More stories

  • in

    Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California

    Ethics and vertebrate animalsThe field surveys and collections were conducted on accessible public areas or private residential areas with property owners’ permission. The study did not involve human participants, or endangered or protected species. Laboratory mice were used as a blood source for mosquitoes. All experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California, Irvine (UCI) (IACUC protocol number: AUP-19-165). All methods were carried out in accordance with relevant IACUC guidelines and regulations.Study sites and mosquito larval habitat surveillanceThe study was carried out in Orange County, California, USA. Orange County is a highly urbanized county with an estimated population density of approximately 1470 people/km2 according to U.S. Census Bureau, an average annual low/high temperature range of 13–25 °C, 65% relative humidity, and annual precipitation of about 350 mm according to U.S. Climate Data. Annual rainfall was 261 mm, 311 mm, 198 mm and 475 mm for 2016, 2017, 2018 and 2019, respectively. A major drought event occurred in December 2017 and February 2018 when the total rainfall in the 3-month period was 20.6% of the 30-year average. Both Ae. aegypti and Ae. albopictus were discovered in the county in 20158. Culex quinquefasciatus is the most abundant mosquito in the county and breeds readily in a variety of residential, commercial and USDS water sources, and is the primary vector of West Nile virus in southern California18.Larval mosquito surveillance in Orange County was conducted from 2016 to 2019 by the Orange County Mosquito and Vector Control District (OCMVCD) through its routine mosquito surveillance and treatment program, following the recommendations of the California Department of Public Health and the Mosquito and Vector Control Association of California19. Briefly, OCMVCD staff conducted routine inspection for aquatic habitats in randomly selected public areas, and performed door-to-door mosquito larval and adult sampling on residential or commercial premises upon the request of the residents or business owners while distributing public education materials for vector control and personal protection. Arial photography was used to examine the presence of abandoned swimming pools in residential areas. In addition to surface aquatic habitats, subsurface habitats (e.g., catch basins, underground drains, manhole chambers, and public utility vaults) were examined for larval abundance of all mosquito species. In 2019, OCMVCD completed 5,622 mosquito service requests, and conducted 11,813 inspection and treatments on routine sites using a variety of public health-approved adulticides and larvicides. A total of 38,099 underground drains and catch basins and 6925 km of flood channels were treated. In addition, a total of 17,783 km of gutters and 3562 neglected swimming pools were inspected and treated. The larval distribution data reported here were based on this extensive field sampling effort20.Larval sampling used standard mosquito dippers or pipettes, and specialized modifications of these to sample hard to reach areas. Mosquito larvae from each source were collected, transferred into a uniquely-numbered vial with isopropyl alcohol (70%), and submitted to the laboratory for identification; if present, live pupae were collected and held in site-specific labelled rearing chambers (BioQuip Products, Inc., Rancho Dominguez, CA) until emergence. Third and fourth instar mosquito larvae (1–100, depending on sample size) and emerged adults were identified to species using a stereo microscope (40–50x) and morphological features described in taxonomic keys21,22. Results were uploaded to OCMVCD’s data management system, along with collection date, GPS location, and habitat type for each sample site. For this study, larval habitats were classified into six types: small container, underground system, ornamental water features, marsh, pools/spas, and creek (Table S1). The container classification included flowerpots/vases, saucers, tires, bowls, boxes, buckets, dishes, tree holes, etc. Underground storm drain system referred to larval habitats such as catch basins, manhole chambers, underground drains, and public utility vaults that were below the ground. Water feature included flood control channels, ponds, fountains, birdbaths, street gutters and small reservoirs, etc. Marsh included both fresh and salt water marshes.Mosquito strains and water source for laboratory studiesWe examined the effect of USDS water on oviposition substrate preference and larval development in microcosms in an insectary with climate control (27 ± 1 °C, 70 ± 10% relative humidity, and 12 h light/12 h dark photoperiod) at UCI. To minimize potential bias on behavior and ecology from mosquito colonization, this study did not use previously established laboratory mosquito colonies. Instead, we used Ae. aegypti and Ae. albopictus adults reared from field-collected eggs using ovicups in residential areas of Orange and Los Angeles Counties, California, respectively. Culex quinquefasciatus were also reared from eggs of field-collected, blood-engorged adult mosquitoes using gravid traps in Orange County23.All experiments reported here used two types of habitat water: (1) USDS water collected from seven manhole chambers or catch basins (33°47′01.9″N, 117°53′19.0″W, Orange City, manhole; 33°52′25.0″N, 117°57′02.6″W, Fullerton City, manhole; 33°44′44.4″N, 118°06′24.2″W, Seal Beach City, manhole; 33°55′38.9″N, 117°56′51.4″W, La Habra City, manhole; 33°52′48.9″N, 117°55′21.4″W, Fullerton City, catch basin; 33°54′35.2″N, 117°56′02.5″W, Fullerton City, catch basin; 33°52′25.0″N, 117°57′02.6″W, Fullerton City, catch basin); and 2) flowerpot water from vases of three cemeteries in Orange County (33°50′29.0″N, 117°53′57.9″W; 33°46′21.5″N, 117°50′35.8″W; 33°46′12.3″N, 117°50′21.4″W). Water (including sediments) from each breeding source was collected with mosquito dippers and mixed together by habitat type into 18.9 L (five-gallon) Nalgene™ containers. The containers were transported to the laboratory in shaded ice containers, and stored overnight in a refrigerator at 4 °C. The experiments described below were conducted on the field-collected water for the two habitat types. We selected flowerpot water as the comparison substrate because flowerpot containers showed the highest larval positivity rate in the study area.Oviposition preference testTo examine whether USDS water attracts or repels egg laying by Ae. aegypti and Ae. albopictus mosquitoes, a two-choice oviposition preference test was conducted. Briefly, this experiment used two ovicups placed within a mosquito cage (1 × 0.5 × 0.5 m3), one ovicup with 200 ml USDS water and another with 200 ml flowerpot water. Adult mosquitoes were bloodfed on mice; fully engorged females 3-days post-bloodfeeding were used for oviposition preference tests. Ten gravid Ae. aegypti females were released into a cage and allowed to lay eggs for three days, and the number of eggs in each ovicup were counted. Five replicates were used. The same experiment was conducted for Ae. albopictus.To evaluate whether the presence of Cx. quinquefasciatus larvae has any impact on the egg laying behavior of invasive Aedes mosquitoes, the two-choice oviposition preference test described above was used. One ovicup contained 200 ml USDS water and ten first-instar Cx. quinquefasciatus larvae, while the second ovicup contained 200 ml USDS water only. Ten gravid Ae. aegypti or Ae. albopictus females were released into a cage and allowed to lay eggs for three days. Five replicates were used. We also conducted this experiment using flowerpot water with the same design and same number of replicates to determine whether the impact of Cx. quinquefasciatus larvae on Aedes mosquito egg laying behavior was similar across different water substrate types.Egg hatchingTo investigate the effects of different habitat water sources on egg hatching, 50 Ae. aegypti or Ae. albopictus eggs on separate filter papers were introduced into ovicups with 200 ml USDS water or flowerpot water. Deoxygenized distilled water that we routinely use in laboratory mosquito colony maintenance was used as a positive control. The experiment was conducted in an insectary with climate control (27 ± 1 °C). The number of larvae hatched were counted daily for six days continuously. Five replicates were used.Larval survivorshipA life table study was conducted on Ae. aegypti and Ae. albopictus larvae to determine the effect of USDS water and flowerpot water on larval development and survivorship. Twenty-five newly hatched Ae. aegypti or Ae. albopictus larvae were introduced into a microcosm that contained 200 ml USDS or field flowerpot water. The number of dead and surviving larvae was recorded daily until they pupated. Pupae were counted, and removed to different paper cups for emergence to adults. Four replicates were used for each type of habitat water per species. We included Cx. quinquefasciatus in the larval life table study for method validation purposes because the larvae of this species were known to successfully develop into pupae and adults in USDS water in southern California10.Larval survivorship experiments were conducted in two different seasons. The first was in the summer (August–September) 2019 when the density of invasive Aedes species peaked19, and also insecticide runoff from mosquito and residential/agricultural pest control applications were at the highest levels in southern California24. The second was in the winter (December) 2019 when there was little insecticide treatment for mosquito and pest control. This design enabled us to examine seasonality in larval survivorship and the impact of environmental insecticide runoff in USDS water. To determine whether USDS water’s nutritional deficiency plays a major role in limiting Aedes larval development, we repeated the larval survival experiment by adding 0.1 g Tetramin Tropical Flakes, the standard larval mosquito diet in insectaries, to the microcosms every 2 days. The number of dead and surviving larvae, pupae, and emergent adults was recorded daily.Data analysisAll aquatic habitats that were positive or negative for the larvae of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus (the predominant species), were mapped using ArcGIS 10.7.1. The proportion of aquatic habitats positive for Ae. aegypti and Cx. quinquefasciatus was calculated for each habitat type from 2016 to 2019. To examine variation in Aedes and Culex larval positivity rate among different groups of larval habitats within the USDS, larval positivity rates for Ae. aegypti and Cx. quinquefasciatus were calculated for underground water retention vaults, underground catch basins/manholes, and underground pipelines/tunnels. The Chi-square test was used to examine the statistical significance. Culex quinquefasciatus was analyzed because it was the most common species, whereas Ae. albopictus was not included in the analysis due to insufficient number of Ae. albopictus positive habitats. To determine whether USDS water attracted or repelled oviposition of invasive Aedes mosquitoes, a pairwise t test was used to compare egg number in USDS water ovicups to flowerpot water ovicups for each Aedes species. Similarly, a pairwise t-test was used to test the effect of Cx. quinquefasciatus larvae on Aedes mosquito oviposition choice.To examine the effect of water sources on egg hatching, the t-test was used to analyze the egg hatching rate. The analysis of larval life table study data focused on pupation rates and larval-to-pupal development times. The pupation rate was calculated as the proportion of first-instar larvae that molted into pupae. The effect of water sources and larval food supplementation on pupation rate was analyzed using non-parametric Wilcoxon test. The t-test was used to analyze the duration of larval-to-pupal development. Kaplan–Meier survival analysis was used to determine the effects of food supplementation and water source on larval development for each species, and the log-rank test was conducted to determine their statistical significance. All statistical analyses were performed using JMP software (JMP 14.2, SAS Institute Inc.). More

