More stories

  • in

    Whimbrel populations differ in trans-atlantic pathways and cyclone encounters

    Field methodsWe captured 24 whimbrels between 2008 and 2018. Birds were captured on migration staging sites along the lower Delmarva Peninsula in Virginia, USA (n = 6) (37.398° N, 75.865° W), along the coast of Georgia, USA (n = 5) (31.148° N, 81.379° W), along the Acadian Peninsula in New Brunswick, Canada (n = 3) (47.973° N, 64.509° W) as well as on the nesting ground near the Mackenzie River, Northwest Territories, Canada (n = 10) (69.372° N, 134.894° W). All birds were aged as adults by plumage26, 27 and were banded with United States Geological Survey tarsal bands and coded leg flags. Sex of captured birds was not determined.We fitted all birds with satellite transmitters called Platform Transmitter Terminals (PTTs) using a modification of the leg-loop harness28, 29. Instead of elastic cord, we used Teflon® ribbon (Bally Ribbon Mills, Bally, Pennsylvania, USA) that was fastened with brass rivets or crimps30. We glued transmitters to a larger square of neoprene to elevate it above the body and prevent the bird from preening feathers over the solar panels. The transmitter package was below 3% of body mass (measured at the time of deployment,(bar{x}) = 484.5 ± 17.1) for all individuals tracked in this study. The PTTs used in this study were 9.5 g PTT-100 (n = 14) or 5.0 g PTT-100 (n = 10) solar-powered units produced by Microwave Telemetry, Inc. (Columbia, Maryland, USA).TrackingBirds were located using satellites of the National Oceanic and Atmospheric Administration and the European Organization for the Exploitation of Meteorological Satellites with onboard tracking equipment operated by Collecte Localisation Satellites (CLS America, Inc., Largo, Maryland, USA)31. Transmitters were programmed to operate with a duty cycle of 24 h off and 5 h on (n = 9) or 48 h off and 10 h on (n = 15) and collected 1–34 ((bar{x}) = 5.48 ± 0.07) locations per cycle. Locations in latitude and longitude decimal degrees, date, time, and location error were received from CLS America within 24 h of satellite contact with PTTs. Locations were estimated by the Advanced Research and Global Observation Satellite (ARGOS) system (www.Argos-system.org), which uses a Doppler shift in signal frequency and calculates a probability distribution within which the estimate lies. The standard deviation of this distribution gives an estimate of the location accuracy and assigns it to a “location class” (LC): LC3 =   1000 m, LCA = location based on 3 messages and has no accuracy estimate, LCB = location based on 2 messages and has no accuracy estimate, and LCZ = location process failed. We used LC classes 1–3 to determine whimbrel locations.Migration pathwaysWe used tracking data to delineate fall migration pathways and, though migration duration can include fueling at breeding territories32, we defined migration duration as the time between departure from the breeding grounds and arrival on winter territory. We identified the source population for all individuals included in this study either by capture on the breeding grounds (n = 10) or by capture within migratory staging sites and tracking birds to the breeding grounds (n = 14). Birds were either from the Mackenzie Delta (n = 13) or Hudson Bay (n = 11) breeding populations. We assessed departure and arrival when birds moved away from or settled into stationary breeding and winter territories respectively. Departure was abrupt and we recorded no “false starts” of birds leaving breeding areas and then returning before resuming migration. We present a stylized map of migration routes that was drawn by hand using the collection of flights recorded to provide a broad overview of routes relative to the distribution of storms.Trans-atlantic flightsWe used tracking data to delineate migration pathways across the Atlantic Ocean (from coast of North America to coast of South America). Most birds departed from coastal staging sites and we considered the last staging location prior to crossing the Atlantic the terminal staging area. Several birds departed from inland locations on James Bay. We only consider the segment of the latter flights that occur over the ocean. We consider the duration of transoceanic flights to be the time interval between emerging from the coast of North America and arriving along the coast of South America. In cases where departure and arrival times occurred outside the radio transmitter’s duty cycle, we drew a straight-line between the last known location on land for departures or the first known location on land for arrivals and the nearest location over water and measured the distance between the in-flight point and the coastline along the line. We then used the mean overall speed between in-flight points for all birds ((bar{x}) = 14.8 ± 0.4 m/s, n = 40) to interpolate the leaving or arrival times. We consider the flight length to be the sum of the distance between consecutive locations along the path taken between the site of emergence along the coast of North America and the site of landfall along the northern coast of South America.Exposure to tropical cyclonesWe examined the distribution of tropical cyclones throughout the Atlantic Ocean using position records (1961–2018) within the revised Atlantic hurricane best tracks from the National Hurricane Center (https://www.nhc.noaa.gov/data/#hurdat), known as the Atlantic HURDAT233. We restricted our analyses to storms classified as tropical depressions or above and HURDAT data collected since 1961, when satellites were first used to monitor tropical cyclone activity34. The database contains the storm category (Saffir Simpson Scale), wind speed (mph) and coordinates recorded for six-hour intervals during the period that each storm existed using standard six-hour intervals which allows for weighting of the storms according to their lifespans and estimating the distribution of probability density. We selected storms (N = 590) that were active between 15 July and 30 November to coincide with whimbrel migration through the region. We mapped all storm observation points (N = 17,637) using a kernel density estimator (KDE) method35 with the “ks” package36 in program R37. We used the normal (or Gaussian) kernel and a smooth cross-validation bandwidth selector38 to map 50% kernel densities. We considered the 50% KDE to be the area of highest storm occurrence and estimated exposure to this region by overlaying whimbrel tracks on the KDE polygon and measuring each whimbrel’s time within the area. Because the first and last points within the polygon occurred when the bird’s transmitter first transmitted the bird’s location within and outside the polygon, rather than when the bird first entered and exited the polygon, we measured the distance between the first point inside the polygon and the previous point outside the polygon and used the mean overall speed between in-flight points for all birds (,(bar{x}) = 14.8 ± 0.4 m/s, n = 40) to interpolate the time that the bird entered the polygon. We used the same method to calculate the time that the bird left the polygon using the last point within the polygon and next point outside the polygon.Encounters with tropical cyclonesWe documented encounters between whimbrels and tropical cyclones within the Atlantic Basin by overlaying migration tracks for individual birds on archives of storm tracks within HURDAT2 for the period (2008–2019) of the tracking study. We considered a whimbrel-storm encounter to have occurred when bird tracks intersected storm tracks during the same time period. For grounded birds, we considered an encounter to have occurred when a storm track moved over the ground position of a bird. For each encounter, we recorded the coordinate of the encounter and the storm intensity. Storm intensities were classified as tropical depressions, (≤ 38 mph), tropical storms (39–73 mph), category 1 hurricane (74–95 mph), category 2 hurricanes (96–110 mph), category 3 hurricanes (111–129 mph), category 4 hurricanes (130–156 mph), and category 5 hurricanes (≥ 157 mph) according to the Saffir–Simpson Hurricane Wind Scale39.We examined the post-encounter track of birds to categorize the response of birds including none, detour or grounding. We considered birds to exhibit no response to the storm encounter if the migration trajectory was unchanged during or shortly following a storm encounter. We considered birds to have taken a detour in response to a storm encounter if the migration trajectory followed over the previous day was deflected by  > 20° during or shortly following an encounter. We considered birds to have grounded if they landed on an island following a storm encounter.StatisticsWe used mixed-effects logistic regressions (R3.6.2: R Core Team 2019) to compare the likelihood of storm encounters between whimbrel populations using tracks as replicate samples. We initially fit models using whimbrel identity and year as random intercepts to account for potential lack of independence for journeys made by the same individuals and journeys made within the same year, but inclusion of bird identity as a random intercept resulted in a singular fit so this variable was excluded from further analysis. We then compared models with year as a random intercept and no fixed effects, year as a random intercept and breeding population (Mackenzie Delta vs Hudson Bay) as a fixed effect, year as a random intercept and journey number (1st, 2nd, or 3rd journey) as a fixed effect, and year as a random intercept with breeding population and journey number as fixed effects. We used Akaike’s information criterion for small sample size (AICc) and selected the model with the lowest AICc score as the best-supported model if no other model was within 2 ΔAICc after removing models with uninformative parameters40. Several birds made more than one transoceanic crossing in different years and we consider these to be independent samples. We used two-tailed t-tests to compare migration lengths and duration between routes. We used g-tests with Yates correction to make frequency comparisons.Data and ethics statementThis study was conducted in compliance with ARRIVE guidelines. Data used in this manuscript are unique and have not been submitted for publication elsewhere. The authors claim no conflict of interest. This project was reviewed and approved by the William & Mary Institutional Animal Care and Use Committee protocol IACUC-2017-04-18-12065 of The College of William and Mary, Environment Canada Animal Care Committee protocols EC-PN-12-006, EC-PN-13-006, EC-PN-14-006, Mount Allison University Animal Care Committee protocol 15-14, and the Government of the Northwest Territories Wildlife Care Committee protocol NWTWCC2014-007. All Methods were performed in accordance with the relevant guidelines and regulations. More

  • in

    The effect of COVID19 pandemic restrictions on an urban rodent population

    1.Tobin, M. E. & Fall, M. W. USDA National Wildlife Research Center-Staff Publications Vol. 67, 1–21 (USDA National Wildlife Research Center-Staff Publications, 2006).
    Google Scholar 
    2.Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270. https://doi.org/10.1080/10408410902989837 (2009).Article 
    PubMed 

    Google Scholar 
    3.Meerburg, B. G., Singleton, G. R. & Leirs, H. The Year of the Rat ends—Time to fight hunger!. Pest. Manag. Sci. 65, 351–352. https://doi.org/10.1002/ps.1718 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Mills, J. N. The role of rodents in emerging human disease: Examples from the hantaviruses and arenaviruses. in Ecologically-Based Rodent Management (eds Grant R. Singleton, Lyn A. Hinds, Herwig Leirs, & Zhibin Zhang) 134–160 (Australian Centre for International Agricultural Research, 1999)5.Barnett, S. A. The Story of Rats: Their Impact on Us, and Our Impact on Them (Allen & Unwin, 2001).
    Google Scholar 
    6.Almeida, A., Corrigan, R. M. & Sarno, R. The economic impact of commensal rodents on small businesses in Manhattan’s Chinatown: Trends and possible causes. Suburban. Sustain. 1, 1–15. https://doi.org/10.5038/2164-0866.1.1.2 (2013).Article 

    Google Scholar 
    7.Strand, T. M. & Lundkvist, Å. Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995–2016. Infect. Ecol. Epidemiol. 9, 1553461–1553461. https://doi.org/10.1080/20008686.2018.1553461 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Firth, C. et al. Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. MBio 5, e01933-e11914. https://doi.org/10.1128/mBio.01933-14 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Frye, M. J. et al. Preliminary survey of ectoparasites and associated pathogens from Norway rats in New York City. J. Med. Entomol. 52, 253–259. https://doi.org/10.1093/jme/tjv014 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Cross, R. W. et al. Old world hantaviruses in rodents in New Orleans, Louisiana. Am. J. Trop. Med. Hyg. 90, 897–901. https://doi.org/10.4269/ajtmh.13-0683 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Peterson, A. C. et al. Rodent-borne Bartonella infection varies according to host species within and among cities. EcoHealth 14, 771–782. https://doi.org/10.1007/s10393-017-1291-4 (2017).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    12.Rael, R. C. et al. Rat lungworm infection in rodents across post-katrina New Orleans, Louisiana, USA. Emerg. Infect. Dis. 24, 2176 (2018).Article 

    Google Scholar 
    13.Bordes, F., Blasdell, K. & Morand, S. Transmission ecology of rodent-borne diseases: New frontiers. Integr. Zool. 10, 424–435. https://doi.org/10.1111/1749-4877.12149 (2015).Article 
    PubMed 

    Google Scholar 
    14.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. 112, 7039–7044. https://doi.org/10.1073/pnas.1501598112 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Stenseth, N. C. et al. Mice, rats, and people: The bio-economics of agricultural rodent pests. Front. Ecol. Environ. 1, 367–375. https://doi.org/10.1890/1540-9295(2003)001[0367:MRAPTB]2.0.CO;2 (2003).Article 

    Google Scholar 
    16.Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002 (2005).Article 

    Google Scholar 
    17.Feng, A. Y. T. & Himsworth, C. G. The secret life of the city rat: A review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosyst. 17, 149–162. https://doi.org/10.1007/s11252-013-0305-4 (2014).Article 

