More stories

  • in

    Bird-feeder cleaning lowers disease severity in rural but not urban birds

    1.Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).CAS 
    Article 

    Google Scholar 
    2.Galvani, A. P., Bauch, C. T., Anand, M., Singer, B. H. & Levin, S. A. Human-environment interactions in population and ecosystem health. Proc. Natl. Acad. Sci. U.S.A. 113, 14502–14506 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robb, G. N., McDonald, R. A., Chamberlain, D. E. & Bearhop, S. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6, 476–484 (2008).Article 

    Google Scholar 
    4.Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol. 3, 058 (2015).Article 
    CAS 

    Google Scholar 
    5.Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martinez-Abrain, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).PubMed 
    Article 

    Google Scholar 
    6.Jones, D. An appetite for connection: Why we need to understand the effect and value of feeding wild birds. Emu 111, 1–7 (2011).Article 

    Google Scholar 
    7.Hanmer, H. J., Thomas, R. L. & Fellowes, M. D. E. Provision of supplementary food for wild birds may increase the risk of local nest predation. Ibis 159, 158–167 (2017).Article 

    Google Scholar 
    8.Malpass, J. S., Rodewald, A. D. & Matthews, S. N. Species-dependent effects of bird feeders on nest predation and nest survival of urban American robins and northern cardinals. Condor 119, 1–16 (2017).Article 

    Google Scholar 
    9.Loss, S. R. & Marra, P. P. Population impacts of free-ranging domestic cats on mainland vertebrates. Front. Ecol. Environ. 15, 502–509 (2017).Article 

    Google Scholar 
    10.Jones, D. N. & Reynolds, S. J. Feeding birds in our towns: A global research opportunity. J. Avian Biol. 39, 265–271 (2008).Article 

    Google Scholar 
    11.Adelman, J. S., Moyers, S. C., Farine, D. R. & Hawley, D. M. Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird. Proc. R. Soc. B 282, 20151429 (2015).PubMed 
    Article 

    Google Scholar 
    12.Becker, D. J., Hall, R. J., Forbes, K. M., Plowright, R. K. & Altizer, S. Anthropogenic resource subsidies and host-parasite dynamics in wildlife. Phil. Trans. R. Soc. B 373, 20170086 (2018).PubMed 
    Article 

    Google Scholar 
    13.Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Dhondt, A. A., Dhondt, K. V., Hawley, D. M. & Jennelle, C. S. Experimental evidence for transmission of Mycoplasma gallisepticum in house finches by fomites. Avian Pathol. 36, 205–208 (2007).PubMed 
    Article 

    Google Scholar 
    15.Pierce II, R. A. & Denkler, S. Attracting hummingbirds to your property. In Agricultural Guides—University of Missouri-Columbia Extension, Vol. g9419 (2016). https://extensiondata.missouri.edu/pub/pdf/agguides/wildlife/g09419.pdf. Accessed 22 May 2020.16.Patterson, S., Janke, A., Bryan, G., Pease, J. & Jungbluth, K. Attracting Birds to Your Yard Vol. 219 (Iowa State Extension and Outreach Publications, 2017).
    Google Scholar 
    17.Feliciano, L. M., Underwood, T. J. & Aruscavage, D. F. The effectiveness of bird feeder cleaning methods with and without debris. Wilson J. Ornithol. 130, 313–320 (2018).Article 

    Google Scholar 
    18.Faustino, C. R. et al. Mycoplasma gallisepticum infection dynamics in a house finch population: Seasonal variation in survival, encounter and transmission rate. J. Anim. Ecol. 73, 651–669 (2004).Article 

    Google Scholar 
    19.Thompson, C. W., Hillgarth, N., Leu, M. & McClure, H. E. High parasite load in house finches (Carpodacus mexicanus) is correlated with expression of a sexually selected trait. Am. Nat. 149, 270–294 (1997).Article 

    Google Scholar 
    20.Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plann. 74, 46–69 (2006).Article 

    Google Scholar 
    21.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    22.Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. J. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    23.Hasegawa, M., Ligon, R. A., Giraudeau, M., Watanabe, M. & McGraw, K. J. Urban and colorful male house finches are less aggressive. Behav. Ecol. 25, 641–649 (2014).Article 

    Google Scholar 
    24.Giraudeau, M., Toomey, M. B., Hutton, P. & McGraw, K. J. Expression of and choice for condition-dependent carotenoid-based color in an urbanizing context. Behav. Ecol. 29, 1307–1315 (2018).
    Google Scholar 
    25.Hill, G. E. A Red Bird in a Brown Bag: The Function and Evolution of Colorful Plumage in the House Finch (Oxford University Press, 2002).Book 

    Google Scholar 
    26.Pyle, P. Identification Guide to North American Birds, Part I (Slate Creek Press, 1997).
    Google Scholar 
    27.Brawner, W. R., Hill, G. E. & Sundermann, C. A. Effects of coccidial and mycoplasmal infections on carotenoid-based plumage pigmentation in male house finches. Auk 117, 952–963 (2000).Article 

    Google Scholar 
    28.Dolnik, O. V., Dolnik, V. R. & Bairlein, F. The effect of host foraging ecology on the prevalence and intensity of coccidian infection in wild passerine birds. Ardea 98, 97–103 (2010).Article 

    Google Scholar 
    29.Pierson, F. W., Larsen, C. T. & Gross, W. B. The effect of stress on the response of chickens to coccidiosis vaccination. Vet. Parasitol. 73, 177–180 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).Article 

    Google Scholar 
    31.Surmacki, A. & Hill, G. E. Coccidia infection does not influence preening behavior in American goldfinches. Acta Ethol. 17, 107–111 (2014).PubMed 
    Article 

    Google Scholar 
    32.Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in house finches (Haemorhous mexicanus) from Arizona. Avian Dis. 62, 14–17 (2017).Article 

    Google Scholar 
    33.R Core Team. R: A language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016). https://www.R-project.org/. Accessed 22 May 2020.34.Nolan, P. M., Hill, G. E. & Stoehr, A. M. Sex, size, and plumage redness predict house finch survival in an epidemic. Proc. R. Soc. B 265, 961–965 (1998).Article 

    Google Scholar 
    35.Hutton, P., Wright, C. D., DeNardo, D. F. & McGraw, K. J. No effect of human presence at night on disease, body mass, or metabolism in rural and urban house finches (Haemorhous mexicanus). Integr. Comp. Biol. 58, 977–985 (2018).PubMed 

    Google Scholar 
    36.Giraudeau, M. & McGraw, K. J. Physiological correlates of urbanization in a desert songbird. Integr. Comp. Biol. 54, 622–632 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Cook, M. O., Weaver, M. J., Hutton, P. & McGraw, K. J. The effects of urbanization and human disturbance on problem solving in juvenile house finches (Haemorhous mexicanus). Behav. Ecol. Sociobiol. 71, 85 (2017).Article 

    Google Scholar 
    38.Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B 373, 20170090 (2018).Article 
    CAS 

    Google Scholar 
    39.Boyd, M. L., Underwood, T. J. & Aruscavage, D. F. The efficacy of cleaning bird feeders with 10% bleach wipes to reduce bacteria. J. Pennsyl. Acad. Sci. 88, 220–226 (2014).
    Google Scholar 
    40.Belthoff, J. R. & Gowaty, P. A. Male plumage coloration affects dominance and aggression in female house finches. Bird Behav. 11, 1–7 (1996).Article 

