The effects of water control on the survival and growth of Alternanthera philoxeroides in the vegetative reproduction and seedling stages
1.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS
Article
Google Scholar
2.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–312 (2001).Article
Google Scholar
3.Buckingham, G. R. Biological control of alligator weed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea 61, 232–243 (1996).
Google Scholar
4.Bassett, I., Paynter, Q., Hankin, R. & Beggs, J. R. Characterising alligator weed (Alternanthera philoxeroides; Amaranthaceae) invasion at a northern New Zealand lake. New Zeal. J. Ecol. 36, 216–222 (2012).
Google Scholar
5.Chatterjee, A. & Dewanji, A. Effect of varying Alternanthera philoxeroides (alligator weed) cover on the macrophyte species diversity of pond ecosystems: A quadrat-based study. Aquat. Invasions 9, 343–355 (2014).Article
Google Scholar
6.Xu, C. Y., Zhang, W. J., Fu, C. Z. & Lu, B. R. Genetic diversity of alligator weed in China by RAPD analysis. Biodivers. Conserv. 12, 637–645 (2003).Article
Google Scholar
7.Wang, B. R., Li, W. G. & Wang, J. B. Genetic diversity of Alternanthera philoxeroides in China. Aquat. Bot. 81, 277–283 (2005).Article
Google Scholar
8.Geng, Y. P. et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta. Oecol. 30, 380–385 (2006).ADS
Article
Google Scholar
9.Pan, X. Y., Geng, Y. P., Zhang, W. J., Li, B. & Chen, J. K. The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta. Oecol. 30, 333–341 (2006).ADS
Article
Google Scholar
10.Peng, X. M. et al. Vegetative propagation capacity of invasive alligator weed through small stolon fragments under different treatments. Sci. Rep. 7, 43826. https://doi.org/10.1038/srep43826 (2017).ADS
Article
PubMed
PubMed Central
Google Scholar
11.Dugdale, T., Clements, D., Hunt, T. & Butler, K. Alligator weed produces viable stem fragments in response to herbicide treatment. J. Aquat. Plant Manag. 48, 84–91 (2010).
Google Scholar
12.Chen, Y., Zhou, Y., Yin, T. F., Liu, C. X. & Lou, F. L. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. PloS One 8, e81456. https://doi.org/10.1371/journal.pone.0081456 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
13.Tao, Y., Chen, F., Wan, K. Y., Li, X. W. & Li, J. Q. The structural adaptation of aerial parts of invasive Alternanthera philoxeroides to water regime. J. Plant Biol. 52, 403–410 (2009).Article
Google Scholar
14.Wang, N. et al. Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides. Plant Biol. 11, 483–489 (2009).CAS
PubMed
Article
Google Scholar
15.Fan, S. F. et al. The effects of complete submergence on the morphological and biomass allocation response of the invasive plant Alternanthera philoxeroides. Hydrobiologia 746, 159–169 (2015).CAS
Article
Google Scholar
16.Wang, H. F. et al. Effects of submergence on growth, survival and recovery growth of Alternanthera philoxeroides. J. Wuhan Bot. Res. 26, 147–152 (2008).
