Invasive Lactuca serriola seeds contain endophytic bacteria that contribute to drought tolerance
1.Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Reinhold-Hurek, B. & Hurek, T. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14, 435–443 (2011).PubMed
Article
PubMed Central
Google Scholar
3.Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. & Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ. Exp. Bot. 97, 30–39 (2014).CAS
Article
Google Scholar
4.Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
5.Ali, S., Charles, T. C. & Glick, B. R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80, 160–167 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
6.Weyens, N., van der Lelie, D., Taghavi, S. & Vangronsveld, J. Phytoremediation: plant–endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20, 248–254 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).PubMed
Article
PubMed Central
Google Scholar
8.Card, S. D. et al. Beneficial endophytic microorganisms of Brassica—A review. Biol. Control 90, 102–112 (2015).Article
Google Scholar
9.Shahzad, R., Khan, A. L., Bilal, S., Asaf, S. & Lee, I. J. What Is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci. 9, 24. https://doi.org/10.3389/fpls.2018.00024 (2018).Article
PubMed
PubMed Central
Google Scholar
10.Truyens, S., Weyens, N., Cuypers, A. & Vangronsveld, J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7, 40–50 (2015).Article
Google Scholar
11.Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).Article
Google Scholar
12.van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).PubMed
Article
PubMed Central
Google Scholar
13.Coats, V. C. & Rumpho, M. E. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5, 368. https://doi.org/10.3389/fmicb.2014.00368 (2014).Article
PubMed
PubMed Central
Google Scholar
14.Richardson, D. M., Allsopp, N., D’antonio, C. M., Milton, S. J. & Rejmánek, M. Plant invasions—the role of mutualisms. Biol. Rev. 75, 65–93 (2000).CAS
PubMed
Article
Google Scholar
15.Pringle, A. et al. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Evol. Syst. 40, 699–715 (2009).Article
Google Scholar
16.Sun, Z.-K. & He, W.-M. Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE 5, e15418. https://doi.org/10.1371/journal.pone.0015418 (2010).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
17.Kowalski, K. P. et al. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front. Microbiol. 6, 95. https://doi.org/10.3389/fmicb.2015.00095 (2015).Article
PubMed
PubMed Central
Google Scholar
18.Dai, Z. C. et al. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front. Plant Sci. 7, 706. https://doi.org/10.3389/fpls.2016.00706 (2016).Article
PubMed
PubMed Central
Google Scholar
19.Rout, M. E. et al. Bacterial endophytes enhance competition by invasive plants. Am. J. Bot. 100, 1726–1737 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Soares, M. A. et al. Functional role of bacteria from invasive Phragmites australis in promotion of host growth. Microb. Ecol. 72, 407–417 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Kim, Y.-H., Kil, J.-H., Hwang, S.-M. & Lee, C.-W. Spreading and distribution of Lactuca scariola, invasive alien plant, by habitat types in Korea. Weed Turfgrass Sci. 2, 138–151 (2013).Article
Google Scholar
22.Moon, S.-I. et al. Isolation and characterization of bio-active materials from prickly lettuce (Lactuca serriola). J. Life Sci. 19, 206–212 (2009).Article
Google Scholar
23.Lebeda, A. et al. Acquisition and ecological characterization of Lactuca serriola L germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genet. Resour. Crop Evol. 54, 555–562 (2007).Article
Google Scholar
24.Mallory-Smith, C. A., Thill, D. C. & Dial, M. J. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4, 163–168 (1990).Article
Google Scholar
25.Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401. https://doi.org/10.6064/2012/963401 (2012).Article
PubMed
PubMed Central
Google Scholar
26.Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636. https://doi.org/10.3389/fmicb.2018.01636 (2018).Article
PubMed
PubMed Central
Google Scholar
27.Alami, Y., Achouak, W., Marol, C. & Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobiums strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393–3398 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
28.Sandhya, V., Grover, M., Reddy, G. & Venkateswarlu, B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertility Soils 46, 17–26 (2009).CAS
Article
Google Scholar
29.Vardharajula, S. Exopolysaccharide production by drought tolerant Bacillus spp and effect on soil aggregation under drought stress. J. Microbiol. Biotechnol. Food Sci. 9, 51–57 (2020).