    Google Scholar 
    41.Zylberberg, M., Klasing, K. C. & Hahn, T. P. House finches (Carpodacus mexicanus) balance investment in behavioural and immunological defences against pathogens. Biol. Lett. 9, 20120856 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sykes, B. E., Hutton, P. & McGraw, K. J. Sex-specific relationships between urbanization, parasitism, and plumage coloration in house finches. Curr. Zool. https://doi.org/10.1093/cz/zoaa060 (2020).Article 

    Google Scholar 
    43.McGraw, K. J. & Ardia, D. R. Sex differences in carotenoid status and immune performance in zebra finches. Evol. Ecol. Res. 7, 251–262 (2005).
    Google Scholar 
    44.Bailly, J. et al. Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia 182, 1053–1062 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    45.Badyaev, A. V., Belloni, V. & Hill, G. E. House finch (Haemorhous mexicanus), version 1.0. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    46.Thompson, W. L. Agonistic behavior in the house finch. Part I: Annual cycle and display patterns. Condor 62, 245–271 (1960).Article 

    Google Scholar 
    47.Hotchkiss, E. R., Davis, A. K., Cherry, J. J. & Altizer, S. Mycoplasmal conjunctivitis and the behavior of wild house finches (Carpodacus mexicanus) at bird feeders. Bird Behav. 17, 1–8 (2005).
    Google Scholar  More

  • in

    Maintenance power requirements of anammox bacteria “Candidatus Brocadia sinica” and “Candidatus Scalindua sp.”

    1.Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. Full-scale partial nitritation/anammox experience – an application survey. Water Res. 2014;55:292–303.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Ali M, Okabe S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere. 2015;141:144–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Ni S, Sung S, Yue Q, Gao B. Substrate removal evaluation of granular anammox process in a pilot-scale upflow anaerobic sludge blanket reactor. Ecol Eng 2012;38:30–36.Article 

    Google Scholar 
    4.Wang B, Peng Y, Guo Y, Yuan Y, Zhao M, Wang S. Impact of partial nitritation degree and C/N ratio on simultaneous sludge fermentation, denitrification and anammox process. Bioresour Technol. 2016;219:411–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Okabe S. Maximum specific growth rate of anammox bacteria revisited. Water Res. 2017;116:296–303.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Zhang L, Okabe S. Ecological niche differentiation among anammox bacteria. Water Res. 2020;171:115468.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Sun W, Xu MY, Wu WM, Guo J, Xia CY, Sun GP, et al. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. J Appl Microbiol. 2014;116:464–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Zhu GB, Wang SY, Wang WD, Wang Y, Zhou LL, Jiang B, et al. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci. 2013;6:103–7.CAS 
    Article 

    Google Scholar 
    9.Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Schmid M, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, et al. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol. 2007;9:1476–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuña-González J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature. 2003;422:606–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kuypers MMM, Olav Sliekers A, Lavik G, Schmid M, Jørgensen BB, Gijs Kuenen J, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature. 2003;422:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J. 2010;4:450–4.PubMed 
    Article 

    Google Scholar 
    14.Zhu GB, Wang SY, Wang Y, Wang CX, Risgaard-Petersen N, Jetten MSM, et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 2011;5:1905–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol. 2016;18:2784–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Sonthiphand P, Hall MW, Neufeld JD. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol. 2014;5:1–14.Article 

    Google Scholar 
    17.van Bodegom P. Microbial maintenance: A critical review on its quantification. Microb Ecol. 2007;53:513–23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Wang G, Post WM. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling. FEMS Microbiol Ecol. 2012;81:610–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Overkamp W, Ercan O, Herber M, van Maris AJA, Kleerebezem M, Kuipers OP. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis. Environ Microbiol. 2015;17:346–63.PubMed 
    Article 

    Google Scholar 
    20.Ma X, Wang Y, Zhou S, Yan Y, Lin X, Wu M. Endogenous metabolism of anaerobic ammonium oxidizing bacteria in response to short-term anaerobic and anoxic starvation stress. Chem Eng J. 2017;313:1233–41.CAS 
    Article 

    Google Scholar 
    21.Ma X, Wang Y. Anammox bacteria exhibit capacity to withstand long-term starvation stress: a proteomic-based investigation of survival mechanisms. Chemosphere. 2018;211:952–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Xing B-S, Guo Q, Jiang X-Y, Chen Q-Q, He M-M, Wu L-M, et al. Long-term starvation and subsequent reactivation of anaerobic ammonium oxidation (anammox) granules. Chem Eng J. 2016;287:575–84.CAS 
    Article 

    Google Scholar 
    23.Wang Q, Song K, Hao X, Wei J, Pijuan M, van Loosdrecht MCM, et al. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation. Chemosphere. 2018;201:25–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lopez C, Pons MN, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorous removal. Water Res. 2006;40:1519–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J, et al. Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Appl Environ Microbiol. 1999;65:2471–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Vos T, Hakkaart XDV, de Hulster EAF, van Maris AJA, Pronk JT, Daran-Lapujade P. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Micro Cell Fact. 2016;15:111.Article 
    CAS 

    Google Scholar 
    27.Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshiaki H, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium “Candidatus Jettenia caeni”. Environ Microbiol. 2015;17:2172–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Narita Y, Zhang L, Kimura, Ali M, Fujii T, Okabe S. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sapporoensis”. Syst Appl Microbiol. 2017;40:448–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica”. Microbiol. 2011;157:1706–13.CAS 
    Article 

    Google Scholar 
    30.Okabe, S, Shafdar, AA, Kobayashi, K, Zhang, L, and Oshiki, M. Glycogen metabolism of the anammox bacterium “Candidatus Brocadia sinica” ISME J. 2020; https://doi.org/10.1038/s41396-020-00850-5.31.van der Star WRL, Miclea AI, van Dongen UGJM, Muyzer G, Picioreanu C, van Loosdrecht MCM. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng. 2008;101:286–94.PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Zhang L, Okabe S. Rapid cultivation of free-living planktonic anammox cells. Water Res. 2017;127:204–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Oshiki M, Awata T, Kindaichi T, Satoh H, Okabe S. Cultivation of planktonic anaerobic ammonium oxidation (Anammox) bacteria using membrane bioreactor. Microbes Environ. 2013;28:436–43.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus Scalindua” group. Appl Environ Microbiol. 2013;79:4145–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Ishii S, et al. Microbial competition among anammox baxteria in nitrite-limited bioreactors. Water Res. 2017;125:249–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Graaf AA, Van DE, Bruijn PDE, Robertson LA, Jetten MSM, Kuenen JG. Autotrophic growth of anaerobic in a fluidized bed reactor. Microbiol. 1996;142:2187–96.Article 

    Google Scholar 
    37.Kindaichi T, Awata T, Suzuki Y, Tanabe K, Hatamoto M, Ozaki N, et al. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes Environ. 2011;26:67–73.PubMed 
    Article 

    Google Scholar 
    38.APHA. Standard Methods for the Examination of Water and Sewage, Washington DC,1998,39.Nagaraja P, Shivaswamy M, Kumar H. Highly sensitive N-(1-Naphthyl)ethylene diamine method for the spectrophotometric determination of trace amounts of nitrite in various water samples. Intern J Environ Anal Chem. 2001;80:39–48.CAS 
    Article 