  • in

    Aboveground plant-to-plant communication reduces root nodule symbiosis and soil nutrient concentrations

    1.Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20, 617–624. https://doi.org/10.1016/j.tree.2005.08.006 (2005).Article 
    PubMed 

    Google Scholar 
    2.Kaplan, I. et al. Physiological integration of roots and shoots in plant defense strategies links above-and belowground herbivory. Ecol. Lett. 11, 841–851. https://doi.org/10.1111/j.1461-0248.2008.01200.x (2008).Article 
    PubMed 

    Google Scholar 
    3.Huang, W., Siemann, E., Carrillo, J. & Ding, J. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores. Ann. Bot. 115, 841–846. https://doi.org/10.1093/aob/mcv011 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Omer, A. D., Thaler, J. S., Granett, J. & Karban, R. Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J. Econ. Entomol. 93, 840–845. https://doi.org/10.1603/0022-0493-93.3.840 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Yamawo, A., Ohsaki, H. & Cahill, J. F. Jr. Damage to leaf veins suppresses root foraging precision. Am. J. Bot. 106, 1126–1130. https://doi.org/10.1002/ajb2.1338 (2019).Article 
    PubMed 

    Google Scholar 
    6.Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144. https://doi.org/10.1016/j.tree.2009.09.010 (2010).Article 
    PubMed 

    Google Scholar 
    7.Karban, R., Yang, L. J. & Edwards, K. F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett. 17, 44–52. https://doi.org/10.1111/ele.12205 (2014).Article 
    PubMed 

    Google Scholar 
    8.Yoneya, K. & Takabayashi, J. Plant-plant communication mediated by airborne signals: Ecological and plant physiological perspectives. Plant Biotechnol. 31, 409–416. https://doi.org/10.5511/plantbiotechnology.14.0827a (2014).CAS 
    Article 

    Google Scholar 
    9.Morrell, K. & Kessler, A. Plant communication in a widespread goldenrod: Keeping herbivores on the move. Funct. Ecol. 31, 1049–1061. https://doi.org/10.1111/1365-2435.12793 (2017).Article 

    Google Scholar 
    10.Arimura, G. et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512–515 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Shiojiri, K. et al. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. Sci. Rep. 7, 1–8. https://doi.org/10.1038/srep41508 (2017).CAS 
    Article 

    Google Scholar 
    12.Karban, R., Shiojiri, K., Huntzinger, M. & McCall, A. C. Damage-induced resistance in sagebrush: Volatiles are key to intra- and interplant communication. Ecology 87, 922–930. https://doi.org/10.1890/0012-9658(2006)87[922:drisva]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    13.Kikuta, Y. et al. Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant Cell Physiol. 52, 588–596. https://doi.org/10.1093/pcp/pcr017 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G. & Felton, G. W. Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125, 66–71. https://doi.org/10.1007/PL00008892 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Karban, R., Huntzinger, M. & McCall, A. C. The specificity of eavesdropping on sagebrush by other plants. Ecology 85, 1845–1852. https://doi.org/10.1890/03-0593 (2004).Article 

    Google Scholar 
    16.Shiojiri, K. et al. Exposure to artificially damaged goldenrod volatiles increases saponins in seeds of field-grown soybean plants. Phytochem. Lett. 36, 7–10. https://doi.org/10.1016/j.phytol.2020.01.014 (2020).CAS 
    Article 

    Google Scholar 
    17.Glinwood, R., Ninkovic, V. & Pettersson, J. Chemical interaction between undamaged plants—Effects on herbivores and natural enemies. Phytochemistry 72, 1683–1689. https://doi.org/10.1016/j.phytochem.2011.02.010 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Lokesh, R. A. V. I., Manasvi, V. & Lakshmi, B. P. Antibacterial and antioxidant activity of saponin from Abutilon indicum leaves. Asian J. Pharm. Clin. Res. 9, 344–347. https://doi.org/10.22159/ajpcr.2016.v9s3.15064 (2016).CAS 
    Article 

    Google Scholar 
    19.Raji, P., Samrot, A. V., Keerthana, D. & Karishma, S. Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. J. Cluster Sci. 30, 881–895. https://doi.org/10.1007/s10876-019-01547-2 (2019).CAS 
    Article 

    Google Scholar 
    20.Toth, R., Toth, D. & Starke, D. Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can. J. Bot. 68, 1039–1044. https://doi.org/10.1139/b90-131 (1990).Article 

    Google Scholar 
    21.Matyssek, R. et al. The plant’s capacity in regulating resource demand. Plant Biol. 7, 560–580. https://doi.org/10.1055/s-2005-872981 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x (2002).Article 
    PubMed 

    Google Scholar 
    23.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume-rhizobium mutualism. Nature 425, 78–81. https://doi.org/10.1038/nature01931 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Walters, D. R. Plant Defense: Warding Off Attack by Pathogens, Herbivores, and Parasitic Plants (Blackwell Publishing, 2011).
    Google Scholar 
    25.Szakiel, A., Pączkowski, C. & Henry, M. Influence of environmental biotic factors on the content of saponins in plants. Phytochem. Rev. 10, 493–502. https://doi.org/10.1007/s11101-010-9164-2 (2011).CAS 
    Article 

