1.Cunningham, A. A., Daszak, P. & Wood, J. L. N. One health, emerging infectious diseases and wildlife: two decades of progress? Philos. Trans. R. Soc. B Biol. Sci. 372, 20160167 (2017).2.Suzan, G., Esponda, F., Carrasco-Hernández, R. & Aguirre, A. A. in New Directions in Conservation Medicine: Applied Cases of Ecological Health (eds. Aguirre, A. A., Ostfeld, R. & Daszak, P.). 135–150 (Oxford University Press USA, 2012).3.Hussain, S., Ram, M. S., Kumar, A., Shivaji, S. & Umapathy, G. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus) in its fragmented rainforest habitats in Southern India. PLoS ONE 8, 1–8 (2013).
Google Scholar
4.Junge, R. E., Barrett, M. A. & Yoder, A. D. Effects of anthropogenic disturbance on indri (Indri indri) health in Madagascar. Am. J. Primatol. 73, 632–642 (2011).PubMed
Article
Google Scholar
5.Friggens, M. M. & Beier, P. Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia 164, 809–820 (2010).PubMed
Article
Google Scholar
6.Woodroffe, R. et al. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS ONE 7, e30099 (2012).7.Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G. & Lugo, A. E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6, 238–246 (2008).Article
Google Scholar
8.Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).CAS
PubMed
Article
Google Scholar
9.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).10.Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699 (2016).PubMed
Article
PubMed Central
Google Scholar
11.Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Shapira, M. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).PubMed
Article
PubMed Central
Google Scholar
13.Brugman, S. et al. A comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front. Nutr. 5, 1–15 (2018).Article
CAS
Google Scholar
14.Wasimuddin et al. Astrovirus infections induce age-dependent dysbiosis in gut microbiomes of bats. ISME J. 12, 2883–2893 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
15.Wasimuddin et al. Adenovirus infection is associated with altered gut microbial communities in a non-human primate. Sci. Rep. 9, 1–12 (2019).CAS
Article
Google Scholar
16.Wilkins, L. J., Monga, M. & Miller, A. W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 9, 1–10 (2019).
Google Scholar
17.Brüssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol. 13, 423–434 (2020).PubMed
Article
PubMed Central
Google Scholar
18.Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B Biol. Sci. 285, 20182047 (2018).19.Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Ingala, M. R., Becker, D. J., Bak Holm, J., Kristiansen, K. & Simmons, N. B. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol. Evol. https://doi.org/10.1002/ece3.5228 (2019)21.Juan, P. A. S., Hendershot, J. N., Daily, G. C. & Fukami, T. Land-use change has host-specificinfluenc on avian gut microbiomes. ISME J. https://doi.org/10.1038/s41396-019-0535-4 (2019)22.Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
23.de Juan, S., Thrush, S. F. & Hewitt, J. E. Counting on β-diversity to safeguard the resilience of estuaries. PLoS ONE 8, 1–11 (2013).
Google Scholar
24.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).25.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5. https://github.com/vegandevs/vegan (2019).26.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed
Article
PubMed Central
Google Scholar
27.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, 1988).28.Gillingham, M. A. F. et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front. Microbiol. 10, 35 (2019).29.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).PubMed
Article
PubMed Central
Google Scholar
30.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Heal. Dis. 26, 1–7 (2015).