    Google Scholar 
    40.Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res. 2007;41:1623–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Kindaichi T, Tsushima I, Ogasawara Y, Shimokawa M, Ozaki N, Satoh H, et al. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl Environ Microbiol. 2007;73:4931–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol. 1999;65:3182–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Pirt SJ. Maintenance energy of bacteria in growing cultures. Proc R soc Lond B Biol Sci. 1965;163:224–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Pirt SJ. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol. 1982;133:300–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Herbert D, Elsworth R, Telling RC. The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol. 1956;14:601–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.van Verseveld HW, De Hollander JA, Frankena J, Braster M, Leeuwerik FJ, Stouthamer AH. Modeling of microbial substrate conversion, growth and product formation in a recycling fermentor. Antonie Van Leeuwenhoek. 1986;52:325–42.PubMed 
    Article 

    Google Scholar 
    47.Lotti T, Kleerebezem R, Lubello C, van Loosdrecht MCM. Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 2014;60:1–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Tijhuis L, Van Loosdrecht MCM, Heijnen JJ. A thermodynmically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng. 1993;42:509–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 1998;50:589–96.CAS 
    Article 

    Google Scholar 
    50.Awata T, Kindaichi T, Ozaki N, Ohashi A. Biomass yield efficiency of the marine anammox bacterium, “Candidatus Scalindua sp.,” is affected by salinity. Microbes Environ. 2015;30:86–91.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Henze, M. Wastewater Treatment: Biological and chemical processes. New York, NY: Springer, 1997.52.Vandekerckhove, TGL, Bodé, S, De Mulder, C, Vlaeminck, SE, Boon, N. 13C Incorporation as a tool to estimate biomass yields in thermophilic and mesophilic nitrifying communities. Front Microbiol. 2019;10:192.53.Tappe W, Tomaschewski C, Rittershaus S, Groeneweg J. Cultivation of nitrifying bacteria in the retentostat, a simple fermentor with internal biomass retention. FEMS Microbiol Ecol. 1996;19:47–52.CAS 
    Article 

    Google Scholar 
    54.Rebnegger C, Vos T, Graf AB, Valli M, Pronk JT, Daran-Lapujade P, et al. Picha pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates. Appl Environ Microbiol. 2016;82:4570–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Bulthuis BA, Frankena J, Koningstein GM, van Verseveld HW, Stouthamer AH. Instability of protease production in a rel1/rel2 pair of Bacillus licheniformis and associated morphological and physiological characteristics. Antonie Leeuwenhoek. 1988;54:95–111.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Kempes, CP, van Bodegom PM, Wolpert, D, Libby, E, Amend, J, Hoehler, T. Drivers of bacterial maintenance and minimal energy requirements. Front Microbiol. 2017;8:31.58.Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev. 2001;25:175–243.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Amend JP, LaRowe DE. Minireview: demystifying microbial reaction energetics. Environ Microbiol. 2019;21:3539–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kartal B, Keltjens JT. Anammox biochemistry: a tale of heme c proteins. Trends Biochem Sci. 2016;41:998–1011.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Scholten JCM, Conrad R. Energetics of syntrophic propionate oxidation in defined batch and chemostat coculture. Appl Environ Microbiol. 2000;66:2934–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.LaRowe DE, Amend JP. The energetics of anabolism in natural settings. ISME J. 2016;10:1285–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci. 2015;315:167–203.CAS 
    Article 

    Google Scholar 
    64.Marschall E, Jogler M, Henssge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol. 2010;12:1348–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Bradley, JA, Arndt, S, Amend, JP, Burwicz, E, Dale, AW, Egger, M et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv. 2020;6:eaba0697.66.Hoehler TM, Jorgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.LaRowe, DE, Amend, JP. Power limits for microbial life. Front Microbiol 2015;6:718.68.Zhao R, Mogollon JM, Abby SS, Schleper C, Biddle JF, Roerdink DL. et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA. 2020;117:32617–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart G-J, Sinninghe Damste JS. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J. 2011;5:1896–904.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Füssel J, Lam P, Lavik G, Jensen MM, Holtappels M, Günter M, et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 2012;6:1200–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    71.Füchslin HP, Schneider C, Egli T. In glucose-limited continuous culture the minimum substrate concentration for growth, Smin, is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally abundant bacterium. ISME J. 2012;6:777–89.PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    Effects of climate variation on bird escape distances modulate community responses to global change

    1.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).2.Pearson, R. G. & Dawson, T. E. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    3.Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Dunn, P. O. Changes in timing of breeding and reproductive success in birds. in Effects of Climate Change on Birds, 2nd edn. (eds. Dunn, P. O. & Møller, A. P.). 108–119 (Oxford University Press, 2019).5.Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).6.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 
    Article 

    Google Scholar 
    7.Staniczenko, P. P. A., Sivasubramaniam, P., Suttle, K. B. & Pearson, R. G. Linking macroecology and community ecology: Refining predictions of species distributions using biotic interaction networks. Ecol. Lett. 20, 693–707 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mendoza, M. & Araújo, M. B. Climate shapes mammal community trophic structures and humans simplify them. Nature Commun. 10, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    9.Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).PubMed 
    Article 

    Google Scholar 
    10.Beever, E. A. et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 15, 299–308 (2017).Article 

    Google Scholar 
    11.Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Nat. Acad. Sci. USA 110, 9374–9379 (2013).CAS 
    PubMed 
    ADS 
    Article 

    Google Scholar 
    12.Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).Article 

    Google Scholar 
    13.Díaz M. et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One 8, e64634 (2013).14.Samia, D. S., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 
    Article 

    Google Scholar 
    15.Samia, D. S. M. et al. Rural-urban difference in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 55, 6 (2017).
    Google Scholar 
    16.Møller, A. P. Urban areas as refuges from predators and flight distance of prey. Behav. Ecol. 23, 1030–1035 (2012).Article 

    Google Scholar 
    17.Møller, A. P. The value of a mouthful: Flight initiation distance as an opportunity cost. Eur. J. Ecol. 1, 43–51 (2015).Article 

    Google Scholar 
    18.Møller, A. P. et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 26, 861–865 (2015).Article 

    Google Scholar 
    19.Møller, A. P., Grim, T., Ibáñez-Álamo, J. D., Markó, G. & Tryjanowski, P. Change in flight distance between urban and rural habitats following a cold winter. Behav. Ecol. 24, 1211–1217 (2013).Article 

    Google Scholar 
    20.Møller, A. P. Life history, predation and flight initiation distance in a migratory bird. J. Evol. Biol. 27, 1105–1113 (2014).PubMed 
    Article 

    Google Scholar 
    21.Carrete, M. Heritability of fear of humans in urban and rural populations of a bird species. Sci. Rep. 6, 1–6 (2016).Article 

    Google Scholar 
    22.Díaz, M. et al. Interactive effects of fearfulness and geographical location on bird population trends. Behav. Ecol. 26, 716–721 (2015).Article 

    Google Scholar 
    23.Møller, A. P. & Díaz, M. Avian preference for close proximity to human habitation and its ecological consequences. Curr. Zool. 64, 623–630 (2018).PubMed 
    Article 

    Google Scholar 
    24.Møller, A. P. & Díaz, M. Niche segregation, competition and urbanization. Curr Zool. 64, 145–152 (2018).Article 

    Google Scholar 
    25.Cox, A. R., Robertson, R. J., Lendvai, Á. Z., Everitt, K. & Bonier, F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Proc. R. Soc. B 286, 20190018 (2019).PubMed 
    Article 

