More stories

  • in

    Asymmetric physiological response of a reef-building coral to pulsed versus continuous addition of inorganic nutrients

    1.Schaffelke, B., Carleton, J., Skuza, M., Zagorskis, I. & Furnas, M. J. Water quality in the inshore Great Barrier Reef lagoon: implications for long-term monitoring and management. Mar. Pollut. Bull. 65, 249–260 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Kleypas, J. A., McManus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    3.Barnes, D. J. & Devereux, M. J. Productivity and calcification on a coral reef: A survey using pH and oxygen electrode techniques. J. Exp. Mar. Biol. Ecol. 79, 213–231 (1984).Article 

    Google Scholar 
    4.Hoegh-Guldberg, O. & Williamson, J. Availability of two forms of dissolved nitrogen to the coral Pocillopora damicornis and its symbiotic zooxanthellae. Mar. Biol. 133, 561–570 (1999).CAS 
    Article 

    Google Scholar 
    5.Koop, K. et al. ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42, 91–120 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata : effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).ADS 
    Article 

    Google Scholar 
    7.Grover, R., Maguer, J.-F., Allemand, D. & Ferrier-Pagès, C. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J. Exp. Biol. 211, 860–865 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Godinot, C., Ferrier-Pagés, C. & Grover, R. Control of phosphate uptake by zooxanthellae and host cells in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 54, 1627–1633 (2009).ADS 
    Article 

    Google Scholar 
    9.Wang, J. & Douglas, A. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis?. J. Exp. Biol. 201, 2445–2453 (1998).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Tanaka, Y., Suzuki, A. & Sakai, K. The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. ISME J. https://doi.org/10.1038/s41396-017-0019-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Miller, D. J. & Yellowlees, D. Inorganic nitrogen uptake by symbiotic marine cnidarians: a critical review. Proc. R. Soc. B Biol. Sci. 237, 109–125 (1989).ADS 

    Google Scholar 
    14.Pernice, M. et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 6, 1314–1324 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Yellowlees, D., Rees, T. A. V. & Leggat, W. Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell Environ. 31, 679–694 (2008).CAS 
    Article 

    Google Scholar 
    16.Krueger, T. et al. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc. R. Soc. B Biol. Sci. 287, 20200049 (2020).CAS 
    Article 

    Google Scholar 
    17.Godinot, C., Houlbrèque, F., Grover, R., Ferrier-Pagès, C. & Larsen, A. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6, e25024 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Ferrier-Pagès, C., Godinot, C., D’Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 86, 262–277 (2016).Article 

    Google Scholar 
    19.Snidvongs, A. & Kinzie, R. A. Effects of nitrogen and phosphorus enrichement on in vivo symbiotic zooxanthellae of Pocillopora damicornis. Mar. Biol. 118, 705–711 (1994).CAS 
    Article 

    Google Scholar 
    20.Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).Article 

    Google Scholar 
    21.Roberty, S., Béraud, E., Grover, R. & Ferrier-Pagès, C. Coral productivity is co-limited by bicarbonate and ammonium availability. Microorganisms 8, 640 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    22.Muller-Parker, G., Cook, C. B. & D’elia, C. F. Elemental composition of the coral Pocillopora damicornis exposed to elevated seawater ammonium. Pac. Sci. 48, 234–246 (1994).CAS 

    Google Scholar 
    23.Muller-Parker, G., McCloskey, L., Hoegh-Guldberg, O. & McAuley, P. Effect of ammonium enrichment on animal and algal biomass of the coral Pocillopora damicornis. Pac. Sci. 48, 273–283 (1994).CAS 

    Google Scholar 
    24.Dubinsky, Z. et al. The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 239, 231–246 (1990).ADS 

    Google Scholar 
    25.Marubini, F. & Davies, P. S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127, 319–328 (1996).CAS 
    Article 

    Google Scholar 
    26.Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 20172718 (2018).Article 
    CAS 

    Google Scholar 
    27.Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral-symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Stambler, N., Popper, N., Dubinsky, Z. & Stimson, J. Effects of nutrient enrichment and water motion on the coral Pocillopora damicornis. Pac. Sci. 45, 299–307 (1991).
    Google Scholar 
    30.Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl. Acad. Sci. U. S. A. 118, e2022653118 (2021).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    31.Bassim, K. & Sammarco, P. Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar. Biol. 142, 241–252 (2003).CAS 
    Article 

    Google Scholar 
    32.Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, C09S07 (2005).ADS 

    Google Scholar 
    33.Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).Article 
    CAS 

    Google Scholar 
    35.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Meyer, J. L. & Schultz, E. T. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs1. Limnol. Oceanogr. 30, 146–156 (1985).ADS 
    Article 

    Google Scholar 
    37.Holbrook, S. J., Brooks, A. J., Schmitt, R. J. & Stewart, H. L. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155, 521–530 (2008).Article 

    Google Scholar 
    38.Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Schmidt, S., Dennison, W. C., Moss, G. J. & Stewart, G. R. Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Funct. Plant Biol. 31, 517–528 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Staunton Smith, J. & Johnson, C. R. Nutrient inputs from seabirds and humans on a populated coral cay. Mar. Ecol. Prog. Ser. 124, 189–200 (1995).ADS 
    Article 

    Google Scholar 
    41.Ezzat, L. et al. Nutrient starvation impairs the trophic plasticity of reef-building corals under ocean warming. Funct. Ecol. 33, 643–653 (2019).Article 

    Google Scholar 
    42.Ezzat, L., Maguer, J. F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    43.Meyer, J. L. & Schultz, E. T. Tissue condition and growth rate of corals associated with schooling fish1. Limnol. Oceanogr. 30, 157–166 (1985).ADS 
    Article 

    Google Scholar 
    44.Liberman, T., Genin, A. & Loya, Y. Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus. Mar. Biol. 121, 741–746 (1995).Article 

    Google Scholar 
    45.Burkepile, D. E. et al. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci. Rep. 3, 1493 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems https://doi.org/10.1007/s10021-019-00433-2 (2019).Article 

    Google Scholar 
    47.Ezzat, L., Maguer, J. F., Grover, R. & Ferrier-Pagés, C. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH4+ and NO3− supply. Proc. R. Soc. B Biol. Sci. 282, 20150610 (2015).Article 
    CAS 

    Google Scholar 
    48.Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral–algal mutualism. Ecology 95, 1995–2005 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Devlin, M. J. & Brodie, J. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar. Pollut. Bull. 51, 9–22 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Bender, D., Diaz-Pulido, G. & Dove, S. The impact of CO 2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects. J. Phycol. 50, 203–215 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Wild, C., Woyt, H. & Huettel, M. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar. Ecol. Prog. Ser. 287, 87–98 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).Article 

    Google Scholar 
    53.Parsons, T. R., Maita, Y. & Lalli, C. M. A Manual of Chemical and Biological Methods for Seawater Analysis (Pergamon Press, 1984).
    Google Scholar 
    54.Chisholm, J. R. M. & Gattuso, J.-P. Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol. Oceanogr. 36, 1232–1239 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).CAS 
    Article 

    Google Scholar 
    56.Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G. & Gattuso, J. P. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. B Biol. Sci. 279, 1716–1723 (2012).CAS 
    Article 

    Google Scholar 
    57.Whitaker, J. R. & Granum, P. E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal. Biochem. 109, 156–159 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Dunn, S. R., Thomas, M. C., Nette, G. W., Dove, S. G. & Blackburn, S. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within Cnidarian-Dinoflagellate symbiosis. PLoS ONE 7, e46801 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.van der Zande, R. M. et al. Paradise lost: end-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. Glob. Change Biol. 26, 2203–2219 (2020).ADS 
    Article 

    Google Scholar 
    60.Gaffey, S. J. & Bronnimann, C. E. Effects of bleaching on organic and mineral phases in biogenic carbonates. J. Sediment. Res. 63, 752–754 (1993).ADS 
    Article 

    Google Scholar 
    61.Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).ADS 
    Article 

    Google Scholar 
    62.Underwood, A. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, 1997). .63.Wooldridge, S., Brodie, J. & Furnas, M. Exposure of inner-shelf reefs to nutrient enriched runoff entering the Great Barrier Reef Lagoon: post-European changes and the design of water quality targets. Mar. Pollut. Bull. 52, 1467–1479 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Ferrier-Pagès, C., Schoelzke, V., Jaubert, J., Muscatine, L. & Hoegh-Guldberg, O. Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. J. Exp. Mar. Bio. Ecol. 259, 249–261 (2001).Article 

    Google Scholar 
    65.Atkinson, M. J., Carlson, B. & Crow, G. L. Coral growth in high-nutrient, low-pH seawater: a case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14, 215–223 (1995).ADS 
    Article 

    Google Scholar 
    66.Godinot, C., Ferrier-Pagès, C., Montagna, P. & Grover, R. Tissue and skeletal changes in the scleractinian coral Stylophora pistillata Esper 1797 under phosphate enrichment. J. Exp. Mar. Biol. Ecol. 409, 200–207 (2011).Article 