    Google Scholar 
    26.Singh, B. & Kaur, A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT 87, 93–101. https://doi.org/10.1016/j.lwt.2017.08.077 (2018).CAS 
    Article 

    Google Scholar 
    27.Barton, K. E. & Koricheva, J. The ontogeny of plant defense and herbivory: Characterizing general patterns using meta-analysis. Am. Nat. 175, 481–493. https://doi.org/10.1086/650722 (2010).Article 
    PubMed 

    Google Scholar 
    28.Feeny PP. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565–581 https://doi.org/10.2307/1934037 (1970).Article 

    Google Scholar 
    29.Dudt, J. F. & Shure, D. J. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75, 86–98. https://doi.org/10.2307/1939385 (1994).Article 

    Google Scholar 
    30.Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Asian J. Pharm. Clin. Res. 33, 213–217. https://doi.org/10.1021/jf00062a013 (1985).CAS 
    Article 

    Google Scholar 
    31.Folin, O. & Denis, W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 22, 305–308 (1915).CAS 
    Article 

    Google Scholar 
    32.Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856. https://doi.org/10.1021/jf030723c (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Mukai, T., Horie, H. & Goto, T. A simple method for determining saponin in tea seed. Chagyo Kenkyu Hokoku 75, 29–31 (1992) (Japanese with English abstract).CAS 
    Article 

    Google Scholar 
    34.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. A colorimetric method for the determination of sugars. Nature 168, 167–167 (1951).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356. https://doi.org/10.1021/ac60111a017 (1956).CAS 
    Article 

    Google Scholar 
    36.Harad, Y. Cation and anion exchange capacity of soil background and methods. 302 Jpn. J. Soil Scie. Plant Nutr. 55, 273–283. 303 (1984) (in Japanese).
    37.R Development Core Team. R A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    38.De Geyter, E., Lambert, E., Geelen, D. & Smagghe, G. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 1, 96–105 (2007).
    Google Scholar 
    39.Pankhurst, C. E. & Sprent, J. I. Effects of water stress on the respiratory and nitrogen-fixing activity of soybean root nodules. J. Exp. Bot. 26, 287–304. https://doi.org/10.1093/jxb/26.2.287 (1975).CAS 
    Article 

    Google Scholar 
    40.Sparg, S., Light, M. E. & Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243. https://doi.org/10.1016/j.jep.2004.05.016 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Saha, S., Walia, S., Kumar, J., Dhingra, S. & Parmar, B. S. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J. Agric. Food Chem. 58, 434–440. https://doi.org/10.1021/jf902439m (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Hoagland, R. E., Zablotowicz, R. M. & Oleszek, W. A. Effects of alfalfa saponins on in vitro physiological activity of soil and rhizosphere bacteria. J. Crop. Prod. 4, 349–361. https://doi.org/10.1300/J144v04n02_16 (2001).CAS 
    Article 

    Google Scholar 
    43.Killeen, G. F. et al. Antimicrobial saponins of Yucca schidigera and the implications of their in vitro properties for their in vivo impact. J. Agric. Food Chem. 46, 3178–3186. https://doi.org/10.1021/jf970928j (1998).CAS 
    Article 

    Google Scholar 
    44.Sugiyama, A. The soybean rhizosphere: Metabolites, microbes, and beyond—A review. J. Adv. Res. 19, 67–73. https://doi.org/10.1016/j.jare.2019.03.005 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Lucas-Barbosa, D. Integration studies on plant-pollinator and plant–herbivore interactions. Trends Plant Sci. 21, 125–133. https://doi.org/10.1016/j.tplants.2015.10.013 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.De Deyn, G. B., Raaijmakers, C. E. & Van der Putten, W. H. Plant community development is affected by nutrients and soil biota. J. Ecol. 92(5), 824–834. https://doi.org/10.1111/j.0022-0477.2004.00924.x (2004).Article 

    Google Scholar 
    47.Knelman, J. E. et al. Nutrient addition dramatically accelerates microbial community succession. PLoS ONE 9(7), e102609. https://doi.org/10.1371/journal.pone.0102609 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Yoneya, K. & Takeshi, M. Co-evolution of foraging behaviour in herbivores and their natural enemies predicts multifunctionality of herbivore-induced plant volatiles. Funct. Ecol. 29, 451–461. https://doi.org/10.1111/1365-2435.12398 (2015).Article 

    Google Scholar 
    49.Karban, R. Plant communication increases heterogeneity in plant phenotypes and herbivore movement. Funct. Ecol. 31, 990–991. https://doi.org/10.1111/1365-2435.12806 (2017).Article 

    Google Scholar  More

  • in

    Microclimate feedbacks sustain power law clustering of encroaching coastal woody vegetation

    1.May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).Article 

    Google Scholar 
    2.Scheffer, M., Carpenter, S., Foley, J., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Archer, S., Schimel, D. S. & Holland, E. A. Mechanisms of shrubland expansion: land use, climate, or carbon dioxide. Clim. Change 29, 91–99 (1995).Article 

    Google Scholar 
    4.Maher, E. L. & Germino, M. J. Microsite variation among conifer species during seedling establishment at alpine treeline. Ecoscience 13, 334–341 (2006).Article 

    Google Scholar 
    5.Knapp, A. K. et al. Shrub encroachment in North American grasslands: shifts in growth form dominance alters control of ecosystem carbon inputs. Glob. Change Biol. 14, 615–623 (2008).Article 

    Google Scholar 
    6.McKee, K. L. & Rooth, J. E. Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Glob. Change Biol. 14, 971–984 (2008).Article 

    Google Scholar 
    7.Huang, H., Zinnert, J. C., Wood, L. K., Young, D. R. & D’Odorico, P. Non-linear shift from grassland to shrubland in temperate barrier islands. Ecology 99, 1671–1681 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Huang, H., Anderegg, L. D. L., Dawson, T. E., Mote, S. & D’Odorico, P. Critical transition to woody plant dominance through microclimate feedbacks in North American coastal ecosystems. Ecology 101, e03107 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Huenneke, L. F., Anderson, J. P., Remmenga, M. & Schlesinger, W. H. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Glob. Change Biol. 8, 247–264 (2002).Article 

    Google Scholar 
    10.Li, J., Okin, G. S., Hartman, L. J. & Epstein, H. E. Quantitative assessment of wind erosion and soil nutrient loss in desert grasslands of southern New Mexico, USA. Biogeochemistry 85, 317–332 (2007).Article 

    Google Scholar 
    11.D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5, 520–530 (2012).Article 

    Google Scholar 
    12.Van Auken, O. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Evol. Syst. 31, 197–215 (2000).Article 

    Google Scholar 
    13.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Gehrig-Fasel, J., Guisan, A. & Zimmermann, N. E. Tree line shifts in the Swiss Alps: climate change or land abandonment? J. Veg. Sci. 18, 571–582 (2007).Article 

    Google Scholar 
    15.Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl Acad. Sci. USA 111, 723–727 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.D’Odorico, P. et al. Vegetation–microclimate feedbacks in woodland–grassland ecotones. Glob. Ecol. Biogeogr. 22, 364–379 (2013).Article 

    Google Scholar 
    17.He, Y., D’Odorico, P. & De Wekker, S. F. The relative importance of climate change and shrub encroachment on nocturnal warming in the Southwestern United States. Int. J. Climatol. 35, 475–480 (2014).Article 

