PubMed
Article
PubMed Central
Google Scholar
88.Jennings, P. R. & Herrera, R. M. Studies on competition in rice II. Competition in segregating populations. Evolution 22, 332–336 (1968).PubMed
Article
PubMed Central
Google Scholar
89.Borlaug, N. E. Wheat breeding and its impact on world food supply. In Third International Wheat Genetics Symposium 1–36 (1968).90.Vogel, O. A., Craddock, J. C., Muir, C. E., Everson, E. H. & Rohde, C. R. Semidwarf growth habit in winter wheat improvement for the Pacific Northwest. Agron. J. 48, 76–78 (1956).Article
Google Scholar
91.Reynolds, M. P., Acevedo, E., Sayre, K. D. & Fischer, R. A. Yield potential in modern wheat varieties: its association with a less competitive ideotype. Field Crops Res. 37, 149–160 (1994).Article
Google Scholar
92.Murphy, G. P., Swanton, C. J., Van Acker, R. C. & Dudley, S. A. Kin recognition, multilevel selection and altruism in crop sustainability. J. Ecol. 105, 930–934 (2017).Article
Google Scholar
93.Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
94.Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
95.Maynard Smith, J. Group selection and kin selection. Nature 201, 1145–1147 (1964).Article
Google Scholar
96.Montazeaud, G. et al. Farming plant cooperation in crops. Proc. Biol. Sci. 287, 20191290 (2020).PubMed
PubMed Central
Google Scholar
97.Brown, J. K. M. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53, 513–539 (2015).CAS
PubMed
Article
Google Scholar
98.Laine, A. L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).PubMed
PubMed Central
Article
Google Scholar
99.Karasov, T. L., Shirsekar, G., Schwab, R. & Weigel, D. What natural variation can teach us about resistance durability. Curr. Opin. Plant Biol. 56, 89–98 (2020).CAS
PubMed
Article
Google Scholar
100.Zhan, J., Thrall, P. H., Papaïx, J., Xie, L. & Burdon, J. J. Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53, 19–43 (2015).CAS
PubMed
Article
Google Scholar
101.Smithson, J. B. & Lenné, J. M. Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 128, 127–158 (1996).Article
Google Scholar
102.Huang, C., Sun, Z., Wang, H., Luo, Y. & Ma, Z. Effects of wheat cultivar mixtures on stripe rust: a meta-analysis on field trials. Crop Prot. 33, 52–58 (2012).Article
Google Scholar
103.Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).CAS
PubMed
Article
Google Scholar
104.Mundt, C. C. Durable resistance: a key to sustainable management of pathogens and pests. Infect. Genet. Evol. 27, 446–455 (2014).PubMed
Article
Google Scholar
105.Finckh, M. R. Stripe rust, yield, and plant competition in wheat cultivar mixtures. Phytopathology 85, 905–913 (1992).Article
Google Scholar
106.McGrann, G. R. D. et al. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 65, 1025–1037 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
107.Rimbaud, L., Papaïx, J., Barrett, L. G., Burdon, J. J. & Thrall, P. H. Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance? Evol. Appl. 11, 1791–1810 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
108.Zeller, S. L., Kalinina, O., Flynn, D. F. B. & Schmid, B. Mixtures of genetically modified wheat lines outperform monocultures. Ecol. Appl. 22, 1817–1826 (2012).PubMed
Article
Google Scholar
109.Kellerhals, M., Mouron, P., Graf, B., Bousset, L. & Gessler, C. Mischpflanzung von Apfelsorten: Einfluss auf krankheiten, schädlinge und wirtschaftlichkeit. Schweiz. Z. Obs. 13, 10–13 (2003).
Google Scholar
110.Burdon, J. J., Barrett, L. G., Rebetzke, G. & Thrall, P. H. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 7, 609–624 (2014).PubMed
PubMed Central
Article
Google Scholar
111.Mundt, C. C. Pyramiding for resistance durability: theory and practice. Phytopathology 108, 792–802 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
112.Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).Article
Google Scholar
113.Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 3632 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
114.Friedli, C. N., Abiven, S., Fossati, D. & Hund, A. Modern wheat semi-dwarfs root deep on demand: response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica 215, 85 (2019).Article
CAS
Google Scholar
115.DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
116.Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).Article
Google Scholar
117.Schweiger, A. K. et al. Spectral niches reveal taxonomic identity and complementarity in plant communities. Preprint at bioRxiv https://doi.org/10.1101/2020.04.24.060483 (2020).118.Pianka, E. R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4, 53–74 (1973).Article
Google Scholar
119.MacArthur, R. H. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958).Article
Google Scholar
120.Colwell, R. K. & Futuyma, D. J. On the measurement of niche breadth and overlap. Ecology 52, 567–576 (1971).PubMed
Article
PubMed Central
Google Scholar More