    Google Scholar 
    67.Dunn, J. G., Sammarco, P. W. & LaFleur, G. Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: a controlled experimental approach. J. Exp. Mar. Biol. Ecol. 411, 34–44 (2012).CAS 
    Article 

    Google Scholar 
    68.Marshall, P. A. Skeletal damage in reef corals: relating resistance to colony morphology. Mar. Ecol. Prog. Ser. 200, 177–189 (2000).ADS 
    Article 

    Google Scholar 
    69.Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: A solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).ADS 
    Article 

    Google Scholar 
    70.Marubini, F. & Thake, B. Bicarbonate addition promotes coral growth. Limnol. Oceanogr. 44, 716–720 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Bio. Ecol. 129, 279–303 (1989).Article 

    Google Scholar 
    72.Quinlan, Z. A. et al. Fluorescent organic exudates of corals and algae in tropical reefs are compositionally distinct and increase with nutrient enrichment. Limnol. Oceanogr. Lett. 3, 331–340 (2018).CAS 
    Article 

    Google Scholar 
    73.Tanaka, Y., Grottoli, A., Matsui, Y., Suzuki, A. & Sakai, K. Effects of nitrate and phosphate availability on the tissues and carbonate skeleton of scleractinian corals. Mar. Ecol. Prog. Ser. 570, 101–112 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    74.Siboni, N., Ben-Dov, E., Sivan, A. & Kushmaro, A. Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ. Microbiol. 10, 2979–2990 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    76.Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio 4, e00052-e113 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Fong, C. R. & Fong, P. Nutrient fluctuations in marine systems: press versus pulse nutrient subsidies affect producer competition and diversity in estuaries and coral reefs. Estuaries Coasts 41, 421–429 (2018).CAS 
    Article 

    Google Scholar 
    79.Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).ADS 
    Article 

    Google Scholar 
    80.Gil, M. A. Unity through nonlinearity: a unimodal coral–nutrient interaction. Ecology 94, 1871–1877 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.McAuley, P. J. & Smith, V. J. Effect of diel photoperiod on nitrogen metabolism of cultured and symbiotic zooxanthellae. Mar. Biol. 123, 145–152 (1995).CAS 
    Article 

    Google Scholar 
    82.Bruggeman, F. J., Boogerd, F. C. & Westerhoff, H. V. The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica. FEBS J. 272, 1965–1985 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).Article 

    Google Scholar 
    84.Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).ADS 
    Article 

    Google Scholar  More

  • in

    Migratory birds aid the redistribution of plants to new climates

    NEWS AND VIEWS
    23 June 2021

    Migratory birds aid the redistribution of plants to new climates

    Birds that travel long distances can disperse seeds far and wide. An assessment of the timing and direction of European bird migration reveals how these patterns might affect seed dispersal as the planet warms.

    Barnabas H. Daru

     ORCID: http://orcid.org/0000-0002-2115-0257

    0

    Barnabas H. Daru

    Barnabas H. Daru is in the Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    The rapid pace of global warming and its effects on habitats raise the question of whether species are able to keep up so that they remain in suitable living conditions. Some animals can move fast to adjust to a swiftly changing climate. Plants, being less mobile, rely on means such as seed dispersal by animals, wind or water to move to new areas, but this redistribution typically occurs within one kilometre of the original plant1. Writing in Nature, González-Varo et al.2 shed light on the potential capacity of migratory birds to aid seed dispersal.When the climate in a plant’s usual range becomes hotter than it can tolerate, it must colonize new, cooler areas that might lie many kilometres away. It is not fully clear how plants distribute their seeds across great distances, let alone how they cross geographical barriers. One explanation for long-distance seed dispersal is through transport by migratory birds. Such birds ingest viable seeds when eating fruit (Fig. 1) and can move them tens or hundreds of kilometres outside the range of a plant species3. In this mode of dispersal, the seeds pass through the bird’s digestive tract unharmed4,5 and are deposited in faeces, which provides fertilizer that aids plant growth. In the case of European migratory birds, for example, the direction of seed dispersal will depend on whether the timing of fruit production coincides with a bird’s southward trip to warmer regions around the Equator, or northward to cooler regions. Many aspects of this process have been a mystery until now.

    Figure 1 | A young blackcap bird (Sylvia atricapilla) eating elderberries.Credit: Getty

    González-Varo and colleagues report how plants might be able to keep pace with rapid climate change through the help of migrating birds. The authors analysed the fruiting times of plants, patterns of bird migration and the interactions between fruit-eating birds and fleshy-fruited plants across Europe. Plants with fleshy fruits were chosen for this study because most of their seed transport is by migratory birds6, and because fleshy-fruited plants are an important component of the woody-plant community in Europe. The common approach until now has been to predict plant dispersal and colonization using models fitted to abiotic factors, such as the current climate. González-Varo et al. instead analysed an impressive data set of 949 different seed-dispersal interactions between bird and plant communities, together with data on entire fruiting times and migratory patterns of birds across Europe. The researchers also analysed DNA traces from bird faeces to identify the plants and birds responsible for seed dispersal.
    Read the paper: Limited potential for bird migration to disperse plants to cooler latitudes
    The authors hypothesized that the direction of seed migration depends on how the plants interact with migratory birds, the frequency of these interactions or the number of bird species that might transport seeds from each plant species. González-Varo and colleagues found that 86% of plant species studied might have seeds dispersed by birds during their southward trip towards drier and hotter equatorial regions in autumn, whereas only about one-third of the plant species might be dispersed by birds migrating north in spring. This dispersal trend was more pronounced in temperate plants than in the Mediterranean plant communities examined. These results are in general agreement with well-known patterns of fruiting times and bird migrations. For example, the fruit of most fleshy-fruited plants in Europe ripens at a time that coincides with when birds migrate south towards the Equator7.Perhaps the most striking feature of these inferred seed movements is the observation that 35% of plant species across European communities, which are closely related on the evolutionary tree (phylogenetically related), might benefit from long-distance dispersal by the northward journey of migratory birds. This particular subset of plants tends to fruit over a long period of time, or has fruits that persist over the winter. This means that the ability of plants to keep up with climate change could be shaped by their evolutionary history — implying that future plant communities in the Northern Hemisphere will probably come from plant species that are phylogenetically closely related and that have migrated from the south. Or, to put it another way, the overwhelming majority of plant species that are dispersed south towards drier and hotter regions at the Equator will probably be less able to keep pace with rapid climate change in their new locations than will the few ‘winners’ that are instead dispersed north to cooler climates. This has implications for understanding how plants will respond to climate change, and for assessing ecosystem functions and community assembly at higher levels of the food chain. However, for seeds of a given plant species, more evidence is needed to assess whether passing through the guts of birds affects germination success.To determine which birds might be responsible for the plant redistributions to cooler climates in the north, the authors categorized European bird migrants into Palaearctic (those that fly to southern Europe and northern Africa during their non-breeding season) and Afro-Palaearctic (those that winter in sub-Saharan Africa). Only a few common Palaearctic migrants, such as the blackcap (Sylvia atricapilla; Fig. 1) or blackbird (Turdus merula), provide most of this crucial dispersal service northwards to cooler regions across Europe. Because migratory birds are able to relocate a small, non-random subset of plants, this could well have a strong influence on the types of plant community that will form under climate-change conditions.
    A bird’s migration decoded
    A major problem, however, is that the role of these birds in dispersing seeds over long distances is already at risk from human pressures and environmental changes8. Understanding these large-scale seed-dispersal interactions offers a way for targeted conservation actions to protect the areas that are most vulnerable to climate change. This could include boosting protection efforts in and around the wintering grounds of migratory birds — locations that are already experiencing a rise in human pressures, such as illegal bird hunting.González-Varo and colleagues’ focus on seed dispersal across a Northern Hemisphere region means that, as with most ecological analyses, the results are dependent on scale, which can cause issues when interpreting data9. Because the Northern Hemisphere has more land area and steeper seasonal temperature gradients than the Southern Hemisphere does, seed-dispersal interactions might have different patterns from those occurring in the Southern Hemisphere or in aquatic systems.For example, seed-eating birds from the genus Quelea migrate from the Southern Hemisphere to spend the dry season in equatorial West Africa, then move southwards again when the rains arrive. Their arrival in southern Africa usually coincides with the end of the wet season in this region, when annual grass seeds are in abundance. It will be worth investigating whether migratory birds in the Southern Hemisphere also influence the redistribution of plant communities during global warming. Likewise, exploring the long-distance dispersal of seeds of aquatic plants, such as seagrasses10 by water birds, is another area for future research that might benefit from González-Varo and colleagues’ methods.This study provides a great example of how migratory birds might assist plant redistribution to new locations that would normally be difficult for them to reach on their own, and which might offer a suitable climate. As the planet warms, understanding how such biological mechanisms reorganize plant communities complements the information available from climate-projection models, which offer predictions of future species distributions.