    Google Scholar 
    18.He, Y., D’Odorico, P., De Wekker, S. F., Fuentes, J. D. & Litvak, M. On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. J. Geophys. Res. Atmos. 115, D21120 (2010).Article 

    Google Scholar 
    19.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Sugihara, G. & May, R. M. Applications of fractals in ecology. Trends Ecol. Evol. 5, 79–86 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self- Organization. (Cambridge University Press, New York, 1997).24.Majumder, S., Tamma, K., Ramaswamy, S. & Guttal, V. Inferring critical thresholds of ecosystem transitions from spatial data. Ecology 100, e02722 (2019).PubMed 
    Article 

    Google Scholar 
    25.Staver, A. C., Asner, G. P., Rodriguez-Iturbe, I., Levin, S. A. & Smit, I. Spatial patterning among savanna trees in high resolution, spatially extensive data. Proc. Natl Acad. Sci. USA 116, 10685 (2019).Article 
    CAS 

    Google Scholar 
    26.Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Kéfi, S. et al. Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecol. Lett. 14, 29–35 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Weissmann, H., Kent, R., Michael, Y. & Shnerb, N. M. Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition. PLoS ONE 12, e0189058 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Sankaran, S., Majumder, S., Viswanathan, A. & Guttal, V. Clustering and correlations: inferring resilience from spatial patterns in ecosystems. Methods Ecol. Evol. 10, 2079–2089 (2019).Article 

    Google Scholar 
    30.Zinnert, J. C. et al. Spatial–temporal dynamics in barrier island upland vegetation: the overlooked coastal landscape. Ecosystems 19, 685–697 (2016).CAS 
    Article 

    Google Scholar 
    31.Thompson, J. A., Zinnert, J. C. & Young, D. R. Immediate effects of microclimate modification enhance native shrub encroachment. Ecosphere 8, e01687 (2017).Article 

    Google Scholar 
    32.Wood, L. K., Hays, S. & Zinnert, J. C. Decreased temperature variance associated with biotic composition enhances coastal shrub encroachment. Sci. Rep. 10, 8210 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor and Francis, London, 1985).34.Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Scanlon, T. M., Caylor, K. K., Levin, S. A. & Rodriguez-Iturbe, I. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449, 209–212 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kéfi, S., Rietkerk, M., van Baalen, M. & Loreau, M. Local facilitation, bistability and transitions in arid ecosystems. Theor. Popul. Biol. 71, 367–379 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 3 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Dakos, V., Kéfi, S., Rietkerk, M., van Nes, E. H. & Scheffer, M. Slowing down in spatially patterned ecosystems at the brink of collapse. Am. Nat. 177, E153–E166 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Weerman, E. J. et al. Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecology 93, 608–618 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2012).Article 

    Google Scholar 
    41.van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.USACE-TEC & JALBTCX. Hyperspectral imagery for Hog Island, VA, 2013 ver 7. Environmental Data Initiative. https://doi.org/10.6073/pasta/6a5cc305e93c2baf9283facee688c504 (2018).43.Young, D. R. et al. Cross-scale patterns in shrub thicket dynamics in the Virginia barrier complex. Ecosystems 10, 854–863 (2007).Article 

    Google Scholar 
    44.Young, D. R., Shao, G. & Porter, J. H. Spatial and temporal growth dynamics of barrier island shrub thickets. Am. J. Bot. 82, 638–645 (1995).Article 

    Google Scholar 
    45.McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps (University of Massachusetts at Amherst, MA, 2012).46.Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009). 2009.Article 

    Google Scholar 
    47.Hayden, B. P. Ecosystem feedbacks on climate at the landscape scale. Philos. Trans. R. Soc. B, Biol. Sci. 353, 5–18 (1998).Article 

    Google Scholar  More

  • in

    Seasonality modulates the direct and indirect influences of forest cover on larval anopheline assemblages in western Amazônia