    Google Scholar 
    26.Sergio, F. From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim. Behav. 66, 1109–1117 (2003).Article 

    Google Scholar 
    27.Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).Article 

    Google Scholar 
    28.Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).Article 

    Google Scholar 
    29.Møller, A. P. et al. Effects of urbanization on animal phenology: A continental study of paired urban and rural avian populations. Clim. Res. 66, 185–199 (2015).Article 

    Google Scholar 
    30.Winter, Y. & Von Helversen, O. The energy cost of flight: Do small bats fly more cheaply than birds?. J. Comp. Physiol. B 168, 105–111 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Møller, A. P., Erritzøe, J. & Nielsen, J. T. Causes of interspecific variation in susceptibility to cat predation on birds. Chin. Birds 1, 97–111 (2010).Article 

    Google Scholar 
    32.Møller, A. P. et al. Spatial consistency in susceptibility of prey species to predation by two Accipiter hawks. J. Avian Biol. 43, 390–396 (2012).Article 

    Google Scholar 
    33.Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).PubMed 
    Article 

    Google Scholar 
    34.Morelli, F. et al. Insurance for the future? Potential avian community resilience in cities across Europe. Clim. Change 159, 195–214 (2020).ADS 
    Article 

    Google Scholar 
    35.Storchová, L. & Hořák, D. Life-history characteristics of European birds. Glob. Ecol. Biogeogr. 27, 400–406 (2018).Article 

    Google Scholar 
    36.Garamszegi, L. Z. & Møller, A. P. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 85, 797–805 (2010).PubMed 

    Google Scholar 
    37.Bell, G. A comparative method. Am. Nat. 133, 553–571 (1989).Article 

    Google Scholar 
    38.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    39.Lipsey, M. W. & Wilson, D. B. Practical Meta-Analysis. https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php (Sage, 2001).40.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988). More

  • in

    Novel metagenome-assembled genomes involved in the nitrogen cycle from a Pacific oxygen minimum zone

    Oxygen minimum zones (OMZs) are unique oceanic regions with strong redox gradients. Anoxic zones in OMZs are hotspots for fixed nitrogen loss and production of the greenhouse gas N2O [1, 2]. Microbes in OMZs make important contributions to biogeochemistry, which motivates us to reconstruct metagenome-assembled genomes (MAGs) from the Eastern Tropical South Pacific (ETSP) OMZ (Fig. 1a, b). Among 147 recovered MAGs, we present 39 high- and medium-quality MAGs with completeness >50% and contamination 100 nM d−1) at the same station [6], where MAGs were recovered. Consistently, Thaumarchaeota MAGs (AOAs) were nearly absent (only AOA-2 had a relative abundance higher than 0.01%) and NOB MAGs (NOB-1 and NOB-2) were much more abundant than AOA in the anoxic core (Fig. 1d). MAGs in this study will provide opportunities to discover novel processes and adaptation strategies.Most MAGs had their highest relative abundances in the anoxic zone (Fig. 1c). Many of them contribute to the loss of fixed nitrogen, which occurs by denitrification (the sequential reduction of nitrate to nitrite, NO, N2O, and finally N2) and anammox (anaerobic oxidation of ammonium to N2). Measured nitrate reduction rates at this [5, 8] and other [16, 17] nearby stations were much larger than rates of any subsequent denitrification steps (e.g., nitrite reduction to N2O or to N2). Consistently, preliminary prediction of metabolisms shows that more than half of the MAGs found here contained nar, which encodes nitrate reduction, and one-third of those contained only nar and none of the other denitrification genes (i.e., they are nitrate-reducing specialists) (Fig. 2). Consistently, a previous study found that nar dramatically outnumbered the other denitrification genes in contigs from the Eastern Tropical North Pacific (ETNP) OMZ [18]. Indeed, four of the five most abundant MAGs in the anoxic core were nitrate-reducing specialists (Fig. 2). The fifth was an anammox MAG, which was only assigned to the genus level (Candidatus Scalindua) in GTDB and was not represented at the species level in the Tara Oceans dataset (Table S1). However, this anammox MAG was highly related to 20 anammox single-cell amplified genomes (SAGs) from the ETNP OMZ [19]. The anammox MAG had at least 90% average nucleotide identity (ANI) to the SAGs, with the highest ANI (98.8%) to SAG K21. Consistent with the previous work [19], the anammox MAG also encoded cyanase, indicating its potential of using organic nitrogen substrates. The most abundant nitrate reducer MAG here is Marinimicrobia-1 (Fig. 1), which belongs to the newly proposed phylum Candidatus Marinimicrobia [20]. Notably, one nitrate reducer can only be assigned to phylum level (Candidatus Wallbacteria) and was not present in the Tara Oceans MAGs (Table S1).We also identified a novel archaeal MAG possessing multiple denitrification genes. MG-II MAG-2 encoded Nar alpha and beta subunits, nitrate/nitrite transporters, copper-containing nitrite reductase, and N2O reductase (Fig. 2). Two MAGs from the Tara Oceans metagenomes (Table S1) were identified as the same species as MG-II MAG-2. TOBG_NP-110 (ANI to MG-II MAG-2 = 99.8%) from the North Pacific encoded Nar and nitrate/nitrite transporters, and TOBG_SP-208 (ANI to MG-II MAG-2 = 99.6%) from the South Pacific also contained the same denitrification genes as MG-II MAG-2 (Table S2). In addition, two MG-II SAGs (AD-615-F09 and AD-613-O09) were found at a different station of the ETSP OMZ sampled on the same cruise as this study [21]. Partial 16S rRNA genes of both SAGs are 100% identical to that of MG-II MAG-2 (alignment length = 200 bp for AD-615-F09 and 183 bp for AD-613-O09), but only AD-615-F09 might be the same species as MG-II MAG-2 based on ANI analyses (MG-II MAG-2 had 99.5% ANI to AD-615-F09, and 80.9% to AD-613-O09). Both SAGs also encoded Nar and nitrate/nitrite transporters [21]. The absence of other denitrification genes may be due to the low completeness of the two SAGs (completeness = 5.61% for both SAGs) [21]. Nitrite reductase and N2O reductase genes were located on the same contig in both MG-II MAG-2 and TOBG_SP-208 (Table S2). MG-II MAG-2 and TOBG_SP-208 had low contamination (1.9% and 0.8%, respectively), and their contigs with nitrite reductase and N2O reductase genes contained single-copy marker genes present only once in each MAG (Supplementary Methods). Although these results suggest a nearly complete denitrification metabolism in MG-II archaea, especially N2O consumption metabolism, methods besides metagenomics (e.g. reconstructing SAGs with high completeness) are highly recommended to rule out possible artifacts introduced by metagenomic binning and confirm the presence of these genes and their denitrification activity. Nonetheless, MG-II MAG-2 was present (Fig. 1e) and transcriptionally active in both Pacific OMZs (Fig. S2), indicating its adaptation to low oxygen environments. The MG-III MAG did not have any denitrification genes but was abundant in the anoxic zone (Figs. 1e and 2). It had a GC value (43.2%) distinct from all other known MG-III MAGs [22] and is the most complete (86.0%) and the least contaminated (0%) (Table S1) among all reported MG-III MAGs, indicating that MG-III is a novel archaeon in this group. Bacterial and archaeal MAGs recovered here implied that nitrogen metabolisms were present in more microbial lineages than previously thought. Further analyses of these MAGs will shed light on adaptation strategies in the unique OMZ environment and novel functions related to important element cycles. More

