Social familiarity improves fast-start escape performance in schooling fish
1.Ward, A. J. W. & Hart, P. J. B. The effects of kin and familiarity on interactions between fish. Fish Fish 4, 348â358 (2003).ArticleÂ
Google ScholarÂ
2.Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, 2016).3.Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, 2002).4.Kohn, G. M. Friends give benefits: autumn social familiarity preferences predict reproductive output. Anim. Behav. 132, 201â208 (2017).ArticleÂ
Google ScholarÂ
5.Seppä, T., Laurila, A., Peuhkuri, N., Piironen, J. & Lower, N. Early familiarity has fitness consequences for Arctic char (Salvelinus alpinus) juveniles. Can. J. Fish. Aquat. Sci. 58, 1380â1385 (2001).ArticleÂ
Google ScholarÂ
6.Oesch, N. & Dunbar, R. I. M. Group size, communication, and familiarity effects in foraging human teams. Ethology 124, 483â495 (2018).ArticleÂ
Google ScholarÂ
7.Edenbrow, M. & Croft, D. P. Kin and familiarity influence association preferences and aggression in the mangrove killifish Kryptolebias marmoratus. J. Fish. Biol. 80, 503â518 (2012).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
8.Kavaliers, M. & Choleris, E. Out-Group threat responses, in-group bias, and nonapeptide involvement are conserved across vertebrates: (A comment on Bruintjes et al., âout-group threat promotes within-group affiliation in a cooperative fishâ). Am. Nat. 189, 453â458 (2017).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
9.McCarter, M. W. & Sheremeta, R. M. You canât put old wine in new bottles: the effect of newcomers on coordination in groups. PLoS ONE 8, e55058 (2013).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
10.Silk, J. B. in Sociality, Hierarchy, Health: Comparative Biodemography (eds Weinstein, M. & Lane, M. A.) 121â144 (National Academies Press, 2014).11.Thompson, A. B. & Hare, J. F. Neighbourhood watch: multiple alarm callers communicate directional predator movement in Richardsonâs ground squirrels, Spermophilus richardsonii. Anim. Behav. 80, 269â275 (2010).ArticleÂ
Google ScholarÂ
12.Micheletta, J. et al. Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra. Proc. R. Soc. Lond. B Biol. Sci. 279, 4042â4050 (2012).
Google ScholarÂ
13.Strodl, M. & Schausberger, P. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation. PLoS ONE 7, e43590 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
14.Versace, E., Damini, S., Caffini, M. & Stancher, G. Born to be asocial: Newly hatched tortoises avoid unfamiliar individuals. Anim. Behav. 138, 187â192 (2018).ArticleÂ
Google ScholarÂ
15.Strodl, M. A. & Schausberger, P. Social familiarity modulates group living and foraging behaviour of juvenile predatory mites. Die Naturwissenschaften 99, 303â311 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
16.Gutmann, A. K., Ĺ pinka, M. & Winckler, C. Long-term familiarity creates preferred social partners in dairy cows. Appl. Anim. Behav. Sci. 169, 1â8 (2015).ArticleÂ
Google ScholarÂ
17.Engelmann, J. M. & Herrmann, E. Chimpanzees trust their friends. Curr. Biol. 26, 252â256 (2016).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
18.Ward, A. J. W., Axford, S. & Krause, J. Mixed-species shoaling in fish: The sensory mechanisms and costs of shoal choice. Behav. Ecol. Sociobiol. 52, 182â187 (2002).ArticleÂ
Google ScholarÂ
19.Vickruck, J. L. & Richards, M. H. Nestmate discrimination based on familiarity but not relatedness in eastern carpenter bees. Behav. Proc. 145, 73â80 (2017).CASÂ
ArticleÂ
Google ScholarÂ
20.Siracusa, E. et al. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim. Behav. 133, 11â20 (2017).ArticleÂ
Google ScholarÂ
21.Domenici, P. & Blake, R. W. The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165â1178 (1997).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
22.Eaton, R. C., Lavender, W. A. & Wieland, C. M. Identification of Mauthner-initiated response patterns in goldfish: Evidence from simultaneous cinematography and electrophysiology. J. Comp. Phys. A 144, 521â531 (1981).ArticleÂ