    We untangled how the direct and indirect paths of forest cover and water quality variables interact and shape anopheline assemblages in two seasons. Although previous studies determined how environmental variables at different spatial extents affected anopheline distributions in Amazônia, most studies focused on a single effect of an environmental variable or focused on single habitat types (terrestrial or aquatic)22,23,41,42. Our most important finding is that seasonality modulates the direct and indirect effects of forest cover on Amazônian anopheline larval distributions. In particular, we found that forest cover had stronger direct and indirect influence on larval anopheline assemblage composition in the rainy season than the dry season.The different paths and strengths of forest cover influences on anopheline assemblages during the rainy and dry seasons can be associated with the responses of adults and larvae to forest characteristics. Forest cover influences water quality variables of ponds by shading, organic matter inputs and erosion processes43. These effects have consequences for pond water quality44 and favor the establishment of different culicid species45. We showed that during the rainy season, forest cover directly and indirectly influenced site water quality. Greater forest cover in the rainy season directly and indirectly affected A. nimbus and the secondary malaria vectors A. triannulatus and A. braziliensis positively. In the dry season, greater forest cover positively but marginally affected A. peryassui, A. nuneztovari and A. albitarsis, but only indirectly through water quality. Some species like A. triannulatus, A. nuneztovari and A. braziliensis coexist with the malaria vector, A. darlingi, in breeding sites46, and these species have been positively associated with pH, dissolved oxygen and total suspended solids in natural and artificial habitats20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, which are environmental conditions favored by greater forest cover. The marginal indirect effect of forest cover on anopheline assemblage in the dry season suggests that we need caution in the interpretation of this result and long-term temporal data is required to confirm if this effect is corroborated.Forest conditions influence mosquito vectors and their hosts. For example, some mosquitoes are zoophiles that feed on the blood of birds, reptiles, and mammals48, which are often more abundant in conserved areas. Other species are anthropophilic and prefer to feed on human blood49 and altered environments can force these species to migrate and, consequently, to change hosts48. In our study, A. triannulatus and A. minbus were more abundant in sites with more natural characteristics, whereas A. darlingi and A. nuneztovari were more abundant in altered landscapes. In addition, urbanization and deforestation increase the proximities of humans and domestic animals to mosquito vectors and their hosts, thereby maintaining and increasing transmission cycles50.Forest conditions influence anopheline diversity by different paths, which may alter the strength of their seasonal effects. During the dry season, mosquito survival is also affected by altered microclimate (e.g., lower humidity)51 and lentic habitats contain less water, increased nutrient concentrations and decreased abundance and richness of mosquitoes52,53. We observed that rainfall plays an important role in the larval abundance of Anopheles in artificial larval habitats in Manaus. In addition, climatic factors such as rainfall and river levels are strongly associated with vector abundance and malaria cases in the region54,55. During the rainy season, increased water volume in artificial habitats provides more areas for distribution and development of mosquito species56 and we detected a significant increase in abundance of A. triannulatus, A. darlingi and A. nuneztovari. These observations may partially explain why we found a direct effect of forest cover on mosquitoes only during the rainy season.Our results add more evidence that managing and conserving forest cover is important to control anophelines, thereby decreasing the contact of potential vectors (e.g., A. darlingi) with humans. In general, our results support the idea that mosquitoes are directly affected by the loss of native forest cover57 in the rainy season. Mosquitoes associated with serious human diseases (e.g., malaria, yellow fever, dengue, leishmaniasis) are more abundant in areas with low levels of native forest cover14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58. This is a critically important finding because recent studies have shown that forest cover plays an important role in the vector dynamics of mosquitoes and forest conservation keeps pathogens within the forest, avoiding spillover to human settlements59. On the other hand, deforestation provides favorable conditions for these vectors, thereby increasing malária cases and decreasing scores of the Human Development Index60. In addition, there is a positive correlation between mosquito abundance in fragmented forests and the prevalence of Plasmodium, the protozoan that causes malaria61.Artificial larval habitats promote conditions for malaria vectors in Amazônia62,63. Therefore, the best way to develop control techniques would be to understand larval ecology in these habitats, where they are more sensitive to infections by pathogens, parasites, predation, larvicides and growth regulators64. This information is necessary to minimize failures in programs to control or eradicate the vector and the disease. Under this perspective, our study adds a new piece in the puzzle of mosquito control in Amazônia. For example, during the rainy season when forest cover directly and indirectly influences larval habitats, control programs can strengthen the control of key limnological variables, habitat structure, and entomological aspects, intensifying the environmental filter, particularly in areas with little forest cover and greater human concentrations near those habitats. The limnological study of Anopheles larval habitats is still far from complete, as each case has peculiarities inherent to them. Despite attempts, anophelines demonstrate versatility in relation to abiotic parameters20,21,22,23,24,25,26,65,66. However, we can use approaches that modify the larval environments. For example, more efficient management of water levels in fish farming ponds could decrease larval numbers and anopheline reproduction, Similarly, greater rationing of fish feed would decrease the supply of food resources for mosquito larvae. It is also worth mentioning that some variables are related to the efficiency of others. Regarding biological control via entomopathogenic bacteria, environmental factors (solar radiation) and water quality (amounts of total suspended solids and organic matter), can interfere with the effectiveness of the formulated Bacillus sphaericus applied in habitats for vector control62,63,64,65,66,67. Furthermore, eutrophication decreased the assemblages of aquatic invertebrates predating mosquito larvae.Another alternative is the use of physical control (removal of grasses and macrophytes from the edge of habitats), helping to reduce microhabitats that provide larval refuges. Also, increased light and water temperature at the edges favor natural predation and biological control processes from potential fish and macroinvertebrates. The conservation of natural enemies and the use of biotic agents in the population control of vector mosquitoes have been recommended in small and medium-sized natural and artificial breeding sites19,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53. A combination of techniques that shape the important environmental variables for the establishment of these species are essential for vector control.The analytical approach used here opens some windows of opportunity for improvements that are important to be recognized. First, our model did not incorporate important complexity of natural systems, such as ecological interactions among vectors and hosts, including human behavior. Agent-based models, including different host behavior, could provide important insights in this way. Second, our study is very limited in terms of temporal climatic variability. Additional information is needed to better understand the effects of long-term changes in land-use, water quality and climate and their interactions with mosquito assemblages in the region, particularly considering an ecological-evolutionary perspective. Third, it is important to highlight that the magnitude of effects of the estimated drivers were not the same in the rainy and dry seasons. Also, they may not remain constant in coming decades, especially considering potential regional process on mosquito assemblages, such as spillover effects, mass effects and host changes. Fourth, our study was carried out in an area of Amazonia that has experienced, a relatively old land use conversion from forest to urban areas (urban expansion rate of around 12% per year for the past 34 years)68. Beginning in the 1970s, human population increased at a rate of around 23% per decade and 25% in Manaus11. Therefore, the region we studied is very relevant in terms of historical interactions among human populations, mosquitoes and land use changes. However, understanding the effect of these changes on mosquito assemblages in areas with different land-use change dynamics, provides us with important information69, particularly those with very rapid urbanization processes, such as in the Arch of Deforestation70. Lastly, we need studies that consider the nexus among climate and land use changes, human and animal population health, economic conditions, and ecosystem services provided by these forest-urban transitional regions. Such information would facilitate including mosquito information in land use planning and climate mitigation programs based on forest management in and around cities.Therefore, identifying ecological factors and paths that affect the composition of species of epidemiological importance are essential because they inform vector integrated management strategies. We emphasize that larval control in lentic habitats requires knowledge about larval ecology and the effects of biotic and abiotic variables on larvae, especially when it comes to biological controls. The application of integrated pest management can be conducted in both dry and rainy seasons. However, we recommend focusing on the dry season when larval habitats are more limited, in smaller volumes and more accessible for entry and application of vector control techniques. These are critically important considerations because over 2 million people live in Amazonas state11 and anophelines transmitted over 59,637 malaria cases in the Amazon region in the first half of 2020, and about 44.4% came from the state of Amazonas71. More

  • in

    Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology

    1.Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).Article 

    Google Scholar 
    3.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    4.Kooyers, N. J., Greenlee, A. B., Coloicchio, J. M., Oh, M. & Blackman, B. K. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. New Phytol. 206, 152–165 (2015).5.Evans, L. M. et al. Population genomics of Populus trichocarpa identifies signature of selection and adaptive trait associations. Nat. Genet. 46, 1089–1096 (2016).Article 
    CAS 

    Google Scholar 
    6.Wadgymar, S. M., Daws, S. C. & Anderson, J. T. Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines. Evol. Lett. 1, 26–39 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Nord, E. A. & Lynch, J. P. Plant phenology: a critical controller of soil resource acquisition. J. Exp. Bot. 60, 1927–1937 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Polgar, C. A. & Primack, R. B. Tansley review: leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol. 191, 926–941 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Stephens, P. A. et al. Consistent response of bird population to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wagner, M. R. et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol. Lett. 17, 717–726 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Lu, T. et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231 (2018).14.Friesen, M. et al. Microbially mediated plant functional traits. Ann. Rev. Ecol. Evol. Syst. 42, 23–46 (2011).Article 

    Google Scholar 
    15.Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Panke-Buisse, K., Poole, A., Goodrich, J., Ley, R. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Fitzpatrick, C. R., Mustafa, Z. & Viliunas, J. Soil microbes alter plant fitness under competition and drought. J. Evol. Biol. https://doi.org/10.1111/jeb.13426 (2019).19.Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl Acad. Sci. USA 109, 14058–14062 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Van Nuland, M. E., Ware, I. M., Bailey, J. K. & Schweitzer, J. A. Ecosystem feedbacks contribute to geographic variation in the plant-soil evolutionary dynamics across fertility gradient. Funct. Ecol. 33, 95–106 (2019).21.Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K. & Vivanco, J. M. Soil microbiome vary in their ability to confer drought tolerance to Arabidopsis. Appl. Soil Ecol. 68, 1–9 (2013).Article 

    Google Scholar 
    22.Gehring, C. A., Sthultz, C. M., Flores-Renteria, L., Whipple, A. V. & Whitham, T. G. Tree genetics defines fungal partner communities that may confer drought tolerance. Proc. Natl Acad. Sci. USA 114, 11169–11174 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lankau, R. A., Zhu, K. & Ordonez, A. Mycorrhizal strategies of tree species correlate with trailing range edge responses to current and past climate change. Ecology 96, 1451–1458 (2015).Article 

    Google Scholar 
    25.Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).Article 

    Google Scholar 
    26.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fung. Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    27.Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil Microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Martiny, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–111 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns of belowground communities. Ecol. Lett. 12, 1238–1249 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Fierer, N. et al. Comparative metagenomic, phylogenetic, and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Waldrop, M. P. et al. The interacting roles of climate, soils, and plant production, on soil microbial communities at a continental scale. Ecology 98, 1957–1967 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Nelson, M. B., Martiny, A. C. & Martiny, J. B. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schweitzer, J. A. et al. Plant-soil-microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89, 773–781 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.de Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Delgado-Baquerizo, M. et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytol. 219, 574–587 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 44, 76–81 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Morin, X. et al. Leaf phenology in 22 North American tree species during the 21st century. Glob. Change Biol. 15, 961–975 (2010).Article 

    Google Scholar 
    39.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Renwick, K. M. & Rocca, M. E. Temporal context affects the observed rate of climate-driven range shifts in tree species. Glob. Ecol. Biogeog. 24, 44–51 (2015).Article 