  • in

    Scenario simulation of land use and land cover change in mining area

    Data source and preprocessingConsidering factors such as amount of cloud and time intervals of image, four remote sensing images with a spatial resolution of 30 m, including Landsat 5 Thematic Mapper (TM) images for 08-21-2000, 09-04-2005 and 09-18-2010, and Landsat 8 Operational Land Imager (OLI) for 09-02-2016,were obtained from the Geospatial Data Cloud Platform (http://www.gscloud.cn). LULC information was extracted from these remote sensing images. In addition, the digital elevation model (DEM) with a spatial resolution of 30 m was obtained from the website. Elevation and slope information were derived from DEM data and used as terrain driving factors for scenario simulation. Other supporting data, such as Weishan County land use data, mine distribution data, general land use planing (2006–2020) and mineral resources planning (2008–2015), Jining City coal mining subsidence land rearrangement planning (2016–2030), were obtained from Weishan Natural Resources and Planning Bureau. These data were used for better data analysis.Considering severe ground subsidence and seeper in the study area, and referring to national standards: Current Land Use Classification (GB/T 21010-2017), remote sensing images were interpreted into six LULC types: farmland, other agricultural land, urban and rural construction land, subsided seeper area, water area, and tidal wetland.In the process of image interpretation, firstly, the remote sensing image was divided into two regions: one region were the lake and the surrounding tidal wetland, and the other region included farmland, other agricultural land, urban and rural construction land, subsided seeper area, etc.In region 1, decision tree classification, combined with the Modified Normalized Difference Water Index (MNDWI), was used to extract lakes. Then we masked them in region 1. The Normalized Difference Vegetation Index (NDVI) was calculated for the remaining image of region 1. Tidal wetland was mainly distributed along rivers and lakes, and NDVI value was higher than that of farmland and other vegetation. By analyzing its geographical distribution and NDVI value, and referring to Weishan County land use data, the appropriate threshold was selected to extract tidal wetland.The spectral signature of rivers, ditches and aquaculture ponds in other agricultural land in region 2 could be easily distinguished from other surface features. They could be extracted step by step by manual visual interpretation and empirical knowledge, referring to Weishan County land use data and water system data. Then we masked them separately in region 2. After extracting rivers, ditches, aquaculture ponds with high water content, the remaining LULC type with high water content in region 2 was subsided seeper area. According to the relationship of spectral signature of different LULC types, it was concluded that among the remaining LULC types in region 2, only TM3 band value of subsided seeper area was higher than TM5 band value. Using this characteristic, subsided seeper area could be distinguished from other LULC types. After extracting subsided seeper area, the remaining LULC types in region 2 were farmland and urban and rural construction land. The spectral characteristics of them were very different. Therefore, they could be distinguished using support vector machine (SVM) classification method, and their respective binary images were generated using decision tree method.The extracted six LULC types were shown in single layer and binary form respectively. Six LULC types were coded and synthesized into one image. We obtained 2000, 2005, 2010, 2016 LULC type maps (Fig. 2). Finally classification post-processing and accuracy evaluation were operated.Figure 2The LULC types maps of 2000, 2005, 2010 and 2016. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageThe accuracy of the interpretation results was verified by confusion matrix and kappa coefficient. The kappa coefficients of the four interpretation maps were 0.84, 0.85, 0.82 and 0.86, respectively (Table 1). The accuracy could meet the needs of further research.Table 1 Accuracy evaluation of the interpretation results (%).Full size tableBy reading previous research results37,38,39,40,41, based on the entropy theory, in the same study area, high spatial resolution data contains more entropy than low spatial resolution data, and reflecting more detailed information, but it will increase the uncertainty of prediction results and reduce the prediction accuracy. Although the prediction accuracy of low spatial resolution data increases, it will lose lots of detailed information. In order to ensure the accuracy of the simulation, considering the area of the study area and data requirement of the CLUE-S model, the interpreted LULC maps with a resolution of 30 m exceed the upper limit of the CLUE-S model data requirement, so the LULC maps were resampled to multiple scales including 60 m, 90 m, 120 m, and 150 m to facilitate logistic regression analysis of LULC types and driving factors.Selection and processing of driving factorsTo interpret the relationship between the LULC and its driving factors in the mining area, we not only need to identify the driving factors that have greater explanatory power for LULC change, but also need to quantitatively describe the relationship between driving factors and LULC types.Considering the accessibility, usability of the data and the actual conditions in the study area, seven driving factors were selected based on the land use map of Weishan County in 2005 and the DEM data5,10,11,13,26,28,29,30. The driving factors included: (1) terrain factors, including elevation and slope factors; (2) five accessibility factors, including the nearest distance between each grid pixel and the main roads, the major rivers, the residential area, the major mines, and the ditches. The 30 m grid data of each driving factor were resampled to 60 m, 90 m, 120 m and 150 m respectively.In this study, BLRM was used to explore the relationship between LULC change and the related 7 driving factors. BLRM is sensitive to multicollinearity. In order to eliminate the influence of collinearity on the regression results, the multicollinearity between independent variables was diagnosed before the regression model was established.The receiver operating characteristic (ROC) curve was used to evaluate the accuracy of regression analysis results at different scales. The results showed that using 60 m resolution provided more accurate regression analysis results and suffered less loss of LULC and driving factor information during resampling. Therefore, we used 60 m × 60 m grid cell data to driving forces analysis.Raster maps of each driving factor at a resolution scale of 60 m are shown in Fig. 3.Figure 3Raster maps of driving factors at a resolution scale of 60 m. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageLogistic regression analysis of LULC types and driving factorsBLRM is often used for regression analysis of explanatory binary variables. The presence and absence of a certain type of LULC in a specific area is set as 1 and 0, respectively, which is characteristic for binary variable. Therefore, we used BLRM to calculate the probability (P) of various LULC types in a specific spatial location, and its mathematical expression is:$$begin{aligned} ln left( frac{P}{1-P}right) = beta _0 + beta _1 X end{aligned}$$
    (1)
    where (frac{P}{1-P}) is the ’odds ratio’ of an event, abbreviated as ( Omega ), which represents the odds that an outcome will occur given a particular condition compared to the odds of the outcome occurring in the absence of that condition; (beta _0) is a constant; (beta _1) is the correlation coefficient of an explaining variable and an explained variable. Making mathematical transformation of the above expression, we get: (Omega = (frac{P}{1-P}) = e^{beta _0 + beta _1 X}).Regression analysis using BLRM, we divided the study area into many grid cells. Taking each LULC type as the explained variable, and the driving factor causing LULC change as the explanatory variable, we calculated the odds ratio of each LULC type in a specific spatial location, and analyzed the relationship between each LULC type and the driving factors. The calculating equation is:$$begin{aligned} mathrm{Logit} P = ln left( frac{P_i}{1-P_i}right) = beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i} end{aligned}$$
    (2)
    Making mathematical transformation of the above equation, we get:$$begin{aligned} P_i = frac{e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}}{1+e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}} end{aligned}$$
    (3)
    where: (P_i) is the probability of a certain LULC type i in a grid cell, (X_{1,i}sim X_{n,i}) are the driving factors of LULC type i, (beta _0) is the constant, (beta _1sim beta _n) are the correlation coefficients of each driving factor and LULC type i.The receiver operating characteristic (ROC) was used to evaluate the accuracy of regression analysis results. The accuracy can be measured by calculating the area under the ROC curve. The area value is between 0.5 and 1. The closer the value is to 1, the higher the accuracy is. In general, the area under the ROC curve is greater than 0.7, which indicates that the selected factor has good explanatory power27,42.CLUE-S simulation and accuracy validationBefore using the CLUE-S model for futural LULC scenario simulation in mining area, the prediction accuracy needs to be verified. Based on the data of LULC in 2005, the spatial distribution pattern of LULC in 2016 was predicted firstly.The modeling accuracy was evaluated based on the Kappa index by comparing the actual LULC map in 2016 with the simulated in 201627,43,44. Equation (4) gives one of the most popular Kappa index equations: i.e.,$$begin{aligned} mathrm{Kappa}=frac{P_o-P_c}{P_p-P_c} end{aligned}$$
    (4)
    where (P_o) is the observed proportion correct, (P_c) is the expected proportion correct due to chance, (P_c) =1/n, n is the number of LULC types, and (P_p) is the proportion correct when classification is perfect.In order to further verify the accuracy of the model simulation, we also calculated kappa for quantity (Kquantity).Scenario setting of futural LULC simulationDue to the continuous population growth and mineral exploitation in the study area, the land resources, especially farmland resources, have become increasingly scarce and the environment has been deteriorating. Based on the simulation and validated results during 2005-2016, we defined three scenarios—namely natural development scenario, ecological protection scenario, and farmland protection scenario—to predict LULC spatial patterns for 2025.Natural development scenarioIn this scenario, the land use demand of the study area was basically not restricted by policies in near future. We assumed that the change rate of each LULC type in near future was consistent with the change trend from 2005 to 2016. So it is defined as natural development scenario. Using Markov model to obtain the area transition probability matrix of each year from 2017 to 2025, and taking the proportion of each LULC type area in the total study area in 2005 as the initial state matrix, the area of each LULC type in 2025 under the natural development scenario was predicted.Based on the characteristics and trend of the LULC change from 2005 to 2016, after appropriately adjusting the transition probability matrix of different LULC types, we predicted the demands of each LULC type in 2025 under ecological protection scenario and farmland protection scenario using Markov model45,46.Ecological protection scenarioThis scenario emphasizes protecting the ecological environment, restricting the conversion of the LULC types that have more regulatory effects on the ecosystem, such as tidal wetland and water area, to other land use types. Garden land, woodland, grassland, and aquaculture land, belong to other agricultural land, which have regulatory effects on the local ecosystem, so their conversion to other LULC types should be restricted as well.Farmland protection scenarioAccording to the guidelines of “the general land use planning in Weishan County (2006-2020)”, we should maximize the potential use of current construction land, implement intensive and economical utilization of construction land, and use less or not use farmland to economical construction. So in order to ensure the dynamic balance of total farmland amount and the regional food supply security, in the farmland protection scenario, the conversion from farmland to other land use types should be restricted. The projected land use demands for 2025 under the three different scenarios are shown in Table 2.Table 2 Areas of LULC types in 2025 under different scenarios (ha).Full size table More

