More stories

  • in

    Benefit of woodland and other natural environments for adolescents’ cognition and mental health

    1.Giles-Corti, B. et al. City planning and population health: a global challenge. Lancet 388, 2912–2924 (2016).Article 

    Google Scholar 
    2.World Urbanization Prospects: The 2018 Revision ST/ESA/SER.A/420 (UN DESA, 2019).3.Okkels, N., Kristiansen, C. B., Munk-Jørgensen, P. & Sartorius, N. Urban mental health. Curr. Opin. Psychiatry 31, 258–264 (2018).Article 

    Google Scholar 
    4.Robbins, R. N., Scott, T., Joska, J. A. & Gouse, H. Impact of urbanization on cognitive disorders. Curr. Opin. Psychiatry 32, 210–217 (2019).Article 

    Google Scholar 
    5.Sarkar, C., Webster, C. & Gallacher, J. Residential greenness and prevalence of major depressive disorders: a cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet. Health 2, e162–e173 (2018).Article 

    Google Scholar 
    6.Engemann, K. et al. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/PNAS.1807504116 (2019).7.Dadvand, P. et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl Acad. Sci. USA 112, 7937–7942 (2015).CAS 
    Article 

    Google Scholar 
    8.Franco, L. S., Shanahan, D. F. & Fuller, R. A. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health 14, 864 (2017).Article 

    Google Scholar 
    9.Cox, D. T. C. et al. Skewed contributions of individual trees to indirect nature experiences. Landsc. Urban Plan. 185, 28–34 (2019).Article 

    Google Scholar 
    10.Irvine, K. N. et al. Green space, soundscape and urban sustainability: an interdisciplinary, empirical study. Local Environ. 14, 155–172 (2009).Article 

    Google Scholar 
    11.Weber, S. T. & Heuberger, E. The impact of natural odors on affective states in humans. Chem. Senses 33, 441–447 (2008).Article 

    Google Scholar 
    12.Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 15, 9–17 (2010).CAS 
    Article 

    Google Scholar 
    13.Rook, G. A., Raison, C. L. & Lowry, C. A. Can we vaccinate against depression? Drug Discov. Today 17, 451–458 (2012).Article 

    Google Scholar 
    14.Markevych, I. et al. Access to urban green spaces and behavioural problems in children: results from the GINIplus and LISAplus studies. Environ. Int. 71, 29–35 (2014).Article 

    Google Scholar 
    15.Taylor, M. S., Wheeler, B. W., White, M. P., Economou, T. & Osborne, N. J. Research note: urban street tree density and antidepressant prescription rates—a cross-sectional study in London, UK. Landsc. Urban Plan. 136, 174–179 (2015).16.Akpinar, A., Barbosa-Leiker, C. & Brooks, K. R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 20, 407–418 (2016).Article 

    Google Scholar 
    17.Cox, D. T. C., Shanahan, D. F., Hudson, H. L., Fuller, R. A. & Gaston, K. J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 179, 72–80 (2018).Article 

    Google Scholar 
    18.Amoly, E. et al. Green and blue spaces and behavioral development in Barcelona schoolchildren: the BREATHE Project. Environ. Health Perspect. 122, 1351–1358 (2014).Article 

    Google Scholar 
    19.Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, e198209 (2019).Article 

    Google Scholar 
    20.Barton, J. & Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 44, 3947–3955 (2010).CAS 
    Article 

    Google Scholar 
    21.Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379 (2015).Article 

    Google Scholar 
    22.The Mental Health of Children and Young People in London (PHE, 2016).23.Bijnens, E. M., Derom, C., Thiery, E., Weyers, S. & Nawrot, T. S. Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: a longitudinal birth cohort study of twins. PLoS Med. 17, e1003213 (2020).Article 

    Google Scholar 
    24.Milligan, C. & Bingley, A. Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults. Health Place 13, 799–811 (2007).Article 

    Google Scholar 
    25.Toledano, M. B. et al. Cohort profile: the study of cognition, adolescents and mobile phones (SCAMP). Int. J. Epidemiol. 48, 25–26l (2018).Article 

    Google Scholar 
    26.Afifi, M. Gender differences in mental health. Singapore Med. J. 48, 385–391 (2007).CAS 

    Google Scholar 
    27.Guhn, M., Emerson, S. D., Mahdaviani, D. & Gadermann, A. M. Associations of birth factors and socio-economic status with indicators of early emotional development and mental health in childhood: a population-based linkage study. Child Psychiatry Hum. Dev. 51, 80–93 (2020).Article 

    Google Scholar 
    28.Morita, E. et al. Psychological effects of forest environments on healthy adults: shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 121, 54–63 (2007).CAS 
    Article 

    Google Scholar 
    29.Thompson, C. W. et al. Health impacts of environmental and social interventions designed to increase deprived communities’ access to urban woodlands: a mixed-methods study. Public Health Res. 27, 1–172 (2019).Article 

    Google Scholar 
    30.Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).Article 

    Google Scholar 
    31.Liao, J. et al. Residential exposure to green space and early childhood neurodevelopment. Environ. Int. 128, 70–76 (2019).Article 

    Google Scholar 
    32.Picavet, H. S. J. et al. Greener living environment healthier people? Exploring green space, physical activity and health in the Doetinchem Cohort Study. Prev. Med. 89, 7–14 (2016).Article 

    Google Scholar 
    33.Francis, J., Wood, L. J., Knuiman, M. & Giles-Corti, B. Quality or quantity? Exploring the relationship between public open space attributes and mental health in Perth, Western Australia. Soc. Sci. Med. 74, 1570–1577 (2012).Article 

    Google Scholar 
    34.Nutsford, D., Pearson, A. L., Kingham, S. & Reitsma, F. Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city. Health Place 39, 70–78 (2016).Article 

    Google Scholar 
    35.Little, S. & Derr, V. in Research Handbook on Childhoodnature (eds Cutter-Mackenzie-Knowles, A. et al.) 151–178 (Springer, 2020).36.Bell, S. L., Phoenix, C., Lovell, R. & Wheeler, B. W. Seeking everyday wellbeing: the coast as a therapeutic landscape. Soc. Sci. Med. 142, 56–67 (2015).Article 

    Google Scholar 
    37.Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, 903–927 (2019).Article 

    Google Scholar 
    38.Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. Nature and health. Annu. Rev. Public Health 35, 207–228 (2014).Article 

    Google Scholar 
    39.Tarling, R. & Roger, R. D. Socio-economic determinants of crime rates: modelling local area police-recorded crime. Howard J. Crime Justice 55, 207–225 (2016).Article 

    Google Scholar 
    40.Rose, D., Pevalin, D. J. & O’Reilly, K. The National Statistics Socio-economic Classification: Origins, Development and Use (Palgrave MacMillan, 2005).41.Carstairs, V. & Morris, R. Deprivation and health in Scotland. Health Bull. 48, 162–175 (1990).CAS 

    Google Scholar 
    42.2011 Census Aggregate Data (Office of National Statistics, 2012); https://www.ons.gov.uk/census/2011census43.Luciana, M. & Nelson, C. A. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4- to 12-year-old children. Dev. Neuropsychol. 22, 595–624 (2002).Article 

    Google Scholar 
    44.Tombaugh, T. N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214 (2004).Article 

    Google Scholar 
    45.Wechsler, D. The Measurement of Adult Intelligence (Williams & Wilkins, 1944).46.Burgess, P. W. in Methodology of Frontal and Executive Function (ed. Rabbitt, P.) 79–113 (Taylor and Francis, 2004).47.Goodman, R., Meltzer, H. & Bailey, V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Int. Rev. Psychiatry 15, 173–177 (2003).CAS 
    Article 

    Google Scholar 
    48.Cronbach, L. J. Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334 (1951).Article 

    Google Scholar 
    49.The KIDSCREEN Group Europe The Kidscreen Questionnaires: Quality of Life Questionnaires for Children and Adolescents (Pabst Science, 2006).50.Berman, A. H., Liu, B., Ullman, S., Jadbäck, I. & Engström, K. Children’s quality of life based on the KIDSCREEN-27: child self-report, parent ratings and child–parent agreement in a Swedish random population sample. PLoS ONE 11, e0150545 (2016).Article 
    CAS 

    Google Scholar 
    51.Sentinel-2 User Handbook (ESA, 2015).52.Gascon, M. et al. Normalized Difference Vegetation Index (NDVI) as a marker of surrounding greenness in epidemiological studies: the case of Barcelona city. Urban For. Urban Green. 19, 88–94 (2016).Article 

    Google Scholar 
    53.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    54.Open Map—Local (Ordnance Survey, 2019); http://os.uk55.Miura, N. & Jones, S. D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens. Environ. 114, 1069–1076 (2010).Article 

    Google Scholar 
    56.Dadvand, P. et al. The association between greenness and traffic-related air pollution at schools. Sci. Total Environ. 523, 59–63 (2015).CAS 
    Article 