    Google Scholar 
    41.Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Kivlin, S. N., Emery, S. M. & Rudgers, J. A. Fungal symbionts alter plant responses to global change. Am. J. Bot. 100, 1445–1457 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils. New Phytol. 209, 1382–1394 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Fisher, D. G. et al. Plant genetic effects on soils under climate change. Plant Soil 379, 1–19 (2014).46.van der Wal, A., Geyden, T. D., Kuyper, T. W. & de Boer, W. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol. Rev. 37, 477–494 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Perez-Izquierdo, L. et al. Plant intraspecific variation modulates nutrient cycling through its belowground rhizospheric microbiome. J. Ecol. 107, 1594–1605 (2019).Article 

    Google Scholar 
    48.Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, https://doi.org/10.1126/science.aav0550 (2019).49.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.van der Putten, W. H., Bradford, M. A., Brinkman, E. P., van de Voorde, T. F. J. & Veen, G. F. Where, when and how plant-soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).Article 

    Google Scholar 
    51.Van Nuland, M. E. et al. Plant-soil feedbacks: connecting ecosystem ecology and evolution. Funct. Ecol. 30, 1032–1042 (2016).Article 

    Google Scholar 
    52.Ware, I. M. et al. Feedbacks link ecosystem ecology and evolution across spatial and temporal scales: empirical evidence and future directions. Funct. Ecol. 33, 31–42 (2019).Article 

    Google Scholar 
    53.Cooke, J. E. K. & Rood, S. B. Trees of the people: the growing science of poplars in Canada and worldwide. Can. J. Bot. 85, 1103–1110 (2007).Article 

    Google Scholar 
    54.Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host-associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).Article 

    Google Scholar 
    55.Hijmans, R. J., Cameron, S. E., Para, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    56.Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J. & Schadt, C. W. Soil microbial community responses to multiple experimental climate change drivers. Appl. Environ. Microbiol. 76, 999–1007 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Van Nuland, M. E., Bailey, J. B. & Schweitzer, J. A. Divergent plant-soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nature Ecol. Evol. https://doi.org/10.1038/s41559-017-0150 (2017).59.Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Phys. 29, 321–331 (2009).CAS 
    Article 

    Google Scholar 
    60.Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. Roy. Soc. B Biol. Sci. 365, 3227–3246 (2010).Article 

    Google Scholar 
    61.Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Tremblay, J. et al. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 6, 771 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    63.Chao, A., Chiu, C. H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Ann. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).Article 

    Google Scholar 
    64.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    65.Ma, Z. Measuring microbiome diversity and similarity with Hill numbers. Metagenomics https://doi.org/10.1016/B978-0-08-102268-9.00008-2 (2018).66.Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    67.Fitzpatrick, M. C. et al. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc. Biol. Sci. 280, 20131201 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    68.R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org (R Foundation for Statistical Computing, 2016). More

  • in

    A millennium of trophic stability in Atlantic cod (Gadus morhua): transition to a lower and converging trophic niche in modern times

    1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: Why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).Article 

    Google Scholar 
    7.Misarti, N., Finney, B. P., Maschner, H. & Wooller, M. J. Changes in northeast Pacific marine ecosystems over the last 4500 years: Evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19, 1139–1151 (2009).ADS 
    Article 

    Google Scholar 
    8.Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, 35–39 (2012).
    Google Scholar 
    9.Szpak, P., Orchard, T. J., Mckechnie, I. & Gröcke, D. R. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: Isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).Article 

    Google Scholar 
    10.McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. USA 111, E807–E816 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Orton, D. C. Archaeology as a tool for understanding past marine resource use and its impact. In Perspectives on Oceans Past (eds Schwerdtner Máñez, K. & Poulsen, B.) 47–69 (Springer, 2016).
    Google Scholar 
    12.Barrett, J. H., Locker, A. M. & Roberts, C. M. The origins of intensive marine fishing in medieval Europe: The English evidence. Proc. R. Soc. Lond. B. 271, 2417–2421 (2004).Article 

    Google Scholar 
    13.Edvardsson, R. The Role of Marine Resources in the Medieval Economy of Vestfirðir, Iceland (CUNY, 2019).
    Google Scholar 
    14.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    15.Wada, E., Kabaya, Y. & Kurihara, Y. Stable isotopic structure of aquatic ecosystems. J. Biosci. 18, 483–499 (1993).CAS 
    Article 

    Google Scholar 
    16.Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta. 48, 1135–1140 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Newsome, S. D. et al. Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: Isotopic analysis of northern fur seal teeth. Mar. Ecol. Prog. Ser. 332, 211–224 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: A long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    20.Emslie, S. D. & Patterson, W. P. Abrupt recent shift in δ13C and δ15N values in Adélie Penguin eggshell in Antarctica. Proc. Natl. Acad. Sci. USA 104, 11666–11669 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Emslie, S. D., Polito, M. J. & Patterson, W. P. Stable isotope analysis of ancient and modern Gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct. Sci. 25, 213–218 (2013).ADS 
    Article 

    Google Scholar 
    22.Drinkwater, K. F. The regime shift of the 1920s and 1930s in the North Atlantic. Prog. Oceanogr. 68, 134–151 (2006).ADS 
    Article 

    Google Scholar 
    23.Ástþórsson, Ó. S., Gíslason, Á. & Jónsson, S. Climate variability and the Icelandic marine ecosystem. Deep-Sea Res. PT II(54), 2456–2477 (2007).ADS 
    Article 

    Google Scholar 
    24.Edvardsson, R., Bárðarson, H., Patterson, W. P., Timsic, S. & Ólafsdóttir, G. Á. Change in Atlantic cod migrations and adaptability of early land-based fishers to severe climate variation in the North Atlantic. Quat. Res. (In press).25.Dahl-Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Ogilvie, A. E. & Jonsson, T. The Iceberg in the Mist: Northern Research in Pursuit of a Little Age (Kluwer Academic, 2001).Book 

    Google Scholar 
    27.Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K. L. & Seidenkrantz, M. S. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology 33, 73–76 (2005).ADS 
    Article 

    Google Scholar 
    28.Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522–538 (2010).ADS 
    Article 

    Google Scholar 
    29.Patterson, W. P., Dietrich, K. A., Holmden, C. & Andrews, J. T. Two millennia of North Atlantic seasonality and implications for Norse colonies. Proc. Natl. Acad. Sci. USA 107, 5306–5310 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Geffen, A. J. et al. High-latitude climate variability and its effect on fisheries resources as revealed by fossil cod otoliths. ICES J. Mar. Sci. 68, 1081–1089 (2011).Article 

    Google Scholar 
    31.Ólafsdóttir, G. Á., Westfall, K. M., Edvardsson, R. & Pálsson, S. Historical DNA reveals the demographic history of Atlantic cod (Gadus morhua) in medieval and early modern Iceland. Proc. R. Soc. Lond. B. 281, 20132976 (2014).
    Google Scholar 
    32.Ólafsdóttir, G. Á., Pétursdóttir, G., Bárðarson, H. & Edvardsson, R. A millennium of north-east Atlantic cod juvenile growth trajectories inferred from archaeological otoliths. PLoS One 12, e0187134 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).Article 

    Google Scholar 
    34.Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).Article 

    Google Scholar 
    37.Persson, A. & Hansson, L. A. Diet shift in fish following competitive release. CJFAS 56, 70–78 (1999).
    Google Scholar 
    38.Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, e103132 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Bas, M. et al. Back to the future? Late Holocene marine food web structure in a warm climatic phase as a predictor of trophodynamics in a warmer South-Western Atlantic Ocean. Glob. Change Biol. 25, 404–419 (2019).ADS 
    Article 

