1.Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).CAS
PubMed
Article
Google Scholar
2.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).CAS
PubMed
Article
Google Scholar
3.Drake, J. B. et al. Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob. Ecol. Biogeogr. 12, 147–159 (2003).Article
Google Scholar
4.Lefsky, M. A. et al. Lidar remote sensing of above-ground biomass in three biomes. Glob. Ecol. Biogeogr. 11, 393–399 (2002).Article
Google Scholar
5.Duncanson, L. et al. The importance of consistent global forest aboveground biomass product validation. Surv. Geophys. 40, 979–999 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).PubMed
PubMed Central
Article
Google Scholar
7.Ottaviani, G. et al. The neglected belowground dimension of plant dominance. Trends Ecol. Evol. 35, 763–766 (2020).PubMed
Article
Google Scholar
8.Jackson, L. E., Burger, M. & Cavagnaro, T. R. Roots, nitrogen transformations, and ecosystem services. Annu. Rev. Plant Biol. 59, 341–363 (2008).CAS
PubMed
Article
Google Scholar
9.Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).Article
Google Scholar
10.Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. Lond. B 274, 2753–2759 (2007).CAS
Google Scholar
11.Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).PubMed
Article
Google Scholar
12.Ribeiro, S. C. et al. Above- and belowground biomass in a Brazilian Cerrado. For. Ecol. Manage. 262, 491–499 (2011).Article
Google Scholar
13.Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Chang. Biol. 12, 84–96 (2006).Article
Google Scholar
14.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS
PubMed
Article
Google Scholar
15.Ruesch, A. S. & Gibbs, H. H. K. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2008).16.Chen, J. L. & Reynolds, J. F. A coordination model of whole-plant carbon allocation in relation to water stress. Ann. Bot. 80, 45–55 (1997).CAS
Article
Google Scholar
17.Franklin, O. et al. Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648–666 (2012).CAS
PubMed
Article
Google Scholar
18.Bloom, A. J., Chapin, F. S. & Mooney, H. A. Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst. 16, 363–392 (1985).Article
Google Scholar
19.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS
PubMed
Article
Google Scholar
20.Reich, P. in Plant Roots: The Hidden Half (eds. Waisel, Y. et al.) 205–220 (Marcel Dekker, 2006).21.Ledo, A. et al. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol. 217, 8–11 (2018).PubMed
Article
Google Scholar
22.Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: a global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article
Google Scholar
23.Reich, P. B. et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl Acad. Sci. USA 111, 13721–13726 (2014).CAS
PubMed
Article
Google Scholar
24.De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).Article
Google Scholar
25.Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).Article
Google Scholar
26.Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).CAS
PubMed
Article
Google Scholar
27.Malhi, Y., Doughty, C. & Galbraith, D. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R. Soc. Lond. B 366, 3225–3245 (2011).CAS
Article
Google Scholar
28.Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).Article
Google Scholar
29.Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia 111, 1–11 (1997).PubMed
Article
Google Scholar
30.McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).Article
Google Scholar
31.Barton, C. V. M. & Montagu, K. D. Effect of spacing and water availability on root:shoot ratio in Eucalyptus camaldulensis. For. Ecol. Manage. 221, 52–62 (2006).Article
Google Scholar
32.Enquist, B. J. & Niklas, K. J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 295, 1517–1520 (2002).CAS
PubMed
Article
Google Scholar
33.Goward, S. N., Tucker, C. J. & Dye, D. G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64, 3–14 (1985).Article
Google Scholar
34.Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Kaiser, C., Franklin, O., Dieckmann, U. & Richter, A. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol. Lett. 17, 680–690 (2014).PubMed
PubMed Central
Article
Google Scholar
36.Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci. Rep. 6, 19601 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article
Google Scholar
38.De Deyn, G. B., Cornelissen, J. H. C. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).PubMed
Article
PubMed Central
Google Scholar
39.Tjoelker, M. G., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167, 493–508 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Personeni, E. & Loiseau, P. How does the nature of living and dead roots affect the residence time of carbon in the root litter continuum? Plant Soil 267, 129–141 (2004).CAS
Article
Google Scholar
41.Tuanmu, M. N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article
Google Scholar
42.Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).Article
Google Scholar
43.Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl Acad. Sci. USA 94, 7362–7366 (1997).CAS
PubMed
Article
Google Scholar
44.Genet, H., Bréda, N. & Dufrêne, E. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol. 30, 177–192 (2009).PubMed
Article
Google Scholar
45.De Castro, E. A. & Kauffman, J. B. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263–283 (1998).Article
Google Scholar
46.Ding, B. & Sun, J. Study on biomass of Korean pine plantation in east mountain areas of northeast China. Bull. Bot. Res. 9, 149–157 (1989).