    Google Scholar 
    18.Himsworth, C. G., Parsons, K. L., Jardine, C. & Patrick, D. M. Rats, cities, people, and pathogens: A systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector-Borne Zoonotic Diseases 13, 349–359. https://doi.org/10.1089/vbz.2012.1195 (2013).Article 
    PubMed 

    Google Scholar 
    19.Lambropoulos, A. S., Fine, J. B., Perbeck, A. & Torres, D. Rodent control in urban areas: An interdisciplinary approach. J. Environ. Health 61, 12 (1999).
    Google Scholar 
    20.Peterson, A. C. et al. Rodent assemblage structure reflects socioecological mosaics of counter-urbanization across post-hurricane Katrina New Orleans. Landsc. Urban. Plann. 195, 103710. https://doi.org/10.1016/j.landurbplan.2019.103710 (2020).Article 

    Google Scholar 
    21.Shiels, A. B., Lombard, C. D., Shiels, L. & Hillis-Starr, Z. Invasive rat establishment and changes in small mammal populations on Caribbean Islands following two hurricanes. Glob. Ecol. Conserv. 22, e00986. https://doi.org/10.1016/j.gecco.2020.e00986 (2020).Article 

    Google Scholar 
    22.Htwe, N. M., Singleton, G. R. & Nelson, A. D. Can rodent outbreaks be driven by major climatic events? Evidence from cyclone Nargis in the Ayeyawady Delta, Myanmar. Pest. Manag. Sci. 69, 378–385. https://doi.org/10.1002/ps.3292 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Eskew, E. A. & Olival, K. J. De-urbanization and zoonotic disease risk. EcoHealth 15, 707–712. https://doi.org/10.1007/s10393-018-1359-9 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Gulachenski, A., Ghersi, B. M., Lesen, A. E. & Blum, M. J. Abandonment, ecological assembly and public health risks in counter-urbanizing cities. Sustainability 8, 491 (2016).Article 

    Google Scholar 
    25.Rael, R. C., Peterson, A. C., Ghersi, B. M., Childs, J. & Blum, M. J. Disturbance, reassembly, and disease risk in socioecological systems. EcoHealth 13, 450–455. https://doi.org/10.1007/s10393-016-1157-1 (2016).Article 
    PubMed 

    Google Scholar 
    26.LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).Article 

    Google Scholar 
    27.Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evolut. 4, 1156–1159. https://doi.org/10.1038/s41559-020-1237-z (2020).Article 

    Google Scholar 
    28.Coronavirus: Why more rats are being spotted during quarantine. BBC News. https://www.bbc.com/news/world-us-canada-52177587 (2020).29.Latest pest control news. Features and blog articles from British Pest Control Association. BPCA. https://bpca.org.uk/News-and-Blog/advice-for-pest-professionals-operating-during-covid-19 (2020).30.Rodent control. Centers For Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/php/rodents.html (2020).31.Zhou, N. Sydney braces for rat ‘plague’ after Covid-19 forces hungry rodents to turn to cannibalism. in The Guardian. Australian Edition. https://www.theguardian.com/australia-news/2020/may/28/sydney-braces-for-rat-plague-after-covid-19-forces-hungry-rodents-to-turn-to-cannibalism (2020).32.The Pest Control Sydney sector warns of increase of rat activity due to COVID-19 shuts down food supply. Safe Pest Control. https://safepestcontrol.net.au/pest-control-sydney-sector-warns-increase-rat-activity-covid-19/ (2020).33.Sutton, C. Rats on the rise as shutdown cuts their food supply. in Tweed Daily News. https://www.tweeddailynews.com.au/news/covid-19-leads-to-rat-explosion/3989127/ (2020).34.Mannix, L. The Age (Nine Entertainment Co., 2020).
    Google Scholar 
    35.Prokop, P., Fančovičová, J. & Fedor, P. Health is associated with antiparasite behavior and fear of disease-relevant animals in humans. Ecol. Psychol. 22, 222–237. https://doi.org/10.1080/10407413.2010.496676 (2010).Article 

    Google Scholar 
    36.Byers, K. A., Cox, S. M., Lam, R. & Himsworth, C. G. “They’re always there”: Resident experiences of living with rats in a disadvantaged urban neighbourhood. BMC Public Health 19, 853. https://doi.org/10.1186/s12889-019-7202-6 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.German, D. & Latkin, C. A. Exposure to urban rats as a community stressor among low-income urban residents. J. Community Psychol. 44, 249–262. https://doi.org/10.1002/jcop.21762 (2016).Article 

    Google Scholar 
    38.Elgar, M. A., Crespi, B. J. & Crespi, D. B. B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, 1992).
    Google Scholar 
    39.Depoux, A. et al. The pandemic of social media panic travels faster than the COVID-19 outbreak. J. Travel Med. https://doi.org/10.1093/jtm/taaa031 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Himsworth, C. G. et al. A mixed methods approach to exploring the relationship between Norway rat (Rattus norvegicus) abundance and features of the urban environment in an inner-city neighborhood of Vancouver, Canada. PLoS ONE 9, e97776. https://doi.org/10.1371/journal.pone.0097776 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Parsons, M. H. et al. Rats and the COVID-19 pandemic: Early data on the global emergence of rats in response to social distancing. medRxiv. https://doi.org/10.1101/2020.07.05.20146779 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Murray, M. H. et al. Public complaints reflect rat relative abundance across diverse urban neighborhoods. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2018.00189 (2018).Article 

    Google Scholar 
    43.Király, O. et al. Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance. Compr. Psychiatry 100, 152180. https://doi.org/10.1016/j.comppsych.2020.152180 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Wiederhold, B. K. Social media use during social distancing. Cyberpsychol. Behav. Soc. Netw. 23, 275–276. https://doi.org/10.1089/cyber.2020.29181.bkw (2020).Article 
    PubMed 

    Google Scholar 
    45.Harbison, B. PMPs re-strategize rodent control in response to COVID-19 pandemic. Pest Control Technology. https://www.pctonline.com/article/pmps-restrategize-rodent-control-respose-covid-19/ (2020).46.Sieg, L. As Japan fights coronavirus with shutdowns, rats emerge onto deserted streets. Reuters. https://www.reuters.com/article/us-health-coronavirus-japan-rats-idUSKCN22A0DG (2020).47.Carthey, A. J. R. & Banks, P. B. Naïve, bold, or just hungry? An invasive exotic prey species recognises but does not respond to its predators. Biol. Invasions 20, 3417–3429. https://doi.org/10.1007/s10530-018-1782-4 (2018).Article 

    Google Scholar 
    48.Sanchez, F., Korine, C., Kotler, B. P. & Pinshow, B. Ethanol concentration in food and body condition affect foraging behavior in Egyptian fruit bats (Rousettus aegyptiacus). Naturwissenschaften 95, 561–567. https://doi.org/10.1007/s00114-008-0359-y (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Berger-Tal, O. & Kotler, B. P. State of emergency: Behavior of gerbils is affected by the hunger state of their predators. Ecology 91, 593–600. https://doi.org/10.1890/09-0112.1 (2010).Article 
    PubMed 

    Google Scholar 
    50.Berger-Tal, O., Mukherjee, S., Kotler, B. P. & Brown, J. S. Complex state-dependent games between owls and gerbils. Ecol. Lett. 13, 302–310. https://doi.org/10.1111/j.1461-0248.2010.01447.x (2010).Article 
    PubMed 

    Google Scholar 
    51.Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-Inflated Models with R (Highland Statistics Limited, 2016).
    Google Scholar 
    52.Zuur, A. F., Ieno, E. N. & Saveliev, A. A. Zero Inflated Models and Generalized Linear Mixed Models with R (Highland Statistics Limited, 2012).
    Google Scholar 
    53.Cavia, R., Cueto, G. R. & Suárez, O. V. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc. Urban Plann. 90, 11–19. https://doi.org/10.1016/j.landurbplan.2008.10.017 (2009).Article 

    Google Scholar 
    54.Restrictions on non-essential services. Australian Government Business. https://www.business.gov.au/risk-management/emergency-management/coronavirus-information-and-support-for-business/restrictions-on-non-essential-services (2020).55.Barnett, S. A. Experiments on “neophobia” in wild and laboratory rats. Br. J. Psychol. 49, 195–201. https://doi.org/10.1111/j.2044-8295.1958.tb00657.x (1958).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Barnett, S. A. & Cowan, P. E. Activity, exploration, curiosity and fear: An ethological study. Interdisc. Sci. Rev. 1, 43–62. https://doi.org/10.1179/030801876789768534 (1976).Article 

    Google Scholar 
    57.Chitty, D. & Southern, H. N. Control of Rats and Mice (Agricultural Extension Service, University of Wyoming, 1954).
    Google Scholar 
    58.Taylor, K. D., Hammond, L. E. & Quy, R. J. The reactions of common rats to four types of live-capture trap. J. Appl. Ecol. 11, 453–459. https://doi.org/10.2307/2402199 (1974).Article 

    Google Scholar 
    59.Brunton, C. F. A., Macdonald, D. W. & Buckle, A. P. Behavioural resistance towards poison baits in brown rats, Rattus norvegicus. Appl. Anim. Behav. Sci. 38, 159–174. https://doi.org/10.1016/0168-1591(93)90063-U (1993).Article 

    Google Scholar 
    60.Inglis, I. R. R. et al. Foraging behaviour of wild rats (Rattus norvegicus) towards new foods and bait containers. Appl. Anim. Behav. Sci. 47, 175–190. https://doi.org/10.1016/0168-1591(95)00674-5 (1996).Article 

    Google Scholar 
    61.Domjan, M. Poison-induced neophobia in rats: Role of stimulus generalization of conditioned taste aversions. Anim. Learn. Behav. 3, 205–211. https://doi.org/10.3758/BF03213432 (1975).Article 

    Google Scholar 
    62.Rusiniak, K. W., Hankins, W. G., Garcia, J. & Brett, L. P. Flavor-illness aversions: Potentiation of odor by taste in rats. Behav. Neural Biol. 25, 1–17. https://doi.org/10.1016/S0163-1047(79)90688-5 (1979).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Fowler, C. W. Density dependence as related to life history strategy. Ecology 62, 602–610. https://doi.org/10.2307/1937727 (1981).ADS 
    Article 

    Google Scholar 
    64.Korobenko, L., Kamrujjaman, M. & Braverman, E. Persistence and extinction in spatial models with a carrying capacity driven diffusion and harvesting. J. Math. Anal. Appl. 399, 352–368. https://doi.org/10.1016/j.jmaa.2012.09.057 (2013).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    65.Perry, J. S. The reproduction of the wild brown rat (Rattus norvegicus Erxleben). Proc. Zool. Soc. Lond. 115, 19–46 (1945).Article 

    Google Scholar 
    66.Emlen, J. T., Stokes, A. W. & Winsor, C. P. The rate of recovery of decimated populations of brown rats in nature. Ecology 29, 133–145. https://doi.org/10.2307/1932809 (1948).Article 

    Google Scholar 
    67.Richardson, J. L. et al. Significant genetic impacts accompany an urban rat control campaign in Salvador, Brazil. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00115 (2019).Article 

    Google Scholar 
    68.Schultz, L. A., Collier, G. & Johnson, D. F. Behavioral strategies in the cold: Effects of feeding and nesting costs. Physiol. Behav. 67, 107–115. https://doi.org/10.1016/S0031-9384(99)00041-4 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Collier, G. H., Johnson, D. F., Naveira, J. & Cybulski, K. A. Ambient temperature and food costs: Effects on behavior patterns in rats. Am. J. Physiol. Regulat. Integr. Comparat. Physiol. 257, R1328–R1334. https://doi.org/10.1152/ajpregu.1989.257.6.R1328 (1989).CAS 
    Article 

    Google Scholar 
    70.Frantz, S. C. & Comings, J. P. Evaluation of urban rodent infestations- An approach in Nepal. Proc. Vertebr. Pest Conf. 7, 279–290 (1976).
    Google Scholar 
    71.Margulis, H. L. Rat fields, neighborhood sanitation, and rat complaints in Newark, New Jersey. Geogr. Rev. 67, 221–231. https://doi.org/10.2307/214022 (1977).Article 

    Google Scholar 
    72.Climate statistics for Australian locations. Australian Bureau of Meteorology. http://www.bom.gov.au/climate/averages/tables/cw_066196_All.shtml (2020).73.Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M. & McAlpine, C. A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 32, 1921–1935. https://doi.org/10.1007/s10980-017-0561-4 (2017).Article 