    Google Scholar 
    57.Sunyer, J. et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. 12, e1001792 (2015).Article 
    CAS 

    Google Scholar 
    58.Roberts, S. et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 272, 8–17 (2019).CAS 
    Article 

    Google Scholar 
    59.Tzivian, L. et al. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 218, 1–11 (2015).Article 

    Google Scholar 
    60.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).Article 

    Google Scholar  More

  • in

    Unraveling the ecological processes modulating the population structure of Escherichia coli in a highly polluted urban stream network

    1.2012 Recreational Water Quality Criteria. (U. S. Environmental Protection Agency, 2012).2.Lee, C. M. et al. Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments. Water Res. 40, 2593–2602 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Luo, C. et al. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl. Acad. Sci. 108, 7200–7205 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ishii, S., Ksoll, W. B., Hicks, R. E. & Sadowsky, M. J. Presence and growth of naturalized Escherichia coli in temperate soils from lake superior watersheds. Appl. Environ. Microbiol. 72, 612–621 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Rochelle-Newall, E., Nguyen, T. M. H., Le, T. P. Q., Sengtaheuanghoung, O. & Ribolzi, O. A short review of fecal indicator bacteria in tropical aquatic ecosystems: Knowledge gaps and future directions. Front. Microbiol. 6, 1–15 (2015).Article 

    Google Scholar 
    6.Tymensen, L. D. et al. Comparative accessory gene fingerprinting of surface water Escherichia coli reveals genetically diverse naturalized population. J. Appl. Microbiol. 119, 263–277 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Ishii, S. & Sadowsky, M. J. Escherichia coli in the environment: Implications for water quality and human health. Microbes and environments / JSME 23, 101–108 (2008).Article 

    Google Scholar 
    8.Surbeck, C. Q., Jiang, S. C. & Grant, S. B. Ecological control of fecal indicator bacteria in an urban stream. Environ. Sci. Technol. 44, 631–637 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Jang, J. et al. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 123(3), 570–581. https://doi.org/10.1111/jam.13468 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Van Elsas, J. D., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: Fundamental and public health aspects. ISME J. 5, 173–183 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Jaureguy, F. et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 9, 560 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Clermont, O. et al. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ. Microbiol. 21, 3107–3117 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. https://doi.org/10.1111/1758-2229.12019 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Ratajczak, M. et al. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed. BMC Microbiol. 10, 1–10 (2010).Article 
    CAS 

    Google Scholar 
    15.Johnson, J. R. et al. Phylogenetic backgrounds and virulence associated traits of Escherichia coli isolates from surface waters and diverse animals in Minnesota and Wisconsin. Appl. Environ. Microbiol. 83, 1–33 (2017).CAS 

    Google Scholar 
    16.Petit, F. et al. Change in the structure of Escherichia coli population and the pattern of virulence genes along a rural aquatic continuum. Front. Microbiol. 8, 1–14 (2017).Article 

    Google Scholar 
    17.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    18.Berthe, T., Ratajczak, M., Clermont, O., Denamur, E. & Petit, F. Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Appl. Environ. Microbiol. 79, 4684–4693 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Méric, G., Kemsley, E. K., Falush, D., Saggers, E. J. & Lucchini, S. Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environ. Microbiol. 15, 487–501 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    20.Walk, S. T. The “Cryptic” Escherichia. EcoSal Plus 6, 2 (2015).21.Ingle, D. J. et al. Biofilm formation by and thermal niche and virulence characteristics of Escherichia spp. Appl. Environ. Microbiol. 77, 2695–2700 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Elmqvist, T. The Urban Planet: Knowledge Towards Sustainable Cities (Cambridge University Press, 2018).Book 

    Google Scholar 
    23.Hosen, J. D., Febria, C. M., Crump, B. C. & Palmer, M. A. Watershed urbanization linked to differences in stream bacterial community composition. Front. Microbiol. 8, 1–17 (2017).Article 

    Google Scholar 
    24.Wang, S.-Y., Sudduth, E. B., Wallenstein, M. D., Wright, J. P. & Bernhardt, E. S. Watershed urbanization alters the composition and function of stream bacterial communities. PLoS ONE 6, e22972 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Bernhardt, E. S., Band, L. E., Walsh, C. J. & Berke, P. E. Understanding, managing, and minimizing urban impacts on surface water nitrogen loading. Ann. N. Y. Acad. Sci. 1134, 61–96 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hosen, J. D., McDonough, O. T., Febria, C. M. & Palmer, M. A. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environ. Sci. Technol. 48, 7817–7824 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Hatt, B. E., Fletcher, T. D., Walsh, C. J. & Taylor, S. L. The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ. Manage. 34, 112–124 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Smith, R. M., Kaushal, S. S., Beaulieu, J. J., Pennino, M. J. & Welty, C. Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams. Biogeosciences 14, 2831–2849 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Handler, N. B., Paytan, A., Higgins, C. P., Luthy, R. G. & Boehm, A. B. Human development is linked to multiple water body impairments along the California coast. Estuar. Coasts 29, 860–870 (2006).CAS 
    Article 

    Google Scholar 
    30.Ishii, S. et al. Factors controlling long-term survival and growth of naturalized Escherichia coli populations in temperate field soils. Microbes Environ. 25, 8–14 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Whitman, R. L. et al. Microbes in beach sands: Integrating environment, ecology and public health. Rev. Environ. Sci. Biotechnol. 13, 329–368 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Kleinheinz, G. et al. Effect of aquatic macrophytes on the survival of Escherichia coli in a laboratory microcosm. Lake Reserv. Manage. 25, 149–154 (2009).Article 

    Google Scholar 
    33.Moreira, S. et al. Persistence of Escherichia coli in freshwater periphyton: Biofilm-forming capacity as a selective advantage. FEMS Microbiol. Ecol. 79, 608–618 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Pachepsky, Y. A. & Shelton, D. R. Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Crit. Rev. Environ. Sci. Technol. 41, 1067–1110 (2011).CAS 
    Article 

    Google Scholar 
    35.Walsh, C. J. & Kunapo, J. The importance of upland flow paths in determining urban effects on stream ecosystems. J. N. Am. Benthol. Soc. 28, 977–990 (2009).Article 

    Google Scholar 
    36.McLellan, S. L., Fisher, J. C. & Newton, R. J. The microbiome of urban waters. Int. Microbiol. 18, 141–149 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    37.Newton, R. J. et al. Sewage reflects the microbiomes of human populations. MBio 6, 1–9 (2015).CAS 
    Article 

    Google Scholar 
    38.Richards, S., Paterson, E., Withers, P. J. A. & Stutter, M. Septic tank discharges as multi-pollutant hotspots in catchments. Sci. Total Environ. 542, 854–863 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Sowah, R. A., Habteselassie, M. Y., Radcliffe, D. E., Bauske, E. & Risse, M. Isolating the impact of septic systems on fecal pollution in streams of suburban watersheds in Georgia, United States. Water Res. 108, 330–338 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Ly, D. K. & Chui, T. F. M. Modeling sewage leakage to surrounding groundwater and stormwater drains. Water Sci. Technol. 66, 2659–2665 (2012).PubMed 
    Article 

    Google Scholar 
    41.Graziano, M., Giorgi, A. & Feijoó, C. Science of the Total Environment Multiple stressors and social-ecological traps in Pampean streams (Argentina): A conceptual model. Sci. Total Environ. 765, 142785 (2020).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    42.Graziano, M. et al. Fostering urban transformations in Latin America: Lessons around the ecological management of an urban stream in coproduction with a social movement (Buenos Aires, Argentina). Ecol. Soc. 24, 13 (2019).Article 

    Google Scholar 
    43.Cirelli, A. F. & Ojeda, C. Wastewater management in Greater Buenos Aires, Argentina. Desalination 218, 52–61 (2008).CAS 
    Article 

    Google Scholar 
    44.Elordi, M. L., Lerner, J. E. C. & Porta, A. Evaluación del impacto antrópico sobre la calidad del agua del arroyo Las Piedras, Quilmes, Buenos Aires, Argentina. Acta Bioquimica Clinica Latinoamericana 50, 669–677 (2016).
    Google Scholar 
    45.Censo nacional de población, hogares y viviendas 2010 : censo del Bicentenario : resultados definitivos, Serie B nº 2. (Instituto Nacional de Estadística y Censos, 2012).46.Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J. & Nathan, R. J. Stream Hydrology: An Introduction for Ecologists (Wiley, 2004).
    Google Scholar 
    47.Elosegui, A., Sabater, S. (eds.). Conceptos y técnicas en ecología fluvial. 243-251. (Fundación BBVa, 2009)48.Baird, R. B., Eaton, A. D., Rice, E. W., & Bridgewater, L. (eds.)Standard methods for the examination of water and wastewater, 23. (American Public Health Association, 2017).
    49.Clermont, O., Bonacorsi, S., Bingen, E. & Bonacorsi, P. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66, 4555–4558 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Clermont, O., Gordon, D. M., Brisse, S., Walk, S. T. & Denamur, E. Characterization of the cryptic Escherichia lineages: Rapid identification and prevalence. Environ. Microbiol. 13, 2468–2477 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Lescat, M. et al. Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ. Microbiol. Rep. 5, 9–57 (2013).Article 
    CAS 