    doi: https://doi.org/10.1038/d41586-021-01547-1

    References1.Jordano, P., García, C., Godoy, J. A. & García-Castaño, J. L. Proc. Natl Acad. Sci. USA 104, 3278–3282 (2007).PubMed 
    Article 

    Google Scholar 
    2.González-Varo, J. P. et al. Nature https://doi.org/10.1038/s41586-021-03665-2 (2021).Article 

    Google Scholar 
    3.Viana, D. S., Santamaría, L. & Figuerola, J. Trends Ecol. Evol. 31, 763–775 (2016).PubMed 
    Article 

    Google Scholar 
    4.Lehouck, V., Spanhove, T. & Lens, L. Plant Ecol. Evol. 144, 96–100 (2011).Article 

    Google Scholar 
    5.Shikang, S., Fuqin, W. & Yuehua, W. Sci. Rep. 5, 11615 (2015).PubMed 
    Article 

    Google Scholar 
    6.Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities 3rd edn (ed. Gallagher, R. S.) 18–61 (CAB Int., 2014).
    Google Scholar 
    7.Dingle, H. Migration: The Biology of Life on the Move (Oxford Univ. Press, 2014).
    Google Scholar 
    8.Bairlein, F. Science 354, 547–548 (2016).PubMed 
    Article 

    Google Scholar 
    9.Daru, B. H., Farooq, H., Antonelli, A. & Faurby, S. Nature Commun. 11, 2115 (2020).PubMed 
    Article 

    Google Scholar 
    10.Rock, B. M. & Daru B. H. Front. Mar. Sci. 8, 608867 (2021).Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Limited potential for bird migration to disperse plants to cooler latitudes

    A bird’s migration decoded

    African forest maps reveal areas vulnerable to the effects of climate change

    See all News & Views

    Subjects

    Ecology

    Climate change

    Latest on:

    Ecology

    Limited potential for bird migration to disperse plants to cooler latitudes
    Article 23 JUN 21

    Ancient oaks of Europe are archives — protect them
    Correspondence 22 JUN 21

    Indigenous lands: make Brazil stop mining to secure US deal
    Correspondence 08 JUN 21

    Climate change

    Climate policy models need to get real about people — here’s how
    Comment 08 JUN 21

    More than one-third of heat deaths blamed on climate change
    Research Highlight 04 JUN 21

    A 10 per cent increase in global land evapotranspiration from 2003 to 2019
    Article 26 MAY 21

    Jobs from Nature Careers

    All jobs

    PhD Fellowship
    University of Stavanger (UiS)
    Stavanger, Norway

    JOB POST

    Postdoctoral Fellow in Immunology
    Icahn School of Medicine at Mount Sinai (ISMMS), MSHS
    New York City, NY, United States

    JOB POST

    Lebensmitteltechnologe / Lebensmittelchemiker / Lebensmitteltechniker / Ökotrophologe (*) im Professional Service
    3M Deutschland GmbH
    Neuss, Germany

    JOB POST

    Senior Associate Dean & Chief Diversity and Inclusion Officer (CDIO)
    Weill Cornell Medicine (WCM), Cornell University
    New York, NY, United States

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    An empirical demonstration of the effect of study design on density estimations

    1.Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. https://doi.org/10.1371/journal.pbio.0020197 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Jackson, R. & Hunter, D. O. Snow leopard Survey and conservation handbook (First edition). In Report: 1–120. International Snow leopard Trust 1–120 (1995). 
    Google Scholar 
    3.Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 2852–2862 (1998).Article 

    Google Scholar 
    4.McCarthy, K. P. et al. Assessing estimators of snow leopard abundance. J. Wildl. Manage. 72, 1826–1833 (2008).Article 

    Google Scholar 
    5.Sharma, K. et al. Vigorous dynamics underlie a stable population of the endangered snow leopard Panthera uncia in Tost Mountains, South Gobi, Mongolia. PLoS ONE 9, e101319 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Ale, S. B. & Mishra, C. The snow leopard’ s questionable comeback. Science 359, 1110–1111 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mallon, D. P. & Jackson, R. M. A downlist is not a demotion: Red List status and reality. Oryx. https://doi.org/10.1017/S0030605317000606 (2017).Article 

    Google Scholar 
    8.Sharma, K. et al. PAWS Guidelines. Global Snow Leopard and Ecosystem Protection Program. https://globalsnowleopard.org/wp-content/uploads/2020/08/PAWS-guidelines-2020.pdf (2020).9.Jackson, R. M., Roe, J. D., Wangchuk, R. & Hunter, D. O. Estimating snow leopard population abundance using photography and capture–recapture techniques. Wildl. Soc. Bull. 34, 772–781 (2006).Article 

    Google Scholar 
    10.Karanth, K. U. et al. Science deficiency in conservation practice: The monitoring of tiger populations in India. Anim. Conserv. 6, 141–146 (2003).Article 

    Google Scholar 
    11.Din, J. U. & Nawaz, M. A. Status of snow leopard and prey species in Torkhow valley, district Chitral, Pakistan. J. Anim. Plant Sci. 21, 836–840 (2011).
    Google Scholar 
    12.O’Connell, A. F., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses (Springer, 2011).Book 

    Google Scholar 
    13.Durbach, I., Borchers, D., Sutherland, C. & Sharma, K. Fast, exible alternatives to regular grid designs for spatial 2 capture-recapture. Methods Ecol. Evol. 12, 298 (2020).Article 

    Google Scholar 
    14.Suryawanshi, K. R., Khanyari, M., Sharma, K., Lkhagvajav, P. & Mishra, C. Sampling bias in snow leopard population estimation studies. Popul. Ecol. 61, 268–276 (2019).Article 

    Google Scholar 
    15.Dupont, G., Royle, J. A., Nawaz, M. A. & Sutherland, C. Optimal sampling design for spatial capture–recapture. Ecology 102, 1–9 (2020).
    Google Scholar 
    16.Royle, J. A., Fuller, A. K. & Sutherland, C. Unifying population and landscape ecology with spatial capture–recapture. Ecography (Cop.) 41, 444–456 (2018).Article 

    Google Scholar 
    17.Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 3–135 (1978).MATH 

    Google Scholar 
    18.Boulanger, J., Mclellan, B. N., Woods, J. G., Proctor, M. F. & Strobeck, C. Sampling design and bias in dna-based capture–mark–recapture population and density estimates of grizzly bears. J. Wildl. Manage. 68, 457–469 (2004).Article 

    Google Scholar 
    19.White, G. C., Anderson, D. R., Burnham, K. P. & Otis, D. L. Capture-Recapture and Removal Methods for Sampling Closed Populations (Los Alamos National Laboratory, 1982).
    Google Scholar 
    20.Efford, M. G. & Boulanger, J. Fast evaluation of study designs for spatially explicit capture–recapture. Methods Ecol. Evol. 10, 1529 (2019).Article 

    Google Scholar 
    21.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Academic Press, 2014).
    Google Scholar 
    22.Morrison, M. L., Block, W. M., Strickland, M. D., Collier, B. A. & Peterson, M. J. Wildlife Study Design (Springer, 2008).Book 

    Google Scholar 
    23.Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).
    Google Scholar 
    24.Khan, B. U. Effect of Study Design on Density Estimates of Large Ranging Species (Quaid-i-Azam University, 2019).
    Google Scholar 
    25.Foster, R. J. & Harmsen, B. J. A critique of density estimation from camera-trap data. J. Wildl. Manage. 76, 224–236 (2012).Article 

    Google Scholar 
    26.Janečka, J. E. et al. Comparison of noninvasive genetic and camera-trapping techniques for surveying snow leopards. J. Mammal. 92, 771–783 (2011).Article 

    Google Scholar 
    27.Subbotin, A. E. & Istomov, S. V. The population status of snow leopards Uncia uncia (Felidae, Carnivora) in the Western Sayan mountain ridge. Dokl. Biol. Sci. 425, 183–186 (2009).Article 

    Google Scholar 
    28.Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: General advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005).Article 

    Google Scholar 
    29.Thomas, L. et al. Distance software: Design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5–14 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Sollmann, R., Gardner, B. & Belant, J. L. How does spatial study design influence density estimates from spatial capture-recapture models? PLoS ONE 7, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    31.Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).Article 

    Google Scholar 
    32.Sun, C. C., Fuller, A. K. & Andrew Royle, J. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS ONE 9, e88025 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Shedayi, A. A. et al. Threatened plant resources: Distribution and ecosystem services in the world’s high elevation park of the Karakoram Ranges. Pak. J. Bot. 48, 999–1012 (2016).
    Google Scholar 
    34.Johansson, Ö. Unveiling the Ghost of the Mountain; Snow Leopard Ecology and Behaviour (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    35.Bischof, R. et al. Using time-to-event analysis to complement hierarchical methods when assessing determinants of photographic detectability during camera trapping. Methods Ecol. Evol. 5, 44–53 (2014).Article 