Google Scholar
31.Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 669–673 (2020).Article
CAS
Google Scholar
32.Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).CAS
PubMed
Article
Google Scholar
33.Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).PubMed
Article
Google Scholar
34.Czech, L., Barbera, P. & Stamatakis, A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics 36, 3263–3265 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Nyhus, P. J. Human—wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).Article
Google Scholar
36.Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Chang. 10, 1–36 (2019).Article
Google Scholar
37.Beck, J. M. et al. Multicenter comparison of lung and oral microbiomes of HIV-infected and HIV-uninfected individuals. Am. J. Respir. Crit. Care Med. 192, 1335–1344 (2015).PubMed
PubMed Central
Article
Google Scholar
38.Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).CAS
PubMed
Article
Google Scholar
40.Wang, L. et al. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly. Front. Mar. Sci. 5, 1–16 (2018).Article
Google Scholar
41.Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).42.Rocca, J. D. et al. The Microbiome Stress Project: toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front. Microbiol. 10, 3272 (2019).43.Gillingham, M. A. F. et al. Bioaccumulation of trace elements affects chick body condition and gut microbiome in greater flamingos. Sci. Total Environ. 761, 143250 (2020).44.Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1392 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Jiménez, R. R., Alvarado, G., Estrella, J. & Sommer, S. Moving beyond the host: unraveling the skin microbiome of endangered Costa Rican amphibians. Front. Microbiol. 10, 1–18 (2019).Article
Google Scholar
46.Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B Biol. Sci. 366, 2351–2363 (2011).Article
Google Scholar
48.Pound, K. L., Lawrence, G. B. & Passy, S. I. Beta diversity response to stress severity and heterogeneity in sensitive versus tolerant stream diatoms. Divers. Distrib. 25, 374–384 (2019).Article
Google Scholar
49.Zhou, J. & Ning, D. Stochastic Community Assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, 1–32 (2017).Article
Google Scholar
50.Nicholas, R. A. J. & Ayling, R. D. Mycoplasma bovis: disease, diagnosis, and control. Res. Vet. Sci. 74, 105–112 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Ley, D. H. in Diseases of Poultry (eds. et al.) (Blackwell Publishing, 2008).52.Groebel, K., Hoelzle, K., Wittenbrink, M. M., Ziegler, U. & Hoelzle, L. E. Mycoplasma suis invades porcine erythrocytes. Infect. Immun. 77, 576–584 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
53.do Nascimento, N. C., Santos, A. P., Guimaraes, A. M. S., Sanmiguel, P. J. & Messick, J. B. Mycoplasma haemocanis—the canine hemoplasma and its feline counterpart in the genomic era. Vet. Res. 43, 66 (2012).54.Hardham, J. M. et al. Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontitis patients. Int. J. Syst. Evol. Microbiol. 58, 103–109 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Kaakoush, N. O. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5, 1–4 (2015).Article
CAS
Google Scholar
56.Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).Article
Google Scholar
57.Herrmann, E. et al. RNA-based stable isotope probing suggests Allobaculum spp. as particularly active glucose assimilators in a complex murine microbiota cultured in vitro. Biomed Res. Int. 2017, 1829685 (2017).58.Greetham, H. L. et al. Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. Anaerobe 10, 301–307 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 11, 1–14 (2020).60.Wiegel, J., Tanner, R. & Rainey, F. A. in The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria (eds. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) 654–678 (Springer US, 2006).61.Tamanai-Shacoori, Z. et al. Roseburia spp.: a marker of health? Future Microbiol 12, 157–170 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Freier, T. A., Beitz, D. C., Li, L. & Hartman, P. A. Characterization of Eubacterium coprostanoligenes sp. nov., a Cholesterol-Reducing Anaerobe. Int. J. Syst. Bacteriol. 44, 137–142 (1994).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Venegas, D. P. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).64.MetaCyc. MetaCyc Pathway: pyrimidine deoxyribonucleotides biosynthesis from CTP. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-7210&show-citations=T (2020).65.Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
66.MetaCyc. MetaCyc Pathway: poly(glycerol phosphate) wall teichoic acid biosynthesis. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=TEICHOICACID-PWY (2020).67.Brown, S., Santa Maria, J. P. & Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
68.MetaCyc. MetaCyc Pathway: L-lysine biosynthesis II. https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-2941 (2020).69.Hutton, C. A., Perugini, M. A. & Gerrard, J. A. Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol. Biosyst. 3, 458–465 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
70.Wanner, S. et al. Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nat. Microbiol. 2, 1–12 (2017).