Google Scholar
47.Ding, B., Liu, S. & Cai, T. Studies on biological productivity of artificial forests of Dahurian larches. Chin. J. Plant Ecol. 14, 226–236 (1990).
Google Scholar
48.Ding, B. & Sun, J. Accumulation and distribution of productivity and nutrient element in natural Manchurian ash. J. Northeast For. Univ. 4, 1–9 (1989).
Google Scholar
49.Dossa, E. L., Fernandes, E. C. M., Reid, W. S. & Ezui, K. Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor. Syst. 72, 103–115 (2008).Article
Google Scholar
50.Epron, D. et al. Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? Tree Physiol. 32, 667–679 (2012).CAS
PubMed
Article
Google Scholar
51.Fonseca, W., Rey Benayas, J. M. & Alice, F. E. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For. Ecol. Manage. 262, 1400–1408 (2011).Article
Google Scholar
52.Goodman, R. C. et al. Amazon palm biomass and allometry. For. Ecol. Manage. 310, 994–1004 (2013).Article
Google Scholar
53.Greenland, D. J. & Kowal, J. M. L. Nutrient content of the moist tropical forest of Ghana. Plant Soil 12, 154–173 (1960).CAS
Article
Google Scholar
54.He, Y. et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manage. 295, 193–198 (2013).Article
Google Scholar
55.Aiba, M. & Nakashizuka, T. Variation in juvenile survival and related physiological traits among dipterocarp species co‐existing in a Bornean forest. J. Veg. Sci. 18, 379–388 (2007).Article
Google Scholar
56.Jha, K. K. Carbon storage and sequestration rate assessment and allometric model development in young teak plantations of tropical moist deciduous forest, India. J. For. Res. 26, 589–604 (2015).CAS
Article
Google Scholar
57.Kalita, R. M., Das, A. K. & Nath, A. J. Allometric equations for estimating above- and belowground biomass in Tea (Camellia sinensis (L.) O. Kuntze) agroforestry system of Barak Valley, Assam, northeast India. Biomass Bioenergy 83, 42–49 (2015).Article
Google Scholar
58.Kenzo, T. et al. Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J. Trop. Ecol. 25, 371–386 (2009).Article
Google Scholar
59.Kenzo, T. et al. Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. J. For. Res. 14, 365–372 (2009).CAS
Article
Google Scholar
60.Kraenzel, M., Castillo, A., Moore, T. & Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. For. Ecol. Manage. 173, 213–225 (2003).Article
Google Scholar
61.Kuyah, S., Dietz, J., Muthuri, C., van Noordwijk, M. & Neufeldt, H. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes. Biomass Bioenergy 55, 276–284 (2013).Article
Google Scholar
62.Liu, S., Cai, Y. & Cai, T. in Long-term Research on Forest Ecosystems (ed. Zhou, X.) 419–427 (Northeast Forestry Univ. Press, 1991).63.Luo, T. et al. Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. For. Ecol. Manage. 206, 349–363 (2005).Article
Google Scholar
64.Markesteijn, L. & Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 97, 311–325 (2009).Article
Google Scholar
65.McNicol, I. M. et al. Development of allometric models for above and belowground biomass in swidden cultivation fallows of northern Laos. For. Ecol. Manage. 357, 104–116 (2015).Article
Google Scholar
66.Aiba, M. & Nakashizuka, T. Sapling structure and regeneration strategy in 18 Shorea species co-occurring in a tropical rainforest. Ann. Bot. 96, 313–321 (2005).PubMed
PubMed Central
Article
Google Scholar
67.Menaut, J. C. & Cesar, J. Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60, 1197–1210 (1979).Article
Google Scholar
68.Morais, V. A. et al. Estoques de carbono e biomassa de um fragmento de cerradão em Minas Gerais, Brasil. Cerne 19, 237–245 (2013).Article
Google Scholar
69.Mugasha, W. A. et al. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For. Ecol. Manage. 310, 87–101 (2013).Article
Google Scholar
70.Návar, J. Plasticity of biomass component allocation patterns in semiarid Tamaulipan thornscrub and dry temperate pine species of northeastern Mexico. Polibotánica 31, 121–141 (2011).