    Google Scholar 
    36.Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610 (2004).Article 

    Google Scholar 
    37.R Core Team. R: A Language and Environment for Statistical Computing (2021).38.Sutherland, C., Royle, J. A. & Linden, D. W. oSCR: A spatial capture–recapture R package for inference about spatial ecological processes. Ecography (Cop.) 42, 1459 (2019).Article 

    Google Scholar 
    39.Akaike, H. Akaike’s information criterion. In International Encyclopedia of Statistical Science (ed. Lovric, M.) (Springer, 2011).
    Google Scholar 
    40.Khan, B. et al. Abundance, distribution and conservation status of Siberian ibex, Marco Polo and Blue sheep in Karakoram-Pamir mountain area. J. King Saud Univ. Sci. 28, 216–225 (2016).Article 

    Google Scholar 
    41.Haider, J., Khan, M. Z., Anwer, M., Ali, S. & Ali, H. Population status and migration trends of Marco Polo argali (Ovis ammon polii) in Pakistan. Mammalia 82, 481–485 (2018).Article 

    Google Scholar 
    42.Ahmad, S. et al. Critical assessment of Asiatic ibex (Capra ibex sibirica) for sustainable harvesting in northern areas of Pakistan. Glob. Ecol. Conserv. 22, e00907 (2020).Article 

    Google Scholar 
    43.Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manage. 74, 1175–1178 (2010).Article 

    Google Scholar 
    44.Flemming, J., Grant, E. H. C., Sterrett, S. C. & Sutherland, C. Experimental evaluation of spatial capture-recapture study design. Ecol. Appl. (2021). In Press45.Sutherland, C., Fuller, A. K. & Royle, J. A. Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks. Methods Ecol. Evol. 6, 169–177 (2015).Article 

    Google Scholar 
    46.Chetri, M., Odden, M., Sharma, K., Flagstad, Ø. & Wegge, P. Estimating snow leopard density using fecal DNA in a large landscape in north-central Nepal. Glob. Ecol. Conserv. 17, e00548 (2019).Article 

    Google Scholar 
    47.Alexander, J. S., Zhang, C., Shi, K. & Riordan, P. A granular view of a snow leopard population using camera traps in Central China. Biol. Conserv. 197, 27–31 (2016).Article 

    Google Scholar 
    48.Alexander, J. S., Gopalaswamy, A. M., Shi, K., Riordan, P. & Margalida, A. Face value: Towards robust estimates of snow leopard densities. PLoS ONE 10, 1–17 (2015).Article 
    CAS 

    Google Scholar 
    49.Efford, M. G., Dawson, D. K. & Robbins, C. S. DENSITY: Software for analysing capture-recapture data from passive detector arrays. Anim. Biodivers. Conserv. 27, 217 (2004).
    Google Scholar 
    50.Tourani, M., Dupont, P., Nawaz, M. A. & Bischof, R. Multiple observation processes in spatial capture-recapture models: How much do we gain? Ecology 101, e03030 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Efford, M. secr: Spatially explicit capture–recapture models. R package version 3.1.6. secr 3.1 R Packag. 1–20 (2018). https://doi.org/10.1002/14651858.52.Clark, J. D. Comparing clustered sampling designs for spatially explicit estimation of population density. Popul. Ecol. 61, 93–101 (2019).Article 

    Google Scholar 
    53.Humm, J. M., McCown, J. W., Scheick, B. K. & Clark, J. D. Spatially explicit population estimates for black bears based on cluster sampling. J. Wildl. Manage. 81, 1187–1201 (2017).Article 

    Google Scholar 
    54.Morin, D. J., Waits, L. P., McNitt, D. C. & Kelly, M. J. Efficient single-survey estimation of carnivore density using fecal DNA and spatial capture-recapture: A bobcat case study. Popul. Ecol. 60, 197–209 (2018).Article 

    Google Scholar 
    55.Steenweg, R. et al. Scaling-up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Front. Ecol. Environ. 15, 26–34 (2017).Article 

    Google Scholar  More

  • in

    Ancient oaks of Europe are archives — protect them

    CORRESPONDENCE
    22 June 2021

    Ancient oaks of Europe are archives — protect them

    Christian Sonne

    0
    ,

    Changlei Xia

    1
    &

    Su Shiung Lam

    2

    Christian Sonne

    Aarhus University, Roskilde, Denmark.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Changlei Xia

    Nanjing Forestry University, Nanjing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Su Shiung Lam

    University Malaysia Terengganu, Terengganu, Malaysia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Kongeegen, the King Oak, in Denmark could be up to 2,000 years old.Credit: Andreas Altenburger/Alamy

    Some of the oldest trees in Europe are in danger because they are not being given the necessary level of protection. Oak trees (Quercus robur) that are more than 1,000 years old are found in the United Kingdom and in Fennoscandia, which includes Denmark, Sweden and Norway.For example, Denmark’s King Oak (pictured) is one of the world’s oldest living trees, dating to around 1,900 years of age. The United Kingdom has the largest collection of ancient oaks, reflecting 1,500 years of ship-building.The trees contain rings that represent archives of historical climate fluctuations and levels of atmospheric gases, so they can help to answer pressing questions about climate change and ecosystem dynamics (P. M. Kelly et al. Nature 340, 57–60; 1989).Fennoscandia and the United Kingdom could better safeguard their oaks using mechanisms such as those offered by the European Union’s Natura 2000 network of protected areas, or the protections conferred by UNESCO World Heritage sites in the United Kingdom. Otherwise, unsustainable management practices, deforestation, air pollution and climate change could leave these ancient species vulnerable to disease and extinction, with the loss of irreplaceable scientific information and cultural heritage.

    Nature 594, 495 (2021)
    doi: https://doi.org/10.1038/d41586-021-01699-0

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Conservation biology

    Environmental sciences

    Forestry

    Latest on:

    Environmental sciences

    Canada is right to classify single-use plastics as toxic
    Correspondence 22 JUN 21

    Most rivers and streams run dry every year
    News & Views 16 JUN 21

    Regulate waste recycling internationally
    Correspondence 15 JUN 21

    Forestry

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Concerns about reported harvests in European forests
    Matters Arising 28 APR 21

    The Arctic is burning like never before — and that’s bad news for climate change
    News 10 SEP 20

    Jobs from Nature Careers

    All jobs

    Career Development Fellow/ Postdoctoral Scientist
    UK Research and Innovation (UKRI)
    Cambridge, United Kingdom

    JOB POST

    3 Postdoctoral fellowships (2 years) in bacteria cell wall systems biology, soil pore architecture, and image analysis of wood formation
    Umeå University (UmU)
    Umeå, Sweden

    JOB POST

    Postdoctoral Fellow and Research Scientist Positions
    Boston Children’s Hospital (BCH)
    Boston, MA, United States

    JOB POST

    Assistant Professor of physics with tenure track
    Chalmers University of Technology
    Gothenburg, Sweden

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Impact of a bacterial consortium on the soil bacterial community structure and maize (Zea mays L.) cultivation