  • in

    Exploring physicochemical and cytogenomic diversity of African cowpea and common bean

    1.Lewis, G. P. Legumes of the World (Royal Botanic Gardens, 2005).
    Google Scholar 
    2.The Legume Phylogeny Working Group (LPWG). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77 (2017).Article 

    Google Scholar 
    3.Yahara, T. et al. Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon 62, 249–266 (2013).Article 

    Google Scholar 
    4.Odendo, M., Bationo, A. & Kimani, S. Socio-economic contribution of legumes to livelihoods in Sub-Saharan Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management (eds Bationo, A. et al.) 27–46 (Springer, 2011).Chapter 

    Google Scholar 
    5.Dakora, F. D. & Keya, S. O. Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol. Biochem. 29, 809–817 (1997).CAS 
    Article 

    Google Scholar 
    6.Ajeigde, H. A., Singh, B. B. & Osenj, T. O. Cowpea-cereal intercrop productivity in the Sudan savanna zone of Nigeria as affected by planting pattern, crop variety and pest management. Afr. Crop Sci. J. 13, 269–279 (2005).
    Google Scholar 
    7.Rahmanian, M., Batello, C. & Calles, T. Pulse Crops for Sustainable Farms in Sub-Saharan Africa (FAO, 2018).
    Google Scholar 
    8.Rawal, V. & Navarro, D. K. The Global Economy of Pulses (FAO, 2017).
    Google Scholar 
    9.Plants of the World Online. http://powo.science.kew.org (2020).10.Broughton, W. J. et al. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 252, 55–128 (2003).CAS 
    Article 

    Google Scholar 
    11.Delgado-Salinas, A., Bibler, R. & Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 31, 779–791 (2006).Article 

    Google Scholar 
    12.Greenway, P. J. Origins of some East African food plants: Part V. East Afr. Agric. J. 11, 56–63 (1945).
    Google Scholar 
    13.Wortmann, C. S. & Allen, D. J. African Bean Production Environments: Their Definition, Characteristics and Constraints. Occasional Publication Series 11 (CIAT, 1994).
    Google Scholar 
    14.Maxted, N. et al. African Vigna: Systematic and Ecogeographic Studies (International Plant Genetic Resource Institute, 2004).
    Google Scholar 
    15.Singh, B. B. Cowpea: The Food Legume of the 21st Century (Crop Science Society of America Inc., 2014).Book 

    Google Scholar 
    16.Catarino, S. et al. Conservation priorities for African Vigna species: Unveiling Angola’s diversity hotspots. Glob. Ecol. Conserv. 25, e01415. https://doi.org/10.1016/j.gecco.2020.e01415 (2021).Article 

    Google Scholar 
    17.Vidigal, P., Romeiras, M. M. & Monteiro, F. Crops diversification and the role of orphan legumes to improve the Sub-Saharan Africa farming systems. In Sustainable Crop Production (ed. Hasanuzzaman, M.) (IntechOpen, 2019).
    Google Scholar 
    18.Maréchal, R. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28, 1–273 (1978).
    Google Scholar 
    19.Peksen, E., Peksen, A. & Gulumser, A. Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. Int. J. Curr. Microbiol. Appl. Sci. 3, 626–634 (2014).CAS 

    Google Scholar 
    20.Iqbal, A., Khalil, I. A., Ateeq, N. & Khan, M. S. Nutritional quality of important food legumes. Food Chem. 97, 331–335 (2006).CAS 
    Article 

    Google Scholar 
    21.African Orphan Crops Consortium. http://africanorphancrops.org/meet-the-crops/ (2021)22.Boukar, O. et al. Cowpea. In Grain Legumes (ed. de Ron, A. M.) 219–250 (Springer, 2015).Chapter 

    Google Scholar 
    23.Animasaun, D. A., Oyedeji, S., Azeez, Y. K., Mustapha, O. T. & Azeez, M. A. Genetic variability study among ten cultivars of cowpea (Vigna unguiculata L. Walp) using morpho-agronomic traits and nutritional composition. J. Agric. Sci. 10, 119–130 (2015).
    Google Scholar 
    24.Timko, M. P. & Singh, B. B. Cowpea, a multifunctional legume. In Plant Genetics and Genomics: Crops and Models Vol. 1 (eds Moore, P. H. & Ming, R.) 227–258 (Springer, 2008).
    Google Scholar 
    25.Wortmann, S. C., Kirkby, A. R., Eledu, A. C. & Allen, J. D. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa (International Centre for Tropical Agriculture, 2004).
    Google Scholar 
    26.Guignard, M. S. et al. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytol. 210, 1195–1206 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Sheidai, M. et al. Genetic diversity and genome size variability in Linum austriacum (Lineaceae) populations. Biochem. Syst. Ecol. 57, 20–26 (2014).CAS 
    Article 