    Google Scholar 
    52.Clermont, O. et al. Evidence for a human-specific Escherichia coli clone. Environ. Microbiol. 10, 1000–1006 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Congedo, L. Semi-automatic classification plugin for QGIS. Sapienza Univ, 1-25 (2013).54.Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed 
    Article 

    Google Scholar 
    55.Borcard, D., Gillet, F. & Lengendre, P. Numerical Ecology with R (Springer, 2018).MATH 
    Book 

    Google Scholar 
    56.Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93, 1234–1240 (2012).PubMed 
    Article 

    Google Scholar 
    57.Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    58.Magurran, A. E. Measuring Biological Diversity (Wiley, Hoboken, 2004).
    Google Scholar 
    59.Oksanen, J. et al. Vegan: Ecological Diversity. R Project, 368. http://cran.r-project.org (2013)
    60.Wilkinson, L. & Friendly, M. History corner the history of the cluster heat map. Am. Stat. 63, 179–184 (2009).Article 

    Google Scholar 
    61.Wei, T. et al. Visualization of a correlation matrix. Statistician 56, 316–324 (2017).
    Google Scholar 
    62.Robinaugh, D. J., Millner, A. J. & McNally, R. J. Identifying highly influential nodes in the complicated grief network. J. Abnormal Psychol. 125(6), 747 (2016).Article 

    Google Scholar 
    63.Peres-Neto, P. R., Legendre, P. L., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, Cambridge, 2003).MATH 
    Book 

    Google Scholar 
    66.Simpson, G. Restricted permutations; using the permute package. http://cran.r-project.org (2012).67.Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).Article 

    Google Scholar 
    68.Peipoch, M., Brauns, M., Hauer, F. R., Weitere, M. & Valett, H. M. Ecological simplification: Human influences on Riverscape complexity. Bioscience 65, 1057–1065 (2015).Article 

    Google Scholar 
    69.Stoppe, N. D. C. et al. Worldwide phylogenetic group patterns of Escherichia coli from commensal human and wastewater treatment plant isolates. Front. Microbiol. 8, 2512 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Escobar-Páramo, P. et al. Large-scale population structure of human commensal Escherichia coli isolates. Appl. Environ. Microbiol. 70, 5698–5700 (2004).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Walk, S. T., Alm, E. W., Calhoun, L. M., Mladonicky, J. M. & Whittam, T. S. Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ. Microbiol. 9, 2274–2288 (2007).PubMed 
    Article 

    Google Scholar 
    72.Touchon, M. et al. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet. 16, e1008866 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar  More

  • in

    Healing the land and the academy

    Jennifer Grenz is currently a sessional lecturer at the University of British Columbia and owns a land healing company, Greener This Side. Her recently completed PhD dissertation explores the science of invasive species management and restoration through the lens of an ‘Indigenous ecology’, which she defines as “relationally guided healing of our lands, waters, and relations through intentional shaping of ecosystems by humans to bring a desired balance that meets the fluid needs of communities while respecting and honouring our mutual dependence through reciprocity.” Here we ask about her research and experiences as an Indigenous woman in ecology. More

  • in

    The rates of global bacterial and archaeal dispersal

    1.Kruckeberg AR, Rabinowitz D. Biological aspects of endemism in higher plants. Annu Rev Ecol Syst. 1985;16:447–79.Article 

    Google Scholar 
    2.Ceballos G, Brown JH. Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol. 1995;9:559–68.Article 

    Google Scholar 
    3.Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, et al. Global diversity and distribution of macrofungi. Biodivers Conserv. 2007;16:37–48.Article 

    Google Scholar 
    4.Prideaux GJ, Warburton NM. An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (macropodidae: Marsupialia). Zool J Linn Soc. 2010;159:954–87.Article 

    Google Scholar 
    5.Finlay BJ, Clarke KJ. Ubiquitous dispersal of microbial species. Nature. 1999;400:828.CAS 
    Article 

    Google Scholar 
    6.Whitaker RJ, Grogan DW, Taylor JW. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–978.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Whitfield J. Is everything everywhere? Science. 2005;310:960–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A. Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol. 2006;72:5159–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.DeWit R, Bouvier T. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol. 2006;8:755–8.Article 

    Google Scholar 
    10.van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Whittaker KA, Rynearson TA. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc Natl Acad Sci USA. 2017;114:2651–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Louca S, Shih PM, Pennell MW, Fischer WW, Parfrey LW, Doebeli M. Bacterial diversification through geological time. Nat Ecol Evol. 2018;2:1458–67.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci USA. 2011;108:7850–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 2010;4:191–202.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA. Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA. 2013;110:4651–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc R Soc Lond B Biol Sci. 2014;281:20141988.18.Gonnella G, Böhnke S, Indenbirken D, Garbe-Schönberg D, Seifert R, Mertens C, et al. Endemic hydrothermal vent species identified in the open ocean seed bank. Nat Microbiol. 2016;1:16086 EP.Article 
    CAS 

    Google Scholar 
    19.Louca S, Mazel F, Doebeli M, Parfrey WL. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 2019;17:e3000106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ochman H, Wilson A. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Kuo CH, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct. 2009;4:35–35.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Roberts MS, Cohan FM. Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution. 1995;49:1081–94.PubMed 
    Article 

    Google Scholar 
    23.van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, et al. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE. 2011;6:e19561.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Papke RT, Ramsing NB, Bateson MM, Ward DM. Geographical isolation in hot spring cyanobacteria. Environ Microbiol. 2003;5:650–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hongmei J, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles. 2005;9:325–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Miller SR, Castenholz RW, Pedersen D. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol. 2007;73:4751–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Takacs-Vesbach C, Mitchell K, Jackson-Weaver O, Reysenbach AL. Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. Environ Microbiol. 2008;10:1681–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA. 2009;106:8605–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, et al. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun. 2011;2:163.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Anderson RE, Kouris A, Seward CH, Campbell KM, Whitaker RJ. Structured populations of Sulfolobus acidocaldarius with susceptibility to mobile genetic elements. Genome Biol Evol. 2017;9:1699–710.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Podar PT, Yang Z, Björnsdóttir SH, Podar M. Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Front Microbiol. 2020;11:1625.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. Genbank. Nucleic Acids Res. 2015;44:D67–D72.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA. 2005;102:2567–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.CAS 
    Article 

    Google Scholar 
    35.Olm MR, Crits-Christoph A, Diamond S, Lavy A, Carnevali PBM, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020;5:e00731-19.36.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Shapiro BJ. What microbial population genomics has taught us about speciation. In: Polz MF, Rajora OP, editors. Population Genomics: Microorganisms. Cham, Switzerland: Springer International Publishing; 2019. p. 31–47.38.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–27.CAS 

    Google Scholar 
    40.Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15.Article 

    Google Scholar 
    41.Louca S. Phylogeographic estimation and simulation of global diffusive dispersal. Syst Biol. 2021;70:340–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Denef VJ, Banfield JF. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science. 2012;336:462–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bouckaert R, Cartwright R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ. 2016;4:e2406.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Brillinger DR. A particle migrating randomly on a sphere. In: Selected Works of David Brillinger. Cham, Switzerland: Springer; 2012. p. 73–87.46.Ghosh A, Samuel J, Sinha SA. “Gaussian” for diffusion on the sphere. Europhys Lett. 2012;98:30003.Article 
    CAS 

    Google Scholar 
    47.Castenholz RW. The biogeography of hot spring algae through enrichment cultures. SIL Commun. 1978;21:296–315. 1953-1996
    Google Scholar 
    48.Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Micro. 2007;5:316–23.CAS 
    Article 

    Google Scholar 
    49.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Smith DJ, Jaffe DA, Birmele MN, Griffin DW, Schuerger AC, Hee J, et al. Free tropospheric transport of microorganisms from Asia to North America. Micro Ecol. 2012;64:973–85.CAS 
    Article 

    Google Scholar 
    51.Pagel M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B Biol Sci. 1994;255:37–45.Article 

    Google Scholar 
    52.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Anderson D. The regulation of fishing and related activities in exclusive economic zones. In: Modern Law Sea, Publications on Ocean Development, vol. 59, chap. 11. Leiden, The Netherlands: Brill Nijhoff; 2008. p. 209–27.54.Bullock JM, Clarke RT. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia. 2000;124:506–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Brynjarsdóttir J, O’Hagan A. Learning about physical parameters: the importance of model discrepancy. Inverse Probl. 2014;30:114007.Article 