    Field location and soil samplingThe soil used in this experiment was collected from an agricultural field cultivated with maize at the “Instituto Tecnológico Superior del Oriente del Estado de Hidalgo” (ITESA) located in Apan, State of Hidalgo, Mexico (19° 73′ N, 98° 46′ W). The 0–20 cm top soil layer of three 400 m2 plots was sampled 20 times. The soil from each plot was pooled separately so that three soil samples (n = 3) were obtained. This field based replication was maintained in the greenhouse experiment so as to avoid pseudo-replication. The soil samples were passed separately through a 5 mm sieve and characterized.The soil is classified as a Phaeozem according to “World Reference Soil (WRS) system”, with pH 6.6, electrolytic conductivity (EC) 0.22 dS m−1 and water holding capacity (WHC) 515 g kg−1. The sandy clay loam soil with clay content 240 g kg−1, sand content 530 g kg−1 and silt content 230 g kg−1, had an ammonium content 8.16 mg kg−1 dry soil, nitrate 1.91 mg kg−1 dry soil and nitrite 0.01 mg kg−1 dry soil. The maize seeds were the hybrid variety 215 W obtained from Eagle® Sinaloa (Mexico).Characteristics of the biofertilizerAlthough a biofertilizer can be described in different ways we use the definition as given by38. Vessey defined (2003) a biofertilizer as “a substance which contains living micro-organisms which, when applied to seeds, plant surfaces, or soil, colonize the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant”. As the consortium used in this study fits the definition of a biofertilizer as given by Vessey38 we will refer to the consortium as the biofertilizer or when sterilized to the sterilized biofertilizer throughout the manuscript.The “biofertilizer” used in this study was a mixture of bacteria and leachate from compost of cow manure and was obtained from a local farmer in Hidalgo (Mexico) and characterized chemically and microbiologically. The cow manure was composted on a cement floor with a small inclination so that leachate could be collected easily. The farmer adds the leachate to the mixture of the bacteria to guarantee their survival and as an additional plant nutrient source. The farmer applies this solution regularly to fertilize his fields cultivated with maize. A same application protocol and procedure was used in this study to mimic the field experiment. Half of the biofertilizer obtained from the local farmer was sterilized by autoclaving at 121 °C for 20 min on three consecutive days so as to determine the effect of the microorganisms in the biofertilizer on the maize plants and the bacterial community structure, and the effect of the nutrients added with the biofertilizer.Experimental design and a greenhouse experimentThe research was done in a greenhouse at Cinvestav-Zacatenco situated to the north of Mexico City (Mexico). The experiment used a completely randomized block design with six treatments. The treatments combined as a first factor soil cultivated with maize or left uncultivated. A second factor included soil amended with the biofertilizer, sterilized biofertilizer or not fertilized. The daily temperature in the greenhouse ranged from 15 °C as minimum and reached a maximum 35 °C from April to August of 2017.As the experimental protocol was complex, a diagram of the different treatments and sampling is given in Supplementary Fig. S11 online. A total of 162 PVC columns with diameter 17 cm and height 60 cm were used in the experiment. Each pot was filled at the bottom with 0.5 kg tezontle, a highly porous volcanic rock, and 10 kg soil was added on top. The 162 columns included 6 treatments (uncultivated unamended soil, uncultivated soil amended with biofertilizer, uncultivated soil amended with sterile biofertilizer, maize cultivated unamended soil, maize cultivated soil amended with biofertilizer, maize cultivated soil amended with sterile biofertilizer; n = 6), 3 sampling times (day 44, day 89 and day 130; n = 3), three different soil samples (n = 3), with three columns planted with a maize plant per soil sample (n = 3). Three columns of each soil sample were planted with a maize plant to account for plants that might die so that at least one mature plant was obtained per treatment, sampling time and soil sample. The soil in the 162 PVC columns was adjusted to 40% WHC with distilled water and conditioned in the greenhouse for a week. Additionally, three PVC columns were filled with soil from each soil sample (n = 3), adjusted to 40% WHC with distilled water and conditioned for a week. These three soil samples were used to extract DNA as described below and defined the bacterial community at the onset of the experiment, i.e. time 0.Maize seeds variety 215 W Eagle hybrid seeds® were obtained from the farmer that provided us with the biofertilizer. Three washed maize seeds were planted at 3 cm depth in 81 columns, while the remaining columns were left uncultivated. Seven days after emergence, the most vigorous plantlet was kept and the other two discarded. After 44 days, the biofertilizer or the sterilized biofertilizer was diluted with water and applied with an atomizer (10 ml m−2 or similar to 100 l applied ha−1 by the farmer) so that it was added as fine spray evenly on soil of each pot when the seeds were planted. A similar volume of water was applied in the same way to the unfertilized treatment. Five more applications of the biofertilizer, sterilized biofertilizer or water by aspersion were done during the cultivation of the maize plants. As such, the uncultivated or maize plant cultivated soil was applied with the biofertilizer, sterile biofertilizer or water on 13th April, 28th May, 5th June, 13th July, 2nd August and 12th August 2017.Soil and plant samplingAfter 44 (27th May 2017), 89 (11th July 2017) and 130 days (21st August 2017), three columns from each treatment (n = 6) and soil sample (n = 3) were selected at random. Soil was removed from each column. The cultivated and uncultivated soil was sampled, characterized, and extracted for DNA as described below. The non-rhizosphere soil was separated from the rhizosphere soil by shaken the plants gently. The soil adhered to the roots was considered the rhizosphere soil. A 20 g sub-sample of the uncultivated, non-rhizosphere and rhizosphere soil was stored at − 20 °C pending extraction of DNA, while the pH and mineral N was determined in the remaining soil. Roots and shoots were separated, weighted and their length measured. The roots and shoots were dried in an oven at 60 °C for 24 h and weighed.Soil physicochemical characterizationThe moisture content of the soil was determined by weight loss after samples were dried at 60 °C in an oven for 24 h. The WHC was determined by saturating 50 g dry soil with distilled water, left to drain overnight and measuring the amount of water retained. The EC was measured in a soil paste (200 g soil/110 ml distilled H2O) with an HI 2300 microprocessor (HANNA Instruments, Woonsocket, RI, USA), while the particle size distribution was determined with the hydrometer method as described by Gee and Bauder39. The pH was determined in a 10 g soil–25 ml distilled water mixture with a calibrated pH meter (Denver Instrument, Bohemia, NY, USA) fitted with a glass electrode (3007281 pH/ATC Termofisher Scientific, Waltham, MA, USA).Mineral nitrogen (NO3−, NO2− and NH4+) was measured in the soil and biofertilizer. A 20 g soil sub-sample was extracted with 100 ml 0.5 M K2SO4 and filtered through Whatman filter paper® while mineral N was measured with a SKALAR automatic analyser system (Breda, the Netherlands)40. A 20 g biofertilizer sub-sample was mixed with 80 ml 0.5 M K2SO4, filtered through Whatman filter paper® and mineral N measured as described previously.DNA extraction and PCR amplificationA 5 ml sub-sample of the sterilized and unsterilized biofertilizer was centrifuged at 3500 rpm for 15 min and the supernatant removed. A 0.5 g sub-sample of soil was washed with 10 ml 0.15 mol l−1 sodium pyrophosphate to eliminate the humic and fulvic acids, centrifuged at 3500 rpm for 15 min and this process was repeated until the supernatant was clear41. The excess pyrophosphate was eliminated with 10 ml 0.15 mol l−1 phosphate buffer pH 8. Three different methods were used to extract DNA from the soil and the sterilized and unsterilized biofertilizer samples. The first technique was based on the method described by Green and Sambrook42. In the second method, cells were lysed with two lysis solutions and a thermal shock as described by Valenzuela-Encinas et al.43. The third method consisted of a mechanical disruption and detergent solution for cell lysis44. Each method was used to extract three times 0.5 g soil or 5 ml sterilized and unsterilized biofertilizer (a total of 1.5 g soil or 15 ml sterilized and unsterilized biofertilizer). The extracts from the soil and sterile or unsterilized biofertilizer were pooled separately.The 16S rRNA gene (V3–V4 region of bacteria) was amplified using the primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-ACHVGGGTATCTAATCC-3′45. The PCR conditions were 94 °C for 5 min, followed by 25 cycles of 60 s at 94 °C, 45 s at 53 °C, and 60 s at 72 °C, with a final extension of 10 min at 72 °C. The PCR was repeated three times for each sample. After PCR amplification, the obtained products were cleaned using the FastGen Gel/PCR extraction Kit (Nippon Genetics Duren, Germany) and quantified using a Nanodrop 3300 fluorospectrometer (TermoFisher, Wilmington, DE, USA) with PicoGreen dsDNA. The samples were mixed in equimolar amounts and sequenced using MiSeq 300-pb paired-end runs (Illumina, CA, USA) at Macrogen Inc. (Seoul, Korea).16S rDNA sequences analysisThe raw sequences were analysed with “Quantitative insights into microbial ecology pipeline” (QIIME) software (version 1.9.1)46. The barcode reads were demultiplexing removed from the sequences using the script extract_barcodes.py. The chimeric sequences were identified using “identify_chimeric_seqs.py” with the usearch61 method and removed47. The taxonomic assignment was done using the Ribosomal Data Project (rdp)48, against the Greengenes 16S rRNA database with a 0.8 confidence49. The sequences were clustered as operational taxonomic units (OTU) at 97% similarity level with the UCLUST algorithm47. Sequences were aligned against the Greengenes reference database using PyNAST version 1.2.250. The obtained 16S dataset was filtered, all OTUs assigned to Archaea were discarded and the dataset normalized. Alpha diversity indices (Chao1, Shannon and Simpson) were calculated from 478000 rarefied sequences with QIIME.Statistical analysisAll statistical analyses were done in R (R 4.0.2 GUI 1.72 Catalina build51). The characteristics of the maize plants (n = 3) obtained per plot (n = 3) were averaged and the sequences obtained from the replicate rhizosphere or non-rhizosphere soil were summed (n = 3) per plot before the statistical analysis. A non-parametric test was used to determine the effect of biofertilizer application and time on the plant and soil characteristics with the non-parametric t1way test of the WRS2 package (A collection of robust statistical methods)52. A non-parametric test was used to determine the effect of biofertilizer application or cultivation of maize on the bacterial alpha diversity with the non-parametric t1way test of the WRS2 package52. Heatmaps of the relative abundances of the bacterial groups were constructed with the pheatmap package53. Ordination [principal component analysis (PCA)], multivariate comparison (perMANOVA) and differential abundance (ALDEx2) was done with converted sequence data using the centred log-ratio transform test returned by the aldex.clr argument (ALDEx2 package54). The PCA was done with the vegan package55. Effect of biofertilizer application and cultivation of maize on the bacterial groups was determined using a compositional approach, i.e. analysis of differential abundance taking sample variation into account (aldex.kw argument, ALDEx2 package). A permutational multivariate analysis of variance (perMANOVA) analysis was also done with sequence counts converted using the centred log-ratio transform, i.e. aldex.clr argument (ALDEx2 package (aldex.clr(counts, mc.samples = 128, denom = ”all”, verbose = FALSE, useMC = FALSE)). The adonis2 argument (Vegan package) was used for the perMANOVA analysis to test the effect of cultivation of maize, time and its interaction, biofertilizer application, time and their interaction, and cultivation of maize, biofertilizer application and their interaction on the bacterial community structure (#adonis2(clrcounts ~ maize*biofertilizer, data = code, permutations = 999, method = ”euclidean”). Raw counts were used as input and Monte Carlo Dirichlet instances of the clr transformation values were generated with the function ‘aldex.clr’ of ALDEx2 (v.1.23.2) R package54. Distance pairwise matrices were calculated using the Aitchison distance and the principal coordinate analysis (PCoA) was calculated on the distance matrices with vegan R package55.Informed consentPermission was obtained from the farmer to use the maize seeds he provided.Ethical approvalThe experiment in the greenhouse complied with and was conducted as stipulated by national regulations. More

