Electrical conductivity as a driver of biological and geological spatial heterogeneity in the Puquios, Salar de Llamara, Atacama Desert, Chile
1.Rothschild, L. & Mancinelli, R. Life in extreme environments. Nature 409, 1092–1101 (2001).ADS
CAS
PubMed
Article
Google Scholar
2.Cavicchioli, R. Extremophiles and the search for extraterrestrial life. Astrobiology 2, 281–292 (2002).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
3.Parro, V. et al. A microbial oasis in the hypersaline atacama subsurface discovered by a life detector chip: Implications for the search for life on mars. Astrobiology 11, 969–996 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Lee, C. J. D. et al. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
5.Coleine, C. et al. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS ONE 15, 1–17 (2020).Article
CAS
Google Scholar
6.Rathour, R. et al. A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Sci. Total Environ. 731, 139074 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
7.Suosaari, E. P. et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 6, 1–13 (2016).Article
CAS
Google Scholar
8.Suosaari, E. P. et al. Stromatolite provinces of Hamelin pool: Physiographic controls on stromatolites and associated lithofacies. J. Sediment. Res. 89, 207–226 (2019).ADS
Article
Google Scholar
9.Wong, H., Ahmed-Cox, A. & Burns, B. Molecular ecology of hypersaline microbial mats: Current insights and new directions. Microorganisms 4, 6 (2016).PubMed Central
Article
CAS
Google Scholar
10.Grotzinger, J. R. & Knoll, A. H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).ADS
CAS
PubMed
Article
Google Scholar
11.Grotzinger, J. P. & James, N. P. Precambrian carbonates: Evolution of understanding. In Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (eds Grotzinger, J. P. & James, N. P.) 3–20 (Society for Sedimentary Geology, 2000).Chapter
Google Scholar
12.Demergasso, C. et al. Microbial mats from the Llamara salt flat, northern Chile. Rev. Chil. Hist. Nat. 76, 485–499 (2003).Article
Google Scholar
13.Demergasso, C. et al. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Mirobiol. Ecol. 48, 57–69 (2004).CAS
Article
Google Scholar
14.Saghaï, A. et al. Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environ. Microbiol. 19, 2405–2421 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
15.Shen, J., Zerkle, A. L., Stueeken, E. & Claire, M. W. Nitrates as a potential N supply for microbial ecosystems in a hyperarid mars analog system. Life 9, 79 (2019).PubMed Central
Article
CAS
PubMed
Google Scholar
16.Albarracín, V. H., Galván, F. S. & Farías, M. E. Extreme microbiology at Laguna Socompa: A high-altitude Andean lake (3570 m a.s.l.) in Salta, Argentina. In Microbial Ecosystems in Central Andes Extreme Environments: Biofilms, Microbial Mats, Microbialites and Endoevaporites (ed. Farías, M. E.) 205–220 (Springer, 2020).Chapter
Google Scholar
17.Aszalós, J. M. et al. Bacterial diversity of a high-altitude permafrost thaw pond located on Ojos del Salado (Dry Andes, Altiplano-Atacama Region). Astrobiology 20, 754–765 (2020).ADS
PubMed
Article
CAS
Google Scholar
18.Boidi, F. J., Mlewski, E. C., Gomez, F. J. & Gérard, E. Characterization of microbialites and microbial mats of the Laguna Negra hypersaline lake (Puna of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 183–203 (Springer, 2020).Chapter
Google Scholar
19.Farías, M. E. & Saona Acuña, L. A. Modern microbial mats and endoevaporite systems in Andean lakes: A general approach. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 21–33 (Springer, 2020).Chapter
Google Scholar
20.Farías, M. E., Villafañe, P. G. & Lencina, A. I. Integral propsection of andean microbial ecosystem project. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 245–260 (Springer, 2020).Chapter
Google Scholar
21.Gomez, F. J., Boidi, F. J., Mlewski, E. C. & Gérard, E. The carbonate system in Hypersaline Lakes: The case of Laguna Negra (in the Puna Region of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 231–242 (Springer, 2020).Chapter