    Google Scholar 
    74.Byers, K. A., Lee, M. J., Patrick, D. M. & Himsworth, C. G. Rats about town: A systematic review of rat movement in urban ecosystems. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00013 (2019).Article 

    Google Scholar 
    75.Liu, Y. et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. bioRxiv https://doi.org/10.1101/2020.04.22.046565 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Singleton, G., Leirs, H., Hinds, L. & Zhang, Z. Ecologically-Based Management of Rodent Pests—Re-evaluating Our Approach to an Old problem 17–29 (Australian Centre for International Agricultural Research (ACIAR), 1999).
    Google Scholar 
    77.Sydney (C) (Statistical Local Area). Australian Bureau of Statistics. https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/LGA17200?opendocument (2016).78.Fritzboger, P. inventor. Anticimex Innovation Centre A/S, assignee. A trap. Australia patent 2014359825 (2014).79.R Core Team. R: A language and environment for statistical computing v. 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria, 2019).80.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    81.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear lixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    82.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 

    Google Scholar 
    83.Sweet, S. A. & Grace-Martin, K. Data Analysis with SPSS: A First Course in Applied Statistics (Allyn and Bacon, 2008).
    Google Scholar 
    84.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2018).
    Google Scholar 
    85.Lenth, R. & Herve, M. Emmeans: Estimated marginal means, aka least-square means. v. R package version 1.1. 2 (2018).86.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    87.Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, 2009).Book 

    Google Scholar 
    88.ESRI. ArcGIS Desktop v. Release 10.5 (Environmental Systems Research Institute, Redlands, CA, 2017).89.IBM Corp. IBM SPSS Statistics for Windows v. 24.0 (IBM Corp., Armonk, NY, 2016).90.Bedoya-Pérez, M. A., Ward, M. P., Loomes, M. & Crowther, M. S. Flick SMART multi-catch rodent station and bait station data sets: Council of the city of Sydney, October 2019 to July 2020. Dryad Dataset. https://doi.org/10.5061/dryad.4tmpg4f81(2020).Article 

    Google Scholar  More

  • in

    Mapping the benefits of nature in cities with the InVEST software

    1.United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (2019).2.Gouldson, A. et al. Accelerating Low-Carbon Development in the World’s Cities. Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate. New Climate Economy, London and Washington, DC. Available at: http://newclimateeconomy.report/misc/working-papers. (2015).3.Revi, A. et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Field, C. B. et al.) 1132 pp https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).4.Bartesaghi Koc, C., Osmond, P. & Peters, A. Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies. Urban Ecosyst. 20, 15–35 (2017).
    Google Scholar 
    5.Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29–38 (2019).
    Google Scholar 
    6.Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio. 43, 413–433 (2014).
    Google Scholar 
    7.van den Bosch, M. & Ode Sang, Å. Urban natural environments as nature-based solutions for improved public health—a systematic review of reviews. Environ. Res. 158, 373–384 (2017).
    Google Scholar 
    8.Depietri, Y. & McPhearson, T. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy and Practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 91–109, https://doi.org/10.1007/978-3-319-56091-5_6 (Springer International Publishing, 2017).9.Cortinovis, C. & Geneletti, D. A performance-based planning approach integrating supply and demand of urban ecosystem services. Landsc. Urban Plan. 201, 103842 (2020).
    Google Scholar 
    10.Lafortezza, R., Chen, J., van den Bosch, C. K. & Randrup, T. B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 165, 431–441 (2018).CAS 

    Google Scholar 
    11.European Union. Mapping and assessment of ecosystems and their services urban ecosystems 4th Report. https://ec.europa.eu/environment/nature/knowledge/ecosystem_assessment/pdf/102.pdf (2016).12.Sharp, R. S. et al. InVEST 3.8 User’s Guide. http://releases.naturalcapitalproject.org/invest-userguide/latest/. (2020).13.Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 LP–270272 (2018).
    Google Scholar 
    14.Ruckelshaus, M. et al. Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol. Econ. 115, 11–21 (2015).
    Google Scholar 
    15.Grêt-Regamey, A., Sirén, E., Brunner, S. H. & Weibel, B. Review of decision support tools to operationalize the ecosystem services concept. Ecosyst. Serv. 26, 306–315 (2017).
    Google Scholar 
    16.Mandle, L. & Natural Capital Project. Database of publications using InVEST and other natural capital project software. https://purl.stanford.edu/bb284rg5424 (2019).17.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 

    Google Scholar 
    18.de Groot, R., Moolenaar, S., van Weelden, M., Konovska, I. & de Vente, J. The ESP Guidelines in a Nustshell. Ecosystem Services Partnership. FSD Working Paper 2018-09. (2018).19.Hamilton, S. H. et al. A framework for characterising and evaluating the effectiveness of environmental modelling. Environ. Model. Softw. 118, 83–98 (2019).
    Google Scholar 
    20.Creutzig, F. et al. Upscaling urban data science for global climate solutions. Glob. Sustain. 2, e2 (2019).
    Google Scholar 
    21.Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H. & Nowell, M. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 104075 (2020).CAS 

    Google Scholar 
    22.Brugnach, M. & Pahl-Wostl, C. In Adaptive and Integrated Water Management: Coping with Complexity and Uncertainty (eds. Pahl-Wostl, C., Kabat, P. & Möltgen, J.) 187–203 https://doi.org/10.1007/978-3-540-75941-6_10 (Springer Berlin Heidelberg, 2008).23.Cash, D. W. et al. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 100, 8086–8091 (2003).CAS 

    Google Scholar 
    24.Haines-Young, R. & Potschin, M. In Ecosystem Ecology: A New Synthesis, BES Ecological Reviews Series, CUP (eds. Raffaelli, D. & Frid, C.) (2010).25.Tallis, H. et al. A global system for monitoring ecosystem service change. Bioscience 62, 977–986 (2012).
    Google Scholar 
    26.Burkhard, B., Kandziora, M., Hou, Y. & Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 34, 1–32 (2014).
    Google Scholar 
    27.Ma, G., Zhao, X., Wu, Q. & Pan, T. Concept definition and system construction of gross ecosystem product. Resour. Sci. 37, 1709–1715 (2015).
    Google Scholar 
    28.Ouyang, Z. et al. Gross ecosystem product concept accounting framework and case study. Acta Ecol. Sin. 33, 6747–6761 (2013).
    Google Scholar 
    29.Ouyang, Z. & Jin, L. Developing Gross Ecosystem Product and Ecological Asset Accounting for Eco-Compensation (Science Press, 2017).30.Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 117, 14593–14601 (2020).CAS 

    Google Scholar 
    31.SEEA. Experimental Ecosystem Accounting. System of Environmental-Economic Accounting 2012. https://seea.un.org/sites/seea.un.org/files/websitedocs/eea_final_en.pdf (2012).32.Office for National Statistics. UK Natural Capital: urban accounts. https://www.ons.gov.uk/economy/environmentalaccounts/bulletins/uknaturalcapital/urbanaccounts (2020).33.Polasky, S., Tallis, H. & Reyers, B. Setting the bar: standards for ecosystem services. Proc. Natl. Acad. Sci. USA 112, 7356–7361 (2015).CAS 

    Google Scholar 
    34.Turner, K., Badura, T. & Ferrini, S. Natural capital accounting perspectives: a pragmatic way forward. Ecosyst. Heal. Sustain. 5, 237–241 (2019).
    Google Scholar 
    35.Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).CAS 

    Google Scholar 
    36.Hueber, D. & Worzala, E. “Code Blue” for U.S. Golf Course Real Estate Development: “Code Green” for Sustainable Golf Course Redevelopment. J. Sustain. Real Estate http://www.josre.org/wp-content/uploads/2012/09/Sustainable_Golf_Courses-Hueber-JOSRE1.pdf (2010).37.Ingram, M. A., Hoke, L. & Meyer, J. The declining economic viability of municipal golf courses. Public Munic. Financ. 2, 46–55 (2013).38.Ossola, A. et al. The provision of urban ecosystem services throughout the private-social-public domain: a conceptual framework. Cities Environ. 11, 1–15 (2018).
    Google Scholar 
    39.IDEFESE. Modeling and mapping ecosystem services for sustainable urban planning decisions. https://idefese.wordpress.com/ (2020).40.Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).
    Google Scholar 
    41.Langemeyer, J. & Connolly, J. J. T. Weaving notions of justice into urban ecosystem services research and practice. Environ. Sci. Policy 109, 1–14 (2020).
    Google Scholar 
    42.Kremer, P. et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 21, 29 (2016).43.Andersson, E., Borgström, S. T. & McPhearson, T. Double Insurance in Dealing with Extremes: Ecological and social factors for making nature-based solutions. In nature-based solutions to climate change adaptation in urban areas: Linkages between science, policy and practice (eds. Kabisch, N., Korn, H., Stadler, J. & Bonn, A.) 51–64 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-56091-5_4.44.Nagendra, H., Bai, X., Brondizio, E. S. & Lwasa, S. The urban south and the predicament of global sustainability. Nat. Sustain. 1, 341–349 (2018).
    Google Scholar 
    45.Cortinovis, C. & Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 70, 298–312 (2018).
    Google Scholar 
    46.Barnett, C. & Parnell, S. Ideas, implementation and indicators: epistemologies of the post-2015 urban agenda. Environ. Urban. 28, 87–98 (2016).
    Google Scholar 
    47.Sarabi, S. E., Han, Q., Romme, A. G. L., Vries, Bde & Wendling, L. Key enablers of and barriers to the uptake and implementation of nature-based solutions in urban settings: a review. Resources 8, 121 (2019).
    Google Scholar 
    48.Wamsler, C. et al. Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod. 247, 119154 (2020).
    Google Scholar 
    49.Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).
    Google Scholar 
    50.McDonald, R. I., Kroeger, T., Zhang, P. & Hamel, P. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23, 137–150 (2019).
    Google Scholar 
    51.McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).
    Google Scholar 
    52.Song, X. P., Richards, D., Edwards, P. & Tan, P. Y. Benefits of trees in tropical cities. Science 356, 1241 LP–1241241 (2017).
    Google Scholar 
    53.McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).
    Google Scholar 
    54.Cabral, P., Feger, C., Levrel, H., Chambolle, M. & Basque, D. Assessing the impact of land-cover changes on ecosystem services: A first step toward integrative planning in Bordeaux. France. Ecosyst. Serv. 22, 318–327 (2016).
    Google Scholar 
    55.Levrel, H., Cabral, P., Feger, C., Chambolle, M. & Basque, D. How to overcome the implementation gap in ecosystem services? A user-friendly and inclusive tool for improved urban management. Land Use Policy 68, 574–584 (2017).
    Google Scholar 
    56.Sudmanns, M., Tiede, D., Augustin, H. & Lang, S. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. Int. J. Digit. Earth 13, 768–784 (2020).
    Google Scholar 
    57.Samuelsson, K., Barthel, S., Colding, J., Macassa, G. & Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. Landsc. Urban Plan. https://doi.org/10.31219/osf.io/3wx5a (2020).58.OECD. The territorial impact of COVID-19: Managing the crisis across levels of government. https://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-covid-19-managing-the-crisis-across-levels-of-government-d3e314e1/ (2020).59.McDonald, R. I., Colbert, M., Hamann, M., Simkin, R. & Walsh, B. Nature in the Urban Century. https://www.nature.org/content/dam/tnc/nature/en/documents/TNC_NatureintheUrbanCentury_FullReport.pdf (2018).60.Endreny, T. et al. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Modell. 360, 328–335 (2017).
    Google Scholar 
    61.UrbanFootprint. The ultimate technical guideguide to UrbanFootprint. https://urbanfootprint.com/ (2017).62.EnvisionTomorrow. Web-based Envision Tomorrow 1.0 Technical Documentation. http://envisiontomorrow.org/et-publications (2014).63.Galle, N. J., Nitoslawski, S. A. & Pilla, F. The internet of nature: How taking nature online can shape urban ecosystems. Anthr. Rev. 6, 279–287 (2019).
    Google Scholar 
    64.Natural capital project. Incorporating climate change scenarios into InVEST and RIOS. https://naturalcapitalproject.stanford.edu/sites/g/files/sbiybj9321/f/publications/incorporating-climate-change-scenarios-into-invest-and-rios-2016-01-11.pdf (2016).65.Rosenthal, A. et al. Process matters: a framework for conducting decision-relevant assessments of ecosystem services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 11, 190–204 (2015).
    Google Scholar 
    66.Jakeman, A. J., Letcher, R. A. & Norton, J. P. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw. 21, 602–614 (2006).
    Google Scholar 
    67.McKenzie, E. et al. Understanding the use of ecosystem service knowledge in decision making: Lessons from international experiences of spatial planning. Environ. Plan. C Gov. Policy 32, 320–340 (2014).
    Google Scholar 
    68.Hamel, P. & Bryant, B. P. Uncertainty assessment in ecosystem services analyses: seven challenges and practical responses. Ecosyst. Serv. 24, 1–15 (2017).69.Markevych, I. et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 158, 301–317 (2017).CAS 