    Google Scholar 
    40.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev. 106, 131–148 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Bas, M. & Cardona, L. Effects of skeletal element identity, delipidation and demineralization on the analysis of stable isotope ratios of C and N in fish bone. J. Fish. Biol. 92, 420–437 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Harrison, R. The Siglunes 2011/12 Archaeofauna. Interim Report on the Fishing Station’s Sampled Faunal Remains. (http://www.nabohome.org/uploads/ramonah/RH_Siglunes_Faunal_Report_5_30_2014.pdf (2014).43.Lárusdóttir, B., Roberts, H. M., Þorgeirsdóttir, S. S., Harrison, R. & Sigurgeirsson, Á. Siglunes. Archaeological investigations in 2011. http://www.nabohome.org/uploads/ramonah/FS480-11121_Siglunes_2011.pdf (2012).44.Leyden, J. J., Wassenaar, L. I., Hobson, K. A. & Walker, E. G. Stable hydrogen isotopes of bison bone collagen as a proxy for Holocene climate on the Northern Great Plains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 87–99 (2006).Article 

    Google Scholar 
    45.Craig, H. Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science 133, 1702–1703 (1961).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob. Change Biol. 12, 611–625 (2006).ADS 
    Article 

    Google Scholar 
    48.Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    49.Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Glob. Biogeochem. Cycles 13, 307–335 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & Mcnichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob. Biogeochem. Cycles 17, 1–20 (2003).Article 
    CAS 

    Google Scholar 
    51.Quay, P. D., Tilbrook, B. & Wong, C. S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256, 74–79 (1992).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.1 (2020).53.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Þór, J. Þ. British Trawlers in Icelandic Waters: History of British Steam Trawling off Iceland, 1889–1916, and the Anglo-Icelandic Fisheries Dispute, 1896–1897 (Fjölvi, 1992).
    Google Scholar 
    57.Þór, J. Þ. Saga Sjávarútvegs á Íslandi. 1902–1939 Vélaöld (Bókaútgáfan Hólar, 2003).
    Google Scholar 
    58.Gill, A. B. The dynamics of prey choice in fish: The importance of prey size and satiation. J. Fish. Biol. 63, 105–116 (2003).Article 

    Google Scholar 
    59.Jennings, S. Size-based analyses of aquatic food webs. In Aquatic Food Webs: An Ecosystem Approach (eds Belgrano, A. et al.) 86–97 (Oxford University Press, 2005).Chapter 

    Google Scholar 
    60.Zenteno, L. et al. Dietary consistency of male South American sea lions (Otaria flavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Biol. 162, 275–289 (2015).CAS 
    Article 

    Google Scholar 
    61.Vales, D. G. et al. Holocene changes in the trophic ecology of an apex marine predator in the South Atlantic Ocean. Oecologia 183, 555–570 (2017).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Bas, M. et al. Predicting habitat use by the Argentine hake Merluccius hubbsi in a warmer world: Inferences from the Middle Holocene. Oecologia 193, 461–474 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Sharpe, D. M. & Chapman, L. J. Niche expansion in a resilient endemic species following introduction of a novel top predator. Freshw. Biol. 59, 2539–2554 (2014).Article 

    Google Scholar 
    64.Jaworski, A. & Ragnarsson, S. Á. Feeding habits of demersal fish in Icelandic waters: A multivariate approach. ICES J. Mar. Sci. 63, 1682–1694 (2006).Article 

    Google Scholar 
    65.Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).Article 

    Google Scholar 
    66.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).Article 

    Google Scholar 
    67.Jennings, S. & Van Der Molen, J. Trophic levels of marine consumers from nitrogen stable isotope analysis: Estimation and uncertainty. ICES J. Mar. Sci. 72, 2289–2300 (2015).Article 

    Google Scholar 
    68.MFRI. Atlantic cod Gadus morhua (MFRI Assessment Reports 2020). Marine and Freshwater Research Institute. https://www.hafogvatn.is/static/extras/images/01-cod_tr_isl1232625.pdf (2020).69.Thorsteinsson, V., Pálsson, Ó. K., Tómasson, G. G., Jónsdóttir, I. G. & Pampoulie, C. Consistency in the behaviour types of the Atlantic cod: Repeatability, timing of migration and geo-location. Mar. Ecol. Prog. Ser. 462, 251–260 (2012).ADS 
    Article 

    Google Scholar  More

  • in

    Upper limits to sustainable organic wheat yields

    1.Goulding, K., Trewavas, A. & Giller, K. E. Feeding the world: a contribution to the debate. World Agric. 2, 32–38 (2011).
    Google Scholar 
    2.Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    3.Epule, T. E. Organic Farming 1–16 (Elsevier, 2019).Book 

    Google Scholar 
    4.FAO. FAO Statistical Pocketbook 2015: World Food and Agriculture. Food and Agriculture Organization; ISBN 978-92-5-108802-9. http://www.fao.org/documents/card/en/c/383d384a-28e6-47b3-a1a2-2496a9e017b2/. Accessed 30 November 2016, 2015.5.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    6.Hazell, P. & Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 495–515 (2008).Article 

    Google Scholar 
    7.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Ladha, J. et al. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6, 19355 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    9.de Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).Article 

    Google Scholar 
    10.Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    11.Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. Lond. B Biol. Sci. 282, 20141396 (2015).
    Google Scholar 
    12.Connor, D. J. Organically grown crops do not a cropping system make and nor can organic agriculture nearly feed the world. Field Crops Res. 144, 145–147. https://doi.org/10.1016/j.fcr.2012.12.013 (2013).Article 

    Google Scholar 
    13.Berry, P. M. et al. Is the productivity of organic farms restricted by the supply of available nitrogen?. Soil Use Manag. 18, 248–255 (2002).Article 

    Google Scholar 
    14.Adamtey, N. et al. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 235, 61–79 (2016).Article 

    Google Scholar 
    15.Poudel, D., Horwath, W., Lanini, W., Temple, S. & Van Bruggen, A. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 90, 125–137 (2002).CAS 
    Article 

    Google Scholar 
    16.Kravchenko, A. N., Snapp, S. S. & Robertson, G. P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Nat. Acad. Sci. 114, 926–931 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).Article 

    Google Scholar 
    18.David, C., Jeuffroy, M., Henning, J. & Meynard, J. Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron. Sust. Dev. 25, 213 (2005).Article 

    Google Scholar 
    19.Köpke, U. Nutrient management in organic farming systems—The Case of Nitrogen. Biol. Agr. Hort. 11, 15–29 (1995).Article 

    Google Scholar 
    20.Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R. & Rayns, F. W. Managing soil fertility in organic farming systems. Soil Use Manag. 18, 239–247 (2002).Article 

    Google Scholar 
    21.Watson, C. et al. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag. 18, 264–273 (2002).Article 

    Google Scholar 
    22.Nimmo, J., Lynch, D. & Owen, J. Quantification of nitrogen inputs from biological nitrogen fixation to whole farm nitrogen budgets of two dairy farms in Atlantic Canada. Nutr. Cycl. Agroecosyst. 96, 93–105 (2013).Article 

    Google Scholar 
    23.Van Kessel, C. & Hartley, C. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?. Field Crops Res. 65, 165–181 (2000).Article 

    Google Scholar 
    24.Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).CAS 
    Article 

    Google Scholar 
    25.Smith, O. M. et al. Organic farming provides reliable environmental benefits but increases variability in crop yields: A global meta-analysis. Front. Sustain. Food Syst. 3, 82 (2019).Article 

    Google Scholar 
    26.Becker, M., Ali, M., Ladha, J. & Ottow, J. Agronomic and economic evaluation of Sesbania rostrata green manure establishment in irrigated rice. Field Crops Res. 40, 135–141 (1995).Article 