    Google Scholar 
    56.Bell T. Experimental tests of the bacterial distance-decay relationship. ISME J. 2010;4:1357–65.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    58.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2014;25:1043–55.Article 
    CAS 

    Google Scholar 
    59.Chambat F, Valette B. Mean radius, mass, and inertia for reference Earth models. Phys Earth Planet Inter. 2001;124:237–53.Article 

    Google Scholar 
    60.Data NS, (SEDAC) AC Gridded Population of the World, Version 4 (GPW v4): Population Density, Revision 11. Tech. rep., Palisades, NY: Center for International Earth Science Information Network – CIESIN – Columbia University. 2018. Accessed November 23, 2020.61.Price MN, Dehal PS, Arkin AP. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Britton T, Anderson CL, Jacquet D, Lundqvist S, Bremer K. Estimating divergence times in large phylogenetic trees. Syst Biol. 2007;56:741–52.PubMed 
    Article 

    Google Scholar 
    63.Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nat Commun. 2019;10:5477.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Perrin F. Étude mathématique du movement brownien de rotation. In: Annales scientifiques del’École Normale Supérieure, vol. 45. Paris, France: Elsevier; with 1928. p. 1–51.65.Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34:1053–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Bloomquist EW, Lemey P, Suchard MA. Three roads diverged? routes to phylogeographic inference. Trends Ecol Evol. 2010;25:626–32.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol. 2010;27:1877–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Faria NR, Suchard MA, Rambaut A, Lemey P. Toward a quantitative understanding of viral phylogeography. Curr Opin Virol. 2011;1:423–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Faria NR, Suchard MA, Abecasis A, Sousa JD, Ndembi N, Bonfim I, et al. Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon. Infect Genet Evol. 2012;12:453–60.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lange K. Diffusion processes. In: Applied Probability, chap. 11. New York, NY: Springer New York; 2010. p. 269–95.71.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using minhash. Genome Biol. 2016;17:132.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019;176:649–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Criscuolo A, Gascuel O. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinforma. 2008;9:166.Article 
    CAS 

    Google Scholar 
    74.Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.75.Kinene T, Wainaina J, Maina S, Boykin LM, Kliman RM. Methods for rooting trees, vol. 3. Oxford: Academic Press; 2016. p. 489–93.76.van Rossum G. Python tutorial. Tech. Rep. CS-R9526, Amsterdam: Centrum voor Wiskunde en Informatica (CWI); 1995. More

  • in

    Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules

    1.Cheverud, J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 (1996).Article 

    Google Scholar 
    2.Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nat. Rev. Genet. 8, 921–931 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).Article 

    Google Scholar 
    5.Klingenberg, C. P. Studying morphological integration and modularity at multiple levels: concepts and analysis. Phil. Trans. R. Soc. B 369, 20130249 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hallgrímsson, B. et al. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36, 355–376 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Olson, E. & Miller, R. Morphological Integration (Univ. of Chicago Press, 1958).8.Pigliucci, M. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. 6, 265–272 (2003).Article 

    Google Scholar 
    9.Eble, G. J. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 253–273 (Oxford Univ. Press, 2004).10.Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Phil. Trans. R. Soc. B 369, 20130254 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Goswami, A., Binder, W. J., Meachen, J. & O’Keefe, F. R. The fossil record of phenotypic integration and modularity: a deep-time perspective on developmental and evolutionary dynamics. Proc. Natl Acad. Sci. USA 112, 4891–4896 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Wagner, G. P. & Schwenk, K. Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. Evol. Biol. 31, 155–217 (2000).
    Google Scholar 
    13.Hallgrímsson, B., Willmore, K. & Hall, B. K. Canalization, developmental stability, and morphological integration in primate limbs. Am. J. Phys. Anthropol. 119, 131–158 (2002).Article 

    Google Scholar 
    14.Gould, S. J. A developmental constraint in cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43, 516–539 (1989).PubMed 

    Google Scholar 
    15.Arthur, W. Developmental drive: an important determinant of the direction of phenotypic evolution. Evol. Dev. 3, 271–278 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Klingenberg, C. P. in Variation: A Central Concept in Biology (eds Hallgrímsson, B. & Hall, B.) 219–247 (Elsevier, 2005).17.Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bell, E., Andres, B. & Goswami, A. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. J. Evol. Biol. 24, 2586–2599 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gatesy, S. M. & Dial, K. P. Locomotor modules and the evolution of avian flight. Evolution 50, 331–340 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebr. Paleontol. 17, 308–329 (1997).Article 

    Google Scholar 
    21.Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S. & Bairlein, F. Functional morphology and integration of corvid skulls—a 3D geometric morphometric approach. Front. Zool. 6, 2 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Bright, J. A., Marugán-Lobón, J., Rayfield, E. J. & Cobb, S. N. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evol. Biol. 19, 104 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Navalón, G., Marugán-Lobón, J., Bright, J. A., Cooney, C. R. & Rayfield, E. J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 4, 270–278 (2020).PubMed 
    Article 

    Google Scholar 
    25.Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Shatkovska, O. V. & Ghazali, M. Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J. Anat. 236, 274–287 (2020).PubMed 
    Article 

    Google Scholar 
    27.Hieronymus, T. L. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves). BMC Evol. Biol. 15, 30 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Felice, R. N., Tobias, J. A., Pigot, A. L. & Goswami, A. Dietary niche and the evolution of cranial morphology in birds. Proc. R. Soc. B 286, 20182677 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Grant, R. B. & Grant, P. R. What Darwin’s finches can teach us about the evolutionary origin and regulation of biodiversity. BioScience 53, 965–975 (2003).Article 

    Google Scholar 
    32.Van de Ven, T., Martin, R., Vink, T., McKechnie, E. & Cunningham, S. Regulation of heat exchange across the hornbill beak: functional similarities with toucans? PLoS ONE 11, e0154768 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Dececchi, T. A. & Larsson, H. C. Body and limb size dissociation at the origin of birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution 67, 2741–2752 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Nudds, R., Dyke, G. & Rayner, J. Forelimb proportions and the evolutionary radiation of Neornithes. Proc. R. Soc. Lond. B 271, S324–S327 (2004).
    Google Scholar 
    37.Benson, R. B. & Choiniere, J. N. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B 280, 20131780 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Videler, J. J. Avian Flight (Oxford Univ. Press, 2006).39.Carrano, M. T. & Sidor, C. A. Theropod hind limb disparity revisited: comments on Gatesy and Middleton (1997). J. Vertebr. Paleontol. 19, 602–605 (1999).Article 

    Google Scholar 
    40.Middleton, K. M. & Gatesy, S. M. Theropod forelimb design and evolution. Zool. J. Linn. Soc. 128, 149–187 (2000).Article 

    Google Scholar 
    41.Young, N. M., Linde-Medina, M., Fondon, J. W., Hallgrímsson, B. & Marcucio, R. S. Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. Nat. Ecol. Evol. 1, 0095 (2017).Article 

    Google Scholar 
    42.Martín-Serra, A. & Benson, R. B. Developmental constraints do not influence long-term phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and integration patterns. Am. Nat. 195, 547–560 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Dumont, E. R. et al. Selection for mechanical advantage underlies multiple cranial optima in New World leaf-nosed bats. Evolution 68, 1436–1449 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).Article 

    Google Scholar 
    45.Rossoni, D. M., Costa, B. M., Giannini, N. P. & Marroig, G. A multiple peak adaptive landscape based on feeding strategies and roosting ecology shaped the evolution of cranial covariance structure and morphological differentiation in phyllostomid bats. Evolution 73, 961–981 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).CAS 
    Article 

    Google Scholar 
    47.Bjarnason, A. & Benson, R. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM 7, e125 (2021).Article 

    Google Scholar 
    48.Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    49.R Core Team R: A Language and Environment for Statistical Computing v.3.6.3 (R Foundation for Statistical Computing, 2020).50.Birds of the World (The Cornell Lab of Ornithology, 2021); https://birdsoftheworld.org/bow/home51.Dunning, J. B. Jr CRC Handbook of Avian Body Masses (CRC, 1992).52.The IUCN Red List of Threatened Species (IUCN, 2019); https://www.iucnredlist.org/53.Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    54.Taylor, G. & Thomas, A. Evolutionary Biomechanics (Oxford Univ. Press, 2014).55.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extensions. R package version 2.1.0 (2019).56.Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157 (1989).CAS 
    Article 

    Google Scholar 
    57.Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).PubMed 
    Article 

    Google Scholar 
    58.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and nonlinear mixed effects models. R package version 3.1-145 (2020).59.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 
    CAS 

