1.Carpenter LJ. Biogeochemical cycles | iodine. Encyclopedia of Atmospheric Sciences: Elsevier; United States; 2015. p. 205–19.2.Chemburkar SR, Deming KC, Reddy RE. Chemistry of thyroxine: an historical perspective and recent progress on its synthesis. Tetrahedron. 2010;66:1955–62.CAS
Article
Google Scholar
3.Schweizer U, Steegborn C. Thyroid hormones—from crystal packing to activity to reactivity. Angew Chem. 2015;54:12856–8.CAS
Article
Google Scholar
4.Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, et al. Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem. 2011;50:11598–620.Article
CAS
Google Scholar
5.Manley SL, Dastoor MN. Methyl iodide (CH3I) production by kelp and associated microbes. Mar Biol. 1988;98:477–82.CAS
Article
Google Scholar
6.Lebel LS, Dickson RS, Glowa GA. Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. J Environ Radioact. 2016;151:82–93.CAS
PubMed
Article
PubMed Central
Google Scholar
7.Luther GW, Wu J, Cullen JB. Redox chemistry of iodine in seawater. Aquatic chemistry. Advances in chemistry. 244: American Chemical Society; Washington, DC; 1995. p. 135–55.8.Gonzales J, Tymon T, Küpper FC, Edwards MS, Carrano CJ. The potential role of kelp forests on iodine speciation in coastal seawater. PloS ONE. 2017;12:e0180755.PubMed
PubMed Central
Article
CAS
Google Scholar
9.Vedamati J, Goepfert T, Moffett JW. Iron speciation in the eastern tropical South Pacific oxygen minimum zone off Peru. Limnol Oceanogr. 2014;59:1945–57.Article
Google Scholar
10.Tsunogai S, Sase T. Formation of iodide-iodine in the ocean. Deep Sea Res Oceanogr Abstr. 1969;16:489–96.CAS
Article
Google Scholar
11.Councell TB, Landa ER, Lovley DR. Microbial reduction of iodate. Water Air Soil Pollut. 1997;100:99–106.CAS
Article
Google Scholar
12.Youngblut MD, Tsai C-L, Clark IC, Carlson HK, Maglaqui AP, Gau-Pan PS, et al. Perchlorate reductase is distinguished by active site aromatic gate residues. J Biol Chem. 2016;291:9190–202.CAS
PubMed
PubMed Central
Article
Google Scholar
13.Farrenkopf AM, Dollhopf ME, Chadhain SN, Luther GW, Nealson KH. Reduction of iodate in seawater during Arabian Sea incubations and in laboratory cultures of the marine Shewanella putrefaciens strain MR-4 shipboard bacterium. Mar Chem. 1997;57:347–54.CAS
Article
Google Scholar
14.Amachi S, Kawaguchi N, Muramatsu Y, Tsuchiya S, Watanabe Y, Shinoyama H, et al. Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT. Appl Environ Microbiol. 2007;73:5725–30.CAS
PubMed
PubMed Central
Article
Google Scholar
15.Yamazaki C, Kashiwa S, Horiuchi A, Kasahara Y, Yamamura S, Amachi S. A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT. Environ Microbiol. 2020;22:2196–212.CAS
PubMed
Article
PubMed Central
Google Scholar
16.Youngblut MD, Wang O, Barnum TP, Coates JD. (Per)chlorate in biology on earth and beyond. Annu Rev Microbiol. 2016;70:435–57.17.Toporek YJ, Mok JK, Shin HD, Lee BD, Lee MH, DiChristina TJ. Metal reduction and protein secretion genes required for Iodate Reduction by Shewanella oneidensis. Appl Environ Microbiol. 2019;85:e02115–18.18.Carlström CI, Lucas LN, Rohde RA, Haratian A, Engelbrektson AL, Coates JD. Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Appl Microbiol Biotechnol. 2016;100:9719–32.PubMed
Article
CAS
PubMed Central
Google Scholar
19.Yip KC-W, Gu J-D. A novel bacterium involved in the degradation of 2-methylindole isolated from sediment of Inner Deep Bay of Hong Kong. Appl Environ Biotechnol. 2015;1:52–63.Article
Google Scholar
20.Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, et al. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Micro Cell Fact. 2010;9:1–11.Article
CAS
Google Scholar
21.Loferer-Krössbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol. 1998;64:688–94.PubMed
PubMed Central
Article
Google Scholar
22.McInerney MJ, Beaty PS. Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can J Microbiol. 1988;34:487–93.CAS
Article
Google Scholar