Google Scholar
22.Otálora, F. et al. Hydrochemical and mineralogical evolution through evaporitic processes in Salar de Llamara Brines (Atacama, Chile). ACS Earth Sp. Chem. 4, 882–896 (2020).Article
CAS
Google Scholar
23.Rasuk, M. C., Visscher, P. T., Leiva, M. C. & Farías, M. E. Mats and microbialites from Laguna La Brava. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 221–230 (Springer, 2020).Chapter
Google Scholar
24.Demergasso, C. et al. Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12, 491–504 (2008).CAS
PubMed
Article
Google Scholar
25.del Rocío Mora-Ruiz, M. & Díaz-Gil, C. Microbial diversity in athalassohaline Argentinean Salterns. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 165–179 (Springer, 2020).Chapter
Google Scholar
26.Vignale, F. A. et al. Lithifying and non-lithifying microbial ecosystems in the wetlands and salt flats of the central Andes. Microb. Ecol. https://doi.org/10.1007/s00248-021-01725-8 (2021).Article
PubMed
Google Scholar
27.Stivaletta, N., Barbieri, R., Cevenini, F. & López-García, P. Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol. J. 28, 83–95 (2011).CAS
Article
Google Scholar
28.Farías, M. E. et al. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18, 311–329 (2014).PubMed
Article
CAS
Google Scholar
29.Fernandez, A. B. et al. Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front. Microbiol. 7, 1–18 (2016).Article
Google Scholar
30.Rasuk, M. C. et al. Bacterial diversity in microbial mats and sediments from the Atacama Desert. Microb. Ecol. 71, 44–56 (2016).CAS
PubMed
Article
Google Scholar
31.Farias, M. E. et al. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE 12, 1–25 (2017).Article
CAS
Google Scholar
32.Gutiérrez-Preciado, A. et al. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat. Ecol. Evol. 2, 1700–1708 (2018).PubMed
PubMed Central
Article
Google Scholar
33.Escudero, L. et al. A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie Van Leeuwenhoek 111, 1403–1419 (2018).PubMed
Article
PubMed Central
Google Scholar
34.Chong-Díaz, G. Die Salare in Nordchile—Geologie, Struktur und Geochemie. Geotekton. Forsch. 67, 1–146 (1984).
Google Scholar
35.Risacher, F. & Fritz, B. Geochemistry of Bolivian salars, Lipez, southern Altiplano: Origin of solutes and brine evolution. Geochim. Cosmochim. Acta 55, 687–705 (1991).ADS
CAS
Article
Google Scholar
36.Pueyo, J. J., Chong, G. & Jensen, A. Neogene evaporites in Desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48, 1411–1431 (2001).ADS
CAS
Article
Google Scholar
37.Simicic Hernández, Y. P. Thickness Distribution of the Oligo-Neogenous Sedimentary Cover of the Tamarugal Pampas, Northern Chile (20 ° 45 ’to 21 ° 30’S) (Universidad de Chile, 2015).
Google Scholar
38.Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. B Biol. 28, 137–142 (1995).CAS
Article
Google Scholar
39.Cabrol, N. A. et al. Life in the Atacama: Searching for life with rovers (science overview). J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000298 (2007).Article
Google Scholar
40.Solari, M. The unexplored geobiological heritage of Chile: Key to understand the past and future. In XIV Congr. Geológico Chil. 1–5 (2015).41.Rasuk, M. C. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494 (2014).CAS
PubMed
Article
Google Scholar
42.Surma, J., Assonov, S., Herwartz, D., Voigt, C. & Staubwasser, M. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation. Sci. Rep. 8, 4972 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
43.Rasuk, M. C., Leiva, M. C., Kurth, D. & Farías, M. E. Complete characterization of stratified ecosystems of the Salar de Llamara (Atacama Desert). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 153–164 (Springer, 2020).Chapter
Google Scholar
44.Kiefer, E., Dorr, M., Ibbeken, H. & Gotze, H. Gravity-based mass balance of an alluvial fan giant: The Arcas Fan, Pampa del Tamarugal, Northern Chile. Rev. Geol. Chile 24, 165–185 (1997).