    Google Scholar 
    60.Goodall, C. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. B 53, 285–321 (1991).
    Google Scholar 
    61.Adams, D., Collyer, M. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.2.1 (2020).62.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    63.Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS ONE 9, e94335 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Melo, D., Garcia, G., Hubbe, A., Assis, A. P. & Marroig, G. Evolqg—an R package for evolutionary quantitative genetics [version 3; referees: 2 approved, 1 approved with reservations]. F1000Research 4, 925 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Goswami, A. & Polly, P. D. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 16, 213–243 (2010).Article 

    Google Scholar 
    68.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 (2019). More

  • in

    Lethal coalitionary attacks of chimpanzees (Pan troglodytes troglodytes) on gorillas (Gorilla gorilla gorilla) in the wild

    1.Gómez, J. M., Verdú, M., González-Megías, A. & Méndez, M. The phylogenetic roots of human lethal violence. Nature 538, 233–237. https://doi.org/10.1038/nature19758 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Darwin, C. The Descent of Man, and Selection in Relation to Sex. (Appleton, 1872).3.Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Smith, J. M. & Price, G. R. The logic of animal conflict. Nature 246, 15–18. https://doi.org/10.1038/246015a0 (1973).ADS 
    MATH 
    Article 

    Google Scholar 
    5.Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, 507–508. https://doi.org/10.1016/j.cub.2010.04.021 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Wrangham, R. W. Evolution of coalitionary killing. Yearb. Phys. Anthropol. 42, 1–30 (1999).Article 

    Google Scholar 
    7.Boesch, C. et al. Intergroup conflicts among chimpanzees in Taı National Park: Lethal violence and the female perspective. Am. J. Primatol. 70, 519–532. https://doi.org/10.1002/ajp.20524 (2008).Article 
    PubMed 

    Google Scholar 
    8.Robbins, M. M. & Robbins, A. M. Simulation of the population dynamics and social structure of the Virunga Mountain gorillas. Am. J. Primatol. 63, 201–223. https://doi.org/10.1002/ajp.20052 (2004).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    9.Watts, D. P. Infanticide in Mountain gorillas: New cases and a reconsideration of evidence. Ethology 81, 1–18 (1989).ADS 
    Article 

    Google Scholar 
    10.Yamagiwa, J., Kahekwa, J. & Basabose, A. K. Infanticide and social flexibility in the genus Gorilla. Primates 50, 293–303. https://doi.org/10.1007/s10329-009-0163-0 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417. https://doi.org/10.1038/nature13727 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Marzec, A. M. et al. The dark side of the red ape: Male-mediated lethal female competition in Bornean orangutans. Behav. Ecol. Sociobiol. 70, 459–466. https://doi.org/10.1007/s00265-015-2053-3 (2016).Article 

    Google Scholar 
    13.Goodall, J. The Chimpanzees of Gombe: Patterns of Behaviour. (Belknap Press of Harvard University Press, 1986).14.Nishida, T., Hiraiwa-Hasegawa, M., Hasegawa, T. & Takahata, Y. Group extinction and female transfer in wild chimpanzees in the Mahale National Park, Tanzania. Z. Tierpsychol. 67, 284–301 (1985).Article 

    Google Scholar 
    15.Mitani, J. C. & Watts, D. P. Correlates of territorial boundary patrol behaviour in wild chimpanzees. Anim. Behav. 70, 1079–1086. https://doi.org/10.1016/j.anbehav.2005.02.012 (2005).Article 

    Google Scholar 
    16.Wrangham, R. The Goodness Paradox: The Strange Relationship Between Virtue and Violence in Human Evolution. (Pantheon, 2019).17.Boehm, C. In Us Against Them: Coalitions and Alliances in Humans and Other Animals (eds Harcourt, A. & De Waal, F. B. M.) 37–173 (Oxford University Press, 1992).18.Bermejo, M. Home-range use and intergroup encounters in western gorillas (Gorilla g. gorilla) at Lossi Forest, North Congo. Am. J. Primatol. 64, 223–232. https://doi.org/10.1002/ajp.20073 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Kaessmann, H. & Pääbo, S. The genetical history of humans and the great apes. J. Intern. Med. 251, 1–18. https://doi.org/10.1046/j.1365-2796.2002.00907.x (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Robbins, M. M. & Robbins, A. M. Variation in the social organization of gorillas: Life history and socioecological perspectives. Evol. Anthropol. Issues News Rev. 27, 218–233. https://doi.org/10.1002/evan.21721 (2018).Article 

    Google Scholar 
    21.Yamagiwa, J., Basabose, K., Kaleme, K. & Yumoto, T. In Gorilla Biology: A Multidisciplinary Perspective (eds Taylor, A. B. & Goldsmith, M. L.) 328–356 (Cambridge University Press, 2003).22.Robbins, M. M. et al. Social structure and life-history patterns in western gorillas (Gorilla gorilla gorilla). Am. J. Primatol. 64, 145–159. https://doi.org/10.1002/ajp.20069 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Bradley, B. J., Doran-Sheehy, D. M., Lukas, D., Boesch, C. & Vigilant, L. Dispersed male networks in western gorillas. Curr. Biol. 14, 510–513. https://doi.org/10.1016/j.cub.2004.02.062 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Sicotte, P. Inter-group encounters and female transfer in mountain gorillas: Influence of group composition on male behavior. Am. J. Primatol. 30, 21–36. https://doi.org/10.1002/ajp.1350300103 (1993).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Rosenbaum, S., Vecellio, V. & Stoinski, T. Observations of severe and lethal coalitionary attacks in wild mountain gorillas. Sci. Rep. 6, 37018. https://doi.org/10.1038/srep37018 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Morrison, R. E., Dunn, J. C., Illera, G., Walsh, P. D. & Bermejo, M. Western gorilla space use suggests territoriality. Sci. Rep. 10, 3692. https://doi.org/10.1038/s41598-020-60504-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508. https://doi.org/10.1086/303189 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dayan, T. & Simberloff, D. Size patterns among competitors: Ecological character displacement and character release in mammals, with special reference to island populations. Mammal Rev. 28, 99–124. https://doi.org/10.1046/j.1365-2907.1998.00029.x (1998).Article 

    Google Scholar 
    29.Taylor, R. J. Predation. 166 (Springer Science & Business Media, 2013).30.Methion, S. & Díaz López, B. Spatial segregation and interspecific killing of common dolphins (Delphinus delphis) by bottlenose dolphins (Tursiops truncatus). Acta Ethol. https://doi.org/10.1007/s10211-021-00363-0 (2021).Article 

    Google Scholar 
    31.Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330. https://doi.org/10.1146/annurev.es.20.110189.001501 (1989).Article 

    Google Scholar 
    32.Polis, G. A. & Holt, R. D. Intraguild predation: The dynamics of complex trophic interactions. Trends Ecol. Evol. 7, 151–154. https://doi.org/10.1016/0169-5347(92)90208-S (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.de Oliveira, T. & Pereira, J. Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J. Mamm. Evol. https://doi.org/10.1007/s10914-013-9251-4 (2014).Article 

    Google Scholar 
    34.Surbeck, M. & Hohmann, G. Primate hunting by bonobos at LuiKotale, Salonga National Park. Curr. Biol. 18, 906–907. https://doi.org/10.1016/j.cub.2008.08.040 (2008).Article 
    CAS 

    Google Scholar 
    35.Hohmann, G. & Fruth, B. New records on prey capture and meat eating by bonobos at Lui Kotale, Salonga National Park, Democratic Republic of Congo. Folia Primatol. 79, 103–110. https://doi.org/10.1159/000110679 (2008).Article 

    Google Scholar 
    36.Stanford, C. B. Chimpanzee hunting behavior and human evolution. Am. Sci. 83, 256–261 (1995).ADS 

    Google Scholar 
    37.Newton-Fisher, N. E. In Handbook of Paleoanthropology (eds Winfried, H. & Ian, T.) 1295–1320 (Springer, 2007).38.Mitani, J. C. & Watts, D. P. Demographic influences on the hunting behavior of chimpanzees. Am. J. Phys. Anthropol. 109, 439–454. https://doi.org/10.1002/(SICI)1096-8644(199908)109:43.0.CO;2-3 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Mitani, J. C. & Watts, D. P. Why do chimpanzees hunt and share meat?. Anim. Behav. 61, 915–924. https://doi.org/10.1006/anbe.2000.1681 (2001).Article 

    Google Scholar 
    40.Nishida, T., Uehara, S. & Nyundo, R. Predatory behavior among wild chimpanzees of the Mahale mountains. Primates 20, 1–20. https://doi.org/10.1007/BF02373826 (1979).Article 

    Google Scholar 
    41.Boesch, C. & Boesch, H. Hunting behavior of wild chimpanzees in the Tai National Park. Am. J. Phys. Anthropol. 78, 547–573. https://doi.org/10.1002/ajpa.1330780410 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Watts, D. P. & Mitani, J. C. Hunting behavior of chimpanzees at Ngogo, Kibale National Park, Uganda. Int. J. Primatol. 23, 1–28. https://doi.org/10.1023/A:1013270606320 (2002).Article 