Google Scholar
71.Njana, M. A., Eid, T., Zahabu, E. & Malimbwi, R. Procedures for quantification of belowground biomass of three mangrove tree species. Wetl. Ecol. Manage. 23, 749–764 (2015).Article
Google Scholar
72.Nogueira Junior, L. R., Engel, V. L., Parrotta, J. A., de Melo, A. C. G. & Ré, D. S. Equações alométricas para estimativa da biomassa arbórea em plantios mistos com espécies nativas na restauração da Mata Atlântica. Biota Neotrop. 14, 1–9 (2014).Article
Google Scholar
73.Peichl, M. & Arain, M. A. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric. For. Meteorol. 140, e20130084 (2006).Article
Google Scholar
74.Battles, J. J. et al. Vegetation composition, structure, and biomass of two unpolluted watersheds in the Cordillera de Piuchué, Chiloé Island, Chile. Plant Ecol. 158, 5–19 (2002).Article
Google Scholar
75.Ryan, C. M., Williams, M. & Grace, J. Above- and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).Article
Google Scholar
76.Saint-André, L. et al. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For. Ecol. Manage. 205, 199–214 (2005).Article
Google Scholar
77.Aryal, D. R., De Jong, B. H. J., Ochoa-Gaona, S., Esparza-Olguin, L. & Mendoza-Vega, J. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric. Ecosyst. Environ. 195, 220–230 (2014).Article
Google Scholar
78.Schepaschenko, D. et al. A dataset of forest biomass structure for Eurasia. Sci. Data 4, 170070 (2017).PubMed
PubMed Central
Article
Google Scholar
79.Schroth, G., D’Angelo, S. A., Teixeira, W. G., Haag, D. & Lieberei, R. Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For. Ecol. Manage. 163, 131–150 (2002).Article
Google Scholar
80.Schulze, E. D. et al. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108, 503–511 (1996).Article
Google Scholar
81.Stolbovoi, V. & McCallum, I. Land resources of Russia [CD] (International Institute for Applied Systems Analysis and the Russian Academy of Science, 2002); http://www.iiasa.ac.at/Research/FOR/russia_cd/guide.htm82.Wang, L. et al. Biomass allocation patterns across China’s terrestrial biomes. PLoS ONE 9, e93566 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
83.Wauters, J. B., Coudert, S., Grallien, E., Jonard, M. & Ponette, Q. Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). For. Ecol. Manage. 255, 2347–2361 (2008).Article
Google Scholar
84.Williams-Linera, G. Biomass and nutrient content in two successional stages of tropical wet forest in Uxpanapa, Mexico. Biotropica 15, 275–284 (1983).Article
Google Scholar
85.Xu, Y. et al. Improving allometry models to estimate the above- and belowground biomass of subtropical forest, China. Ecosphere 6, 289 (2015).Article
Google Scholar
86.Youkhana, A. H. & Idol, T. W. Allometric models for predicting above- and belowground biomass of Leucaena-KX2 in a shaded coffee agroecosystem in Hawaii. Agrofor. Syst. 83, 331–345 (2011).Article
Google Scholar
87.Zhang, H. et al. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests. Sci. Rep. 5, 15997 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
88.Castellanos, J., Maass, M. & Kummerow, J. Root biomass of a dry deciduous tropical forest in Mexico. Plant Soil 131, 225–228 (1991).Article
Google Scholar
89.Zheng, Z., Feng, Z., Cao, M., Li, Z. & Zhang, J. Forest structure and biomass of a tropical seasonal rain forest in Xishuangbanna, southwest China. Biotropica 38, 318–327 (2006).Article
Google Scholar
90.Návar, J. Root stock biomass and productivity assessments of reforested pine stands in northern Mexico. For. Ecol. Manage. 338, 139–147 (2015).Article
Google Scholar
91.Wang, X., Fang, J. & Zhu, B. Forest biomass and root–shoot allocation in northeast China. For. Ecol. Manage. 255, 4007–4020 (2008).Article
Google Scholar
92.Chen, D. K., Zhou, X. F., Zhao, H. X., Wang, Y. H. & Jing, Y. Y. Study on the structure, function and succession of the four types in natural secondary forest. J. Northeast For. Univ. 2, 1–20 (1982).