Google Scholar
71.MetaCyc. MetaCyc Pathway: formaldehyde assimilation II (assimilatory RuMP Cycle). https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-1861 (2020).72.Chen, N. H., Djoko, K. Y., Veyrier, F. J. & McEwan, A. G. Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 7, 1–17 (2016).
Google Scholar
73.Tauseef, S. M., Premalatha, M., Abbasi, T. & Abbasi, S. A. Methane capture from livestock manure. J. Environ. Manag. 117, 187–207 (2013).CAS
Article
Google Scholar
74.Dale, V. H., Brown, S., Calderón, M. O., Montoya, A. S. & Martínez, R. E. Estimating baseline carbon emissions for the eastern Panama Canal watershed. Mitig. Adapt. Strateg. Glob. Chang 8, 323–348 (2003).Article
Google Scholar
75.Schmid, J. et al. Ecological drivers of Hepacivirus infection in a neotropical rodent inhabiting landscapes with various degrees of human environmental change. Oecologia https://doi.org/10.1007/s00442-018-4210-7 (2018)76.Adler, G. H. & Beatty, R. P. Changing reproductive rates in a neotropical forest rodent, Proechimys semispinosus. J. Anim. Ecol. 66, 472 (1997).Article
Google Scholar
77.Adler, G. H. Fruit and seed exploitation by Central American spiny rats, Proechimys semispinosus. Stud. Neotrop. Fauna Environ. 30, 237–244 (1995).78.Hoch, G. A. & Adler, G. H. Removal of black palm (Astrocaryum standleyanum) seeds by spiny rats (Proechimys semispinosus). J. Trop. Ecol. 13, 51–58 (1997).Article
Google Scholar
79.Endries, M. J. & Adler, G. H. Spacing patterns of a tropical forest rodent, the spiny rat (Proechimys semispinosus), in Panama. J. Zool. 265, 147–155 (2005).Article
Google Scholar
80.Adler, G. H. The island syndrome in isolated populations of a tropical forest rodent. Oecologia 108, 694–700 (1996).PubMed
Article
PubMed Central
Google Scholar
81.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108, 4516–4522 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
82.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Menke, S. et al. Oligotyping reveals differences between gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level. Front. Microbiol. 5, 526 (2014).PubMed
PubMed Central
Article
Google Scholar
84.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
85.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Callahan, B. J., Mcmurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed
PubMed Central
Article
Google Scholar
87.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article
CAS
Google Scholar
88.Yilmaz, P. et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).Article
CAS
Google Scholar
89.Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).PubMed
Article
CAS
PubMed Central
Google Scholar
90.Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).91.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—āpproximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).92.Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061–1067 (2012).PubMed
Article
PubMed Central
Google Scholar
93.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/index.html (2017).94.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).95.Davis, N. M., Proctor, Di. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).Article
Google Scholar
96.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article
Google Scholar
97.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article
Google Scholar
98.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).99.Mcmurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).100.Kim, Y. S., Unno, T., Kim, B.-Y. & Park, M. Sex differences in gut microbiota. World J. Mens. Health 38, 48–60 (2020).PubMed
Article
PubMed Central
Google Scholar
101.Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed
Article
PubMed Central
Google Scholar
102.Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl Acad. Sci. USA 116, 23588–23593 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
103.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).104.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article
Google Scholar
105.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).Article
Google Scholar
106.Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
107.Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
108.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). https://doi.org/10.1002/9781118445112.stat07841. (2017)109.Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).Article
Google Scholar
110.Li, H. et al. Pika population density is associated with the composition and diversity of gut microbiota. Front. Microbiol. 7, 1–9 (2016).
Google Scholar
111.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 1–18 (2017).Article
Google Scholar
112.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Google Scholar
113.Fackelmann, G. gfackelmann/human-encroachment-into-wildlife-gut-microbiomes: Release 1.0.0. https://doi.org/10.5281/zenodo.4725220. (2021) More