Google ScholarÂ
23.Gerlotto, F., Bertrand, S., Bez, N. & Gutierrez, M. Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J. Mar. Sci. 63, 1405â1417 (2006).ArticleÂ
Google ScholarÂ
24.Domenici, P. & Batty, R. S. Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Mar. Biol. 128, 29â38 (1997).ArticleÂ
Google ScholarÂ
25.Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. USA 112, 4690â4695 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
26.Korn, H. & Faber, D. S. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47, 13â28 (2005).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
27.Domenici, P. & Hale, M. E. Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour. J. Exp. Biol. 222, jeb166009 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
28.Kohashi, T. & Oda, Y. Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J. Neurosci. 28, 10641â10653 (2008).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
29.Hecker, A., Schulze, W., Oster, J., Richter, D. O. & Schuster, S. Removing a single neuron in a vertebrate brain forever abolishes an essential behavior. Proc. Natl Acad. Sci. USA 117, 3254â3260 (2020).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
30.Walker, J. A., Ghalambor, C. K., Griset, O. L., McKenney, D. & Reznick, D. N. Do faster starts increase the probability of evading predators? Funct. Ecol. 19, 808â815 (2005).ArticleÂ
Google ScholarÂ
31.McCormick, M. I., Fakan, E. & Allan, B. J. M. Behavioural measures determine survivorship within the hierarchy of whole-organism phenotypic traits. Funct. Ecol. 32, 958â969 (2018).ArticleÂ
Google ScholarÂ
32.Chivers, D. P., Brown, G. E. & Smith, J. F. R. Familiarity and shoal cohesion in fathead minnows (Pimephales promelas): Implications for antipredator behavior. Can. J. Zool. 73, 955â960 (1995).ArticleÂ
Google ScholarÂ
33.Griffiths, S. W., Brockmark, S., Hojesjo, J. & Johnsson, J. I. Coping with divided attention: the advantage of familiarity. Proc. R. Soc. B Biol. Sci. 271, 695â699 (2004).CASÂ
ArticleÂ
Google ScholarÂ
34.ClĂŠment, R. J. G., Wolf, M., Snijders, L., Krause, J. & Kurvers, R. H. J. M. Information transmission via movement behaviour improves decision accuracy in human groups. Anim. Behav. 105, 85â93 (2015).ArticleÂ
Google ScholarÂ
35.Beauchamp, G. & Ruxton, G. D. False alarms and the evolution of antipredator vigilance. Anim. Behav. 74, 1199â1206 (2007).ArticleÂ
Google ScholarÂ
36.Kao, A. B. & Couzin, I. D. Modular structure within groups causes information loss but can improve decision accuracy. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180378 (2019).ArticleÂ
Google ScholarÂ
37.Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl Acad. Sci. USA 116, 20556â20561 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
38.Bohorquez-Herrera, J., Kawano, S. M. & Domenici, P. Foraging behavior delays mechanically-stimulated escape responses in fish. Integr. Comp. Biol. 53, 780â786 (2013).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
39.Furtbauer, I. & Heistermann, M. Cortisol coregulation in fish. Sci. Rep. 6, 30334 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
40.DeVries, A. C., Glasper, E. R. & Detillion, C. E. Social modulation of stress responses. Phys. Behav. 79, 399â407 (2003).CASÂ
ArticleÂ
Google ScholarÂ
41.McEwen, B. S. Brain on stress: How the social environment gets under the skin. Proc. Natl Acad. Sci. USA 109, 17180â17185 (2012).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
42.Furukawa, T. & Furshpan, E. J. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophys. 26, 140â176 (1963).CASÂ
ArticleÂ
Google ScholarÂ
43.Pratchett, M. S., Coker, D. J., Jones, G. P. & Munday, P. L. Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol. Evol. 2, 2168â2180 (2012).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
44.Nadler, L. E., McNeill, D. C., Alwany, M. A. & Bailey, D. M. Effect of habitat characteristics on the distribution and abundance of damselfish within a Red Sea reef. Environ. Biol. Fishes 97, 1265â1277 (2014).ArticleÂ