    Google Scholar 
    28.Kron, P., Suda, J. & Husband, B. C. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 38, 847–876 (2007).Article 

    Google Scholar 
    29.Wu, Y. Q. et al. Genetic analyses of Chinese Cynodon accessions by flow cytometry and AFLP markers. Crop Sci. 46, 917–926 (2016).Article 

    Google Scholar 
    30.Parida, A., Raina, S. N. & Narayan, R. K. J. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82, 125–133 (1990).CAS 
    Article 

    Google Scholar 
    31.Nagl, W. & Treviranus, A. A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Bot. Acta 108, 403–406 (1995).CAS 
    Article 

    Google Scholar 
    32.Barow, M. & Meister, A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ. 26, 571–584 (2003).Article 

    Google Scholar 
    33.Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98, 767–782 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org/ (2020).35.Genesys. Plant Genetic Resources Accession. https://www.genesys-pgr.org/ (2021).36.Pope, G. V. & Polhill, R. M. Flora Zambesiaca, part 5 Vol. 3 (Royal Botanic Gardens, 2001).
    Google Scholar 
    37.Tomooka, N., Vaughan, D. A., Moss, H. & Maxted, N. The Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    38.Debouck, D. G. Primary diversification of Phaseolus in the Americas: Three centers. Plant Genet. Resour. Newsl. 67, 2–8 (1986).
    Google Scholar 
    39.Plant Resources of Tropical Africa. https://www.prota4u.org/database/ (2021).40.Linder, H. P. The evolution of African plant diversity. Front. Ecol. Evol. 2, 38. https://doi.org/10.3389/fevo.2014.00038 (2014).Article 
    ADS 

    Google Scholar 
    41.Romeiras, M. M., Figueira, R., Duarte, M. C., Beja, P. & Darbyshire, I. Documenting biogeographical patterns of African timber species using herbarium records: A conservation perspective based on native trees from Angola. PLoS ONE 9, e103403. https://doi.org/10.1371/journal.pone.0103403 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    42.Catarino, S. et al. Spatial and temporal trends of burnt area in angola: Implications for natural vegetation and protected area management. Diversity 12, 307. https://doi.org/10.3390/d12080307 (2020).Article 

    Google Scholar 
    43.Catarino, S., Duarte, M. C., Costa, E., Carrero, P. G. & Romeiras, M. M. Conservation and sustainable use of the medicinal Leguminosae plants from Angola. PeerJ 7, e6736. https://doi.org/10.7717/peerj.6736 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Romeiras, M. M. et al. IUCN Red List assessment of the Cape Verde endemic flora: Towards a global strategy for plant conservation in Macaronesia. Bot. J. Linn. Soc. 180, 413–425 (2016).Article 

    Google Scholar 
    45.Gomes, A. M. et al. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060 (2020).CAS 
    Article 

    Google Scholar 
    46.The International Institute of Tropical Agriculture (IITA). https://www.iita.org/ (2021)47.Fatokun, C. et al. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 8, 16035. https://doi.org/10.1038/s41598-018-34555-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Rocha, V., Duarte, M. C., Catarino, S., Duarte, I. & Romeiras, M. M. Cabo Verde’s Poaceae flora: A reservoir of crop wild relatives diversity for crop improvement. Front. Plant Sci. 12, 630217. https://doi.org/10.3389/fpls.2021.630217 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Brilhante, M. et al. Tackling food insecurity in Cabo Verde Islands: The nutritional, agricultural and environmental values of the legume species. Foods 10, 206. https://doi.org/10.3390/foods10020206 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pasquet, R. S. Wild cowpea (Vigna unguiculata) evolution. In Advances in Legume Systematics 8: Legumes of Economic Importance (eds Pickersgill, B. & Lock, J. M.) 95–100 (Royal Botanic Gardens, 1996).
    Google Scholar 
    51.Di Bella, G. et al. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 67, 239–248 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Gelin, J. R., Forster, S., Grafton, K. F., McClean, P. E. & Rojas-Cifuentes, G. A. Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci. 47, 1361–1366 (2007).CAS 
    Article 

    Google Scholar 
    53.Dakora, F. D. & Belane, A. K. Evaluation of protein and micronutrient levels in edible cowpea (Vigna unguiculata L. Walp) leaves and seeds. Front. Sustain. Food Syst. 3, 70. https://doi.org/10.3389/fsufs.2019.00070 (2019).Article 

    Google Scholar 
    54.Yeken, M. Z., Akpolat, H., Karaköy, T. & Çiftçi, V. Assessment of mineral content variations for biofortification of the bean seed. Int. J. Agric. Sci. 4, 261–269 (2018).
    Google Scholar 
    55.Gondwe, T. M., Alamu, E. O., Mdziniso, P. & Maziya-Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 9, 15991. https://doi.org/10.1038/s41598-019-52360-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.Sperotto, R. A., Ricachenevsky, F. K., Williams, L. E., Vasconcelos, M. W. & Menguer, P. K. From soil to seed: Micronutrient movement into and within the plant. Front. Plant Sci. 5, 438. https://doi.org/10.3389/fpls.2014.00438 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Maziya-Dixon, B., Kling, J. G., Menkir, A. & Dixon, A. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull. 21, 419–422 (2000).Article 

    Google Scholar 
    58.Shewfelt, R. L. Sources of variation in the nutrient content of agricultural commodities from the farm to the consumer. J. Food Qual. 13, 37–54 (1990).Article 

    Google Scholar 
    59.World Health Organization. The World Health Report 2006: Working Together for Health. https://www.who.int/whr/2006/whr06_en.pdf?ua=1 (2006).60.Gödecke, T., Stein, A. J. & Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Sec. 17, 21–29 (2018).Article 

    Google Scholar 
    61.Shankar, A. H. Mineral deficiencies. In Hunter’s Tropical Medicine and Emerging Infectious Diseases (eds Ryan, E. T. et al.) 1048–1054 (Elsevier, 2020).Chapter 

    Google Scholar 
    62.Muthayya, S. et al. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 8, e67860. https://doi.org/10.1371/journal.pone.0067860 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.Joy, E. J. et al. Dietary mineral supplies in Africa. Physiol. Plant. 151, 208–229 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.World Health Organization. World health statistics 2015. https://apps.who.int/iris/bitstream/handle/10665/170250/9789240694439_eng.pdf;jsessionid=9CFCB446F9217B60415DD216E70F6A49?sequence=1 (2015).65.Muriuki, J. M. et al. Estimating the burden of iron deficiency among African children. BMC Med. 18, 31. https://doi.org/10.1186/s12916-020-1502-7 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Official Journal of the European Union. Regulation (Eu) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=EN (2011).67.Nowicka, A. et al. Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry. Sci. Hortic. 209, 132–138 (2016).CAS 
    Article 

    Google Scholar 
    68.Guilengue, N., Alves, S., Talhinhas, P. & Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 10, 21. https://doi.org/10.3390/agronomy10010021 (2020).Article 