    Google Scholar 
    70.Lonsdorf, E. V., Nootenboom, C., Janke, B. & Horgan, B. P. Assessing urban ecosystem services provided by green infrastructure: Golf courses in the Minneapolis-St. Paul metro area. Landsc. Urban Plan. 208, 104022 (2021).
    Google Scholar 
    71.Ricketts, T. H. & Lonsdorf, E. Mapping the margin: comparing marginal values of tropical forest remnants for pollination services. Ecol. Appl. 23, 1113–1123 (2013).
    Google Scholar 
    72.Tardieu, L., Coste, L., Levrel, H. & Viguié, V. Les services rendus par la nature peuvent-ils devenir un levier d’action dans les décisions d’aménagement? https://idefese.files.wordpress.com/2019/08/rapport_idefese1_2019_cadredecisionnel.pdf (2019).73.Liotta, C., Kervinio, Y., Levrel, H. & Tardieu, L. Planning for environmental justice—reducing well-being inequalities through urban greening. Environ. Sci. Policy 112, 47–60 (2020).
    Google Scholar 
    74.Hamel. P. et al. Metadata record for the manuscript: Mapping the benefits of nature in cities with the InVEST software. figshare https://doi.org/10.6084/m9.figshare.13910660 (2021).75.Burkhard, B., Kandziora, M., Hou, Y. & Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 34, 1–32 (2014).
    Google Scholar 
    76.Hamel, P., Tardieu, L., Lemonsu, A., de Munck, C. & Viguié, V. Co-developing the InVEST urban cooling module. In French: Co-développement du module rafraîchissement offert par la végétation de l’outil InVEST. https://idefese.wordpress.com (2020).77.Bosch, M. et al. A spatially-explicit approach to simulate urban heat islands in complex urban landscapes. Geosci. Model Dev. (2020) [preprint] in review.78.Hamel, P. et al. Stormwater management services maps for the San Francisco Bay Area. Working paper. https://naturalcapitalproject.stanford.edu (2019).79.Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7, 4–11 (2009).
    Google Scholar 
    80.Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 3, 913–918 (2013).
    Google Scholar 
    81.Keeler, B. et al. Recreational demand for clean water: evidence from geotagged photographs by visitors to lakes. Front. Ecol. Environ. 13, 76–81 (2015).82.Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 3, 2976 (2013).
    Google Scholar 
    83.Liu, H., Remme, R. P., Hamel, P., Nong, H. & Ren, H. Supply and demand assessment of urban recreation service and its implication for greenspace planning-A case study on Guangzhou. Landsc. Urban Plan. 203, 103898 (2020).
    Google Scholar 
    84.Griffin, R. et al. Incorporating the visibility of coastal energy infrastructure into multi-criteria siting decisions. Mar. Policy 62, 218–223 (2015).
    Google Scholar 
    85.Lonsdorf, E. et al. Modelling pollination services across agricultural landscapes. Ann. Bot. 103, 1589–1600 (2009).
    Google Scholar 
    86.Davis, A. Y. et al. Enhancing pollination supply in an urban ecosystem through landscape modifications. Landsc. Urban Plan. 162, 157–166 (2017).
    Google Scholar 
    87.Hamel, P., Chaplin-Kramer, R., Sim, S. & Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 524–525, 166–177 (2015).88.Redhead, J. W. et al. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 610–611, 666–677(2018). More

  • in

    Effects of large herbivore grazing on relics of the presumed mammoth steppe in the extreme climate of NE-Siberia

    1.Doughty, C. E., Wolf, A. & Field, C. B. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?. Geophys. Res. Lett. 37, L15703 (2010).ADS 
    Article 

    Google Scholar 
    2.Svenning, J.-C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Owen-Smith, N. The pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).Article 

    Google Scholar 
    4.Vera, F. W. M. Grazing Ecology and Forest History (CABI Publishing, 2000). https://doi.org/10.1079/9780851994420.0000.Book 

    Google Scholar 
    5.Zimov, S. A. et al. Steppe-Tundra transition: A herbivore-driven biome shift at the end of the pleistocene. Am. Nat. 146, 765–794 (1995).Article 

    Google Scholar 
    6.Gill, J. L. Ecological impacts of the late quaternary megaherbivore extinctions. New Phytol. 201, 1163–1169 (2014).PubMed 
    Article 

    Google Scholar 
    7.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. 113, 847–855 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Martin, P. S. & Wright, H. E. Pleistocene Extinctions: The Search for a Cause, Vol 6*** (Yale University Press, 1967).
    Google Scholar 
    9.Haynes, G. The evidence for human agency in the late Pleistocene megafaunal extinctions. In Encyclopedia of the Anthropocene, voxl 1 (eds DellaSala, D. & Goldstein, M.) 219–226 (Elsevier Inc., 2018).Chapter 

    Google Scholar 
    10.Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).CAS 
    Article 

    Google Scholar 
    11.Gradmann, R. Die Steppenheidentheorie. Geogr. Z. 39, 265–278 (1933).
    Google Scholar 
    12.Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. Mammoth steppe: A high-productivity phenomenon. Quat. Sci. Rev. 20, 20 (2012).
    Google Scholar 
    14.Zimov, S. A., Zimov, N. S. & Chapin, F. S. The past and future of the mammoth steppe ecosystem. Springer Earth Syst. Sci. https://doi.org/10.1007/978-3-642-25038-5_10 (2012).Article 

    Google Scholar 
    15.Zimov, S. A. Pleistocene park: Return of the Mammoth’ s ecosystem. Science (80–) 08, 796–798 (2005).Article 
    CAS 

    Google Scholar 
    16.Yurtsev, B. A. The pleistocene ‘Tundra-steppe’ and the productivity paradox: The landscape approach. Quat. Sci. Rev. https://doi.org/10.1016/S0277-3791(00)00125-6 (2001).Article 

    Google Scholar 
    17.Blinnikov, M. S., Gaglioti, B. V., Walker, D. A., Wooller, M. J. & Zazula, G. D. Pleistocene graminoid-dominated ecosystems in the Arctic. Quat. Sci. Rev. 30, 2906–2929 (2011).ADS 
    Article 

    Google Scholar 
    18.Kienast, F. Plant macrofossil records—Arctic Eurasia. In Encyclopedia of Quaternary Science (eds Elias, S. A. & Mock, C.) 733–745 (Elsevier, 2013).Chapter 

    Google Scholar 
    19.Guthrie, R. D. Mammals of the mammoth steppe as paleoenvironmental indicators. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 307–326 (Elsevier Inc, 1982).Chapter 

    Google Scholar 
    20.Kienast, F., Schirrmeister, L., Siegert, C. & Tarasov, P. Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quat. Res. 63, 283–300 (2005).Article 

    Google Scholar 
    21.Sher, A. V., Kuzmina, S. A., Kuznetsova, T. V. & Sulerzhitsky, L. D. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quat. Sci. Rev. 24, 533–569 (2005).ADS 
    Article 

    Google Scholar 
    22.Guthrie, R. D. Origin and causes of the mammoth steppe: A story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quatern. Sci. Rev. 20, 20 (2001).
    Google Scholar 
    23.Rivals, F., Semprebon, G. & Lister, A. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quat. Int. 255, 188–195 (2012).Article 

    Google Scholar 
    24.van Asperen, E. N. & Kahlke, R.-D. Dietary traits of the late Early Pleistocene Bison menneri (Bovidae, Mammalia) from its type site Untermassfeld (Central Germany) and the problem of Pleistocene ‘wood bison’. Quat. Sci. Rev. 177, 299–313 (2017).ADS 
    Article 

    Google Scholar 
    25.Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).Article 

    Google Scholar 
    26.Sher, A. V. Fossil saiga in northeastern Siberia and Alaska. Int. Geol. Rev. 10, 1247–1260 (1968).Article 

    Google Scholar 
    27.Kahlke, R. D. & Lacombat, F. The earliest immigration of woolly rhinoceros (Coelodonta tologoijensis, Rhinocerotidae, Mammalia) into Europe and its adaptive evolution in Palaearctic cold stage mammal faunas. Quat. Sci. Rev. 27, 1951–1961 (2008).ADS 
    Article 

    Google Scholar 
    28.Kahlke, R. D. The origin of Eurasian Mammoth Faunas (Mammuthus-Coelodonta Faunal Complex). Quat. Sci. Rev. 96, 32–49 (2014).ADS 
    Article 

    Google Scholar 
    29.Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quat. Sci. Rev. 146, 116–133 (2016).ADS 
    Article 

    Google Scholar 
    30.Kahlke, R. D. The maximum geographic extension of Late Pleistocene Mammuthus primigenius (Proboscidea, Mammalia) and its limiting factors. Quat. Int. 379, 147–154 (2015).Article 

    Google Scholar 
    31.Chapin, F. S., Shaver, R. R., Giblin, A. E., Nadelhoffer, K. G. & Laundre, J. A. Response of arctic tundra to experimental and observed changes in climat. Ecology 76, 694–711 (1995).Article 

    Google Scholar 
    32.Reinecke, J., Troeva, E. & Wesche, K. Extrazonal steppes and other temperate grasslands of northern Siberia—phytosociological classification and ecological characterization. Phytocoenologia 47, 167–196 (2017).Article 

    Google Scholar 
    33.Yurtsev, B. A. Relics of the xerophyte vegetation of Beringia in northeastern Asia. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 157–177 (Elsevier Inc, 1982).Chapter 

    Google Scholar 
    34.Ashastina, K. et al. Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quartern. Sci. Rev. 196, 38–61 (2018).ADS 
    Article 

    Google Scholar 
    35.Chytrý, M. et al. Refugial ecosystems in central Asia as indicators of biodiversity change during the Pleistocene–Holocene transition. Ecol. Indic. 77, 357–367 (2017).Article 

    Google Scholar 
    36.Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science (80–) 326, 1100–1103 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).Article 

    Google Scholar 
    38.Wehrden, H. V., Hanspach, J., Kaczensky, P., Fischer, J. & Wesche, K. Global assessment of the non-equilibrium concept in rangelands. Ecol. Appl. 22, 393–399 (2012).Article 

    Google Scholar 
    39.Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).Article 

    Google Scholar 
    40.Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    41.Manseau, M., Huot, J. & Crête, M. Effects of summer grazing by caribou on composition and productivity of vegetation: Community and landscape level. J. Ecol. 84, 503–513 (1996).Article 

    Google Scholar 
    42.Suominen, O. & Olofsson, J. Impacts of semi-domesticated reindeer on structure of tundra and forest communities in fennoscandia: A review. Ann. Zool. Fennici 37, 233–249 (2000).
    Google Scholar 
    43.Virtanen, R. Effects of grazing on above-ground biomass on a mountain snowbed, NW Finland. Oikos 90, 295–300 (2000).Article 

    Google Scholar 
    44.Ravolainen, V. T. et al. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl. Ecol. 12, 643–653 (2011).Article 

    Google Scholar 
    45.Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).Article 

    Google Scholar 
    46.Díaz, S., Noy-meir, I. & Cabido, M. Can grazing of herbaceous plants be predicted response from simple vegetative traits?. J. Appl. Ecol. 38, 497–508 (2001).Article 

    Google Scholar 
    47.Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Change Biol. 13, 313–341 (2007).ADS 
    Article 

    Google Scholar 
    48.Pakeman, R. J. & Marriott, C. A. A functional assessment of the response of grassland vegetation to reduced grazing and abandonment. J. Veg. Sci. 21, 683–694 (2010).
    Google Scholar 
    49.Troeva, E. I. & Cherosov, M. M. Transformation of Steppe communities of Yakutia due to climatic change and anthropogenic impact in Eurasian Steppes. Ecol. Probl. Livelih. Changing World https://doi.org/10.1007/978-94-007-3886-7_14 (2012).Article 