23.Stern JH, Passchier AA. The heats of formation of triiodide and iodate ions. J Phys Chem. 1962;66:752–3.CAS
Article
Google Scholar
24.Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol. 2006;4:752–64.CAS
PubMed
Article
PubMed Central
Google Scholar
25.Leimkühler S, Iobbi-Nivol C. Bacterial molybdoenzymes: Old enzymes for new purposes. FEMS Microbiol Rev. 2016;40:1–18.PubMed
Article
CAS
PubMed Central
Google Scholar
26.McEwan AG, Ridge JP, McDevitt CA, Hugenholtz P. The DMSO reductase family of microbial molybdenum enzymes: Molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiol J. 2002;19:3–21.CAS
Article
Google Scholar
27.Chaudhuri SK, O’Connor SM, Gustavson RL, Achenbach LA, Coates JD. Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol. 2002;68:4425–30.CAS
PubMed
PubMed Central
Article
Google Scholar
28.Snel B, Bork P, Huynen MA. Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 2002;12:17–25.CAS
PubMed
Article
PubMed Central
Google Scholar
29.Saunders JK, Fuchsman CA, McKay C, Rocap G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc Natl Acad Sci USA. 2019;116:9925–30.CAS
PubMed
PubMed Central
Article
Google Scholar
30.Dabir DV, Leverich EP, Kim SK, Tsai FD, Hirasawa M, Knaff DB, et al. A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 2007;26:4801–11.CAS
PubMed
PubMed Central
Article
Google Scholar
31.Martins D, Kathiresan M, English AM. Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med. 2013;65:541–51.CAS
PubMed
Article
PubMed Central
Google Scholar
32.Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.CAS
PubMed
Article
PubMed Central
Google Scholar
33.Berks BC. The twin-arginine protein translocation pathway. Annu Rev Biochem. 2015;84:843–64.CAS
PubMed
Article
PubMed Central
Google Scholar
34.Toporek M, Michałowska-Kaczmarczyk AM, Michałowski T. Disproportionation reactions of HIO and NaIO in static and dynamic systems. Am J Anal Chem. 2014;5:1046.CAS
Article
Google Scholar
35.Ellis KV, Van Vree HBRJ. Iodine used as a water-disinfectant in turbid waters. Water Res. 1989;23:671–6.CAS
Article
Google Scholar
36.Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.37.Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM, Lomans BP. Archaeal (per)chlorate reduction at high temperature: An interplay of biotic and abiotic reactions. Science. 2013;340:85–7.CAS
PubMed
Article
PubMed Central
Google Scholar
38.Dudley M, Salamone A, Nerenberg R. Kinetics of a chlorate-accumulating, perchlorate-reducing bacterium. Water Res. 2008;42:2403–10.CAS
PubMed
Article
PubMed Central
Google Scholar
39.Melnyk RA, Youngblut MD, Clark IC, Carlson HK, Wetmore KM, Price MN, et al. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase. MBio. 2015;6:e00233-15.40.Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8.CAS
PubMed
Article
PubMed Central
Google Scholar
41.Ordoñez OF, Rasuk MC, Soria MN, Contreras M, Farías ME. Haloarchaea from the Andean Puna: biological role in the energy metabolism of arsenic. Microb Ecol. 2018;76:695–705.PubMed
Article
CAS
PubMed Central
Google Scholar
42.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11.Article
CAS
Google Scholar
43.Becraft ED, Woyke T, Jarett J, Ivanova N, Godoy-Vitorino F, Poulton N, et al. Rokubacteria: genomic giants among the uncultured bacterial phyla. Front Microbiol. 2017;8:2264.44.He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MSM, et al. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep. 2016;6:1–10.Article
CAS
Google Scholar
45.Melnyk RA, Engelbrektson A, Clark IC, Carlson HK, Byrne-Bailey K, Coates JD. Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes. Appl Environ Microbiol. 2011;77:7401–4.CAS
PubMed
PubMed Central
Article
Google Scholar
46.Scornavacca C, Zickmann F, Huson DH. Tanglegrams for rooted phylogenetic trees and networks. Bioinformatics. 2011;27:i248–56.CAS
PubMed
PubMed Central
Article
Google Scholar
47.Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33:376–93.CAS
PubMed
Article
Google Scholar