Google ScholarÂ
45.Ohman, M. C., Munday, P. L., Jones, G. P. & Caley, M. J. Settlement strategies and distribution patterns of coral-reef fishes. J. Exp. Mar. Biol. Ecol. 225, 219â238 (1998).ArticleÂ
Google ScholarÂ
46.Killen, S. S., Marras, S., Nadler, L. & Domenici, P. The role of physiological traits in assortment among and within fish shoals. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160233 (2017).47.Lassig, B. R. The effects of a cyclonic storm on coral reef fish assemblages. Environ. Biol. Fishes 9, 55â63 (1983).ArticleÂ
Google ScholarÂ
48.Yoon, J.-D., Jang, M.-H. & Joo, G.-J. Effect of flooding on fish assemblages in small streams in South Korea. Limnol 12, 197â203 (2011).ArticleÂ
Google ScholarÂ
49.Taborsky, M., Frommen, J. G. & Riehl, C. Correlated pay-offs are key to cooperation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150084 (2016).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
50.Johansen, J. L. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia. PLoS ONE 9, e83240 (2014).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
51.Griffiths, S. W. & Magurran, A. E. Familiarity in schooling fish: how long does it take to acquire? Anim. Behav. 53, 945â949 (1997).ArticleÂ
Google ScholarÂ
52.Eaton, R. & Emberley, D. How stimulus direction determines the trajectory of the mauthner-initiated escape response in a teleost fish. J. Exp. Biol. 161, 469â487 (1991).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
53.Domenici, P. et al. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale. Biol. Open 4, 79â85 (2015).ArticleÂ
Google ScholarÂ
54.Nadler, L. E., Killen, S. S., Domenici, P. & McCormick, M. I. Role of water flow regime in the swimming behaviour and escape performance of a schooling fish. Biol. Open 7, bio031997 (2018).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
55.Nissanov, J. & Eaton, R. C. Reticulospinal control of rapid escape turning maneuvers in fishes. Am. Zool. 29, 103â121 (1989).ArticleÂ
Google ScholarÂ
56.Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adap. Behav. 20, 44â56 (2012).ArticleÂ
Google ScholarÂ
57.Vila Pouca, C. & Brown, C. Contemporary topics in fish cognition and behaviour. Curr. Opin. Behav. Sci. 16, 46â52 (2017).ArticleÂ
Google ScholarÂ
58.Eaton, R., Lee, R. & Foreman, M. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog. Neurobiol. 63, 467â485 (2001).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
59.Nakayama, H. & Oda, Y. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199â3209 (2004).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
60.DiDomenico, R., Nissanov, J. & Eaton, R. C. Lateralization and adaptation of a continuously variable behavior following lesions of a reticulospinal command neuron. Brain Res. 473, 15â28 (1988).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
61.Medan, V. & Preuss, T. The Mauthner-cell circuit of fish as a model system for startle plasticity. J. Physiol. Paris 108, 129â140 (2014).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
62.Dukas, R. Behavioural and ecological consequences of limited attention. Philos. Trans. R. Soc. B. Biol. Sci. 357, 1539â1547 (2002).ArticleÂ
Google ScholarÂ
63.Yue, S., Duncan, I. J. H. & Moccia, R. D. Do differences in conspecific body size induce social stress in domestic rainbow trout? Environ. Biol. Fishes 76, 425â431 (2006).ArticleÂ
Google ScholarÂ
64.Korn, H., Triller, A. & Faber, D. S. Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cell. Proc. R. Soc. B Biol. Sci. 202, 533â538 (1978).CASÂ
Google ScholarÂ
65.Whitaker, K. W. et al. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J. Neurophys. 106, 127â137 (2011).CASÂ
ArticleÂ
Google ScholarÂ
66.Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T. & Krause, J. Fast and accurate decisions through collective vigilance in fish shoals. Proc. Natl Acad. Sci. USA 108, 2312â2315 (2011).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