    Google Scholar 
    50.Gavrilyeva, L., Sofronov, R., Arzhakova, A., Barashkova, N. & Ivanov, I. Hayfields and pastures. In The Far North: Plant Biodiversity and Ecology of Yakutia (ed. Al, T.) 275–281 (Springer, 2010).
    Google Scholar 
    51.Gill, J. L. Learning from Africa’s herbivores. Science (80–) 350, 1036–1037 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Reinecke, J. S. F. The Return of the Mammoth Steppe?—Rewilding in Yakutia and the Actual Impact of Large Herbivore Grazing on Vegetation (Technische Universität Dresden, 2019).
    Google Scholar 
    53.Malyschev, L. I. Flora of Siberia (Science Publishers, 2006).
    Google Scholar 
    54.Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    55.McCune, B. Improved estimates of incident radiation and heat load using non-parametric regression against topographic variables. J. Veg. Sci. 18, 751–754 (2007).Article 

    Google Scholar 
    56.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    57.Ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: Software for ordination. 496 (2012).58.Ashastina, K. Palaeo-environments at the Batagay site in West Beringia During the Late Quaternary (Friedrich-Schiller-Universität Jena, 2018).
    Google Scholar 
    59.McCune, B. & Mefford, M. J. PC-ORD. (2011).60.Pakeman, R. J., Lennon, J. J. & Brooker, R. W. Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia 167, 209–218 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Troeva, E. I., Isaev, A. P., Cherosov, M. M. & Karpov, N. S. The Far North: Plant Diversity and Ecology of Yakutia (Springer, 2010).Book 

    Google Scholar 
    62.Elvebakk, A. ‘Arctic hotspot complexes’—proposed priority sites for studying and monitoring effects of climatic change on arctic biodiversity. Phytocoenologia 35, 1067–1079 (2005).Article 

    Google Scholar 
    63.Coughenour, M. B. Graminoid responses to grazing by large herbivores: Adaptations, exaptations, and interacting processes. Ann. Missouri Bot. Gard. 72, 852–863 (1985).Article 

    Google Scholar 
    64.Quiroga, R. E., Golluscio, R. A., Blanco, L. J. & Fernández, R. J. Aridity and grazing as convergent selective forces: An experiment with an Arid Chaco bunchgrass. Ecol. Appl. 20, 1876–1889 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Herms, D. A. & Matson, W. J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67, 293–335 (1992).Article 

    Google Scholar 
    66.Hobbie, S. E. Effect of plant species on nutrient cycling. Trends Ecol. Evol. 7, 336–339 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science (80–) 230, 895–899 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Wesche, K., Nadrowski, K. & Retzer, V. Habitat engineering under dry conditions: The impact of pikas (Ochotona pallasi) on vegetation and site conditions in southern Mongolian steppes. J. Veg. Sci. 18, 665 (2007).Article 

    Google Scholar 
    69.Newediuk, L. J., Waters, I. & Hare, J. F. Aspen parkland pasture altered by Richardson’s ground squirrel (Urocitellus richardsonii Sabine) activity: The good, the bad, and the not so ugly?. Can. Field-Nat. 129, 331–341 (2015).Article 

    Google Scholar 
    70.Wheeler, H. C. & Hik, D. S. Arctic ground squirrels Urocitellus parryii as drivers and indicators of change in northern ecosystems. Mamm. Rev. 43, 238–255 (2013).Article 

    Google Scholar 
    71.Steuter, A. A. & Hidinger, L. Comparative ecology of bison and cattle on mixed-grass prairie. Gt. Plains Res. 9, 329–342 (1999).
    Google Scholar 
    72.Ivanova, V. Tipchakovye stepi—odin iz etapov pastbischnoi digressii rastitelnosti v doline srednei Leny. In Rastitelnost Yakutii i Eyo Okhrana (ed. Andreyev, V.) 37–56 (1981).73.Ivanova, V. O vliyanii vypasa na stepnuyu rastitelnost v doline r. Leny. In Lyubite i okhranyaite prirodu Yakutii 86–93 (1967).74.Gavrilyeva, L. Pastbishnaya Digressiya i Ratsionalnoye Ispolzovaniye Rastitelnosti Alasov Leno-Amginskogo Mezhdurechya (University of Yakutsk, 1998).
    Google Scholar 
    75.Bazha, S. N., Gunin, P. D., Danzhalova, E. V., Drobyshev, Y. I. & Prishcepa, A. V. Pastoral degradataion of steppe ecosystems in Central Mongolia. In Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World (eds Werger, M. J. A. & Staalduinen, M. A.) 289–319 (Springer, 2012).Chapter 

    Google Scholar 
    76.Crate, S. et al. Permafrost livelihoods: A transdisciplinary review and analysis of thermokarst-based systems of indigenous land use. Anthropocene 18, 89–104 (2017).Article 

    Google Scholar 
    77.Ellis, J. & Swift, D. Stability of African pastoral ecosystems: Alternate paradigms and implications for development. J. Range Manag. 41, 450–459 (1988).Article 

    Google Scholar 
    78.Nachinshonhor, U. G. Use of steppe vegetation by nomadic pastoralism in Mongolia. In Ecological Research Monographs (eds Yamamura, N. et al.) 145–156 (Springer, 2014).
    Google Scholar 
    79.Wang, Y. et al. Multiple indicators yield diverging results on grazing degradation and climate controls across Tibetan pastures. Ecol. Indic. 93, 1199–1208 (2018).Article 

    Google Scholar 
    80.Ahlborn, J. et al. Climate—grazing interactions in Mongolian rangelands: Effects of grazing change along a large-scale environmental gradient. J. Arid Environ. 173, 20 (2020).Article 

    Google Scholar 
    81.Vesk, P. A. & Westoby, M. Predicting plant species’ responses to grazing. J. Appl. Ecol. 28, 897–909 (2001).Article 

    Google Scholar 
    82.Shipley, L. Grazers and browsers: how digestive morphology affects diet selection. Grazing behavior of livestock and wildlife 70, 20–27 (1999).83.Larter, N. C. Diet and habitat selection of an erupting wood bison population. 1–118 (1988).84.Kuznetsova, T. V. Fossils of the mammoth fauna. Russian-German Cooperation SYSTEM LAPTEV SEA: The Expedition Lena—New Siberian Islands 2007 during the International Polar Year 2007/2008, 139–140 (2008).85.Kuznetsova, T. V., Sulerzhitsky, L. D. & Siegert, C. New data on the ‘Mammoth’ fauna of the Laptev Shelf Land (East Siberian Arctic). In The World of Elephants—International Congress 289–292 (2001).86.Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158, 99–107 (2012).ADS 
    Article 

    Google Scholar 
    87.Gill, R. The influence of large herbivores on tree recruitment and forest dynamics. In Large Herbivore Ecology, Ecosystem Dynamics and Conservation (eds Danell, K. et al.) 170–202 (Cambridge University Press, 2006).Chapter 

    Google Scholar 
    88.Martin, P. J. Digestive and grazing strategies of animals in the arctic steppe. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 259–266 (Elsevier Inc, 1982).Chapter 

    Google Scholar 
    89.Huisman, J. & Olff, H. Competition and facilitation in multispecies plant-herbivore systems of productive environments. Ecol. Lett. 1, 25–29 (1998).Article 

    Google Scholar 
    90.Waldram, M. S., Bond, W. J. & Stock, W. D. Ecological engineering by a mega-grazer: White Rhino impacts on a south African savanna. Ecosystems 11, 101–112 (2008).Article 

    Google Scholar 
    91.Cornelissen, P. Large Herbivores as a Driving Force of Woodland-Grassland Cycles (Wageningen University, 2017).
    Google Scholar 
    92.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Biotechnol. Agron. Soc. Environ. 14, 203–211 (2003).
    Google Scholar 
    93.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. 109, 21384–21389 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean

    1.Behrenfeld MJ, Boss ES. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob Chang Biol. 2018;24:55–77.PubMed 
    Article 

    Google Scholar 
    2.Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    Article 

    Google Scholar 
    3.Calbet A, Landry MR. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 2004;49:51–7.CAS 
    Article 

    Google Scholar 
    4.Baudoux A-C, Noordeloos AAM, Veldhuis MJW, Brussaard CPD. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat Micro Ecol. 2006;44:207–17.Article 

    Google Scholar 
    5.Vardi A, Haramaty L, Van Mooy BAS, Fredricks HF, Kimmance SA, Larsen A, et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci. 2012;109:19327–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Mojica KDA, Huisman J, Wilhelm SW, Brussaard CPD. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 2016;10:500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Safi KA, Brian Griffiths F, Hall JA. Microzooplankton composition, biomass and grazing rates along the WOCE SR3 line between Tasmania and Antarctica. Deep Sea Res Part I Oceanogr Res Pap. 2007;54:1025–41.Article 

    Google Scholar 
    8.Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74.Article 

    Google Scholar 
    9.Bratbak G, Egge JK, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser. 1993;93:39–48.Article 

    Google Scholar 
    10.Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae. 2005;4:875–93.Article 

    Google Scholar 
    11.Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea. Bioscience. 1999;49:781–8.Article 

    Google Scholar 
    12.Brussaard CPD, Timmermans KR, Uitz J, Veldhuis MJW. Virioplankton dynamics and virally induced phytoplankton lysis versus microzooplankton grazing southeast of the Kerguelen (Southern Ocean). Deep Sea Res Part II Top Stud Oceanogr. 2008;55:752–65.Article 

    Google Scholar 
    13.Weitz JS, Wilhelm SW. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep. 2012;4:2–9.Article 

    Google Scholar 
    14.Brussaard CPD, Martínez J. Algal bloom viruses. Plant Viruses. 2008;2:1–13.
    Google Scholar 
    15.Nagasaki K. Dinoflagellates, diatoms, and their viruses. J Microbiol. 2008;46:235–43.PubMed 
    Article 

    Google Scholar 
    16.Coy SR, Gann ER, Pound HL, Short SM, Wilhelm SW. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses. 2018;10:487.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    17.Muhling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: Evidence for viral control of phytoplankton. Environ Microbiol. 2005;7:499–508.CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Haaber J, Middelboe M. Viral lysis of Phaeocystis pouchetii: Implications for algal population dynamics and heterotrophic C, N and P cycling. ISME J. 2009;3:430–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Brussaard CPD. Viral control of phytoplankton populations—a review. J Eukaryot Microbiol. 2004;51:125–38.PubMed 
    Article 

    Google Scholar 
    20.Evans C, Brussaard CPD. Viral lysis and microzooplankton grazing of phytoplankton throughout the Southern Ocean. Limnol Oceanogr. 2012;57:1826–37.Article 

    Google Scholar 
    21.Brussaard CPD, Noordeloos AAM, Witte H, Collenteur MCJ, Schulz K, Ludwig A, et al. Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences. 2013;10:719–31.Article 

    Google Scholar 
    22.Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC, Graven HD, et al. Global ocean storage of anthropogenic carbon. Biogeosciences. 2013;10:2169–91.CAS 
    Article 

    Google Scholar 
    23.Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86.Article 

    Google Scholar 
    24.Bakker DCE, De Baar HJW, Bathmann UV. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 1997;44:91–127.Article 

    Google Scholar 
    25.Moreau S, Schloss IR, Mostajir B, Demers S, Almandoz GO, Ferrario ME, et al. Influence of microbial community composition and metabolism on air–sea ΔpCO2 variation off the western Antarctic Peninsula. Mar Ecol Prog Ser. 2012;446:45–59.CAS 
    Article 

    Google Scholar 
    26.Ducklow H, Clarke A, Dickhut R, Doney SC, Geisz H, Huang K, et al. The marine system of the Western Antarctic Peninsula. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A, editors. Antarctic ecosystems: an extreme environment in a changing world. Blackwell Publishing Ltd.; 2012. pp. 121–59.27.Shreeve RS, Ward P, Whitehouse MJ. Copepod growth and development around South Georgia: Relationships with temperature, food and krill. Mar Ecol Prog Ser. 2002;233:169–83.Article 

    Google Scholar 
    28.Barrera-Oro E. The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci. 2002;14:293–309.Article 

    Google Scholar 
    29.Belton B, Thilsted SH. Fisheries in transition: Food and nutrition security implications for the global South. Glob Food Sec. 2014;3:59–66.Article 