Google Scholar
45.Houston, J. & Hartley, A. J. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Climatol. 23, 1453–1464 (2003).Article
Google Scholar
46.Dunai, T. J., López, G. A. G. & Juez-Larré, J. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33, 321–324 (2005).ADS
Article
Google Scholar
47.Hartley, A. J., Chong, G., Houston, J. & Mather, A. 150 million years of climatic stability: Evidence from the Atacama Desert, northern Chile. J. Geol. Soc. Lond. 162, 421–424 (2005).Article
Google Scholar
48.Clarke, J. D. A. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73, 101–114 (2006).ADS
Article
Google Scholar
49.Houston, J. Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes. J. Hydrol. 330, 402–412 (2006).ADS
Article
Google Scholar
50.Fuenzalida, H. & Rutllant, J. Estudio Sobre el Origen del Vapor de agua que Precipita en el Invierno Altiplánico (1986).51.Grosjean, M., Geyh, M. A., Messerli, B. & Schotterer, U. Late-glacial and early Holocene lake sediments, ground-water formation and climate in the Atacama Altiplano 22–24°S. J. Paleolimnol. 14, 241–252 (1995).ADS
Article
Google Scholar
52.Garreaud, R. Multiscale analysis of the summertime precipitation over the central Andes. Mon. Weather Rev. 127, 901–921 (1999).ADS
Article
Google Scholar
53.Houston, J. Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: Mechanisms, magnitudes and causes. Hydrol. Process. 16, 3019–3035 (2002).ADS
Article
Google Scholar
54.Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. Hydrodynamics of salt flat basins: The Salar de Atacama example. Sci. Total Environ. 651, 668–683 (2019).ADS
CAS
PubMed
Article
Google Scholar
55.Cereceda, P., Larrain, H., Osses, P., Farías, M. & Egaña, I. The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos. Res. 87, 312–323 (2008).Article
Google Scholar
56.del Río, C. et al. The role of topography in the spatial distribution of the low stratocumulus cloud and fog in the Peruvian coastal Desert. In AGU Fall Meeting Abstracts 2018, A31J-2979 (2018).57.Hasler, K., Jaque, I., Pucheu, A. & Ortiz, C. Análisis de la Información Histórica de la Operación de la Medida de Mitigación. Estudio de Impacto Ambiental: Modification parcial del Sistema del Sistema de Reinyección en los puquios de Llamara, Elaborado por Geobiota (2020).58.Ordoñez, R., Hasler, K., Pucheu, A. & Ortiz, C. Modelo Numérico Hidrogeológico Acuífero Salar de Llamara. Estudio de Impacto Ambiental, Modificación Parcial del Sistema de reinyección en los Puquios de Llamara, elaborado por Geobiota (2020).59.Babel, M. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol. Pol. 54, 219-U6 (2004).
Google Scholar
60.Rumrich, U., Lange-Bertalot, H. & Rumrich, M. Diatoms of the Andes. Annotated diatom monographs. Iconogr. Diatomol. 9, 671 (2000).
Google Scholar
61.Lowe, R. L. Keeled and canalled raphid diatoms. In Freshwater Algae of North America (ed. Lowe, R. L.) 669–684 (Elsevier, 2003).Chapter
Google Scholar
62.Whitton, B. A. & Kelly, M. G. Use of algae and other plants for monitoring rivers. Aust. J. Ecol. 20, 45–56 (1995).Article
Google Scholar
63.Burow, L. C. et al. Identification of Desulfobacterales as primary hydrogenotrophs in a complex microbial mat community. Geobiology 12, 221–230 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
64.Garcés, I. et al. Características geoquímicas generales del sistema salino del Salar de Llamara (Chile). Estud. Geol. 52, 23–35 (1996).Article
Google Scholar
65.López, P. L., Auqué, L. F., Garcés, I. & Chong, G. Características geoquímicas y pautas de evolución de las salmueras superficiales del Salar de Llamara, Chile. Rev. Geol. de Chile 26, 89–108 (1999).Article
Google Scholar
66.Kampf, S. K. & Tyler, S. W. Spatial characterization of land surface energy fluxes and uncertainty estimation at the Salar de Atacama, Northern Chile. Adv. Water Resour. 29, 336–354 (2006).ADS
Article
Google Scholar
67.Des-Marais, D. J. The Biogeochemistry of Hypersaline Microbial Mats. In Advances in Microbial Ecology (ed. Jones, J. G.) (Springer, 1995).