Google Scholar
93.Chidumayo, E. N. Estimating tree biomass and changes in root biomass following clear-cutting of Brachystegia-Julbernardia (miombo) woodland in central Zambia. Environ. Conserv. 41, 54–63 (2014).Article
Google Scholar
94.Coll, L., Potvin, C., Messier, C. & Delagrange, S. Root architecture and allocation patterns of eight native tropical species with different successional status used in open-grown mixed plantations in Panama. Trees 22, 585–596 (2008).Article
Google Scholar
95.Das, D. K. & Chaturvedi, O. P. Structure and function of Populus deltoides agroforestry systems in eastern India: 1. dry matter dynamics. Agrofor. Syst. 65, 215–221 (2005).Article
Google Scholar
96.Ni, J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol. 174, 217–234 (2011).Article
Google Scholar
97.Olson, R. et al. NPP Multi-Biome: Summary Data from Intensive Studies at 125 Sites, 1936–2006 (ORNL DAAC, accessed 19 June 2019); https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=135298.Perez, C. A. & Frangi, J. L. Grassland biomass dynamics along an altitudinal gradient in the pampa. J. Range Manage. 53, 518–528 (2007).Article
Google Scholar
99.Perez-Quezada, J. F. F., Delpiano, C. A. A., Snyder, K. A. A., Johnson, D. A. A. & Franck, N. Carbon pools in an arid shrubland in Chile under natural and afforested conditions. J. Arid Environ. 75, 29–37 (2011).Article
Google Scholar
100.Pornon, A., Boutin, M. & Lamaze, T. Contribution of plant species to the high N retention capacity of a subalpine meadow undergoing elevated N deposition and warming. Environ. Pollut. 245, 235–242 (2019).CAS
PubMed
Article
Google Scholar
101.Ramakrishnan, P. S. & Ram, S. C. Vegetation, biomass and productivity of seral grasslands of Cherrapunji in north-east India. Vegetatio 74, 47–53 (1988).Article
Google Scholar
102.Shaver, G. R., Laundre, J. A., Giblin, A. E. & Nadelhoffer, K. J. Changes in live plant biomass, primary production, and species composition along a riverside toposequence in Arctic Alaska, USA. Arct. Alp. Res. 28, 363–379 (2006).Article
Google Scholar
103.Smith, J. M. B. & Klinger, L. F. Aboveground:belowground phytomass ratios in Venezuelan paramo vegetation and their significance. Arct. Alp. Res. 17, 189–198 (2006).Article
Google Scholar
104.Sun, J. et al. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, northern Tibetan Plateau. PLoS ONE 9, e108821 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
105.Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ. Res. Lett. 11, 055003 (2016).Article
CAS
Google Scholar
106.Yang, Y., Fang, J., Ji, C. & Han, W. Above- and belowground biomass allocation in Tibetan grasslands. J. Veg. Sci. 20, 177–184 (2009).Article
Google Scholar
107.Yang, Y., Fang, J., Ma, W., Guo, D. & Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Glob. Ecol. Biogeogr. 19, 268–277 (2010).Article
Google Scholar
108.Geng, H. L., Wang, Y. H., Wang, F. Y. & Jia, B. R. The dynamics of root-shoot ratio and its environmental effective factors of recovering Leymus chinensis steppe vegetation in Inner Mongolia, China. Acta Ecol. Sin. 28, 4629–4634 (2008).Article
Google Scholar
109.Hui, D. & Jackson, R. B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol. 169, 85–93 (2006).CAS
PubMed
Article
Google Scholar
110.Jouquet, P., Tavernier, V., Abbadie, L. & Lepage, M. Nests of subterranean fungus-growing termites (Isoptera, Macrotermitinae) as nutrient patches for grasses in savannah ecosystems. Afr. J. Ecol. 43, 191–196 (2005).Article
Google Scholar
111.Leonid, U. et al. Impact of climate and grazing on biomass components of eastern Russia typical steppe. J. Integr. Agric. 13, 1183–1192 (2014).Article
Google Scholar
112.Lucash, M. S., Farnsworth, B. & Winner, W. E. Response of sagebrush steppe species to elevated CO2 and soil temperature. West. N. Am. Nat. 65, 80–86 (2005).