    Google Scholar 
    30.Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr. 2015;130:205–48.Article 

    Google Scholar 
    31.Gordon AL. Bottom water formation. In: Steele JH, Turekian KK, Thorpe SA, editors. Encyclopedia of ocean sciences, 1st ed. Elsevier; 2001. pp. 334–40.32.Jacobs SS. Bottom water production and its links with the thermohaline circulation. Antarct Sci. 2004;16:427–37.Article 

    Google Scholar 
    33.Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Chang. 2019;9:781–6.CAS 
    Article 

    Google Scholar 
    34.Sommer U, Lengfellner K. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol. 2008;14:1199–208.Article 

    Google Scholar 
    35.Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Chang Biol. 2004;10:1973–80.Article 

    Google Scholar 
    36.Biggs TEG, Alvarez-Fernandez S, Evans C, Mojica KDA, Rozema PD, Venables HJ, et al. Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biol. 2019;42:1997–2015.Article 

    Google Scholar 
    37.Clarke A, Meredith MP, Wallace MI, Brandon MA, Thomas DN. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Res Part II Top Stud Oceanogr. 2008;55:1988–2006.Article 

    Google Scholar 
    38.Marie D, Partensky F, Vaulot D, Brussaard CPD. Enumeration of phytoplankton, bacteria, and viruses in marine samples. Curr Protoc Cytom. 1999;10:11.11.1–5.
    Google Scholar 
    39.Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Vaulot D. CYTOPC: processing software for flow cytometric data. Signal Noise. 1989;2:8.
    Google Scholar 
    41.Biggs TEG, Brussaard CPD, Evans C, Venables HJ, Pond DW. Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters. ICES J Mar Sci. 2020;77:1738–51.Article 

    Google Scholar 
    42.Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Mojica KDA, Evans C, Brussaard CPD. Flow cytometric enumeration of marine viral populations at low abundances. Aquat Microb Ecol. 2014;71:203–9.Article 

    Google Scholar 
    44.Brussaard CPD, Payet JP, Winter C, Weinbauer MG. Quantification of aquatic viruses by flow cytometry. Man Aquat viral Ecol. 2010;11:102–9.Article 

    Google Scholar 
    45.Lawrence JE, Brussaard CPD, Suttle CA. Virus-specific responses of Heterosigma akashiwo to infection. Appl Environ Microbiol. 2006;72:7829–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Tomaru Y, Nagasaki K. Flow cytometric detection and enumeration of DNA and RNA viruses infecting marine eukaryotic microalgae. J Oceanogr. 2007;63:215–21.CAS 
    Article 

    Google Scholar 
    47.Jacquet S, Heldal M, Iglesias-Rodriguez D, Larsen A, Wilson W, Bratbak G. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat Micro Ecol. 2002;27:111–24.Article 

    Google Scholar 
    48.Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Brussaard CPD, Thyrhaug R, Marie D, Bratbak G. Flow cytometric analyses of viral infection in two marine phytoplankton species, Micromonas pusilla (Prasinophyceae) and Phaeocystis pouchetii (Prymnesiophyceae). J Phycol. 1999;35:941–8.Article 

    Google Scholar 
    50.Kimmance SA, Wilson WH, Archer SD. Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: Limitations associated with method sensitivity in natural waters. Aquat Microb Ecol. 2007;49:207–22.Article 

    Google Scholar 
    51.Garrison DL, Gowing MM, Hughes MP, Campbell L, Caron DA, Dennett MR, et al. Microbial food web structure in the Arabian Sea: A US JGOFS study. Deep Sea Res Part II Top Stud Oceanogr. 2000;47:1387–422.Article 

    Google Scholar 
    52.Worden AZ, Nolan JK, Palenik B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr. 2004;49:168–79.CAS 
    Article 

    Google Scholar 
    53.van Leeuwe MA, Webb AL, Venables HJ, Visser RJW, Meredith MP, Elzenga JTM, et al. Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers. Limnol Oceanogr. 2020;65:1651–68.Article 

    Google Scholar 
    54.Baudoux A-C, Veldhuis MJW, Witte HJ, Brussaard CPD. Viruses as mortality agents of picophytoplankton in the deep chlorophyll maximum layer during IRONAGES III. Limnol Oceanogr. 2007;52:2519–29.CAS 
    Article 

    Google Scholar 
    55.Baudoux A-C, Veldhuis MJW, Noordeloos AAM, van Noort G, Brussaard CPD. Estimates of virus- vs. grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat Micro Ecol. 2008;52:69–82.Article 

    Google Scholar 
    56.Kranzler CF, Krause JW, Brzezinski MA, Edwards BR, Biggs WP, Maniscalco M, et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat Microbiol. 2019;4:1790–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Tomaru Y, Takao Y, Suzuki H, Nagumo T, Nagasaki K. Isolation and characterization of a single-stranded RNA virus infecting the bloom-forming diatom Chaetoceros socialis. Appl Environ Microbiol. 2009;75:2375–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Kattner G, Hagen W. Lipids in marine copepods: Latitudinal characteristics and perspective to global warming. In: Kainz M, Brett M, Arts M, editors. Lipids in aquatic ecosystems. Springer New York; 2009. pp. 257–80.59.Ploug H, Iversen MH, Fischer G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol Oceanogr. 2008;53:1878–86.Article 

    Google Scholar 
    60.Voss M. Content of copepod faecal pellets in relation to food supply in Kiel Bight and its effect on sedimentation rate. Mar Ecol Prog Ser. 1991;75:217–25.Article 

    Google Scholar 
    61.Lønborg C, Middelboe M, Brussaard CPD. Viral lysis of Micromonas pusilla: Impacts on dissolved organic matter production and composition. Biogeochemistry. 2013;116:231–40.Article 
    CAS 

    Google Scholar 
    62.Yamada Y, Tomaru Y, Fukuda H, Nagata T. Aggregate formation during the viral lysis of a marine diatom. Front Mar Sci. 2018;5:167.63.Maat DS, Crawfurd KJ, Timmermans KR, Brussaard CPD. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact. Appl Environ Microbiol. 2014;80:3119–27.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Maat DS, Brussaard CPD. Both phosphorus- and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat Micro Ecol. 2016;77:87–97.Article 

    Google Scholar 
    65.Maat DS, de Blok R, Brussaard CPD. Combined phosphorus limitation and light stress prevent viral proliferation in the phytoplankton species Phaeocystis globosa, but Not in Micromonas pusilla. Front Mar Sci. 2016;3:160.66.Maat DS, Biggs TEG, Evans C, van Bleijswijk JDL, van Der Wel NN, Dutilh BE, et al. Characterization and temperature dependence of arctic Micromonas polaris viruses. Viruses. 2017;9:6–9.Article 
    CAS 

    Google Scholar 
    67.Piedade GJ, Wesdorp EM, Montenegro-Borbolla E, Maat DS, Brussaard CPD. Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses. 2018;10:676.68.Gann ER, Gainer PJ, Reynolds TB, Wilhelm SW. Influence of light on the infection of Aureococcus anophagefferens CCMP 1984 by a “giant virus”. PLoS ONE. 2020;15:e0226758.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Evans C, Wilson WH. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi. Limnol Oceanogr. 2008;53:2035–40.Article 

    Google Scholar 
    70.Vermont AI, Martínez Martínez J, Waller JD, Gilg IC, Leavitt AH, Floge SA, et al. Virus infection of Emiliania huxleyi deters grazing by the copepod Acartia tonsa. J Plankton Res. 2016;38:1194–205.Article 

    Google Scholar 
    71.González JM, Suttle CA. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser. 1993;94:1–10.Article 

    Google Scholar 
    72.Rose JM, Caron DA. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr. 2007;52:886–95.Article 

    Google Scholar 
    73.Helenius LK, Saiz E. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey. PLoS ONE. 2017;12:e0172902.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Djeghri N, Atkinson A, Fileman ES, Harmer RA, Widdicombe CE, McEvoy AJ, et al. High prey-predator size ratios and unselective feeding in copepods: a seasonal comparison of five species with contrasting feeding modes. Prog Oceanogr. 2018;165:63–74.Article 

    Google Scholar 
    75.Gonçalves RJ, Gréve H, van S, Couespel D, Kiørboe T. Mechanisms of prey size selection in a suspension-feeding copepod, Temora longicornis. Mar Ecol Prog Ser. 2014;517:61–74.Article 

    Google Scholar 
    76.Zhao Z, Gonsior M, Schmitt-Kopplin P, Zhan Y, Zhang R, Jiao N, et al. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J. 2019;13:2551–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: Projections, commitments, and irreversibility. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and NY, USA: Cambridge University Press; 2013.78.Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science. 2009;323:1470–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Arrigo KR, van Dijken GL. Continued increases in Arctic Ocean primary production. Prog Oceanogr. 2015;136:60–70.Article 

    Google Scholar 
    80.Vernet M, Martinson D, Iannuzzi R, Stammerjohn S, Kozlowski W, Sines K, et al. Primary production within the sea-ice zone west of the Antarctic Peninsula: I—Sea ice, summer mixed layer, and irradiance. Deep Sea Res Part II Top Stud Oceanogr. 2008;55:2068–85.Article 

    Google Scholar 
    81.Deppeler SL, Davidson AT. Southern Ocean phytoplankton in a changing climate. Front Mar Sci. 2017;4:40.82.Van de Poll WH, Kulk G, Rozema PD, Brussaard CPD, Visser RJW, Buma AGJ. Contrasting glacial meltwater effects on post-bloom phytoplankton on temporal and spatial scales in Kongsfjorden. Spitsbergen Elem Sci Anth. 2018;6:50.Article 

    Google Scholar 
    83.Ardyna M, Babin M, Gosselin M, Devred E, Rainville L, Tremblay J-É. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett. 2014;41:6207–12.Article 

    Google Scholar 
    84.Venables HJ, Clarke A, Meredith MP. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol Oceanogr. 2013;58:1035–47.Article 

    Google Scholar 
    85.Mendes CRB, Tavano VM, Dotto TS, Kerr R, de Souza MS, Garcia CAE, et al. New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep Sea Res Part II Top Stud Oceanogr. 2017;149:161–70.Article 
    CAS 

    Google Scholar 
    86.Rozema PD, Venables HJ, van de Poll WH, Clarke A, Meredith MP, Buma AGJ. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol Oceanogr. 2017;62:235–52.Article 

    Google Scholar  More

  • in

    “Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems

    1.Nielsen PH, Mcilroy SJ, Albertsen M, Nierychlo M. Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Curr Opin Biotechnol. 2019;57:111–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Marques R, Santos J, Nguyen H, Carvalho G, Noronha JP, Nielsen PH, et al. Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. Water Res. 2017;122:159–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Camejo PY, Oyserman BO, Mcmahon KD, Noguera DR. Integrated omic analyses provide evidence that a “Candidatus Accumulibacter phosphatis” strain performs denitrification under microaerobic conditions. mSystems. 2019;4:1–23.Article 

    Google Scholar 
    4.Oyserman BO, Noguera DR, Del Rio TG, Tringe SG, McMahon KD. Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis. ISME J. 2016;10:810–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Tu Y, Schuler AJ. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater. Environ Sci Technol. 2013;47:3816–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Marques R, Ribera-guardia A, Santos J, Carvalho G, Reis MAM, Pijuan M, et al. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes. Water Res. 2018;137:262–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Fernando EY, McIlroy SJ, Nierychlo M, Herbst F-A, Petriglieri F, Schmid MC, et al. Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J. 2019;13:1933–46.8.Kawaharasaki M, Tanaka H, Kanagawa T, Nakamura K. In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4’,6-diaimidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Water Res. 1999;33:257–65.CAS 
    Article 

    Google Scholar 
    9.Crocetti GR, Hugenholtz P, Bond PL, Schuler AJ, Keller J, Jenkins D, et al. Identification of polyphosphate-accumulating organisms and design of 16SrRNA-directed probes for their detection and quantitation. Appl Environ Microbiol. 2000;66:1175–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Kong Y, Nielsen JL, Nielsen PH. Identity and ecophysiology of uncultured Actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol. 2005;71:4076–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Kong Y, Xia Y, Nielsen JL, Nielsen PH. Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology. 2007;153:4061–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Göel R, Sanhueza P, Noguera D. Evidence of Dechloromonas sp. participating in enhanced biological phosphorous removal (EBPR) in a bench-scale aerated-anoxic reactor. Proc Water Environ Fed. 2005;41:3864–71.Article 

