Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming
1.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).CAS
PubMed
Article
ADS
Google Scholar
2.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).PubMed
Article
ADS
CAS
Google Scholar
3.Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).Article
Google Scholar
4.LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 (2018).CAS
PubMed
Article
Google Scholar
5.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’ s coral reefs. Ove Hoegh-Guldberg (1998).6.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018).CAS
Article
ADS
Google Scholar
7.Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2014).PubMed
Article
ADS
Google Scholar
8.Muller, E. M., Rogers, C. S., Spitzack, A. S. & Van Woesik, R. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27, 191–195 (2008).Article
ADS
Google Scholar
9.Cróquer, A. & Weil, E. Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Dis. Aquat. Organ. 87, 33–43 (2009).PubMed
Article
Google Scholar
10.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).PubMed
Article
ADS
Google Scholar
11.Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).Article
CAS
Google Scholar
12.Neal, B. P. et al. Caribbean massive corals not recovering from repeated thermal stress events during 2005–2013. Ecol. Evol. 7, 1339–1353 (2017).PubMed
PubMed Central
Article
Google Scholar
13.Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).Article
Google Scholar
14.Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).Article
Google Scholar
15.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 1–21 (2016).Article
Google Scholar
16.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed
Article
Google Scholar
17.Kleypas, J. A., McManu, J. W. & Mene, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999).Article
Google Scholar
18.Descombes, P. et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Chang. Biol. 21, 2479–2487 (2015).PubMed
Article
ADS
Google Scholar
19.Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).Article
Google Scholar
20.Mies, M. et al. South Atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 1–13 (2020).Article
ADS
Google Scholar
21.Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003).Article
Google Scholar
22.Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148 (2019).CAS
PubMed
Article
Google Scholar
23.Beger, M., Sommer, B., Harrison, P. L., Smith, S. D. A. & Pandolfi, J. M. Conserving potential coral reef refuges at high latitudes. Divers. Distrib. 20, 245–257 (2014).Article
Google Scholar
24.Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Chang. Biol. 2, 495–509 (1996).Article
ADS
Google Scholar
25.Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017).Article
ADS
Google Scholar
26.Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science (8-.) 361, 281–284 (2018).CAS
Article
ADS
Google Scholar
27.Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 1–11 (2019).CAS
Article
Google Scholar
28.Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).CAS
PubMed
Article
Google Scholar
29.Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 1–12 (2016).Article
CAS
Google Scholar
30.Morais, J. & Santos, B. A. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere 9, e02281 (2018).Article
Google Scholar
31.Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. https://doi.org/10.1038/nclimate3374 (2017).Article
Google Scholar
32.Danielle, C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun. 11(1), https://doi.org/10.1038/s41467-020-19169-y. (2020)33.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).Article
Google Scholar
34.Donovan, M.K.et al. Local conditions magnify coral loss after marine heatwaves. Science 372(6545), 977–980. https://doi.org/10.1126/science.abd9464. (2021)CAS
PubMed
Article
Google Scholar
35.Hughes, T. et al. Climate change, Human impacts, and the resilience of coral reefs. Laser Induced Damage Opt. Mater. 2009 7504, 75041H (2003).36.Carilli, J. E., Norris, R. D., Black, B. A., Walsh, S. M. & McField, M. Local stressors reduce coral resilience to bleaching. PLoS ONE 4, 1–5 (2009).Article
CAS
Google Scholar
37.Donner, S. D., Heron, S. F. & Skirving, W. J. Future scenarios: A review of modelling efforts to predict the future of coral reefs in an era of climate change. 159–173. https://doi.org/10.1007/978-3-540-69775-6_10 (2018).38.McLeod, E. et al. Warming seas in the coral triangle: Coral reef vulnerability and management implications. Coast. Manag. 38, 518–539 (2010).Article
Google Scholar
39.Maynard, J. A. et al. Vulnerability to coral reefs. 1–8 (2019).40.Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. Latin Am. Coral Reefs https://doi.org/10.1016/B978-044451388-5/50003-5 (2003).Article
Google Scholar
41.Leão, Z. M. A. N. & Kikuchi, R. K. P. A relic coral fauna threatened by global changes and human activities, Eastern Brazil. Mar. Pollut. Bull. 51, 599–611 (2005).PubMed
Article
CAS
Google Scholar
42.Francini-Filho, R. B. & De Moura, R. L. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1166–1179 (2008).Article
Google Scholar
43.Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013).Article
ADS
Google Scholar
44.Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).Article
Google Scholar
45.Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, (2011).46.Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2, 307 (2004).Article
Google Scholar
47.Aued, A. W. et al. Large-scale patterns of benthic marine communities in the brazilian province. PLoS ONE 13, 1–15 (2018).Article
CAS
Google Scholar
48.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS
Article
Google Scholar
49.Phillips, N. A Companion to the e-Book “YaRrr!: The Pirate’s Guide to R”. (2017).50.R Core Team. R: A Language and Environment for Statistical Computing. (2020).51.Banha, T. N. S. et al. Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs https://doi.org/10.1007/s00338-019-01856-y (2019).Article
Google Scholar
52.Oliveira, U. D. R., Gomes, P. B., Cordeiro, R. T. S., De Lima, G. V. & Pérez, C. D. Modeling impacts of climate change on the potential habitat of an endangered Brazilian endemic coral: Discussion about deep sea refugia. PLoS ONE 14, 1–24 (2019).