Google Scholar
113.Luo, W. et al. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China. PLoS ONE 8, e71749 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
114.Barbour, M. G. Desert dogma reexamined: root/shoot productivity and plant spacing. Am. Midl. Nat. 89, 41–57 (1973).Article
Google Scholar
115.Becker, P., Sharbini, N. & Yahya, R. Root architecture and root:shoot allocation of shrubs and saplings in two lowland tropical forests: implications for life-form composition. Biotropica 31, 93–101 (1999).
Google Scholar
116.Becker, P. & Castillo, A. Root architecture of shrubs and saplings in the understory of a tropical moist forest in lowland Panama. Biotropica 22, 242–249 (1990).Article
Google Scholar
117.Beier, C. et al. Carbon and nitrogen balances for six shrublands across Europe. Glob. Biogeochem. Cycles 23, GB4008 (2009).Article
CAS
Google Scholar
118.Bhatt, Y. D., Rawat, Y. S. & Singh, S. P. Changes in ecosystem functioning after replacement of forest by Lantana shrubland in Kumaun Himalaya. J. Veg. Sci. 5, 67–70 (1994).Article
Google Scholar
119.Caldwell, M. M., White, R. S., Moore, R. T. & Camp, L. B. Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia 29, 275–300 (1977).PubMed
Article
Google Scholar
120.De Viñas, I. C. R. et al. Biomass of root and shoot systems of Quercus coccifera shrublands in eastern Spain. Ann. For. Sci. 57, 803–810 (2000).Article
Google Scholar
121.Caravaca, F., Figueroa, D., Alguacil, M. M. & Roldán, A. Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land. Bioresour. Technol. 90, 65–70 (2003).CAS
PubMed
Article
Google Scholar
122.Caravaca, F., Figueroa, D., Azcón-Aguilar, C., Barea, J. M. & Roldán, A. Medium-term effects of mycorrhizal inoculation and composted municipal waste addition on the establishment of two Mediterranean shrub species under semiarid field conditions. Agric. Ecosyst. Environ. 97, 95–105 (2003).Article
Google Scholar
123.Carrasco, L., Azcón, R., Kohler, J., Roldán, A. & Caravaca, F. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci. Total Environ. 409, 1205–1209 (2011).CAS
PubMed
Article
Google Scholar
124.Carrillo-Garcia, Á., Bashan, Y. & Bethlenfalvay, G. J. Resource-island soils and the survival of the giant cactus, cardon, of Baja California Sur. Plant Soil 218, 207–214 (2000).CAS
Article
Google Scholar
125.Carrión-Prieto, P. et al. Mediterranean shrublands as carbon sinks for climate change mitigation: new root-to-shoot ratios. Carbon Manage. 8, 67–77 (2017).Article
CAS
Google Scholar
126.Deng, L., Han, Q. S., Zhang, C., Tang, Z. S. & Shangguan, Z. P. Above-ground and below-ground ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom plantation development. Land Degrad. Dev. 28, 906–917 (2017).Article
Google Scholar
127.Perkins, S. R. & Owens, M. K. Growth and biomass allocation of shrub and grass seedlings in response to predicted changes in precipitation seasonality. Plant Ecol. 168, 107–120 (2003).Article
Google Scholar
128.Gargaglione, V., Peri, P. L. & Rubio, G. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. For. Ecol. Manage. 259, 1118–1126 (2010).Article
Google Scholar
129.Hao, H. M. et al. Effects of shrub patch size succession on plant diversity and soil water content in the water-wind erosion crisscross region on the Loess Plateau. Catena 144, 177–183 (2016).Article
Google Scholar
130.Herwitz, S. R. & Olsvig-Whittaker, L. Preferential upslope growth of Zygophyllum dumosum Boiss. (Zygophyllaceae) roots into bedrock fissures in the northern Negev desert. J. Biogeogr. 16, 457–460 (1989).Article
Google Scholar
131.Hoffmann, A. & Kummerow, J. Root studies in the Chilean matorral. Oecologia 32, 57–69 (1978).PubMed
Article
Google Scholar
132.Holl, K. D. Effects of above- and below-ground competition of shrubs and grass on Calophyllum brasiliense (Camb.) seedling growth in abandoned tropical pasture. For. Ecol. Manage. 109, 187–195 (1998).Article
Google Scholar
133.Hollister, R. D. & Flaherty, K. J. Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl. Veg. Sci. 13, 378–387 (2010).