67.Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl Acad. Sci. USA 108, 18726â18731 (2011).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
68.Conradt, L. & Roper, T. J. Activity synchrony and social cohesion: a fission-fusion model. Proc. R. Soc. B, Biol. Sci. 267, 2213â2218 (2000).CASÂ
ArticleÂ
Google ScholarÂ
69.Sogard, S. M. & Olla, B. L. The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environ. Biol. Fishes 50, 405â413 (1997).ArticleÂ
Google ScholarÂ
70.Domenici, P. Spacing of wild schooling herring while encircled by killer whales. J. Fish. Biol. 57, 831â836 (2000).ArticleÂ
Google ScholarÂ
71.Miller, N., Garnier, S., Hartnett, A. T. & Couzin, I. D. Both information and social cohesion determine collective decisions in animal groups. Proc. Natl Acad. Sci. USA 110, 5263â5268 (2013).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
72.Granroth-Wilding, H. M. & Magurran, A. E. Asymmetry in pay-off predicts how familiar individuals respond to one another. Biol. Lett. 9, 20130025 (2013).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
73.Landeau, L. & Terborgh, J. Oddity and the âconfusion effectâ in predation. Anim. Behav. 34, 1372â1380 (1986).ArticleÂ
Google ScholarÂ
74.Ruxton, G. D., Jackson, A. L. & Tosh, C. R. Confusion of predators does not rely on specialist coordinated behavior. Behav. Ecol. 18, 590â596 (2007).ArticleÂ
Google ScholarÂ
75.Wolcott, H. L., Ojanguren, A. F. & Barbosa, M. The effects of familiarity on escape responses in the Trinidadian guppy (Poecilia reticulata). PeerJ 5, e3899 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
76.Guayasamin, O. L., Couzin, I. D. & Miller, N. Y. Behavioural plasticity across social contexts is regulated by the directionality of inter-individual differences. Behav. Proc. 141, 196â204 (2016).ArticleÂ
Google ScholarÂ
77.Jacoby, D. M. P., Sims, D. W. & Croft, D. P. The effect of familiarity on aggregation and social behaviour in juvenile small spotted catsharks Scyliorhinus canicula. J. Fish. Biol. 81, 1596â1610 (2012).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746â753 (2013).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
79.Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. R. Soc. B. Biol. Sci. 284, 20171126 (2017).ArticleÂ
Google ScholarÂ
80.Romenskyy, M. et al. Quantifying the structure and dynamics of fish shoals under predation threat in three dimensions. Behav. Ecol. 31, 311â321 (2020).ArticleÂ
Google ScholarÂ
81.Couzin, I. D. Collective cognition in animal groups. Trends Cog. Sci. 13, 36â43 (2009).ArticleÂ
Google ScholarÂ
82.Bshary, R., Gingins, S. & Vail, A. L. Social cognition in fishes. Trends Cogn. Sci. 18, 465â471 (2014).PubMedÂ
ArticleÂ
Google ScholarÂ
83.Gil, M. A., Emberts, Z., Jones, H. & St Mary, C. M. Social Information on fear and food drives animal grouping and fitness. Am. Nat. 189, 227â241 (2017).PubMedÂ
ArticleÂ
Google ScholarÂ
84.May, R. M. The evolution of cooperation. Nature 292, 291â292 (1981).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
85.Munday, P. L. & Wilson, S. K. Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. J. Fish. Biol. 51, 931â938 (1997).CASÂ
Google ScholarÂ
86.Domenici, P., Turesson, H., Brodersen, J. & Bronmark, C. Predator-induced morphology enhances escape locomotion in crucian carp. Proc. R. Soc. B. Biol. Sci. 275, 195â201 (2008).ArticleÂ
Google ScholarÂ
87.Turesson, H. & Domenici, P. Escape latency is size independent in grey mullet. J. Fish. Biol. 71, 253â259 (2007).ArticleÂ
Google ScholarÂ
88.Webb, P. W. Fast-start performance and body form in seven species of teleost fish. J. Exp. Biol. 74, 211â226 (1978).ArticleÂ
Google ScholarÂ
89.Marras, S. & Domenici, P. Schooling fish under attack are not all equal: some lead, others follow. PLoS ONE 8, e65784 (2013).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
90.Bachelet, E. Circular Statistics in Biology (Academic Press, 1981).91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016). More