    Google Scholar 
    13.Terashima M, Yama A, Sato M, Yumoto I, Kamagata Y, Kato S. Culture-dependent and -independent identification of polyphosphate-accumulating Dechloromonas spp. predominating in a full-scale oxidation ditch wastewater treatment plant. Microbes Environ Environ. 2016;31:449–55.Article 

    Google Scholar 
    14.Wang B, Jiao E, Guo Y, Zhang L, Meng Q, Zeng W, et al. Investigation of the polyphosphate-accumulating organism population in the full-scale simultaneous chemical phosphorus removal system. Environ Sci Pollut Res. 2020;27:37877–86.CAS 
    Article 

    Google Scholar 
    15.Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH. A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems. Front Microbiol. 2017;8:718.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol. 2001;51:527–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Horn MA, Ihssen J, Matthies C, Schramm A, Acker G, Drake HL, et al. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol. 2005;55:1255–65.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, et al. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4’,6’-Diamidino-2-Phenylindole) and Tetracycline Labeling. Appl Environ Microbiol. 2009;75:2111–21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Acevedo B, Murgui M, Borrás L, Barat R. New insights in the metabolic behaviour of PAO under negligible poly-P reserves. Chem Eng J. 2017;311:82–90.CAS 
    Article 

    Google Scholar 
    20.Yuan Y, Liu J, Ma B, Liu Y, Wang B, Peng Y. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR). Bioresour Technol. 2016;222:326–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lv X, Shao M, Li C, Li J, Gao X, Sun F. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes. Microbes Environ. 2014;29:261–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Salinero KK, Keller K, Feil WS, Feil H, Trong S, Bartolo Di G, et al. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB anaerobic pathways for aromatic degradation. BMC Genom. 2009;23:1–23.
    Google Scholar 
    23.McIlroy SJ, Starnawska A, Starnawski P, Saunders AM, Nierychlo M, Nielsen PH, et al. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ Microbiol. 2016;18:50–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Hesselsoe M, Fu S, Schloter M, Bodrossy L, Iversen N, Roslev P, et al. Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge. ISME J. 2009;3:1349–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Ahn J, Schroeder S, Beer M, McIlroy S, Bayly RC, May JW, et al. Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor. Appl Environ Microbiol. 2007;73:2257–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Dueholm MS, Andersen KS, McIlroy SJ, Kristensen JM, Yashiro E, Karst SM, et al. Generation of comprehensive ecosystems-specific reference databases with species-level resolution by high-throughput full-length 16S rRNA gene sequencing and automated taxonomy assignment (AutoTax). mBio. 2020;11:e01557–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, et al. Connecting structure to function with the recovery of over 1000 high-quality activated sludge metagenome-assembled genomes encoding full-length rRNA genes using long-read sequencing. Nat Commun. 2021;12:2009.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Parks DH, Rinke C, Chuvochina M, Chaumeil P, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.GJF Smolders, Meij Van Der J, Loosdrecht Van MCM, Heijnen JJ. Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnol Bioeng. 1994;43:461–70.Article 

    Google Scholar 
    31.Jørgensen MK, Nierychlo M, Nielsen AH, Larsen P, Christensen ML, Nielsen PH. Unified understanding of physico-chemical properties of activated sludge and fouling propensity. Water Res. 2017;120:117–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    32.Nielsen JL. Protocol for fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotides. FISH handbook for biological wastewater treatment. 2009. pp 73–84.33.McIlroy SJ, Kirkegaard RH, McIlroy B, Nierychlo M, Kristensen JM, Karst SM, et al. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups. Database. 2017;2017:1–9.Article 

    Google Scholar 
    34.Nierychlo M, Andersen KS, Xu Y, Green N, Jiang C, Albertsen M, et al. MiDAS 3: an ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020;182:115955.35.R Core Team. R: A language and environment for statistical computing. 2020. R Foundation for Statistical Computing, Vienna, Austria.36.RStudio Team. RStudio: Integrated Development Environment for R. 2015. Boston, MA.37.Albertsen M, Karst SM, Ziegler AS, Kirkegaard RH, Nielsen PH. Back to basics—the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLoS One. 2015;10:1–15.Article 
    CAS 

    Google Scholar 
    38.Wickham H. ggplot2—elegant graphics for data analysis. Springer. 2009. Springer Science & Business Media.39.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 
    CAS 

    Google Scholar 
    41.Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47:D23–D28.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Yilmaz LS, Parnerkar S, Noguera DR. MathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol. 2011;77:1118–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Daims H, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn AM, Smith CJ (eds). Molecular Microbial Ecology. 2005. Taylor & Francis, New York, pp 213–39.44.Daims H, Lücker S, Wagner M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol. 2006;8:200–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chaumeil P, Mussig AJ, Parks DH, Hugenholtz P. Genome analysis GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    46.Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.Article 

    Google Scholar 
    48.Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:457–62.Article 
    CAS 

    Google Scholar 
    49.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    50.Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009; 25:1335–7.51.Nguyen L, Schmidt HA, Haeseler Von A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. 2014; 32:268–74.52.Wolterink A, Kim S, Muusse M, Kim IS, Roholl PJM, Ginkel Van GC. et al. Dechloromonas hortensis sp nov strain ASK-1, two Nov (per)chlorate-reducing Bact, taxonomic description strain GR-1. Int J Syst Evolut Microbiol. 2005;1:2063–8.Article 
    CAS 

    Google Scholar 
    53.Zilles JL, Peccia J, Noguera DR. Microbiology of enhanced biological phosphorus removal in aerated-anoxic orbal processes. Water Environ Res. 2002;74:428–36.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Dueholm MS, Nierychlo M, Andersen KS, Rudkjøbing V, Knudsen S, the MiDAS Global Consortium, et al. MiDAS 4—a global WWTP ecosystem-specific full-length 16S rRNA gene catalogue and taxonomy for studies of bacterial communities. bioRxiv 2021.55.Oehmen A, Lemos PC, Carvalho G, Yuan Z, Blackall LL, Reis MAM. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res. 2007;41:2271–2300.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Qiu G, Zuniga-montanez R, Law Y, Swa S. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Water Res. 2019;149:469–510.Article 
    CAS 

    Google Scholar 
    57.Petriglieri F, Petersen JF, Peces M, Nierychlo M, Hansen K, Baastrand CE, et al. Quantification of biologically and chemically bound phosphorus in activated sludge from full-scale plants with biological P-removal. biorxiv 2020. https://doi.org/10.1101/2021.01.04.425262.58.Hesselmann RPX, Von Rummel R, Resnick SM, Hany R, Zehnder AJB. Anaerobic metabolism of bacteria performing enhanced biological phosphate removal. Water Res. 2000;34:3487–94.CAS 
    Article 

    Google Scholar 
    59.Acevedo B, Oehmen A, Carvalho G, Seco A, Borrás L, Barat R. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res. 2012;6:1889–1900.Article 
    CAS 

    Google Scholar 
    60.Flowers JJ, He S, Malfatti S, Glavina T, Tringe SG, Hugenholtz P, et al. Comparative genomics of two ‘Candidatus Accumulibacter’ clades performing biological phosphorus removal. ISME J. 2013;7:2301–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Qiu G, Liu X, Saw NMMT, Law Y, Zuniga-Montanez R, Thi SS, et al. Metabolic traits of Candidatus Accumulibacter clade IIF Strain SCELSE-1 using amino acids as carbon sources for enhanced biological phosphorus removal. Environ Sci Technol. 2019;54:2448–58.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    62.Kristiansen R, Thi H, Nguyen T, Saunders AM, Nielsen JL, Wimmer R, et al. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME J. 2013;7:543–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.McIlroy SJ, Albertsen M, Andresen EK, Saunders AM. ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J. 2014;8:613–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Saunders AM, Mabbett AN, Mcewan AG, Blackall LL. Proton motive force generation from stored polymers for the uptake of acetate under anaerobic conditions. FEMS Microbiol Lett. 2007;274:245–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Erdal UG, Erdal ZK, Daigger GT, Randall CW. Is it PAO-GAO competition or metabolic shift in EBPR system? Evidence from an experimental study. Water Sci Technol. 2008;58:1329–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Zhou Y, Pijuan M, Zeng RJ, Lu H, Could ÃZY. polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Water Res. 2008;42:2361–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Weissbrodt DG, Lopez-vazquez CM, Welles L. “Candidatus Accumulibacter delftensis”: a clade IC novel polyphosphate-accumulating organism without denitrifying activity on nitrate. Water Res. 2019;161:136–51.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    69.Camejo PY, Owen BR, Martirano J, Ma J, Kapoor V, Santo J, et al. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors. Water Res. 2016;102:125–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Skennerton CT, Barr JJ, Slater FR, Bond PL, Tyson GW. Expanding our view of genomic diversity in Candidatus Accumulibacter clades. Environ Microbiol. 2015;17:1574–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Hendriks J, Oubrie A, Castresana J, Urbani A, Gemeinhardt S, Saraste M. Nitric oxide reductases in bacteria. Biochim Biophys Acta—Bioenerg. 2000;1459:266–73.CAS 
    Article 

    Google Scholar 
    72.Murray RGE, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Evol Microbiol. 1995;45:186–7.CAS 

    Google Scholar  More

  • in

    Emergent “core communities” of microbes, meiofauna and macrofauna at hydrothermal vents

    1.Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc. 2013;88:15–30.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the oceans interior. Nature. 1988;332:441–3.CAS 
    Article 

    Google Scholar 
    4.Rousk J, Bengtson P. Microbial regulation of global biogeochemical cycles. Front Microbiol. 2014;5:103.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Guilhon M, Montserrat F, Turra A. Recognition of ecosystem-based management principles in key documents of the seabed mining regime: implications and further recommendations. ICES J Marine Sci. 2020:fsaa229.6.Sherman K, Sissenwine M, Christensen V, Duda A, Hempel G, Ibe C, et al. A global movement toward an ecosystem approach to management of marine resources. Mar Ecol Prog Ser. 2005;300:275–9.Article 

    Google Scholar 
    7.Passarelli C, Olivier F, Paterson DM, Hubas C. Impacts of biogenic structures on benthic assemblages: microbes, meiofauna, macrofauna and related ecosystem functions. Mar Ecol Prog Ser. 2012;465:85–97.Article 

    Google Scholar 
    8.Baldrighi E, Aliani S, Conversi A, Lavaleye M, Borghini M, Manini E. From microbes to macrofauna: an integrated study of deep benthic communities and their response to environmental variables along the Malta Escarpment (Ionian Sea). Sci Mar. 2013;77:625–39.Article 

    Google Scholar 
    9.Foshtomi MY, Braeckman U, Derycke S, Sapp M, Van Gansbeke D, Sabbe K, et al. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE. 2015;10:e0130116.10.Hope JA, Paterson DM, Thrush SF. The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. J Ecology. 2020;108:815–30.Article 

    Google Scholar 
    11.Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Blanchet FG, Cazelles K, Gravel D. Co-occurrence is not evidence of ecological interactions. Ecol Lett. 2020;23:1050–63.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Pearson K. Mathematical contributions to the theory of evolution—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc Lond. 1897;60:489–98.Article 

    Google Scholar 
    14.Jackson DA. Compositional data in community ecology: the paradigm or peril of proportions? Ecology. 1997;78:929–40.Article 

    Google Scholar 
    15.Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016;62:692–703.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bahler J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol. 2015;11:e1004075.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Sievert SM, Vetriani C. Chemoautotrophy at deep-sea vents: past, present, and future. Oceanography. 2012;25:218–33.Article 

    Google Scholar 
    18.Huber JA, Butterfield DA, Baross JA. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol. 2002;68:1585–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Karl DM, Wirsen CO, Jannasch HW. Deep-sea primary production at the Galapagos hydrothermal vents. Science. 1980;207:1345–7.CAS 
    Article 

    Google Scholar 
    20.Meyer JL, Akerman NH, Proskurowski G, Huber JA Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount Juan de Fuca Ridge. Front Microbiol. 2013;4:153.21.Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75:361–422.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Yamanaka T et al. A Compilation of the Stable Isotopic Compositions of Carbon, Nitrogen, and Sulfur in Soft Body Parts of Animals Collected from Deep-Sea Hydrothermal Vent and Methane Seep Fields: Variations in Energy Source and Importance of Subsurface Microbial Processes in the Sediment-Hosted Systems. In: Ishibashi J, Okino K, Sunamura M, editors. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo, Japan: Springer Open; 2015. p. 105–29.24.Bergquist D, Eckner J, Urcuyo I, Cordes E, Hourdez S, Macko S, Fisher C. Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser. 2007;330:49–65.Article 