Google Scholar
68.Vogel, M. B. et al. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Astrobiology 9, 875–893 (2009).ADS
CAS
PubMed
Article
Google Scholar
69.Vogel, M. B. et al. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment. Geol. 223, 265–280 (2010).ADS
CAS
Article
Google Scholar
70.Ali-Bik, M. W., Metwally, H. I. M., Wali, A. M. A. & Kamel, M. G. Facies and geochemistry of non-marine gypsum, EMISAL, Egypt. Geol. Acta 11, 409–420 (2013).CAS
Google Scholar
71.Taher, A. G. Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt. Facies 60, 721–735 (2014).Article
Google Scholar
72.Handford, C. Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin—Bristol Dry Lake, California. Sedimentology 29, 239–253 (1982).ADS
Article
Google Scholar
73.Gerdes, G., Krumbein, W. E. & Holtkamp, E. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In Hypersaline Ecosystems. Ecological Studies (Analysis and Synthesis) (eds Friedman, G. M. & Krumbein, W. E.) 238–236 (Springer, 1985).Chapter
Google Scholar
74.Davie, A. W., Mitrovic, S. M. & Lim, R. P. Succession and accrual of benthic algae on cobbles of an upland river following scouring. Inl. Waters 2, 89–100 (2012).Article
Google Scholar
75.Cohen, Y., Jørgensen, B. B., Padan, E. T. & Shilo, M. Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257, 489–492 (1975).ADS
CAS
Article
Google Scholar
76.Oren, A. & Shilo, M. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation. Arch. Microbiol. 122, 77–84 (1979).CAS
Article
Google Scholar
77.Muñoz, J., Amat, F., Green, A. J., Figuerola, J. & Gómez, A. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range. PeerJ 2013, 1–28 (2013).
Google Scholar
78.Clegg, J. S. & Trotman, C. N. A. Physiological and biochemical aspects of Artemia ecology. In Artemia: Basic and Applied Biology (eds Abatzopoulos, T. J. et al.) 129–170 (Springer, 2002).Chapter
Google Scholar
79.Collado, G. A., Valladares, M. A. & Méndez, M. A. Hidden diversity in spring snails from the andean altiplano, the second highest plateau on earth, and the Atacama Desert, the driest place in the world. Zool. Stud. 52, 1–13 (2013).Article
Google Scholar
80.Herbst, D. B., Conte, F. P. & Brookes, V. J. Osmoregulation in an alkaline salt lake insect, Ephydra (Hydropyrus) hians Say (Diptera: Ephydridae) in relation to water chemistry. J. Insect Physiol. 34, 903–909 (1988).CAS
Article
Google Scholar
81.Cycil, L. M. et al. Metagenomic insights into the diversity of halophilic microorganisms indigenous to the Karak Salt Mine, Pakistan. Front. Microbiol. 11, 1567 (2020).PubMed
PubMed Central
Article
Google Scholar
82.Dillon, J. G., Carlin, M., Gutierrez, A., Nguyen, V. & McLain, N. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00399 (2013).Article
PubMed
PubMed Central
Google Scholar
83.Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349–360 (2002).PubMed
Article
Google Scholar
84.Casamayor, E. O. et al. Changes in Archaeal, bacterial and Eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348 (2002).PubMed
Article
Google Scholar
85.Gorrasi, S. et al. Spatio-temporal variation of the bacterial communities along a salinity gradient within a thalassohaline environment (Saline di Tarquinia Salterns, Italy). Molecules 26, 1338 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220 (2013).CAS
PubMed
Article
Google Scholar
87.Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
88.Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 1–17 (2015).Article
Google Scholar
89.Cody, R. D. & Cody, A. M. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J. Sediment. Res. 58, 247–255 (1988).CAS
Google Scholar
90.Arp, G., Thiel, V., Reimer, A., Michaelis, W. & Reitner, J. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment. Geol. 126, 159–176 (1999).ADS
CAS
Article
Google Scholar
91.Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96, 141–162 (2009).ADS
CAS
Article
Google Scholar
92.Cabestrero, Ó. & Sanz-Montero, M. E. Brine evolution in two inland evaporative environments: Influence of microbial mats in mineral precipitation. J. Paleolimnol. 59, 139–157 (2016).Article
Google Scholar
93.Farías, M. E. Microbial Ecosystems in Central Andes Extreme Environments (Springer, 2020).Book
Google Scholar
94.Oren, A. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 13, 1908–1923 (2011).CAS
PubMed
Article
Google Scholar
95.Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. (APHA American Public Health Association, 2012).96.Díaz, C. & Maidana, N. I. Diatomeas de los Salares Atacama y Punta Negra II Región-Chile (Centro de Ecología Aplicada Ltda. & Minera Escondida Ltda, 2005).