    Google Scholar 
    69.Chable, V. et al. Embedding cultivated diversity in society for agro-ecological transition. Sustainability 12, 784. https://doi.org/10.3390/su12030784 (2020).Article 

    Google Scholar 
    70.Knight, C. A., Molinari, N. A. & Petrov, D. A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95, 177–190 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Pati, K., Zhang, F. & Batley, J. First report of genome size and ploidy of the underutilized leguminous tuber crop Yam Bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant Genet. Resour. 17, 456–459 (2019).CAS 
    Article 

    Google Scholar 
    72.Sliwinska, E. Flow cytometry—A modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic. 30, 103–128 (2018).Article 

    Google Scholar 
    73.Veselý, P., Bureš, P. & Šmarda, P. Nutrient reserves may allow for genome size increase: Evidence from comparison of geophytes and their sister non-geophytic relatives. Ann. Bot. 112, 1193–1200 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.African Plant Database. http://www.ville-ge.ch/musinfo/bd/cjb/africa/index. (2021).75.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Botswana. https://www.botswanaflora.com (2021).76.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Malawi. http://www.malawiflora.com (2021).77.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Mozambique. http://www.mozambiqueflora.com (2021)78.Bingham, M. G., Willemen, A., Wursten, B. T., Ballings, P. & Hyde, M. A. Flora of Zambia http://www.zambiaflora.com (2021).79.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Zimbabwe. http://www.zimbabweflora.co.zw (2021).80.International Legume Database & Information Service. https://ildis.org/LegumeWeb (2020).81.Exell, A.W. & Fernandes, A. Conspectus florae angolensis. Vol. 3, No. 2. Leguminosae (Papilionoideae: Hedysareae-Sophoreae) (Junta de Investigações do Ultramar, 1966)82.Pasquet, R. S. Notes on the genus Vigna (Leguminosae-Papilionoideae). Kew Bull 56, 223–227 (2001).Article 

    Google Scholar 
    83.van Zonneveld, M. et al. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 10, 2111. https://doi.org/10.1038/s41598-020-58646-8 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    84.Global Biodiversity Information Facility. https://www.gbif.org/ (2021).85.GBIF Occurrence Download—Vigna. https://doi.org/10.15468/dl.bsjsk5 (2021).86.GBIF Occurrence Download—Phaseolus. https://doi.org/10.15468/dl.kjw72 (2021).87.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021).88.Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85, 625–631 (1992).Article 

    Google Scholar 
    89.Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. 100, 875–888 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Doležel, J. & Bartoš, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Jelihovschi, E. G., Faria, J. C. & Allaman, I. B. ScottKnott: A package for performing the Scott-Knott clustering algorithm in R. TEMA 15, 3–17 (2014).MathSciNet 
    Article 

    Google Scholar 
    93.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    94.R Core Team. R: A language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020). More

  • in

    Oil palm cultivation can be expanded while sparing biodiversity in India

    1.Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS One 11, pe0159668 (2016).Article 

    Google Scholar 
    2.Rulli, M. C. et al. Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renew. Sustain. Energy Rev. 105, 499–512 (2019).Article 

    Google Scholar 
    3.Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Strona, G. et al. Small room for compromise between oil palm cultivation and primate conservation in Africa. Proc. Natl Acad. Sci. USA 115, 8811–8816 (2018).CAS 
    Article 

    Google Scholar 
    5.United States Department of Agriculture, Foreign Agricultural Service. Data retrieved from: https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery (2020).6.Sagar, H. S. et al. India in the oil palm era: describing India’s dependence on palm oil, recommendations for sustainable production, and opportunities to become an influential consumer. Trop. Conserv. Sci. 12, 1940082919838918 (2019).Article 

    Google Scholar 
    7.Jadhav, R. Exclusive: India urges boycott of Malaysian palm oil after diplomatic row—sources. Reuters (13 January 2020).8.Srinivasan, U. Oil palm should not be expanded in Arunachal Pradesh. Arunachal Times (October 2016).9.Ministry of Agriculture and Farmers’ Welfare. National Mission on Oilseeds and Oil Palm; https://nmoop.gov.in (Government of India, 2020).10.Bose, P. Oil palm plantations vs shifting cultivation for indigenous peoples: analyzing Mizoram’s New Land Use Policy. Land Use Policy 81, 115–123 (2019).Article 

    Google Scholar 
    11.Dhar, A. Enter oil palm in northeast India: centre, Patanjali, Godrej bet big. The Citizen (16 September 2020).12.Raman, T. R. S. R. Is oil palm expansion good for Mizoram? The Frontier Despatch 3, 6–7 (2016).
    Google Scholar 
    13.Khandekar, N. Expanding oil palm plantations in the northeast could extract a long-term cost. The Wire (4 August 2020).14.Mandal, J. & Raman, T. R. S. R. Shifting agriculture supports more tropical forest birds than oil palm or teak plantations in Mizoram, northeast India. The Condor 118, 345–359 (2016).Article 

    Google Scholar 
    15.Nandi, J. Oil palm push on the northeast may impact biodiversity, water table, say experts. Hindustan Times 10, 51 (2020).
    Google Scholar 
    16.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Global Agro-Ecological Zones, GAEZ v.3.0 (Food and Agriculture Organization, 2016); https://gaez.fao.org/pages/data-viewer18.Corley, R. H. V. How much palm oil do we need? Environ. Sci. Policy 12, 134–139 (2009).CAS 
    Article 

    Google Scholar 
    19.Meijaard, E. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020).Article 

    Google Scholar 
    20.West, P. C. et al. Leverage points for improving global food security and the environment. Science 18, 325–328 (2014).ADS 
    Article 

    Google Scholar 
    21.Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).22.Shaktivadivel, R. The Agricultural Groundwater Revolution: Opportunities and Threats to Development (CAB International, 2007).
    Google Scholar 
    23.Lee, J. S. H., Miteva, D. A., Carlson, K. M., Heilmayr, R. & Saif, O. Does oil palm certification create trade-offs between environment and development in Indonesia? Env. Res. Lett. 15, 124064 (2020).Article 

    Google Scholar 
    24.Sankar, K. N. M. Oil palm finds favour with East Godavari farmers. The Hindu (25 January 2017).25.Curry, G. N. & Koczberski, G. Finding common ground: relational concepts of land tenure and economy in the oil palm frontier of Papua New Guinea. Geogr. J. 175, 98–111 (2009).Article 

    Google Scholar 
    26.DeVos, R., Kohne, M. & Roth, D. We’ll turn your water in Coca Cola: the atomising practices of oil palm development in Indonesia. J. Agrar. Change 1, 385–405 (2018).Article 

    Google Scholar 
    27.IPCC. Climate Change: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).28.IPCC. IPCC Special Reports on Emissions Scenarios: Summary for Policymakers (IPCC, 2000).29.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8. 5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 18, 19656–19657 (2020).ADS 
    Article 

    Google Scholar 
    30.Copernicus Land Monitoring Service (European Environment Agency, 2020).31.Hoffman, M., Koenig, K., Bunting, G., Cosntanza, J. & Willams, K. J. Biodiversity Hotspots v.2016.1 (2016); https://doi.org/10.5281/zenodo.326180632.IUCN World Database on Protected Areas, online April 2017 (UNEP-WCMC, 2016); www.protectedplanet.net33.QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation, 2021); http://qgis.osgeo.org34.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More