Asymmetric physiological response of a reef-building coral to pulsed versus continuous addition of inorganic nutrients
1.Schaffelke, B., Carleton, J., Skuza, M., Zagorskis, I. & Furnas, M. J. Water quality in the inshore Great Barrier Reef lagoon: implications for long-term monitoring and management. Mar. Pollut. Bull. 65, 249–260 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Kleypas, J. A., McManus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999).Article
Google Scholar
3.Barnes, D. J. & Devereux, M. J. Productivity and calcification on a coral reef: A survey using pH and oxygen electrode techniques. J. Exp. Mar. Biol. Ecol. 79, 213–231 (1984).Article
Google Scholar
4.Hoegh-Guldberg, O. & Williamson, J. Availability of two forms of dissolved nitrogen to the coral Pocillopora damicornis and its symbiotic zooxanthellae. Mar. Biol. 133, 561–570 (1999).CAS
Article
Google Scholar
5.Koop, K. et al. ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42, 91–120 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
6.Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata : effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).ADS
Article
Google Scholar
7.Grover, R., Maguer, J.-F., Allemand, D. & Ferrier-Pagès, C. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J. Exp. Biol. 211, 860–865 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Godinot, C., Ferrier-Pagés, C. & Grover, R. Control of phosphate uptake by zooxanthellae and host cells in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 54, 1627–1633 (2009).ADS
Article
Google Scholar
9.Wang, J. & Douglas, A. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis?. J. Exp. Biol. 201, 2445–2453 (1998).PubMed
Article
PubMed Central
Google Scholar
10.Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Tanaka, Y., Suzuki, A. & Sakai, K. The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. ISME J. https://doi.org/10.1038/s41396-017-0019-3 (2018).Article
PubMed
PubMed Central
Google Scholar
12.Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).ADS
CAS
Article
Google Scholar
13.Miller, D. J. & Yellowlees, D. Inorganic nitrogen uptake by symbiotic marine cnidarians: a critical review. Proc. R. Soc. B Biol. Sci. 237, 109–125 (1989).ADS
Google Scholar
14.Pernice, M. et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 6, 1314–1324 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
15.Yellowlees, D., Rees, T. A. V. & Leggat, W. Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell Environ. 31, 679–694 (2008).CAS
Article
Google Scholar
16.Krueger, T. et al. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc. R. Soc. B Biol. Sci. 287, 20200049 (2020).CAS
Article
Google Scholar
17.Godinot, C., Houlbrèque, F., Grover, R., Ferrier-Pagès, C. & Larsen, A. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6, e25024 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
18.Ferrier-Pagès, C., Godinot, C., D’Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 86, 262–277 (2016).Article
Google Scholar
19.Snidvongs, A. & Kinzie, R. A. Effects of nitrogen and phosphorus enrichement on in vivo symbiotic zooxanthellae of Pocillopora damicornis. Mar. Biol. 118, 705–711 (1994).CAS
Article
Google Scholar
20.Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).Article
Google Scholar
21.Roberty, S., Béraud, E., Grover, R. & Ferrier-Pagès, C. Coral productivity is co-limited by bicarbonate and ammonium availability. Microorganisms 8, 640 (2020).CAS
PubMed Central
Article
Google Scholar
22.Muller-Parker, G., Cook, C. B. & D’elia, C. F. Elemental composition of the coral Pocillopora damicornis exposed to elevated seawater ammonium. Pac. Sci. 48, 234–246 (1994).CAS
Google Scholar
23.Muller-Parker, G., McCloskey, L., Hoegh-Guldberg, O. & McAuley, P. Effect of ammonium enrichment on animal and algal biomass of the coral Pocillopora damicornis. Pac. Sci. 48, 273–283 (1994).CAS
Google Scholar
24.Dubinsky, Z. et al. The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 239, 231–246 (1990).ADS
Google Scholar
25.Marubini, F. & Davies, P. S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127, 319–328 (1996).CAS
Article
Google Scholar
26.Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 20172718 (2018).Article
CAS
Google Scholar
27.Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral-symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Stambler, N., Popper, N., Dubinsky, Z. & Stimson, J. Effects of nutrient enrichment and water motion on the coral Pocillopora damicornis. Pac. Sci. 45, 299–307 (1991).