    Google Scholar 
    43.Pika, S. et al. Wild chimpanzees (Pan troglodytes troglodytes) exploit tortoises (Kinixys erosa) via percussive technology. Sci. Rep. 9, 7. https://doi.org/10.1038/s41598-019-43301-8 (2019).CAS 
    Article 

    Google Scholar 
    44.Basabose, K. & Yamagiwa, J. Predation on mammals by chimpanzees in the montane forest of Kahuzi, Zaire. Primates 38, 45–55. https://doi.org/10.1007/BF02385921 (1997).Article 

    Google Scholar 
    45.Klein, H. et al. Hunting of mammals by central chimpanzees (Pan troglodytes troglodytes) in the Loango National Park, Gabon. Primates 62, 267–278. https://doi.org/10.1007/s10329-020-00885-4 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Sanz, C., Morgan, D., Strindberg, S. & Onononga, J. R. Distinguishing between the nests of sympatric chimpanzees and gorillas. J. Appl. Ecol. 44, 263–272. https://doi.org/10.1111/j.1365-2664.2007.01278.x (2007).Article 

    Google Scholar 
    47.Harcourt, A. H. Is the gorilla a threatened species? How should we judge? Biol. Conserv. 75, 165–176. https://doi.org/10.1016/0006-3207(95)00059-3 (1996).Article 

    Google Scholar 
    48.Matthews, A. & Matthews, A. Survey of gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in Southwestern Cameroon. Primates 45, 15–24. https://doi.org/10.1007/s10329-003-0058-4 (2004).PubMed 
    Article 

    Google Scholar 
    49.Arandjelovic, M. et al. Effective non-invasive genetic monitoring of multiple wild western gorilla groups. Biol. Conserv. 143, 1780–1791. https://doi.org/10.1016/j.biocon.2010.04.030 (2010).Article 

    Google Scholar 
    50.Arandjelovic, M., Head, J., Rabanal, L. I., Schubert, G., Mettke, E., Boesch, C., Robbins, M. M. & Vigilant, L. Non-invasive genetic monitoring of wild central chimpanzees. PLoS One 6(3) (2011).51.Martínez-Íñigo, L., Baas, P., Klein, H., Pika, S. & Deschner, T. Intercommunity interactions and killings in central chimpanzees (Pan troglodytes troglodytes) from Loango National Park, Gabon. Primates, 1–14 https://doi.org/10.1007/s10329-021-00921-x (2021).52.Furuichi, T., Inagaki, H. & Angoue-Ovono, S. Population density of chimpanzees and gorillas in the Petit Loango Reserve, Gabon: Employing a new method to distinguish between nests of the two species. Int. J. Primatol. 18, 1029–1046. https://doi.org/10.1023/A:1026356432486 (1997).Article 

    Google Scholar 
    53.Poulsen, J. R. & Clark, C. J. Densities, distributions, and seasonal movements of gorillas and chimpanzees in swamp forest in Northern Congo. Int. J. Primatol. 25, 285–306. https://doi.org/10.1023/B:IJOP.0000019153.50161.58 (2004).Article 

    Google Scholar 
    54.Morgan, D., Sanz, C., Onononga, J. R. & Strindberg, S. Ape abundance and habitat use in the Goualougo Triangle, Republic of Congo. Int. J. Primatol. 27, 147–179. https://doi.org/10.1007/s10764-005-9013-0 (2006).Article 

    Google Scholar 
    55.Vieira, W. F., Kerry, C. & Hockings, K. J. A comparison of methods to determine chimpanzee home-range size in a forest–farm mosaic at Madina in Cantanhez National Park, Guinea-Bissau. Primates 60, 355–365. https://doi.org/10.1007/s10329-019-00724-1 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.r-project.org/.57.Calenge, C. The package adehabitat for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035 (2006).Article 

    Google Scholar 
    58.Fossey, D. Vocalizations of the mountain gorilla (Gorilla gorilla beringei). Anim. Behav. 20, 36–53. https://doi.org/10.1016/S0003-3472(72)80171-4 (1972).Article 

    Google Scholar 
    59.Hagemann, L. et al. Long-term inference of population size and habitat use in a socially dynamic population of wild western lowland gorillas. Conserv. Genet. 20, 1303–1314. https://doi.org/10.1007/s10592-019-01209-w (2019).Article 

    Google Scholar 
    60.Boesch, C. Cooperative hunting roles among taï chimpanzees. Hum. Nat. 13, 27–46. https://doi.org/10.1007/s12110-002-1013-6 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Wilkinson, R., Leudar, I. & Pika, S. In Developments in Primate Gesture Research (eds Simone, P. & Katja, L.) 199–221 (John Benjamins Publishing Company, 2012).62.Yamagiwa, J. & Basabose, A. K. Diet and seasonal changes in sympatric gorillas and chimpanzees at Kahuzi-Biega National Park. Primates 47, 74–90. https://doi.org/10.1007/s10329-005-0147-7 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Stanford, C. B. & Nkurunungi, J. B. Behavioral ecology of sympatric chimpanzees and gorillas in Bwindi Impenetrable National Park, Uganda: Diet. Int. J. Primatol. 24, 901–918. https://doi.org/10.1023/A:1024689008159 (2003).Article 

    Google Scholar 
    64.Morgan, D. & Sanz, C. In Feeding Ecology in Apes and Other Primates (eds Hohmann, G., Robbins, M. M., & Boesch, C.) 97–122 (Cambridge University Press, 2006).65.Yamagiwa, J. & Basabose, A. K. In Feeding Ecology in Apes and Other Primates. 73–96 (Cambridge University Press, 2006).66.Tutin, C. E. & Fernandez, M. Composition of the diet of chimpanzees and comparisons with that of sympatric lowland gorillas in the Lopé Reserve, Gabon. Am. J. Primatol. 30, 195–211 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Jones, C. & Sabater Pi, J. Comparative Ecology of Gorilla gorilla (Savage & Wyman) and Pan troglodytes (Blumenbuch) in Rio Muni, West Africa. (S. Karger, 1971).68.Basabose, A. K. & Yamagiwa, J. Factors affecting nesting site choice in chimpanzees at Tshibati, Kahuzi-Biega National Park: Influence of sympatric gorillas. Int. J. Primatol. 23, 263–282 (2002).Article 

    Google Scholar 
    69.Walsh, P. D., Breuer, T., Sanz, C., Morgan, D. & Doran-Sheehy, D. Potential for Ebola transmission between gorilla and chimpanzee social groups. Am. Nat. 169, 684–689. https://doi.org/10.1086/513494 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Stanford, C. B. The behavioral ecology of sympatric African apes: Implications for understanding fossil hominoid ecology. Primates 47, 91–101. https://doi.org/10.1007/s10329-005-0148-6 (2006).PubMed 
    Article 

    Google Scholar 
    71.Eckardt, W. & Zuberbühler, K. Cooperation and competition in two forest monkeys. Behav. Ecol. 15, 400–411. https://doi.org/10.1093/beheco/arh032 (2004).Article 

    Google Scholar 
    72.Rimbach, R., Pardo-Martinze, A., Montes-Rojas, A., Di Fiore, A. & Link, A. Interspecific infanticide and infant-directed aggression by spider monkeys (Ateles hybridus) in a fragmented forest in Colombia. Am. J. Primatol. 74, 990–997. https://doi.org/10.1002/ajp.22052 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536. https://doi.org/10.1086/501033 (2006).PubMed 
    Article 

    Google Scholar 
    74.Head, J., Boesch, C., Makaga, L. & Robbins, M. Sympatric Chimpanzees (Pan troglodytes troglodytes) and Gorillas (Gorilla gorilla gorilla) in Loango National Park, Gabon: Dietary composition, seasonality, and intersite comparisons. Int. J. Primatol. 32, 755–775. https://doi.org/10.1007/s10764-011-9499-6 (2011).Article 

    Google Scholar 
    75.Yamagiwa, J., Mwanza, N., Yumoto, T. & Maruhashi, T. Seasonal change in the composition of the diet of eastern lowland gorillas. Primates 35, 1–14. https://doi.org/10.1007/BF02381481 (1994).Article 

    Google Scholar 
    76.Kuroda, S. J., Nishihara, T., Suzuki, S. & Oko, R. A. In Great Ape Societies (eds McGrew, W. C., Marchant, L. F., & Nishida, T.) 71–81 (Cambridge University Press, 1996).77.Rogers, L. L. & Mech, L. D. Interactions of wolves and black bears in Northeastern Minnesota. J. Mammal. 62, 434–436. https://doi.org/10.2307/1380735 (1981).Article 