Google Scholar
30.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
31.Kang, S. H. et al. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L). J. Microbiol. Biotechnol. 17, 96–103 (2007).CAS
PubMed
PubMed Central
Google Scholar
32.Panwar, M., Tewari, R. & Nayyar, H. Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L) under soil salinity by reducing sodium uptake and stress injury. Physiol. Mol. Biol. Plants 22, 445–459 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Selvakumar, G. et al. Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24, 955–960 (2008).CAS
Article
Google Scholar
34.Egamberdieva, D. et al. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10, 1–9 (2008).CAS
PubMed
PubMed Central
Google Scholar
35.Pereira, S., Castro, P. & Research, P. Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ. Sci. Pollut. Res. 21, 14110–14123 (2014).CAS
Article
Google Scholar
36.Sun, Z. et al. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 419, 1–11 (2017).CAS
Article
Google Scholar
37.Pierik, R., Tholen, D., Poorter, H., Visser, E. J. W. & Voesenek, L. A. C. J. The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci. 11, 176–183 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Glick, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 30–39 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
39.Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J. & Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17, 239–252 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Yu, Y.-C., Yum, S.-J., Jeon, D.-Y. & Jeong, H.-G. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechnol. 28, 1318–1331 (2018).PubMed
Article
PubMed Central
Google Scholar
41.Brady, C. et al. Isolation of Enterobacter cowanii from Eucalyptus showing symptoms of bacterial blight and dieback in Uruguay. Lett. Appl. Microbiol. 49, 461–465 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Chimwamurombe, P. M., Grönemeyer, J. L. & Reinhold-Hurek, B. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol. Ecol. 92, fiw083. https://doi.org/10.1093/femsec/fiw083 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
43.Gao, H. et al. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int. J. Biol. Macromol. 150, 955–964 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Wang, L. et al. Development of sugarcane resource for efficient fermentation of exopolysaccharide by using a novel strain of Kosakonia cowanii LT-1. Bioresour. Technol. 280, 247–254 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Borlee, B. R. et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75, 827–842 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
46.Huang, X.-F. et al. Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant Soil 419, 523–539 (2017).CAS
Article
Google Scholar
47.Marulanda, A., Barea, J.-M. & Azcón, R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 28, 115–124 (2009).CAS
Article
Google Scholar
48.Niu, X., Song, L., Xiao, Y. & Ge, W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 8, 2580. https://doi.org/10.3389/fmicb.2017.02580 (2018).Article
PubMed
PubMed Central
Google Scholar
49.Sandhya, V., Ali, S. Z., Grover, M., Reddy, G. & Venkateswarlu, B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulat. 62, 21–30 (2010).CAS
Article
Google Scholar
50.Chen, C. et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci. Rep. 7, 41564. https://doi.org/10.1038/srep41564 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
51.Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–11 (2016).Article
CAS
Google Scholar
52.Zhang, N. et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374, 689–700 (2014).CAS
Article
Google Scholar
53.Johnston-Monje, D. & Raizada, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE 6, e20396. https://doi.org/10.1371/journal.pone.0020396 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
54.Coombs, J. T. & Franco, C. M. M. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69, 5603–5608. https://doi.org/10.1128/aem.69.9.5603-5608.2003 (2003).CAS
Article
PubMed
PubMed Central
Google Scholar
55.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS
CAS
PubMed
Article
Google Scholar
56.Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS
PubMed
PubMed Central
Google Scholar
57.Mehta, S. & Nautiyal, C. S. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43, 51–56 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Milagres, A. M., Machuca, A. & Napoleao, D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37, 1–6 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Dworkin, M. & Foster, J. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592–603 (1958).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Singh, J. K., Adams, F. G. & Brown, M. H. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front. Microbiol. 9, 3301 (2019).PubMed
PubMed Central
Article
Google Scholar
61.Polak-Berecka, M., Waśko, A., Skrzypek, H. & Kreft, A. Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: biosynthesis and purification methods. Acta Aliment. 42, 220–228 (2013).CAS
Article
Google Scholar
62.Tschaplinski, T. J. et al. The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. Ann. Bot. 124, 617–626 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
63.Michel, B. E. & Kaufmann, M. R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51, 914–916 (1973).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Hanna, A., Berg, M., Stout, V. & Razatos, A. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl. Environ. Microbiol. 69, 4474–4481 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Liu, S.-B. et al. Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl. Environ. Microbiol. 79, 224–230 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
66.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. & Smith, F. Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956).CAS
Article
Google Scholar
67.Yahaghi, Z., Shirvani, M., Nourbakhsh, F. & Pueyo, J. J. Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: Role of plant growth promoting bacteria. S. Afr. J. Bot. 124, 573–582 (2019).CAS
Article
Google Scholar
68.Zhang, Z. & Huang, R. Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protoc. 3, e817 (2013).
Google Scholar
69.Türkan, I., Bor, M., Özdemir, F. & Koca, H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168, 223–231 (2005).Article
CAS
Google Scholar More