Google Scholar
134.Kizito, F. et al. Seasonal soil water variation and root patterns between two semi-arid shrubs co-existing with pearl millet in Senegal, West Africa. J. Arid Environ. 67, 436–455 (2006).Article
Google Scholar
135.Kummerow, J., Krause, D. & Jow, W. Root systems of chaparral shrubs. Oecologia 29, 163–177 (1977).PubMed
Article
Google Scholar
136.León, M. F., Squeo, F. A., Gutiérrez, J. R. & Holmgren, M. Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert. J. Veg. Sci. 22, 120–129 (2011).Article
Google Scholar
137.Li, C. P. & Xiao, C. W. Above- and belowground biomass of Artemisia ordosica communities in three contrasting habitats of the Mu Us Desert, northern China. J. Arid Environ. 70, 195–207 (2007).Article
Google Scholar
138.Liang, Y. M., Hazlett, D. L. & Lauenroth, W. K. Biomass dynamics and water use efficiencies of five plant communities in the shortgrass steppe. Oecologia 80, 148–153 (1989).CAS
PubMed
Article
Google Scholar
139.Zan, Q., Wang, Y., Liao, B. & Zheng, D. Biomass and net productivity of Sonneratia apetala, S. caseolaris mangrove man-made forest. Wuhan Bot. Res. 19, 391–396 (2001).
Google Scholar
140.Liao, B., Zheng, D. & Zheng, S. Studies on the biomass of Sonneratia caseolaris stand. For. Res. 3, 47–54 (1990).
Google Scholar
141.Lufafa, A. et al. Allometric relationships and peak-season community biomass stocks of native shrubs in Senegal’s Peanut Basin. J. Arid Environ. 73, 260–266 (2009).Article
Google Scholar
142.Lusk, C. H. Leaf area and growth of juvenile temperate evergreens in low light: species of contrasting shade tolerance change rank during ontogeny. Funct. Ecol. 18, 820–828 (2004).Article
Google Scholar
143.Marsh, A. S., Arnone, J. A., Bormann, B. T. & Gordon, J. C. The role of Equisetum in nutrient cycling in an Alaskan shrub wetland. J. Ecol. 88, 999–1011 (2000).Article
Google Scholar
144.Martínez, F. et al. Belowground structure and production in a Mediterranean sand dune shrub community. Plant Soil 201, 209–216 (1998).Article
Google Scholar
145.Marziliano, P. A. et al. Estimating belowground biomass and root/shoot ratio of Phillyrea latifolia L. in the Mediterranean forest landscapes. Ann. For. Sci. 72, 585–593 (2015).Article
Google Scholar
146.Mauchamp, A., Montaña, C., Lepart, J., Rambal, S. & Montana, C. Ecotone dependent recruitment of a desert shrub, Flourensia cernua, in vegetation stripes. Oikos 68, 107–116 (1993).Article
Google Scholar
147.Mendoza-Ponce, A. & Galicia, L. Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in central Mexico. Forestry 83, 497–506 (2010).Article
Google Scholar
148.Miller, P. C. & Ng, E. Root:shoot biomass ratios in shrubs in southern California and central Chile. Madrono 24, 215–223 (1977).