    Google Scholar 
    25.Colaço A, Dehairs F, Desbruyères D. Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-Sea Res Part I-Oceanogr Res Pap. 2002;49:395–412.Article 

    Google Scholar 
    26.Van Dover C, Fry B. Stable isotopic compositions of hydrothermal vent organisms. Mar Biol. 1989;102:257–63.Article 

    Google Scholar 
    27.Colaço A, Desbruyères D, Guezennec J. Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community. Marine Ecology-an Evolut Perspect. 2007;28:15–24.Article 
    CAS 

    Google Scholar 
    28.Limen H, Stevens CJ, Bourass Z, Juniper SK. Trophic ecology of siphonostomatoid copepods at deep-sea hydrothermal vents in the northeast Pacific. Mar Ecol Prog Ser. 2008;359:161–70.Article 

    Google Scholar 
    29.Van Dover CL. Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge). Mar Biol. 2002;141:761–72.Article 

    Google Scholar 
    30.Lamy T, Koenigs C, Holbrook SJ, Miller RJ, Stier AC, Reed DC. Foundation species promote community stability by increasing diversity in a giant kelp forest. Ecology. 2020;101:e02987.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Bruno JF, Bertness MD Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME, editors. Marine Community Ecology. Sunderland, MA: Sinauer Associates; 2001. p. 201–18.32.Dayton PK Toward an Understanding of Community Resilience and the Potential Effects of Enrichments to the Benthos at McMurdo Sound, Antarctica. Pages 81-95. In: Parker BC, editor. Proceedings of the Colloquium on Conservation Problems. Lawrence, Kansas, USA.: Allen Press; 1972.33.Tunnicliffe V, Cordes EE The tubeworm forests of hydrothermal vents and cold seeps. In: Rossi S, Bramanti L, editors. Perspectives on the Marine Animal Forests of the World Springer; 2020. p. 147–92.34.López-García P, Gaill F, Moreira D. Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol. 2002;4:204–15.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Rincon-Tomas B, Francisco Javier González, Luis Somoza, Kathrin Sauter, Pedro Madureira, Teresa Medialdea et al. Siboglinidae Tubes as an Additional Niche for Microbial Communities in the Gulf of Cadiz-A Microscopical Appraisal. Microorganisms. 2020;8:367.36.Page A, Juniper SK, Olagnon M, Alain K, Desrosiers G, Querellou J, et al. Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney. Geobiology. 2004;2:225–38.Article 

    Google Scholar 
    37.Govenar B Shaping Vent and Seep Communities: Habitat Provision and Modification by Foundation Species. In: Kiel S, editor. The vent and seep biota: aspects from microbes to ecosystems. Dordrecht: Springer; 2010. p. 403–32.38.Tunnicliffe V, Germain CS, Hilario A Phenotypic Variation and Fitness in a Metapopulation of Tubeworms (Ridgeia piscesae Jones) at Hydrothermal Vents. PLoS ONE. 2014;9:e110578.39.Sarrazin J, Juniper SK. Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Prog Ser. 1999;185:1–19.Article 

    Google Scholar 
    40.Sarrazin J, Juniper SK, Massoth G, Legendre P. Physical and chemical factors influencing species distributions on hydrothermal sulfide edifices of the Juan de Fuca Ridge, northeast Pacific. Mar Ecol Prog Ser. 1999;190:89–112.CAS 
    Article 

    Google Scholar 
    41.Govenar BW, Bergquist DC, Urcuyo IA, Eckner JT, Fisher CR. Three Ridgeia piscesae assemblages from a single Juan de Fuca Ridge sulphide edifice: structurally different and functionally similar. Cah Biol Mar. 2002;43:247–52.
    Google Scholar 
    42.Forget NL, Juniper SK. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. MicrobiologyOpen. 2013;2:259–75.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Fraschetti S, Vanreusel A, et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol. 2008;18:1–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nature Rev Microbiol. 2019;17:271–83.CAS 

    Google Scholar 
    45.Lee W-K, Juniper SK, Perez M, Ju S-J, Kim S-J Diversity and characterization of bacterial communities of five co-occurring species at a hydrothermal vent on the Tonga Arc. Ecol Evol. 2021;11:4481–93.46.Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Eren AM, Vineis JH, Morrison HG, Sogin ML. A filtering method to generate high quality short reads using illumina paired-end technology. PLoS One. 2013;8:e66643.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, et al. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol. 2009;75:5797–808.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Quinn TP, Ionas Erb, Greg Gloor, Cedric Notredame, Mark F Richardson, Tamsyn M Crowley et al. A field guide for the compositional analysis of any-omics data. Gigascience. 2019;8:giz107.53.Martín-Fernández JA, Palarea-Albaladejo J, Olea RA Dealing with Zeros. In: Pawlowsky‐Glahn V, Buccianti A, editors. Compositional Data Analysis2011. p. 43-58.54.Palarea-Albaladejo J, Martin-Fernandez JA. zCompositions – R Package for multivariate imputation of left-censored data under a compositional approach. Chemometr Intell Lab. 2015;143:85–96.CAS 
    Article 

    Google Scholar 
    55.Aitchison J The statistical analysis of compositional data. London: Chapman & Hall; 1986. p. 416.56.Aitchison J, Barcelo-Vidal C, Martin-Fernandez JA, Pawlowsky-Glahn V. Logratio analysis and compositional distance. Math Geol. 2000;32:271–5.Article 

    Google Scholar 
    57.Comas-Cufí M coda.base: A Basic Set of Functions for Compositional Data Analysis. R package version 0.2.1 2019 [Available from: https://CRAN.R-project.org/package=coda.base.58.Oksanen J et al. vegan: Community Ecology Package. R package version 2.2-1. 2015 [Available from: http://CRAN.R-project.org/package=vegan.59.Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One. 2013;8:e67019.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci Rep. 2017;7:16252.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol. 2003;43:393–409.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Akerman NH, Butterfield DA, Huber JA Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol. 2013;4:185.64.Tsurumi M, Tunnicliffe V. Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap. 2003;50:611–29.Article 

    Google Scholar 
    65.Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley MD. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res. 1990;95:12895–921.Article 

    Google Scholar 
    66.Johnson KS, Beehler CL, Sakamotoarnold CM, Childress JJ. insitu measurements of chemical-distributions in a deep-sea hydrothermal vent field. Science. 1986;231:1139–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Du Preez C, Fisher CP Long-Term Stability of back-Arc basin hydrothermal vents. Front Mar Sci. 2018;5:54.68.Urcuyo IA, Bergquist DC, MacDonald IR, VanHorn M, Fisher CR. Growth and longevity of the tubeworm Ridgeia piscesae in the variable diffuse flow habitats of the Juan de Fuca Ridge. Mar Ecol Prog Ser. 2007;344:143–57.Article 

    Google Scholar 
    69.Perner M, Bach W, Hentscher M, Koschinsky A, Garbe-Schönberg D, Streit WR, et al. Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5 degrees S on the Mid-Atlantic Ridge. Environ Microbiol. 2009;11:2526–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Orcutt BN, Bradley JA, Brazelton WJ, Estes ER, Goordial JM, Huber JA, et al. Impacts of deep-sea mining on microbial ecosystem services. Limnology Oceanogr. 2020;65:1489–510.CAS 
    Article 

    Google Scholar 
    71.Gollner S, Ivanenko VN, Arbizu PM, Bright M. Advances in taxonomy, ecology, and biogeography of Dirivultidae (copepoda) associated with chemosynthetic environments in the deep sea. PLoS One. 2010;5:e9801.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Kalanetra KM, Nelson DC. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. Mar Biol. 2010;157:791–800.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Girguis PR, Lee RW. Thermal preference and tolerance of alvinellids. Science. 2006;312:231.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol. 2009;11:1588–600.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Murdock SA, Juniper SK. Hydrothermal vent protistan distribution along the Mariana arc suggests vent endemics may be rare and novel. Environ Microbiol. 2019;21:3796–815.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, et al. Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol. 2016;18:4348–68.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Stokke R, Dahle H, Roalkvam I, Wissuwa J, Daae FL, Tooming-Klunderud A, et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ Microbiol. 2015;17:4063–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66:4–119.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AG, et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci. 2013;280:20131755.PubMed 
    PubMed Central 

    Google Scholar 
    80.Hamann E, Gruber-Vodicka H, Kleiner M, Tegetmeyer HE, Riedel D, Littmann S, et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature. 2016;534:254–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Gollner S, Riemer B, Arbizu PM, Le Bris N, Bright M. Diversity of meiofauna from the 9 degrees 50’ N East Pacific rise across a gradient of hydrothermal fluid emissions. PLoS ONE. 2010;5:e12321.82.Sarrazin J, Legendre P, de Busserolles F, Fabri MC, Guilini K, Ivanenko VN, et al. Biodiversity patterns, environmental drivers and indicator species on a high-temperature hydrothermal edifice, Mid-Atlantic Ridge. Deep-Sea Res Part Ii-Topical Stud Oceanogr. 2015;121:177–92.CAS 
    Article 

    Google Scholar 
    83.Bates AE, Harmer TL, Roeselers G, Cavanaugh CM. Phylogenetic characterization of episymbiotic bacteria hosted by a hydrothermal vent limpet (lepetodrilidae, vetigastropoda). Biol Bull-US. 2011;220:118–27.Article 

    Google Scholar 
    84.Schratzberger M, Ingels J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol. 2018;502:12–25.Article 

    Google Scholar 
    85.Cronin-O’Reilly S, Joe D Taylor, Ian Jermyn, A Louise Allcock, Michael Cunliffe, Mark P Johnson et al. Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment. Sci Rep-UK. 2018;8:15500.86.Reimann F, Schrage M. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia. 1978;34:75–88.Article 

    Google Scholar 
    87.Léveillé RJ, Levesque C, Juniper SK Biotic interactions and feedback processes in deep-sea hydrothermal vent ecosystems. In: Kristensen E, Haese RR, Kostka JE, editors. Interactions between macro- and microorganisms in marine sediments. Washington, DC: American Geophysical Union; 2005. p. 299–321.88.Ingels J, Ann Vanreusel, Ellen Pape, Francesca Pasotti, Lara Macheriotou, Pedro Martínez Arbizu et al. Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nat Ecology Evolut. 2020: https://doi.org/10.1038/s41559-020-01335-6.89.Thompson KF, Miller KA, Currie D, Johnston P, Santillo D. Seabed mining and approaches to governance of the deep seabed. Front Mar Sci. 2018;5:480. More

  • in

    Escaping the choosiness trap

    1.Courtiol, A., Etienne, L., Feron, R., Godelle, B. & Rousset, F. Am. Nat. 188, 521–538 (2016).Article 

    Google Scholar 
    2.Jennions, M. D. & Petrie, M. Biol. Rev. 75, 21–64 (2000).CAS 
    Article 

    Google Scholar 
    3.Kokko, H. & Mappes, J. Evolution 59, 1876–1885 (2005).Article 

    Google Scholar 
    4.Hare, R. M. & Simmons, L. W. Biol. Rev. 94, 929–956 (2019).Article 

    Google Scholar 
    5.Kohlmeier, P., Zhang, Y., Gorter, J. A., Su, C.-Y. & Billeter, J.-C. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01482-4 (2021).Article 

    Google Scholar 
    6.Halliday, T. R. in Mate Choice (ed. Bateson, P.) 3–32 (Cambridge Univ. Press, 1983).7.Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Annu. Rev. Entomol. 56, 21–40 (2011).CAS 
    Article 

    Google Scholar 
    8.Perry, J. C. & Rowe, L. Cold Spring Harb. Perspect. Biol. 7, a017558 (2015).Article 

    Google Scholar 
    9.Hopkins, B. R., Avila, F. W. & Wolfner, M. F. in Encyclopedia of Reproduction (ed. Skinner, M. K.) 137–144 (Elsevier, 2018).10.de Boer, R. A., Vega-Trejo, R., Kotrschal, A. & Fitzpatrick, J. L. Nat. Ecol. Evol. https://doi.org/ggbb (2021). More