  • in

    Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host

    The Mara Hyena ProjectThis study uses data and samples from the Mara Hyena Project (approved by MSU IACUC and KWS), a long-term field study of individually known spotted hyenas that have been observed since May 1979. Study hyenas are monitored daily and behavioral, demographic, and ecological data are systematically collected and entered into a database. Here, we used data from four different hyena groups, called clans, as well as historic information about ecological conditions in the Masai Mara National Reserve. We maintained detailed records on the demographics of our study population, including sex, age, and the dates of key life-history milestones such as birth, weaning, dispersal and death. In the ensuing sections, we describe data collection and data processing procedures for assessment of T. gondii infection diagnosis, quantification of demographic and ecological determinants of infection status, and assessment of behavioral (boldness) and fitness (cause of mortality) characteristics hypothesized to be a consequence of positive T. gondii infection. The present analysis includes 168 hyenas, but specific subsamples vary depending on the particular hypothesis being tested.Biospecimen collection and assessment of Toxoplasma gondii exposureAs part of our long-term data collection, we routinely darted study animals in order to collect biological samples and morphological measurements. Of special relevance to this study is our blood collection procedure. We immobilized hyenas using 6.5 mg/kg of tiletamine-zolazepam (Telazol ®) in a pressurized dart fired from a CO2 powered rifle. We then drew blood from the jugular vein into sodium heparin-coated vacuum tubes. After the hyena was secured in a safe place to recover from the anesthesia, we took the samples back to camp where a portion of the collected blood was spun in a centrifuge at 1000 × g for 10 min to separate red and white blood cells from plasma. Plasma was aliquoted into multiple cryogenic vials. Immediately, the blood derivatives, including plasma, were flash frozen in liquid nitrogen where they remained until they were transported on dry ice to a −80 °C freezer in the U.S. All samples remained frozen until time of laboratory analysis for the T. gondii assays.Using archived plasma, we diagnosed individual hyenas using the multi-species ID Screen® Toxoplasmosis Indirect kit (IDVET, Montpellier). This ELISA-based assay tests for serological (IgG) reactivity to T. gondii’s P-30 antigen and has been used in many prior studies of T. gondii in diverse mammals22. The output of the assay is an SP ratio, which is calculated as colorimetric signal of immunoreactivity for a tested blood sample (S) divided by that of a positive control (P), after subtracting the background signal for the ELISA plate (i.e., a negative control) from both S and P. We tested 168 plasma samples from 168 individual spotted hyenas and determined infection status based on the kit manufacturer’s criteria for interpreting S/P: ≤ 40% = negative result, 40%  More

  • in

    Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone

    1.Etiope G, Ciccioli P. Earth’s degassing: a missing ethane and propane source. Science. 2009;323:478.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Etiope G, Drobniak A, Schimmelmann A. Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar Pet Geol. 2013;43:178–86.CAS 
    Article 

    Google Scholar 
    3.Farhan Ul Haque M, Crombie AT, Murrell JC. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome. 2019;7:134.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Shennan JL. Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol. 2006;81:237–56.CAS 
    Article 

    Google Scholar 
    5.Rojo F. Degradation of alkanes by bacteria. Environ Microbiol. 2009;11:2477–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 2013;7:885–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, et al. Thermophilic Archaea activate butane via alkyl-coenzyme M formation. Nature. 2016;539:396–401.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM, Pol A, et al. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol. 2020;11:3193.Article 

    Google Scholar 
    9.Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature. 2007;450:879–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, et al. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol. 2014;16:1867–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, Op den Camp HJM, et al. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol. 2014;80:6782–91.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK. Methane oxidation at 55 oC and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA. 2008;105:300–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature. 2007;450:874–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, et al. Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J. 2012;6:171–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rochman FF, Kwon M, Khadka R, Tamas I, Lopez-Jauregui AA, Sheremet A, et al. Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria. ISME J. 2020;14:714–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep. 2011;3:91–100.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF. Evolutionary history of copper membrane monooxygenases. Front Microbiol. 2018;9:2493.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:fny058.Article 
    CAS 

    Google Scholar 
    19.Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep. 2011;3:390–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev. 2010;34:496–531.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Nyerges G, Stein LY. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett. 2009;297:131–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Sayavedra-Soto LA, Gvakharia B, Bottomley PJ, Arp DJ, Dolan ME. Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol. 2010;86:435–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bédard C, Knowles RPhysiology. biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev. 1989;53:68–84.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Semrau JD. Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol. 2011;2:209.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, et al. Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol. 2010;192:3840–1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Bordel S, Crombie AT, Muñoz R, Murrell JC. Genome scale metabolic model of the versatile methanotroph Methylocella silvestris. Micro Cell Fact. 2020;19:144.CAS 
    Article 

    Google Scholar 
    28.Dunfield PF, Yimga MT, Dedysh SN, Berger U, Liesack W, Heyer J. Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol Ecol. 2002;41:17–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol. 2015;17:3219–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep. 2009;1:293–306.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 2008;105:10203–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Kits KD, Campbell DJ, Rosana AR, Stein LY. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol. 2015;6:1072.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, et al. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genom. 2014;15:914.Article 

    Google Scholar 
    34.Kruse T, Ratnadevi CM, Erikstad H-A, Birkeland N-K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives. BMC Genom. 2019;20:642.Article 
    CAS 

    Google Scholar 
    35.Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct. 2008;3:26.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Erikstad HA, Ceballos RM, Smestad NB, Birkeland NK. Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front Microbiol. 2019;10:1129.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, et al. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev. 2021. https://doi.org/10.1093/femsre/fuab007.38.Carere CR, McDonald B, Peach HA, Greening C, Gapes DJ, Collet C, et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Front Microbiol. 2019;10:1873.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Erikstad HA, Jensen S, Keen TJ, Birkeland NK. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1. Extremophiles. 2012;16:405–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Khadem AF, Pol A, Wieczorek AS, Jetten MSM, Op Den Camp H. Metabolic regulation of “Ca. Methylacidiphilum fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol. 2012;3:266.PubMed 
    PubMed Central 

    Google Scholar 
    41.Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, et al. Growth on formic acid is dependent on intracellular pH homeostasis for the thermoacidophilic methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol. 2021;12:536.Article 

    Google Scholar 
    42.Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN, Hodgkins SB, et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 2018;12:2544–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N, Shizuri Y, et al. Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol. 2007;57:297–301.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Whitman WB, Woyke T, Klenk H-P, Zhou Y, Lilburn TG, Beck BJ, et al. Genomic encyclopedia of bacterial and archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genom Sci. 2015;10:26.Article 
    CAS 

    Google Scholar 
    45.Capaccioni B, Mangani F. Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth Planet Sci Lett. 2001;188:543–55.CAS 
    Article 

    Google Scholar 
    46.Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, et al. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta. 2007;71:3040–55.CAS 
    Article 

    Google Scholar 
    47.Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, et al. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res Solid Earth. 2010;115:B03205.Article 
    CAS 

    Google Scholar 
    48.Tamburello G, Caliro S, Chiodini G, De Martino P, Avino R, Minopoli C, et al. Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. J Volcano Geotherm Res. 2019;384:151–7.CAS 
    Article 

    Google Scholar 
    49.de Bruyn JC, Boogerd FC, Bos P, Kuenen JG. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl Environ Microbiol. 1990;56:2891–4.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol. 2001;67:4495–503.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    54.Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011;27:2957–63.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Li W, Fu L, Niu B, Wu S, Wooley J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform. 2012;13:656–68.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Vallenet D, Calteau A, Dubois M, Amours P, Bazin A, Beuvin M, et al. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res. 2020;48:D579–D89.CAS 

    Google Scholar 
    59.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Thompson JD, Higgins DG, Gibson TJ, CLUSTAL W. improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Hall TA. BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.CAS 