Google Scholar
17.Zhang, H. J. et al. Effects of submergence and eutrophication on the morphological traits and biomass allocation of the invasive plant Alternanthera philoxeroides. J. Freshw. Ecol. 31, 341–349 (2016).CAS
Article
Google Scholar
18.Sun, J. F. et al. Addition of Phosphorus and nitrogen support the invasiveness of Alternanthera philoxeroides under water stress. Clean Soil Air Water 48, 2000059. https://doi.org/10.1002/clen.202000059 (2020).CAS
Article
Google Scholar
19.Zhou, J., Li, H. L., Alpert, P., Zhang, M. X. & Yu, F. H. Fragmentation of the invasive, clonal plant Alternanthera philoxeroides decreases its growth but not its competitive effect. Flora 228, 17–23 (2017).Article
Google Scholar
20.Danckwerts, J. E. & Gordon, A. J. Long-term partitioning, storage and remobilization of 14C assimilated by Trifolium repens (cv. Blanc). Ann. Bot. 64, 533–544 (1989).Article
Google Scholar
21.Corre, N., Bouchart, V., Ourry, A. & Boucaud, J. Mobilization of nitrogen reserves during regrowth of defoliated Trifolium repens L. and identification of potential vegetative storage proteins. J. Exp. Bot. 47, 1111–1118 (1996).CAS
Article
Google Scholar
22.Granstedt, R. C. & Huffaker, R. C. Identification of the leaf vacuole as a major nitrate storage pool. Plant Physiol. 70, 410–413 (1982).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Dong, B. C. et al. How internode length, position and presence of leaves affect survival and growth of Alternanthera philoxeroides after fragmentation?. Evol. Ecol. 24, 1447–1461 (2010).Article
Google Scholar
24.Wu, Y. J., Du, T. S. & Wang, L. X. Isotope signature of maize stem and leaf and investigation of transpiration and water transport. Agric. Water Manag. 247, 106727. https://doi.org/10.1016/j.agwat.2020.106727 (2021).Article
Google Scholar
25.Khaitov, B. et al. Licorice (Glycyrrhiza glabra)—Growth and phytochemical compound secretion in degraded lands under drought stress. Sustainability 13, 2923. https://doi.org/10.3390/su13052923 (2021).Article
Google Scholar
26.Poorter, H., Remkes, C. & Lambers, H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol. 94, 621–627 (1990).CAS
PubMed
PubMed Central
Article
Google Scholar
27.Mommer, L. & Visser, E. J. W. Underwater photosynthesis in flooded terrestrial plants: A matter of leaf plasticity. Ann. Bot. Lond. 96, 581–589 (2005).CAS
Article
Google Scholar
28.Gibbs, J. & Greenway, H. Review: Mechanisms of anoxia tolerance in plants I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 353 (2003).PubMed
Article
Google Scholar
29.Wang, H. F. et al. Survival and growth response of Vetiveria zizanioides, Acorus calamus and Alternanthera philoxeroides to long-term submergence. Acta Ecol. Sinica 28, 2571–2580 (2008).Article
Google Scholar
30.Singh, H. B., Singh, B. B. & Ram, P. C. Submergence tolerance of rain fed lowland rice: Search for physiological marker traits. J. Plant Physiol. 158, 883–889 (2001).CAS
Article
Google Scholar
31.Das, K. K., Sarkar, R. K. & Ismail, A. M. Elongation ability and nonstructural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci. 168, 131–136 (2005).CAS
Article
Google Scholar
32.Laan, P. & Blom, C. W. P. M. Growth and survival responses of Rumex species to flooded and submerged conditions: The importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. J. Exp. Bot. 228, 775–783 (1990).Article
Google Scholar
33.Lynn, D. E. & Waldren, S. Survival of Ranunculus repens L. (Creeping Buttercup) in an amphibious habitat. Ann. Bot. Lond. 91, 75–84 (2003).CAS
Article
Google Scholar
34.Kende, H., van deer Knaap, E. & Cho, H. T. Deep water rice: A model plant to study stem elongation. Plant Physiol. 118, 1105–1110 (1998).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Voesenek, L. A. C. J. et al. Plant hormones regulate fast shoot elongation under water: From genes to communities. Ecology 85, 16–27 (2003).Article