Google Scholar
97.Patrick, R. Results of Research in the Antofagasta Ranges of Chile and Bolivia. II. Diatoms (Bacillariophyceae) from the Alimentary tract of Phoenicoparrus jamesi (1961).98.Frenguelli, J. Diatomeas del Río de la Plata. Rev. del Mus. la Plata Sección Bot. 3, 213–334 (1941).
Google Scholar
99.Parra, O., González, M., Dellarossa, V., Rivera, P. & Orellana, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part III: Cryptophyceae, Dinophyceae, Euglenophyceae (1982).100.Parra, O. & González, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part I: Volvocales, Tetrasporales, Chlorococcales and Ulothricales (1983).101.Seeligmann, C. & Maidana, N. I. Diatomeas (Bacillariophyceae) en ambientes de altura de la provincia de Catamarca (Argentina). Boletín Soc. Argentina Bot. 38, 39–50 (2003).
Google Scholar
102.Seeligmann, C., Maidana, N. I. & Morales, M. Diatoms (Bacillariophyceae) of high altitude wetlands in the Province of Jujuy-Argentina. Boletín Soc. Argentina Bot. 43, 1–17 (2008).
Google Scholar
103.Maidana, N. I. & Seeligmann, C. Diatomeas (Bacillariophyceae) de ambientes acuáticos de altura de la Provincia de Catamarca, Argentina II. Boletín la Soc. Argentina Bot. 41, 1–13 (2006).
Google Scholar
104.Álvarez Blanco, I., Cejudo Figueiras, C., Godos, I. F., Múñoz Torre, R. & White Lance, S. The diatoms of the salt flats of the Bolivian Altiplano: Floristic singularities. Bull. R. Span. Soc. Nat. Hist. 105, 67–82 (2011).
Google Scholar
105.Maidana, N. I. & Seeligmann, C. T. Diatoms (Bacillariophyceae) in high-altitude wetlands of Catamarca Province (Argentina). III. Bol. LA Soc. Argentina Bot. 50, 447–466 (2015).Article
Google Scholar
106.Woelfl, S., Caputo, L., García-Chicote, J. & de Los Ríos, P. Manuales Para la Bioindicación: Zooplancton Vol. 1 (Manuales Sociedad Chilena de Limnología, 2008).
Google Scholar
107.De los Rios-Escalante, P. & Salgado, I. Artemia (Crustacea, Anostraca) in Chile: A review of basic and applied biology. Lat. Am. J. Aquat. Res. 40, 487–496 (2017).Article
Google Scholar
108.Araya, J. M. & Zúñiga, L. R. Taxonomic manual of the lacustrine zooplankton of Chile. Limnol. Bull. Univ. Austral Chile 8, 1–69 (1985).
Google Scholar
109.Fernández, H. R. & Domínguez, E. Guide for the Determination of South American Benthic Arthropods, Entomotropica16(3), 219 (2001).110.Crespo, J. E. & Baessolo, L. A. Biogeografia y taxonomia del género Artemis (Crustacea, Anostraca) en Chile: una revisión. Hist. Nat. I(1), 17–21 (2002).
Google Scholar
111.Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene Designer: A synthetic biology tool for constructing artificial DNA segments. BMC Bioinform. 7, 285 (2006).Article
CAS
Google Scholar
112.Palma, A. T., Schwarz, A. O. & Fariña, J. M. Experimental evidence of the tolerance to chlorate of the aquatic macrophyte Egeria densa in a Ramsar wetland in southern Chile. Wetlands 33, 129–140 (2013).Article
Google Scholar
113.Echeverría-Vega, A. et al. Watershed-induced limnological and microbial status in two oligotrophic Andean Lakes exposed to the same climatic scenario. Front. Microbiol. 9, 357 (2018).PubMed
PubMed Central
Article
Google Scholar
114.Lane, D. J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, 1991).
Google Scholar
115.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
116.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
117.Clarke, K. R. & Gorley, R. N. Getting Started with PRIMER v7 20 (Plymouth Marine Laboratory, 2015).
Google Scholar
118.Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2014).Article
CAS
Google Scholar
119.Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 20th Edition. (APHA American Public Health Association, 1998). More