    Google Scholar 
    62.Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Yoon SH, Ha S, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Salamov VSA, Solovyevand A. Automatic annotation of microbial genomes and metagenomic sequences. Li RW, editor. Hauppauge, N.Y.: Nova Science Publishers; 2011. 61–78.65.Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLOS One. 2017;12:e0171410.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011;8:11–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Shen T, Stieglmeier M, Dai J, Urich T, Schleper C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett. 2013;344:121–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Mackay D, Shiu WY. A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem Ref Data. 1981;10:1175–99.CAS 
    Article 

    Google Scholar 
    69.Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009;461:976–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J. 2017;11:2599–610.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, et al. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol. 2011;193:4438–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Hogendoorn C, Pol A, Nuijten GHL, Op den Camp HJM. Methanol production by “Methylacidiphilum fumariolicum” SolV under different growth conditions. Appl Environ Microbiol. 2020;86:e01188–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Crombie AT, Murrell JC. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature. 2014;510:148–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ashraf W, Mihdhir A, Colin Murrell J. Bacterial oxidation of propane. FEMS Microbiol Lett. 1994;122:1–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Hausinger RP. New insights into acetone metabolism. J Bacteriol. 2007;189:671–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Dedysh SN, Dunfield PF. Facultative methane oxidizers. In: McGenity TJ, editor. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Cham: Springer International Publishing; 2019:279–97. https://doi.org/10.1007/978-3-030-14796-9_11.78.Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep. 2011;3:36–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol. 2013;63:1096–104.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Fisher OS, Kenney GE, Ross MO, Ro SY, Lemma BE, Batelu S, et al. Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun. 2018;9:4276.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.El Sheikh AF, Poret-Peterson AT, Klotz MG. Characterization of two new genes, amoR and amoD, in the amo operon of the marine ammonia oxidizer Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol. 2008;74:312–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol. 2014;16:255–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol Biofuels. 2019;12:118.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci. 2012;367:1029–46.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Sluis MK, Larsen RA, Krum JG, Anderson R, Metcalf WW, Ensign SA. Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol. 2002;184:2969–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Kotani T, Yurimoto H, Kato N, Sakai Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol. 2007;189:886–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Furuya T, Nakao T, Kino K. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism. FEMS Microbiol Lett. 2015;362:fnv136.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    88.Koop DR, Casazza JP. Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J Biol Chem. 1985;260:13607–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Patel NA, Crombie A, Slade SE, Thalassinos K, Hughes C, Connolly JB, et al. Comparison of one- and two-dimensional liquid chromatography approaches in the label-free quantitative analysis of Methylocella silvestris. J Proteome Res. 2012;11:4755–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Jain M, Nagar P, Sharma A, Batth R, Aggarwal S, Kumari S, et al. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Sci Rep. 2018;8:5451.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.MacLean MJ, Ness LS, Ferguson GP, Booth IR. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol Microbiol. 1998;27:563–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Detman A, Mielecki D, Pleśniak Ł, Bucha M, Janiga M, Matyasik I. et al. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol Biofuels. 2018;11:116.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Cooper RA, Kornberg HL. The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Proc R Soc Lond B Biol Sci. 1967;168:263–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. Oxidation of methane by a biological dicopper centre. Nature. 2010;465:115–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Ross MO, MacMillan F, Wang J, Nisthal A, Lawton TJ, Olafson BD, et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science. 2019;364:566–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ro SY, Schachner LF, Koo CW, Purohit R, Remis JP, Kenney GE, et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat Commun. 2019;10:2675.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.Liew EF, Tong D, Coleman NV, Holmes AJ. Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. Microbiology. 2014;160:1267–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Nguyen TT, Hwang IY, Na JG, Lee EY. Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. J Ind Microbiol Biotechnol. 2019;46:675–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Hur DH, Nguyen TT, Kim D, et al. EY. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1 J Ind Microbiol Biotechnol. 2017;44:1097–105.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Schoell M. Genetic characterization of natural gases. AAPG Bull. 1983;67:2225–38.CAS 

    Google Scholar  More

  • in

    Ammonia-oxidizing archaea have similar power requirements in diverse marine oxic sediments

    1.Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA. 2012;109:16213–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol. 2014;352:409–25.CAS 
    Article 

    Google Scholar 
    3.D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, et al. Distributions of microbial activities in deep subseafloor sediments. Science 2004;306:2216–21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D’Hondt S. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science. 2012;336:922–5.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci. 2015;8:299–304.Article 
    CAS 

    Google Scholar 
    6.Jørgensen BB, Marshall IPG. Slow microbial life in the seabed. Annu Rev Mar Sci. 2016;8:311–32.Article 

    Google Scholar 
    7.Danovaro R, Dell’Anno A, Corinaldesi C, Rastelli E, Cavicchioli R, Krupovic M, et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv. 2016;2:e1600492.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Engelhardt T, Kallmeyer J, Cypionka H, Engelen B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 2014;8:1503–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Engelhardt T, Orsi WD, Jørgensen BB. Viral activities and life cycles in deep subseafloor sediments. Environ Microbiol Rep. 2015;7:868–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci. 2015;315:167–203.CAS 
    Article 

    Google Scholar 
    11.LaRowe DE, Amend JP. Power limits for microbial life. Front Microbiol. 2015;6:718.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Hoehler TM, Jørgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Zhao R, Mogollón JM, Abby SS, Schleper C, Biddle JF, Roerdink DL, et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA 2020;117:32617–26.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Bradley J, Arndt S, Amend J, Burwicz E, Dale AW, Egger M, et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv 2020;6:eaba0697.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Bradley JA, Amend JP, LaRowe DE. Survival of the fewest: Microbial dormancy and maintenance in marine sediments through deep time. Geobiology 2019;17:43–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Durbin AM, Teske A. Microbial diversity and stratification of south pacific abyssal marine sediments. Environ Microbiol. 2011;13:3219–34.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Tully BJ, Heidelberg JF. Potential mechanisms for microbial energy acquisition in oxic deep-sea sediments. Appl Environ Microbiol. 2016;82:4232–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv 2019;5:eaaw4108.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Hoshino T, Doi H, Uramoto G-I, Wörmer L, Adhikari RR, Xiao N, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci USA 2020;117:27587–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Zhao R, Hannisdal B, Mogollon JM, Jørgensen SL. Nitrifier abundance and diversity peak at deep redox transition zones. Sci Rep. 2019;9:8633.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Jensen K, Sloth NP, Risgaardpetersen N, Rysgaard S, Revsbech NP. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl Environ Microbiol. 1994;60:2094–100.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Middelburg JJ, Soetaert K, Herman PMJ, Heip CHR. Denitrification in marine sediments: a model study. Glob Biogeochemical Cycles. 1996;10:661–73.CAS 
    Article 

    Google Scholar 
    26.Devol AH. Denitrification, anammox, and n2 production in marine sediments. Annu Rev Mar Sci. 2015;7:403–23.Article 

    Google Scholar 
    27.Wankel SD, Germanovich LN, Lilley MD, Genc G, DiPerna CJ, Bradley AS, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4:461–8.CAS 
    Article 

    Google Scholar 
    28.Middelburg JJ. Chemoautotrophy in the ocean. Geophys Res Lett. 2011;38:L24604.Article 
    CAS 

    Google Scholar 
    29.Meador TB, Schoffelen N, Ferdelman TG, Rebello O, Khachikyan A, Könneke M. Carbon recycling efficiency and phosphate turnover by marine nitrifying archaea. Sci Adv 2020;6:eaba1799.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M. et al. Proteomics and comparative genomics of nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–E46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H et al. Genomes of thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. ISME J. 2021. https://doi.org/10.1038/s41396-021-00962-6.32.Boetius A, Ferdelman T, Lochte K. Bacterial activity in sediments of the deep Arabian sea in relation to vertical flux. Deep-Sea Res Part II. 2000;47:2835–75.Article 

    Google Scholar 
    33.Grandel S, Rickert D, Schluter M, Wallmann K. Pore-water distribution and quantification of diffusive benthic fluxes of silicic acid, nitrate and phosphate in surface sediments of the deep arabian sea. Deep-Sea Res Part II. 2000;47:2707–34.CAS 
    Article 

    Google Scholar 
    34.Orcutt BN, Wheat CG, Rouxel O, Hulme S, Edwards KJ, Bach W. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nat Commun. 2013;4:2539.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Ziebis W, McManus J, Ferdelman T, Schmidt-Schierhorn F, Bach W, Muratli J, et al. Interstitial fluid chemistry of sediments underlying the North Atlantic gyre and the influence of subsurface fluid flow. Earth Planet Sci Lett. 2012;323:79–91.Article 
    CAS 