Google Scholar
36.Voesenek, L. A. C. J. et al. How plants cope with complete submergence. New Phytol. 170, 213–226 (2006).CAS
PubMed
Article
Google Scholar
37.Groeneveld, H. W. & Voesenek, L. A. C. J. Submergence-induced petiole elongation in Rumex palustris is controlled by developmental stage and storage compounds. Plant Soil. 253, 115–123 (2003).CAS
Article
Google Scholar
38.Jackson, M. B. & Colmer, T. D. Response and adaptation by plants to flooding stress. Ann. Bot. Lond. 96, 501–505 (2005).CAS
Article
Google Scholar
39.Banach, K. et al. Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: Implications for vegetation development in future floodwater retention areas. Ann. Bot Lond. 103, 341–351 (2009).Article
Google Scholar
40.Bailey-Serres, J. & Voesenek, L. A. C. J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339 (2008).CAS
PubMed
Article
Google Scholar
41.Kawano, N., Ito, O. & Sakagami, J. I. Morphological and physiological responses of rice seedlings to complete submergence (flash flooding). Ann. Bot. Lond. 103, 161–169 (2009).Article
Google Scholar
42.Luo, F. L. et al. Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de-submergence: A comparison between two wetland plants showing escape and quiescence strategies. Ann. Bot. Lond. 107, 49–63 (2011).CAS
Article
Google Scholar
43.Akman, M. et al. Wait or escape? Contrasting submergence tolerance strategies of Rorippa amphibia, Rorippa sylvestris and their hybrid. Ann. Bot. Lond. 109, 1263–1275 (2012).CAS
Article
Google Scholar
44.He, J. B. et al. Survival tactics of Ranunculus species in river floodplains. Oecologia 118, 1–8 (1999).ADS
CAS
PubMed
Article
Google Scholar
45.Julien, M. H., Bourne, A. S. & Low, V. H. K. Growth of the weed Alternanthera philoxeroides (Martius) Grisebach, (alligator weed) in aquatic and terrestrial habitats in Australia. Plant Prot. Q. 7, 102–108 (1992).
Google Scholar
46.Mauchamp, A., Blanch, S. & Grillas, P. Effects of submergence on the growth of Phragmites australis seedlings. Aquat. Bot. 69, 147–164 (2001).Article
Google Scholar
47.Chen, H. J., Qualls, R. G. & Miller, G. C. Adaptive responses of Lepidium latifolium to soil flooding: Biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Exp. Bot. 48, 119–128 (2002).Article
Google Scholar
48.Shen, J. Y., Shen, M. Q., Wang, X. H. & Lu, Y. T. Effect of environmental factors on shoot emergence and vegetative growth of alligatrorweed (Alternanthera philoxeroides). Weed Sci. 53, 471–478 (2005).CAS
Article
Google Scholar
49.Schooler, S. S. Alternanthera philoxeroides (Martius) Grisebach. A Handbook of Global Freshwater Invasive Species (ed. Francis, R. A.) 25–35 (Earthscan, 2012).50.Blom, C. W. P. M. & Voesenek, L. A. C. J. Flooding: The survival strategies of plants. Trends Ecol. Evol. 11, 290–295 (1996).CAS
PubMed
Article
Google Scholar
51.Vartapetian, B. B. & Jackson, M. B. Plant adaptations to anaerobic stress. Ann. Bot-London 79, 3–20 (1997).CAS
Article
Google Scholar
52.Visser, E. J. W., Bögemann, G. M., Van De Steeg, H. M., Pierik, R. & Blom, C. W. P. M. Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation. New Phytol. 148, 93–103 (2000).CAS
PubMed
Article
Google Scholar
53.Ruprecht, E., Fenesi, A. & Nijs, I. Are plasticity in functional traits and constancy in performance traits linked with invasiveness? An experimental test comparing invasive and naturalized plant species. Biol. Invasions 16, 1359–1372 (2014).Article
Google Scholar
54.Poorter, H. et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS
PubMed
Article
Google Scholar
55.Fu, H. et al. An alternative mechanism for shade adaptation: Implication of allometric responses of three submersed macrophytes to water depth. Ecol. Res. 27, 1087–1094 (2012).Article
Google Scholar
56.The weather network. https://www.tianqi.com/ More