48.Reiter WD, Palm P, Yeats S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 1989;17:1907–14.CAS
PubMed
PubMed Central
Article
Google Scholar
49.Larbig KD, Christmann A, Johann A, Klockgether J, Hartsch T, Merkl R, et al. Gene islands integrated into tRNAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol. 2002;184:6665–80.CAS
PubMed
PubMed Central
Article
Google Scholar
50.Boyd E, Barkay T. The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine. Front Microbiol. 2012;3:349.PubMed
PubMed Central
Google Scholar
51.Besaury L, Bodilis J, Delgas F, Andrade S, De la Iglesia R, Ouddane B, et al. Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Mar Pollut Bull. 2013;67:16–25.CAS
PubMed
Article
PubMed Central
Google Scholar
52.Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, Hoad G, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–5.CAS
PubMed
PubMed Central
Article
Google Scholar
53.Jin HM, Lee HJ, Kim JM, Park MS, Lee K, Jeon CO. Litorimicrobium taeanense gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol. 2011;61:1392–6.CAS
PubMed
Article
PubMed Central
Google Scholar
54.Alex A, Antunes A. Comparative genomics reveals metabolic specificity of Endozoicomonas isolated from a marine sponge and the genomic repertoire for host-bacteria symbioses. Microorganisms. 2019;7:635.CAS
PubMed Central
Article
Google Scholar
55.Kim Y-O, Park S, Nam B-H, Park J-M, Kim D-G, Yoon J-H. Litoreibacter ascidiaceicola sp. nov., isolated from the golden sea squirt Halocynthiaaurantium. Int J Syst Evol Microbiol. 2014;64:2545–50.CAS
PubMed
Article
PubMed Central
Google Scholar
56.Kupper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg EM, et al. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci USA. 2008;105:6954–8.CAS
PubMed
PubMed Central
Article
Google Scholar
57.Jung HS, Jeong SE, Chun BH, Quan Z-X, Jeon CO. Rhodophyticola porphyridii gen. nov., sp. nov., isolated from a red alga, Porphyridium marinum. Int J Syst Evol Microbiol. 2019;69:1656–61.CAS
PubMed
Article
PubMed Central
Google Scholar
58.Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.CAS
PubMed
Article
PubMed Central
Google Scholar
59.Ribicic D, Netzer R, Hazen TC, Techtmann SM, Drabløs F, Brakstad OG. Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Mar Pollut Bull. 2018;129:370–8.CAS
PubMed
Article
PubMed Central
Google Scholar
60.Lachkar Z, Lévy M, Smith KS. Strong intensification of the Arabian Sea oxygen minimum zone in response to Arabian Gulf warming. Geophys Res Lett. 2019;46:5420–9.CAS
Article
Google Scholar
61.Farrenkopf AM, Luther GW. Iodine chemistry reflects productivity and denitrification in the Arabian Sea: evidence for flux of dissolved species from sediments of western India into the OMZ. Deep-Sea Res Pt II. 2002;49:2303–18.CAS
Article
Google Scholar
62.Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;16:723–9.CAS
PubMed
Article
PubMed Central
Google Scholar
63.Cutter GA, Moffett JW, Nielsdóttir MC, Sanial V. Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Mar Chem. 2018;201:77–89.CAS
Article
Google Scholar
64.Karstensen J, Stramma L, Visbeck M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog Oceanogr. 2008;77:331–50.Article
Google Scholar
65.Farrenkopf AM, Luther GW, Truesdale VW, Van Der Weijden CH. Sub-surface iodide maxima: evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon. Deep Sea Res Pt II. 1997;44:1391–409.CAS
Article
Google Scholar
66.Kalvelage T, Lavik G, Jensen MM, Revsbech NP, Löscher C, Schunck H, et al. Aerobic microbial respiration in oceanic oxygen minimum zones. PLoS ONE. 2015;10:e0133526.PubMed
PubMed Central
Article
CAS
Google Scholar
67.Howarth RW. Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst. 1988;19:89–110.Article
Google Scholar
68.Shalel Levanon S, San K-Y, Bennett GN. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng. 2005;89:556–64.Article
CAS
Google Scholar
69.Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.CAS
PubMed
Article
PubMed Central
Google Scholar