    Google Scholar 
    36.Huang Y. The no3-/o2 respiration ratio of the deep sedimentary biosphere in the pacific gyres. Open Access Master’s Thesis Paper 288, University of Rhode Island. 2014; https://digitalcommons.uri.edu/theses/288.37.Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, et al. Global multi-resolution topography synthesis. Geochem Geophysics Geosystems. 2009;10:Q03014.
    Google Scholar 
    38.Bolleter W, Bushman C, Tidwell PW. Spectrophotometric determination of ammonia as indophenol. Anal Chem. 1961;33:592–4.CAS 
    Article 

    Google Scholar 
    39.Hansen HP, Koroleff F. Determination of nutrients. Methods of seawater analysis. 1999. p. 159−228.40.Expedition 336 Scientists. Sediment and basement contact coring. In Edwards, KJ, Bach, W, Klaus, A, and the Expedition 336 Scientists, Proc IODP, 336: Tokyo (Integrated Ocean Drilling Program Management International, Inc) 2012.41.Mogollón JM, Mewes K, Kasten S. Quantifying manganese and nitrogen cycle coupling in manganese‐rich, organic carbon‐starved marine sediments: Examples from the Clarion−Clipperton fracture zone. Geophys Res Lett. 2016;43:7114–23.Article 
    CAS 

    Google Scholar 
    42.Jørgensen BB. Comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. Ii. Calculation from mathematical models. Geomicrobiol J. 1978;1:29–47.Article 

    Google Scholar 
    43.Grundmanis V, Murray JW. Aerobic respiration in pelagic marine sediments. Geochimica et Cosmochimica Acta. 1982;46:1101–20.CAS 
    Article 

    Google Scholar 
    44.Murray JW, Kuivila KM. Organic matter diagenesis in the northeast pacific: Transition from aerobic red clay to suboxic hemipelagic sediments. Deep-Sea Res Part A. 1990;37:59–80.CAS 
    Article 

    Google Scholar 
    45.Anderson LA, Sarmiento JL. Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochemical Cycles. 1994;8:65–80.CAS 
    Article 

    Google Scholar 
    46.Dick JM. Calculation of the relative metastabilities of proteins using the chnosz software package. Geochemical Trans. 2008;9:10.Article 
    CAS 

    Google Scholar 
    47.Helgeson HC. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci. 1969;267:729–804.CAS 
    Article 

    Google Scholar 
    48.Jung M-Y, Sedlacek CJ, Dimitri Kits K, Mueller AJ, Rhee S-K, Hink L et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. Preprint at bioRxiv https://doi.org/10.1101/2021.03.02.433310. 2021.49.Beman JM, Chow CE, King AL, Feng YY, Fuhrman JA, Andersson A, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA. 2011;108:208–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Zeebe RE, Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes. Gulf Professional Publishing; 2001.51.Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. Nitrosopumilus adriaticus sp. Nov. And nitrosopumilus piranensis sp. Nov., two ammonia-oxidizing archaea from the Adriatic sea and members of the class nitrososphaeria. Int J Syst Evolut Microbiol. 2019;69:1892–902.CAS 
    Article 

    Google Scholar 
    52.Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., nitrosopumilus cobalaminigenes sp. nov., nitrosopumilus oxyclinae sp. nov., and nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum thaumarchaeota. Int J Syst Evolut Microbiol. 2017;67:5067–79.Article 

    Google Scholar 
    53.Tijhuis L, van Loosdrecht MCM, Heijnen JJ. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng. 1993;42:509–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Glover HE. The relationship between inorganic nitrogen oxidation and organic carbon production in batch and chemostat cultures of marine nitrifying bacteria. Arch Microbiol. 1985;142:45–50.CAS 
    Article 

    Google Scholar 
    55.Jahnke RA, Emerson SR, Reimers CE, Schuffert J, Ruttenberg K, Archer D. Benthic recycling of biogenic debris in the eastern tropical Atlantic ocean. Geochimica et Cosmochimica Acta. 1989;53:2947–60.CAS 
    Article 

    Google Scholar 
    56.Nath BN, Mudholkar AV. Early diagenetic processes affecting nutrients in the pore waters of central Indian ocean cores. Mar Geol. 1989;86:57–66.CAS 
    Article 

    Google Scholar 
    57.Van Der Loeff MMR. Oxygen in pore waters of deep-sea sediments. Philos Trans R Soc A. 1990;331:69–84.
    Google Scholar 
    58.Mewes K, Mogollón J, Picard A, Rühlemann C, Eisenhauer A, Kuhn T, et al. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: an example from the Clarion–Clipperton fracture zone. Earth Planet Sci Lett. 2016;433:215–25.CAS 
    Article 

    Google Scholar 
    59.Buchwald C, Homola K, Spivack AJ, Estes ER, Murray RW, Wankel SD. Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere. Glob Biogeochemical Cycles. 2018;32:1688–702.CAS 
    Article 

    Google Scholar 
    60.Volz JB, Mogollón JM, Geibert W, Arbizu PM, Koschinsky A, Kasten S. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton zone, pacific ocean. Deep Sea Res Part I. 2018;140:159–72.CAS 
    Article 

    Google Scholar 
    61.Wang Y, Van, Cappellen P. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta. 1996;60:2993–3014.CAS 
    Article 

    Google Scholar 
    62.Soetaert K, Herman PMJ, Middelburg JJ. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta. 1996;60:1019–40.CAS 
    Article 

    Google Scholar 
    63.Wilson TRS. Evidence for denitrification in aerobic pelagic sediments. Nature 1978;274:354–6.CAS 
    Article 

    Google Scholar 
    64.Brandes JA, Devol AH. Simultaneous nitrate and oxygen respiration in coastal sediments – evidence for discrete diagenesis. J Mar Res. 1995;53:771–97.CAS 
    Article 

    Google Scholar 
    65.Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable wadden sea sediments. ISME J. 2010;4:417–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799–812.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–8.CAS 
    Article 

    Google Scholar 
    68.Henriksen K, Hansen J, Blackburn T. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters. Mar Biol. 1981;61:299–304.CAS 
    Article 

    Google Scholar 
    69.Billen G. Evaluation of nitrifying activity in sediments by dark 14c-bicarbonate incorporation. Water Res. 1976;10:51–7.CAS 
    Article 

    Google Scholar 
    70.Newell SE, Fawcett SE, Ward BB. Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the sargasso sea. Limnol Oceanogr. 2013;58:1491–500.CAS 
    Article 

    Google Scholar 
    71.Zhao R, Dahle H, Ramírez GA, Jørgensen SL. Indigenous ammonia-oxidizing archaea in oxic subseafloor oceanic crust. mSystems 2020;5:e00758–19.PubMed 
    PubMed Central 

    Google Scholar 
    72.Müller V, Hess V. The minimum biological energy quantum. Front Microbiol. 2017;8:2019.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Jørgensen SL, Hannisdal B, Lanzen A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the arctic mid-ocean ridge. Proc Natl Acad Sci USA. 2012;109:2846–55.Article 

    Google Scholar 
    74.Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by nitrospira bacteria. Nature 2015;528:504–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Durbin AM, Teske A. Sediment-associated microdiversity within the marine group i crenarchaeota. Environ Microbiol Rep. 2010;2:693–703.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ. Archaeal amoa gene diversity points to distinct biogeography of ammonia-oxidizing crenarchaeota in the ocean. Environ Microbiol. 2013;15:1647–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature 2015;524:105–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Marschall E, Jogler M, Henßge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the black sea. Environ Microbiol. 2010;12:1348–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.McCollom T, Amend J. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro‐organisms in oxic and anoxic environments. Geobiology 2005;3:135–44.CAS 
    Article 

    Google Scholar 
    82.D’Hondt S, Rutherford S, Spivack AJ. Metabolic activity of subsurface life in deep-sea sediments. Science 2002;295:2067–70.PubMed 
    Article 

    Google Scholar 
    83.Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA. 2004;101:4631–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Gibson B, Wilson DJ, Feil E, Eyre-Walker A. The distribution of bacterial doubling times in the wild. Proc R Soc B: Biol Sci 2018;285:20180789.Article 
    CAS 

    Google Scholar 
    85.Weissman JL, Hou S, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci 2021;118:e2016810118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Steen AD, Kevorkian RT, Bird JT, Dombrowski N, Baker BJ, Hagen SM, et al. Kinetics and identities of extracellular peptidases in subsurface sediments of the white oak river estuary, North Carolina. Appl Environ Microbiol. 2019;85:e00102–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA 2019;116:15645–50.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Cai L, Jørgensen BB, Suttle CA, He M, Cragg BA, Jiao N, et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 2019;13:1857–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Paul SA, Gaye B, Haeckel M, Kasten S, Koschinsky A. Biogeochemical regeneration of a nodule mining disturbance site: trace metals, doc and amino acids in deep-sea sediments and pore waters. Front Mar Sci. 2018;5:117.Article 

    Google Scholar 
    90.D’Hondt S, Pockalny R, Fulfer VM, Spivack AJ. Subseafloor life and its biogeochemical impacts. Nat Commun. 2019;10:3519.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More