Google Scholar
149.Mooney, H. A. & Rundel, P. W. Nutrient relations of the evergreen shrub, Adenostoma fasciculatum, in the California chaparral. Bot. Gaz. 140, 109–113 (1979).CAS
Article
Google Scholar
150.Moro, M. J., Pugnaire, F. I., Haase, P. & Puigdefábregas, J. Effect of the canopy of Retama sphaerocarpa on its understorey in a semiarid environment. Funct. Ecol. 11, 425–431 (1997).Article
Google Scholar
151.Negreiros, D., Fernandes, G. W., Silveira, F. A. O. & Chalub, C. Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecol. 35, 301–310 (2009).Article
Google Scholar
152.Nie, X., Yang, Y., Yang, L. & Zhou, G. Above- and belowground biomass allocation in shrub biomes across the northeast Tibetan Plateau. PLoS ONE 11, e0154251 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
153.Nobel, P. S., Quero, E. & Linares, H. Root versus shoot biomass: responses to water, nitrogen, and phosphorus applications for Agave lechuguilla. Bot. Gaz. 150, 411–416 (1989).Article
Google Scholar
154.Pacaldo, R. S., Volk, T. A. & Briggs, R. D. Greenhouse gas potentials of shrub willow biomass crops based on below- and aboveground biomass inventory along a 19-year chronosequence. Bioenergy Res. 6, 252–262 (2013).CAS
Article
Google Scholar
155.Padilla, F. M., Miranda, J. D., Jorquera, M. J. & Pugnaire, F. I. Variability in amount and frequency of water supply affects roots but not growth of arid shrubs. Plant Ecol. 204, 261–270 (2009).Article
Google Scholar
156.Portsmuth, A., Niinemets, Ü., Truus, L. & Pensa, M. Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age. Can. J. For. Res. 35, 2346–2359 (2005).CAS
Article
Google Scholar
157.Roth, G. A., Whitford, W. G. & Steinberger, Y. Jackrabbit (Lepus californicus) herbivory changes dominance in desertified Chihuahuan Desert ecosystems. J. Arid Environ. 70, 418–426 (2007).Article
Google Scholar
158.Ruiz-Peinado, R., Moreno, G., Juarez, E., Montero, G. & Roig, S. The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J. Arid Environ. 91, 22–30 (2013).Article
Google Scholar
159.Rundel, P. W. Biomass, productivity, and nutrient allocation in subalpine shrublands and meadows of the Emerald Lake Basin, Sequoia National Park, California. Arct. Antarct. Alp. Res. 47, 115–123 (2015).Article
Google Scholar
160.Millikin, C. S. & Bledsoe, C. S. Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in the northern Sierra Nevada foothills of California. Plant Soil 214, 27–38 (1999).CAS
Article
Google Scholar
161.Saura-Mas, S. & Lloret, F. Adult root structure of Mediterranean shrubs: relationship with post-fire regenerative syndrome. Plant Biol. 16, 147–154 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
162.Schenk, H. J. & Mahall, B. E. Positive and negative plant interactions contribute to a north-south-patterned association between two desert shrub species. Oecologia 132, 402–410 (2002).PubMed
Article
Google Scholar
163.Silva, J. S., Rego, F. C. & Martins-Loução, M. A. Belowground traits of Mediterranean woody plants in a Portuguese shrubland. Ecol. Mediterr. 28, 5–13 (2002).Article
Google Scholar
164.Simões, M. P., Madeira, M. & Gazarini, L. Biomass and nutrient dynamics in Mediterranean seasonal dimorphic shrubs: strategies to face environmental constraints. Plant Biosyst. 146, 500–510 (2012).
Google Scholar
165.Tao, Y., Zhang, Y. M. & Downing, A. Similarity and difference in vegetation structure of three desert shrub communities under the same temperate climate but with different microhabitats. Bot. Stud. 54, 59 (2013).PubMed
PubMed Central
Article
Google Scholar
166.Toscano, S., Scuderi, D., Giuffrida, F. & Romano, D. Responses of Mediterranean ornamental shrubs to drought stress and recovery. Sci. Hortic. 178, 145–153 (2014).Article
Google Scholar
167.Trubat, R., Cortina, J. & Vilagrosa, A. Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol. Eng. 37, 1164–1173 (2011).Article
Google Scholar
168.Van Wijk, M. T., Williams, M., Gough, L., Hobbie, S. E. & Shaver, G. R. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J. Ecol. 91, 664–676 (2003).Article
Google Scholar
169.Walker, L. R., Clarkson, B. D., Silvester, W. B. & Clarkson, B. R. Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession. J. Veg. Sci. 14, 277–290 (2003).Article
Google Scholar
170.Wang, B. & Yang, X. S. Comparison of biomass and species diversity of four typical zonal vegetations. J. Fujian Coll. For. 29, 345–350 (2009).
Google Scholar
171.Wang, M. & Li, H. Quantitative study on the soil water dynamics of various forest plantations in the Loess Plateau region in northwestern Shanxi. Acta Ecol. Sin. 2, 178–184 (1995).