Google Scholar
53.Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed
Article
Google Scholar
54.Price, N. N. et al. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Mar. Ecol. Prog. Ser. 621, 1–17 (2019).Article
ADS
Google Scholar
55.Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Chang. Biol. 21, 2272–2282 (2015).PubMed
Article
ADS
Google Scholar
56.Baird, A. H. et al. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603, 257–264 (2018).Article
ADS
Google Scholar
57.Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 1–19 (2010).Article
Google Scholar
58.Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 2018, 1–24 (2018).
Google Scholar
59.Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, 1–10 (2017).Article
Google Scholar
60.Wooldridge, S., Done, T., Berkelmans, R., Jones, R. & Marshall, P. Precursors for resilience in coral communities in a warming climate: A belief network approach. Mar. Ecol. Prog. Ser. 295, 157–169 (2005).Article
ADS
Google Scholar
61.Mazzei, E. F. et al. Newly discovered reefs in the southern Abrolhos Bank, Brazil: Anthropogenic impacts and urgent conservation needs. Mar. Pollut. Bull. 114, 123–133 (2017).CAS
PubMed
Article
Google Scholar
62.Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).Article
Google Scholar
63.Ferreira L.C. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168(5), https://doi.org/10.1007/s00227-021-03863-6. (2021)64.Teixeira, C. D. et al. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs https://doi.org/10.1007/s00338-019-01789-6 (2019).Article
Google Scholar
65.França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190116 (2020).Article
Google Scholar
66.Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5, 1–7 (2010).Article
CAS
Google Scholar
67.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-16 (2020).68.Jokiel, P. L. Evaluating the assumptions involved. ICES J. Mar. Sci. 73, 550–557 (2015).Article
Google Scholar
69.Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. Glob. Chang. Biol. 26, 3473–3481 (2020).PubMed
Article
ADS
Google Scholar
70.Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).Article
Google Scholar
71.Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article
Google Scholar
72.Sbrocco, E. J. & Barber, P. H. MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94, 979–979 (2013).Article
Google Scholar
73.Hijmans, J. R. et al. Package ‘ raster ’ R topics documented (2016).74.Sappington, J. M., Longshore, K. M. & Thompson, D. B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave desert. J. Wildl. Manag. 71, 1419–1426 (2007).Article
Google Scholar
75.IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).76.Fox, J. & Weisberg, S. Multivariate Linear Models in R. An R Companion to Appl. Regres. 1–31 (2011).77.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Required Pre-knowledge : A Linear Regression. Mixed Effects Models and Extensions in Ecology with R 1, (2009).78.Martins, T. G., Simpson, D., Lindgren, F. & Rue, H. Bayesian computing with INLA: New features. (2012).79.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).MathSciNet
MATH
Article
Google Scholar
80.Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian MARKOV random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 423–498 (2011).MathSciNet
MATH
Article
Google Scholar
81.Muñoz, F., Pennino, M. G., Conesa, D., López-Quílez, A. & Bellido, J. M. Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch. Environ. Res. Risk Assess. 27, 1171–1180 (2013).Article
Google Scholar
82.Held, L., Schrödle, B. & Rue, H. Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA. Stat. Model. Regres. Struct. Festschrift Honour Ludwig Fahrmeir 1–20 (2010). https://doi.org/10.1007/978-3-7908-2413-183.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).MathSciNet
MATH
Google Scholar
84.Roos, M. & Held, L. Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Anal. 6, 259–278 (2011).MathSciNet
MATH
Article
Google Scholar
85.Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017).CAS
PubMed
Article
Google Scholar
86.Pennino, M. G., Vilela, R., Bellido, J. M. & Velasco, F. Balancing resource protection and fishing activity: The case of the European hake in the northern Iberian Peninsula. Fish. Oceanogr. 28, 54–65 (2019).Article
Google Scholar
87.Martínez-Minaya, J. et al. A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Mol. Ecol. Resour. 19, 929–943 (2019).PubMed
Article
Google Scholar More