    Google Scholar 
    78.Eaton, R. Interference competition among carnivores: A model for the evolution of social behavior. Carnivore 2, 82–90 (1979).
    Google Scholar 
    79.Arim, M. & Marquet, P. A. Intraguild predation: A widespread interaction related to species biology. Ecol. Lett. 7, 557–564. https://doi.org/10.1111/j.1461-0248.2004.00613.x (2004).Article 

    Google Scholar 
    80.Watts, D. P., Potts, K. B., Lwanga, J. S. & Mitani, J. C. Diet of chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 1. Diet composition and diversity. Am. J. Primatol. 74, 114–129. https://doi.org/10.1002/ajp.21016 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Remis, M. J., Dierenfeld, E., Mowry, C. & Carroll, R. Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central African Republic. Int. J. Primatol. 22, 807–836. https://doi.org/10.1023/A:1012021617737 (2001).Article 

    Google Scholar 
    82.Watts, D. P., Muller, M., Amsler, S. J., Mbabazi, G. & Mitani, J. C. Lethal intergroup aggression by chimpanzees in Kibale National Park, Uganda. Am. J. Primatol. 68, 161–180. https://doi.org/10.1002/ajp.20214 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Watts, D. P. & Mitani, J. C. Infanticide and cannibalism by male chimpanzees at Ngogo, Kibale National Park, Uganda. Primates 41, 357–365. https://doi.org/10.1007/BF02557646 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Furuichi, T. Variation in intergroup relationships among species and among and within local populations of African Apes. Int. J. Primatol. 41, 1–21. https://doi.org/10.1007/s10764-020-00134-x (2020).Article 

    Google Scholar 
    85.Williams, J. M., Oehlert, G., Carlis, J. & Pusey, A. E. Why do male chimpanzees defend a group range? Reassessing male territoriality. Anim. Behav. 68, 523–532. https://doi.org/10.1016/j.anbehav.2003.09.015 (2004).Article 

    Google Scholar 
    86.Bush, E. R. et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 370, 1219–1222. https://doi.org/10.1126/science.abc7791 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    87.Plavcan, J. M. Social behavior of early hominins. Int. J. Primatol. 33, 1247–1250. https://doi.org/10.1007/s10764-012-9641-0 (2012).Article 

    Google Scholar 
    88.Kissel, M. & Kim, N. C. The emergence of human warfare: Current perspectives. Am. J. Phys. Anthropol. 168, 141–163. https://doi.org/10.1002/ajpa.23751 (2019).Article 
    PubMed 

    Google Scholar 
    89.Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3. https://doi.org/10.1126/sciadv.1600946 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Altmann, J. Observational study of behaviour: Sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.CyberTracker Conservation NPC. CyberTracker Conservation. (2021).92.Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264. https://doi.org/10.1016/j.cub.2008.01.012 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    93.Leendertz, F. H. et al. Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430, 451–452. https://doi.org/10.1038/nature02722 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Induced plasticity alters responses to conspecific interactions in seedlings of a perennial grass

    1.Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 155, 115–155 (1965).Article 

    Google Scholar 
    2.Sultan, S. E. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44, 363–383 (1995).Article 

    Google Scholar 
    3.Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).Article 

    Google Scholar 
    4.Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Owusu-Nketia, S. et al. Functional roles of root plasticity and its contribution to water uptake and dry matter production of CSSLs with the genetic background of KDML105 under soil moisture fluctuation. Plant Prod. Sci. 21, 266–277 (2018).CAS 
    Article 

    Google Scholar 
    6.Acciaresi, H. & Guiamet, J. Below- and above-ground growth and biomass allocation in maize and Sorghum halepense in response to soil water competition. Weed Res. 50, 481–492 (2010).Article 

    Google Scholar 
    7.Oduor, A. M. O. Evolutionary responses of native plant species to invasive plants: A review. New Phytol. 200, 986–992 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Mealor, B. & Hild, A. L. Potential selection in native grass populations by exotic invasion. Mol. Ecol. 15, 2291–2300 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Ferrero-Serrano, Á., Hild, A. L. & Mealor, B. A. Can invasive species enhance competitive ability and restoration potential in native grass populations?. Restor. Ecol. 19, 545–551 (2011).Article 

    Google Scholar 
    10.Goergen, E. M., Leger, E. A. & Espeland, E. K. Native perennial grasses show evolutionary response to Bromus tectorum (cheatgrass) invasion. PLoS ONE 6, 1–8 (2011).Article 
    CAS 

    Google Scholar 
    11.Melgoza, G., Nowak, R. S. & Tausch, R. J. Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83, 7–13 (1990).ADS 
    PubMed 
    Article 

    Google Scholar 
    12.Reichenberger, G. & Pyke, D. A. Impact of early root competition on fitness components of four semiarid species. Oecologia 85, 159–166 (1990).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Phillips, A. J. & Leger, E. A. Plastic responses of native plant root systems to the presence of an invasive annual grass 1. Am. J. Bot. 102, 73–84 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Cipollini, D., Purrington, C. B. & Bergelson, J. Costs of induced responses in plants. Basic Appl. Ecol. 4, 79–85 (2003).Article 

    Google Scholar 
    15.Relyea, R. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecol. Monogr. 72, 523–540 (2002).Article 

    Google Scholar 
    16.War, A. R., Sharma, H. C., Paulraj, M. G., War, M. Y. & Ignacimuthu, S. Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal. Behav. 6, 1973–1978 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Karban, A. R., Baldwin, I. T., Baxter, K. J., Laue, G. & Felton, G. W. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oeciologia 125, 66–71 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    20.HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).Article 

    Google Scholar 
    21.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Muthukrishnan, R., Sullivan, L. L., Shaw, A. K. & Forester, J. D. Trait plasticity alters the range of possible coexistence conditions in a competition–colonisation trade-off. Ecol. Lett. 23, 791–799 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Pérez-Ramos, I. M., Matías, L., Gómez-Aparicio, L. & Godoy, Ó. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat. Commun. 10, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    24.Roscher, C., Schumacher, J., Schmid, B. & Schulze, E.-D. Contrasting effects of intraspecific trait variation on trait-based niches and performance of legumes in plant mixtures. PLoS ONE 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    25.Liu, B. et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol. 208, 125–136 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).PubMed 
    Article 

    Google Scholar 
    27.Foster, B. L. Establishment, competition and the distribution of native grasses among Michigan old-fields. J. Ecol. 87, 476–489 (1999).Article 

    Google Scholar 
    28.James, J. J., Svejcar, T. J. & Rinella, M. J. Demographic processes limiting seedling recruitment in arid grassland restoration. J. Appl. Ecol. 48, 961–969 (2011).Article 

    Google Scholar 
    29.Larson, J. E., Anacker, B. L., Wanous, S. & Funk, J. L. Ecological strategies begin at germination: Traits, plasticity and survival in the first 4 days of plant life. Funct. Ecol. 34, 968–979 (2020).Article 

    Google Scholar 
    30.Foxx, A. Data: Induced plasticity alters responses to conspecific interactions in seedlings of a perennial grass. Mendeley Data https://doi.org/10.17632/hhpnttctth.1 (2021).Article 

    Google Scholar 
    31.R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria (2020).32.Crawley, M. J. Statistics: An introduction using R (Wiley, Hoboken, 2005).MATH 
    Book 

    Google Scholar 
    33.Kraft, N. J. B., Crutsinger, G. M., Forrestel, E. J. & Emery, N. C. Functional trait differences and the outcome of community assembly: An experimental test with vernal pool annual plants. Oikos 123, 1391–1399 (2014).Article 

    Google Scholar 
    34.Foxx, A. J. & Kramer, A. T. Variation in number of root tips influences survival in competition with an invasive grass. J. Arid Environ. 179, 104189 (2020).ADS 
    Article 

    Google Scholar 
    35.McGlone, C. M., Sieg, C. H., Kolb, T. E. & Nietupsky, T. Established native perennial grasses out-compete an invasive annual grass regardless of soil water and nutrient availability. Plant Ecol. 213, 445–457 (2011).Article 

    Google Scholar 
    36.Liu, J. G., Mahoney, K. J., Sikkema, P. H. & Swanton, C. J. The importance of light quality in crop-weed competition. Weed Res. 49, 217–224 (2009).Article 

    Google Scholar 
    37.Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    38.Gundel, P. E., Pierik, R., Mommer, L. & Ballaré, C. L. Competing neighbors: Light perception and root function. Oecologia 176, 1–10 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    39.Poorter, H. et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Berendse, F. & Móller, F. Effects of competition on root-shoot allocation in Plantago lanceolata L.: Adaptive plasticity or ontogenetic drift?. Plant Ecol. 201, 567–573 (2009).Article 

    Google Scholar 
    41.Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    42.Bennett, J. A., Riibak, K., Tamme, R., Lewis, R. J. & Pärtel, M. The reciprocal relationship between competition and intraspecific trait variation. J. Ecol. 104, 1410–1420 (2016).Article 