Google Scholar
172.Wang, P. et al. Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site. Plant Soil 407, 55–65 (2016).CAS
Article
Google Scholar
173.Whittaker, R. H. & Woodwell, G. M. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. J. Ecol. 56, 1–25 (1968).Article
Google Scholar
174.Xu, H., Li, Y., Xu, G. & Zou, T. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ. 30, 399–409 (2007).CAS
PubMed
Article
Google Scholar
175.Yan, Z. Biomass and its allocation in a 28-year-old Castanopsis kawakamii plantation. J. Fujian Coll. For. 2, 114–118 (1996).
Google Scholar
176.Gong, Y. et al. Carbon storage and vertical distribution in three shrubland communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, northwest China. Chin. Geogr. Sci. 22, 541–549 (2012).Article
Google Scholar
177.Yu, Y., Shi, D., Qiuyi, J., He, L. & Cheng, G. On the biomass of secondary Schima superba forest in Hangzhou. J. Zhejiang For. Coll. 2, 157–161 (1993).
Google Scholar
178.Kato, T. et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agric. Meteorol. 124, 121–134 (2004).Article
Google Scholar
179.Li, Z., Zhu, Q. & Li, J. A comparison of photosynthetic carbon sequestration of four shrubs in Ningxia. Pratacultural Sci. 29, 352–357 (2012).CAS
Google Scholar
180.Zhu, X., Shi, Q. & Li, Y. A preliminary study on the Qinghai’s treasure house of the forest biomass and shrubs. Sci. Technol. Qinghai Agric. For. 1, 15–20 (1993).
Google Scholar
181.Liao, B. & Zheng, D. Study on the forest biomass and productivity of olive wood. For. Res. 4, 22–29 (1991).
Google Scholar
182.Liu, B., Liu, Z., Lü, X., Maestre, F. T. & Wang, L. Sand burial compensates for the negative effects of erosion on the dune-building shrub Artemisia wudanica. Plant Soil 374, 263–273 (2014).CAS
Article
Google Scholar
183.Alguacil, M. M., Hernández, J. A., Caravaca, F., Portillo, B. & Roldán, A. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol. Plant. 118, 562–570 (2003).CAS
Article
Google Scholar
184.Axe, M. S., Grange, I. D. & Conway, J. S. Carbon storage in hedge biomass—a case study of actively managed hedges in England. Agric. Ecosyst. Environ. 250, 81–88 (2017).Article
Google Scholar
185.van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).PubMed
Article
CAS
Google Scholar
186.Erin, L. et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package v.3.32.0.2 (2020); https://github.com/h2oai/h2o-3187.Sagi, O. & Rokach, L. Ensemble learning: a survey. WIREs Data Min. Knowl. Discov. 8, e1249 (2018).
Google Scholar
188.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).189.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article
Google Scholar
190.Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland (2020).191.Hothorn, T. & Zeileis, A. partykit: A modular toolkit for recursive partytioning in R. J. Mach. Learn. Res. 16, 3905–3909 (2015).
Google Scholar
192.Borkovec, M. & Madin, N. ggparty: ‘ggplot’ visualizations for the ‘partykit’ package (2019).193.Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 16, 129–138 (2007).Article
Google Scholar
194.Hutchinson, M., Xu, T., Houlder, D., Nix, H. & McMahon, J. ANUCLIM 6.0 User’s Guide (Australian National Univ., 2009).195.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
196.Global Aridity and PET database (CGIAR-CSI, accessed 15 May 2018); http://www.cgiarcsi.community/data/global-aridity-and-pet-database197.CIESIN Gridded Population of the World, version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals (NASA SEDAC, 2018); https://doi.org/10.7927/H4HX19NJ198.Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed
PubMed Central
Article
Google Scholar
199.SoilGrids (ISRIC, accessed 15 May 2018); https://www.soilgrids.org200.Entekhabi, D. et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).Article
Google Scholar
201.Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS
PubMed
Article
Google Scholar
202.Batjes, N. H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68 (2016).CAS
Article
Google Scholar
203.Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global – 500m V006 (NASA LP DAAC, 2015); https://doi.org/10.5067/MODIS/MCD43A1C.006204.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 (NASA LP DAAC, 2015).205.Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).CAS
PubMed
Article
Google Scholar More