Google Scholar
30.Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl. Acad. Sci. U. S. A. 118, e2022653118 (2021).PubMed
Article
CAS
PubMed Central
Google Scholar
31.Bassim, K. & Sammarco, P. Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar. Biol. 142, 241–252 (2003).CAS
Article
Google Scholar
32.Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, C09S07 (2005).ADS
Google Scholar
33.Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
34.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).Article
CAS
Google Scholar
35.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).ADS
CAS
Article
Google Scholar
36.Meyer, J. L. & Schultz, E. T. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs1. Limnol. Oceanogr. 30, 146–156 (1985).ADS
Article
Google Scholar
37.Holbrook, S. J., Brooks, A. J., Schmitt, R. J. & Stewart, H. L. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155, 521–530 (2008).Article
Google Scholar
38.Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).PubMed
Article
PubMed Central
Google Scholar
39.Schmidt, S., Dennison, W. C., Moss, G. J. & Stewart, G. R. Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Funct. Plant Biol. 31, 517–528 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Staunton Smith, J. & Johnson, C. R. Nutrient inputs from seabirds and humans on a populated coral cay. Mar. Ecol. Prog. Ser. 124, 189–200 (1995).ADS
Article
Google Scholar
41.Ezzat, L. et al. Nutrient starvation impairs the trophic plasticity of reef-building corals under ocean warming. Funct. Ecol. 33, 643–653 (2019).Article
Google Scholar
42.Ezzat, L., Maguer, J. F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 1–11 (2016).Article
CAS
Google Scholar
43.Meyer, J. L. & Schultz, E. T. Tissue condition and growth rate of corals associated with schooling fish1. Limnol. Oceanogr. 30, 157–166 (1985).ADS
Article
Google Scholar
44.Liberman, T., Genin, A. & Loya, Y. Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus. Mar. Biol. 121, 741–746 (1995).Article
Google Scholar
45.Burkepile, D. E. et al. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci. Rep. 3, 1493 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems https://doi.org/10.1007/s10021-019-00433-2 (2019).Article
Google Scholar
47.Ezzat, L., Maguer, J. F., Grover, R. & Ferrier-Pagés, C. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH4+ and NO3− supply. Proc. R. Soc. B Biol. Sci. 282, 20150610 (2015).Article
CAS
Google Scholar
48.Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral–algal mutualism. Ecology 95, 1995–2005 (2014).PubMed
Article
PubMed Central
Google Scholar
49.Devlin, M. J. & Brodie, J. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar. Pollut. Bull. 51, 9–22 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Bender, D., Diaz-Pulido, G. & Dove, S. The impact of CO 2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects. J. Phycol. 50, 203–215 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Wild, C., Woyt, H. & Huettel, M. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar. Ecol. Prog. Ser. 287, 87–98 (2005).ADS
CAS
Article
Google Scholar
52.Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).Article
Google Scholar
53.Parsons, T. R., Maita, Y. & Lalli, C. M. A Manual of Chemical and Biological Methods for Seawater Analysis (Pergamon Press, 1984).