70.Hardisty DS, Horner TJ, Evans N, Moriyasu R, Babbin AR, Wankel SD, et al. Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone. Earth Planet Sci Lett. 2021;554:116676.CAS
Article
Google Scholar
71.Li H-P, Yeager CM, Brinkmeyer R, Zhang S, Ho Y-F, Xu C, et al. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation. Environ Sci Technol. 2012;46:4837–44.CAS
PubMed
Article
PubMed Central
Google Scholar
72.Shiroyama K, Kawasaki Y, Unno Y, Amachi S. A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2. Biosci Biotechnol Biochem. 2015;79:1898–905.CAS
PubMed
Article
PubMed Central
Google Scholar
73.Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature. 2009;457:581–4.CAS
PubMed
Article
PubMed Central
Google Scholar
74.Wadley MR, Stevens DP, Jickells T, Hughes C, Chance R, Hepach H, et al. Modelling iodine in the ocean. Earth Space Sci Open Access Arch. 2020:46. https://doi.org/10.1002/essoar.10502078.1.75.Waite TJ, Truesdale VW. Iodate reduction by Isochrysis galbana is relatively insensitive to de-activation of nitrate reductase activity—are phytoplankton really responsible for iodate reduction in seawater? Mar Chem. 2003;81:137–48.CAS
Article
Google Scholar
76.Coates JD, Achenbach LA. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol. 2004;2:569–80.CAS
PubMed
Article
PubMed Central
Google Scholar
77.Jones DS, Bailey JV, Flood BE. Sedimenticola thiotaurini sp. nov., a sulfur-oxidizing bacterium isolated from salt marsh sediments, and emended descriptions of the genus Sedimenticola and Sedimenticola selenatireducens. Int J Syst Evol Microbiol. 2015;65:2522–30.PubMed
Article
CAS
PubMed Central
Google Scholar
78.Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS
PubMed
Article
PubMed Central
Google Scholar
79.Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67:1191–205.CAS
PubMed
Article
PubMed Central
Google Scholar
80.Brinkmann T, Specht CH, Frimmel FH. Non-linear calibration functions in ion chromatography with suppressed conductivity detection using hydroxide eluents. J Chromatogr. 2002;957:99–109.CAS
Article
Google Scholar
81.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS
PubMed
PubMed Central
Article
Google Scholar
82.Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015;31:3350–2.CAS
PubMed
PubMed Central
Article
Google Scholar
83.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS
PubMed
Article
PubMed Central
Google Scholar
84.Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS
PubMed
PubMed Central
Article
Google Scholar
85.Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.CAS
PubMed
PubMed Central
Article
Google Scholar
86.Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed
PubMed Central
Article
CAS
Google Scholar
87.Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.CAS
PubMed
PubMed Central
Article
Google Scholar
88.Méheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun. 2019;10:4173.PubMed
PubMed Central
Article
CAS
Google Scholar
89.Barnum TP, Figueroa IA, Carlström CI, Lucas LN, Engelbrektson AL, Coates JD. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J. 2018;12:1568–81.CAS
PubMed
PubMed Central
Article
Google Scholar
90.Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.CAS
PubMed
PubMed Central
Article
Google Scholar
91.Karsenti E. The making of Tara Oceans: Funding blue skies research for our Blue Planet. Mol Syst Biol. 2015;11:811.PubMed
PubMed Central
Article
Google Scholar
92.Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:1–16.Article
CAS
Google Scholar
93.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.CAS
PubMed
PubMed Central
Article
Google Scholar
94.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed
PubMed Central
Article
CAS
Google Scholar
95.Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mac Learn Res. 2011;12:2825–30.
Google Scholar
96.Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int J methods Psychiatr Res. 2011;20:40–9.PubMed
PubMed Central
Article
Google Scholar More