    Google Scholar 
    43.Jupp, A. & Newman, I. Morphological and anatomical effects of severe drought on the roots of Lolium perenne L. New Phytol. 105, 393–402 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Foxx, A. J. & Kramer, A. T. Hidden variation: Cultivars and wild plants differ in trait variation with surprising root trait outcomes. Restor. Ecol. https://doi.org/10.1111/rec.13336 (2020).Article 

    Google Scholar 
    45.Zeldin, J., Lichtenberger, T. M., Foxx, A. J., Webb Williams, E. & Kramer, A. T. Intraspecific functional trait structure of restoration-relevant species: Implications for restoration seed sourcing. J. Appl. Ecol. 57, 864–874 (2020).Article 

    Google Scholar 
    46.Abbott, J. M. & Stachowicz, J. J. The relative importance of trait vs genetic differentiation for the outcome of interactions among plant genotypes. Ecology 97, 84–94 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Adler, P. B. et al. Competition and coexistence in plant communities: Intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Schroeder-Georgi, T. et al. From pots to plots: Hierarchical trait-based prediction of plant performance in a mesic grassland. J. Ecol. 104, 206–218 (2016).Article 

    Google Scholar 
    49.Taylor, D. & Aarssen, L. Complex competitive relationships among genotypes of three perennial grasses: Implications for species coexistence. Am. Nat. 136, 305–327 (1990).Article 

    Google Scholar 
    50.Espeland, E. K. et al. Evolution of plant materials for ecological restoration: Insights from the applied and basic literature. J. Appl. Ecol. 54, 102–115 (2017).Article 

    Google Scholar 
    51.Rottstock, T., Kummer, V., Fischer, M. & Joshi, J. Rapid transgenerational effects in Knautia arvensis in response to plant community diversity. J. Ecol. 105, 714–725 (2017).CAS 
    Article 

    Google Scholar 
    52.Álvarez-Yépiz, J. C., Búrquez, A. & Dovčiak, M. Ontogenetic shifts in plant–plant interactions in a rare cycad within angiosperm communities. Oecologia 175(2), 725–735. https://doi.org/10.1007/s00442-014-2929-3 (2014).ADS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida

    1.Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—An obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.WHO. Regional plan of action 2019–2023 for implementation of the global vector control response 2017–2030. World Health Organization. https://apps.who.int/iris/handle/10665/325805 (2019).4.Brady, O. J. & Hay, S. I. The global expansion of dengue: How Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Rosenberg, R. et al. Vital signs: Trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morb. Mortal. Wkly. Rep. 67, 496–501 (2018).Article 

    Google Scholar 
    7.Hadfield, J. et al. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog. 15, e1008042 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.CDC. Saint Louis Encephalitis. https://www.cdc.gov/sle/index.html.10.Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Change Biol. 22, 228–236 (2016).ADS 
    Article 

    Google Scholar 
    13.Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Wilke, A. B. B. et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci. Rep. 10, 12925 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, 7864 (2020).Article 

    Google Scholar 
    17.Medlock, J. M. et al. Detection of the invasive mosquito species Aedes albopictus in southern England. Lancet Infect. Dis. 17, 140 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come?. J. Am. Mosq. Control Assoc. 14, 83–94 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Eastwood, G., Cunningham, A. A., Kramer, L. D. & Goodman, S. J. The vector ecology of introduced Culex quinquefasciatus populations, and implications for future risk of West Nile virus emergence in the Galápagos archipelago. Med. Vet. Entomol. 33, 44–55 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Napp, S., Petrić, D. & Busquets, N. West Nile virus and other mosquito-borne viruses present in Eastern Europe. Pathog. Glob. Health 112, 233–248 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Multini, L. C., de Souza, A. L., Marrelli, M. T. & Wilke, A. B. B. Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale. PLoS ONE 14, e0220773 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Wilke, A. B. B., de Carvalho, G. C. & Marrelli, M. T. Microgeographic population structuring of Culex quinquefasciatus (Diptera: Culicidae) From São Paulo, Brazil. J. Med. Entomol. 54, 1582–1588 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Wilk-da-Silva, R., de Souza Leal Diniz, M. M. C., Marrelli, M. T. & Wilke, A. B. B. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Dyar, G. & Knab, F. The larvae of Culicidae classified as independent organisms. J. N. Y. Entomol. Soc. 14, 169–230 (1906).
    Google Scholar 
    26.Laurito, M., Briscoe, A. G., Almirón, W. R. & Harbach, R. E. Systematics of the Culex coronator complex (Diptera: Culicidae): Morphological and molecular assessment. Zool. J. Linn. Soc. 182, 735–757 (2018).Article 

    Google Scholar 
    27.Demari-Silva, B. et al. Wing Morphometry and genetic variability between Culex coronator and Culex usquatus (Diptera: Culicidae), two sibling species of the coronator group. J. Med. Entomol. 54, 901–908 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Alto, B. W., Connelly, C. R., O’Meara, G. F., Hickman, D. & Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 14, 606–614 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Unlu, I., Kramer, W. L., Roy, A. F. & Foil, L. D. Detection of West Nile virus RNA in mosquitoes and identification of mosquito blood meals collected at alligator farms in Louisiana. J. Med. Entomol. 47, 625–633 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.CDC. Mosquito species in which West Nile virus has been detected. Centers for disease control and prevention. https://www.cdc.gov/westnile/resources/pdfs/Mosquito%20Species%201999-2012.pdf (2017).31.CDC Arbovirus Catalog. Centers for disease control and prevention. https://wwwn.cdc.gov/Arbocat/Default.aspx (2018).32.Scholte, E. J. et al. Introduction and control of three invasive mosquito species in the Netherlands, July–October 2010. Eurosurveillance 15, 1–4 (2010).Article 

    Google Scholar 
    33.Reiter, P. & Sprenger, D. The used tire trade: A mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 3, 494–501 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Eritja, R, et al. Worldwide invasion of vector mosquitoes: Present European distribution and challenges for Spain. Issues in Bioinvasion Science 87–97 (Springer, 2005).35.Connelly, C. R., Alto, B. W. & O’Meara, G. F. The spread of Culex coronator (Diptera: Culicidae) throughout Florida. J. Vector Ecol. 41, 195–199 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Guedes, M. L. P. & Navarro-Silva, M. A. Mosquito community composition in dynamic landscapes from the Atlantic Forest biome (Diptera, Culicidae). Rev. Bras. Entomol. 58, 88–94 (2014).Article 

    Google Scholar 
    39.Miami-Dade County. Homeless trust census results and comparison. https://www.homelesstrust.org/library/january-homeless-census-results-and-comparison-2018-2019.pdf (2019).40.Blosser, E. M. & Burkett-Cadena, N. D. Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 167, 59–63 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Blosser, E. M. & Burkett-Cadena, N. D. Oviposition strategies of Florida Culex (Melanoconion) mosquitoes. J. Med. Entomol. 54, 812–820 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.De Carvalho, G. C. et al. Composition and diversity of mosquitoes (Diptera: Culicidae) in urban parks in the South region of the city of São Paulo, Brazil. Biota Neotrop. 17, e20160274 (2017).Article 

    Google Scholar 
    44.Wilke, A. B. B., Medeiros-Sousa, A. R., Ceretti-Junior, W. & Marrelli, M. T. Mosquito populations dynamics associated with climate variations. Acta Trop. 166, 343–350 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Lizzi, K. M., Qualls, W. A., Brown, S. C. & Beier, J. C. Expanding integrated vector management to promote healthy environments. Trends Parasitol. 30, 394–400 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.WHO. Handbook for Integrated Vector Management (World Health Organization, Geneva, 2012).
    Google Scholar 
    47.Pagac, B. B. et al. Incursion and establishment of the Old World arbovirus vector Aedes (Fredwardsius) vittatus (Bigot, 1861) in the Americas. Acta Trop. 213, 105739 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.United States Environmental Protection Agency. Growing for a sustainable future: Miami-Dade County urban development boundary assessment. http://www.epa.gov/smartgrowth/pdf/Miami-Dade_Final_Report_12-12-12.pdf (2012).49.Blackmore, C. G. M. et al. Surveillance results from the first West Nile virus transmission season in Florida, 2001. Am. J. Trop. Med. Hyg. 69, 141–150 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Florida Department of Health. http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/alert-dade-wnv-human-10-19-20.pdf (2020)51.Wilke, A. B. B. et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLoS ONE 14, e0212688 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Darsie, R. F. Jr. & Morris, C. D. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae). 1st ed. Vol. 1. Tech Bull Florida Mosq Cont Assoc (2000).53.Silverman, B. W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability, Number 26. Boca Raton; Routledge. 176 pp. https://doi.org/10.1201/9781315140919. More