Google Scholar
54.Chisholm, J. R. M. & Gattuso, J.-P. Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol. Oceanogr. 36, 1232–1239 (1991).ADS
CAS
Article
Google Scholar
55.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).CAS
Article
Google Scholar
56.Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G. & Gattuso, J. P. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. B Biol. Sci. 279, 1716–1723 (2012).CAS
Article
Google Scholar
57.Whitaker, J. R. & Granum, P. E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal. Biochem. 109, 156–159 (1980).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Dunn, S. R., Thomas, M. C., Nette, G. W., Dove, S. G. & Blackburn, S. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within Cnidarian-Dinoflagellate symbiosis. PLoS ONE 7, e46801 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
59.van der Zande, R. M. et al. Paradise lost: end-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. Glob. Change Biol. 26, 2203–2219 (2020).ADS
Article
Google Scholar
60.Gaffey, S. J. & Bronnimann, C. E. Effects of bleaching on organic and mineral phases in biogenic carbonates. J. Sediment. Res. 63, 752–754 (1993).ADS
Article
Google Scholar
61.Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).ADS
Article
Google Scholar
62.Underwood, A. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, 1997). .63.Wooldridge, S., Brodie, J. & Furnas, M. Exposure of inner-shelf reefs to nutrient enriched runoff entering the Great Barrier Reef Lagoon: post-European changes and the design of water quality targets. Mar. Pollut. Bull. 52, 1467–1479 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
64.Ferrier-Pagès, C., Schoelzke, V., Jaubert, J., Muscatine, L. & Hoegh-Guldberg, O. Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. J. Exp. Mar. Bio. Ecol. 259, 249–261 (2001).Article
Google Scholar
65.Atkinson, M. J., Carlson, B. & Crow, G. L. Coral growth in high-nutrient, low-pH seawater: a case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14, 215–223 (1995).ADS
Article
Google Scholar
66.Godinot, C., Ferrier-Pagès, C., Montagna, P. & Grover, R. Tissue and skeletal changes in the scleractinian coral Stylophora pistillata Esper 1797 under phosphate enrichment. J. Exp. Mar. Biol. Ecol. 409, 200–207 (2011).Article
Google Scholar
67.Dunn, J. G., Sammarco, P. W. & LaFleur, G. Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: a controlled experimental approach. J. Exp. Mar. Biol. Ecol. 411, 34–44 (2012).CAS
Article
Google Scholar
68.Marshall, P. A. Skeletal damage in reef corals: relating resistance to colony morphology. Mar. Ecol. Prog. Ser. 200, 177–189 (2000).ADS
Article
Google Scholar
69.Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: A solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).ADS
Article
Google Scholar
70.Marubini, F. & Thake, B. Bicarbonate addition promotes coral growth. Limnol. Oceanogr. 44, 716–720 (1999).ADS
CAS
Article
Google Scholar
71.Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Bio. Ecol. 129, 279–303 (1989).Article
Google Scholar
72.Quinlan, Z. A. et al. Fluorescent organic exudates of corals and algae in tropical reefs are compositionally distinct and increase with nutrient enrichment. Limnol. Oceanogr. Lett. 3, 331–340 (2018).CAS
Article
Google Scholar
73.Tanaka, Y., Grottoli, A., Matsui, Y., Suzuki, A. & Sakai, K. Effects of nitrate and phosphate availability on the tissues and carbonate skeleton of scleractinian corals. Mar. Ecol. Prog. Ser. 570, 101–112 (2017).ADS
CAS
Article
Google Scholar
74.Siboni, N., Ben-Dov, E., Sivan, A. & Kushmaro, A. Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ. Microbiol. 10, 2979–2990 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
75.Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
76.Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio 4, e00052-e113 (2013).CAS
PubMed
PubMed Central
Google Scholar
77.Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
78.Fong, C. R. & Fong, P. Nutrient fluctuations in marine systems: press versus pulse nutrient subsidies affect producer competition and diversity in estuaries and coral reefs. Estuaries Coasts 41, 421–429 (2018).CAS
Article
Google Scholar
79.Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).ADS
Article
Google Scholar
80.Gil, M. A. Unity through nonlinearity: a unimodal coral–nutrient interaction. Ecology 94, 1871–1877 (2013).PubMed
Article
PubMed Central
Google Scholar
81.McAuley, P. J. & Smith, V. J. Effect of diel photoperiod on nitrogen metabolism of cultured and symbiotic zooxanthellae. Mar. Biol. 123, 145–152 (1995).CAS
Article
Google Scholar
82.Bruggeman, F. J., Boogerd, F. C. & Westerhoff, H. V. The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica. FEBS J. 272, 1965–1985 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
83.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).Article
Google Scholar
84.Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).ADS
Article
Google Scholar More