    Google Scholar 
    27.Ventura, W. & Watanabe, I. Green manure production of Azolla microphylla and Sesbania rostrata and their long-term effects on rice yields and soil fertility. Biol. Fert. Soils 15, 241–248 (1993).CAS 
    Article 

    Google Scholar 
    28.Bussink, D. & Oenema, O. Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr. Cycl. Agroecosyst. 51, 19–33 (1998).Article 

    Google Scholar 
    29.Fillery, I. The fate of biologically fixed nitrogen in legume-based dryland farming systems: a review. Anim. Prod. Sci. 41, 361–381 (2001).CAS 
    Article 

    Google Scholar 
    30.Oenema, O., Witzke, H., Klimont, Z., Lesschen, J. & Velthof, G. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric. Ecosyst. Environ. 133, 280–288 (2009).CAS 
    Article 

    Google Scholar 
    31.Graham, P. H. & Vance, C. P. Legumes: Importance and constraints to greater use. Plant Physiol. 131, 872–877 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Cassman, K., Whitney, A. & Stockinger, K. Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen source. Crop Sci. 20, 239–244 (1980).CAS 
    Article 

    Google Scholar 
    33.Gunawardena, S., Danso, S. & Zapata, F. Phosphorus requirement and sources of nitrogen in three soybean (Glycine max) genotypes, Bragg, nts 382 and Chippewa. Plant Soil 151, 1–9 (1993).CAS 
    Article 

    Google Scholar 
    34.Scherer, H., Pacyna, S., Manthey, N. & Schulz, M. Sulphur supply to peas (Pisum sativum L.) influences symbiotic N2 fixation. Plant Soil Environ. 52, 72–77 (2006).CAS 
    Article 

    Google Scholar 
    35.Anderson, A. & Spencer, D. Molybdenum in nitrogen metabolism of legumes and non-legumes. Aust. J. Sci. Res. 3, 414–430 (1950).CAS 

    Google Scholar 
    36.Fuchs, J. G. et al. Evaluation of the causes of legume yield depression syndrome using an improved diagnostic tool. Appl. Soil Ecol. 79, 26–36 (2014).Article 

    Google Scholar 
    37.Cassmann, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen use efficiency and nitrogen management. J. Human Environ. 31, 132–140 (2002).Article 

    Google Scholar 
    38.Kramer, A. W., Doane, T. A., Horwath, W. R. & van Kessel, C. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agric. Ecosyst. Envir. 91, 233–243 (2002).Article 

    Google Scholar 
    39.Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    40.van Bruggen, A. H. C. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Dis. 79, 976–984 (1995).Article 

    Google Scholar 
    41.Zehnder, G. et al. Arthropod pest management in organic crops. Annu. Rev. Entomol. 52, 57–80 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bond, W. & Grundy, A. C. Non-chemical weed management in organic farming systems. Weed Res. 41, 383–405 (2001).Article 

    Google Scholar 
    43.Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycl. 23, 99. https://doi.org/10.1029/2009GB003576 (2009).CAS 
    Article 

    Google Scholar 
    44.Lu, C. C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Sci. Data 9, 181 (2017).Article 
    ADS 

    Google Scholar 
    45.Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycl. 13, 647–662 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    46.Crews, T. & Peoples, M. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Envir. 102, 279–297 (2004).Article 

    Google Scholar 
    47.Köpke, U. & Nemecek, T. Ecological services of faba bean. Field Crops Res. 115, 217–233. https://doi.org/10.1016/j.fcr.2009.10.012 (2010).Article 

    Google Scholar 
    48.Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390–397 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Peterson, T. A. & Russelle, M. P. Alfalfa and the nitrogen cycle in the Corn Belt. J. Soil Water Conserv. 46, 229–235 (1991).
    Google Scholar 
    50.Peoples, M., Herridge, D. & Ladha, J. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production?. Plant Soil 174, 3–28 (1995).CAS 
    Article 

    Google Scholar 
    51.Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).Article 

    Google Scholar 
    53.Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    54.Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Kijlstra, A. & Eijck, I. Animal health in organic livestock production systems: A review. NJAS-Wagen. J. Life Sci. 54, 77–94 (2006).Article 

    Google Scholar 
    56.Kramer, S. B., Reganold, J. P., Glover, J. D., Bohannan, B. J. M. & Mooney, H. A. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. PNAS 103, 4522–4527 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    57.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    58.Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sust. 2, 34–42 (2010).Article 

    Google Scholar 
    59.Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 447–465 (2008).PubMed 
    Article 

    Google Scholar 
    60.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    61.Haas, G., Wetterich, F. & Kopke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Envir. 83, 43–53 (2001).Article 

    Google Scholar 
    62.Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945. https://doi.org/10.1016/j.envpol.2010.06.006 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Primary production ultimately limits fisheries economic performance

    1.Kildow, J. T. & McIlgorm, A. The importance of estimating the contribution of the oceans to national economies. Mar. Policy 34, 367–374 (2010).Article 

    Google Scholar 
    2.Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).Article 

    Google Scholar 
    4.National Marine Fisheries Service. Fisheries Economics of the United States, 2016. US Dept. of Commerce, NOAA Tech. Memo. NMFS-F/SPO-187 (2018).5.Jennings, S., Lee, J. & Hiddink, J. G. Assessing fishery footprints and the trade-offs between landings value, habitat sensitivity, and fishing impacts to inform marine spatial planning and an ecosystem approach. ICES J. Mar. Sci. 69, 1053–1063 (2012).Article 

    Google Scholar 
    6.Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. USA 114, E1441–E1449 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).Article 

    Google Scholar 
    12.Marshall, K. N. et al. Ecosystem-based fisheries management for social–ecological systems: Renewing the focus in the United States with next generation fishery ecosystem plans. Conserv. Lett. 11, e12367 (2018).Article 

    Google Scholar 
    13.Link, J. Ecosystem-Based Fisheries Management: Confronting Tradeoffs (Cambridge University Press, 2010).Book 

    Google Scholar 
    14.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    15.Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).PubMed 
    Article 

    Google Scholar 
    17.Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Murawski, S. A. Definitions of overfishing from an ecosystem perspective. ICES J. Mar. Sci. 57, 649–658 (2000).Article 

    Google Scholar 
    19.Breitburg, D. L. et al. Nutrient enrichment and fisheries exploitation: Interactive effects on estuarine living resources and their management. Hydrobiologia 629, 31–47 (2009).CAS 
    Article 

    Google Scholar 
    20.Hondorp, D. W., Breitburg, D. L. & Davias, L. A. Eutrophication and fisheries: Separating the effects of nitrogen loads and hypoxia on the pelagic-to-demersal ratio and other measures of landings composition. Mar. Coast. Fish. 2, 339–361 (2010).Article 

    Google Scholar 
    21.Link, J. S. et al. Emergent properties delineate marine ecosystem perturbation and recovery. Trends Ecol. Evol. 30, 649–661 (2015).PubMed 
    Article 

    Google Scholar 
    22.Tam, J. C. et al. Comparing apples to oranges: Common trends and thresholds in anthropogenic and environmental pressures across multiple marine ecosystems. Front. Mar. Sci. 4, 282 (2017).Article 

    Google Scholar 
    23.Link, J. S. et al. Marine ecosystem assessment in a fisheries management context. Can. J. Fish. Aquat. Sci. 59, 1429–1440 (2002).Article 

    Google Scholar 
    24.Garcia, S. M., Rice, J. & Charles, A. Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-evolution (Wiley-Blackwell, 2014).Book 

    Google Scholar 
    25.Colloca, F. et al. Rebuilding Mediterranean fisheries: A new paradigm for ecological sustainability. Fish Fish. 14, 89–109 (2013).Article 

    Google Scholar 
    26.National Oceanic and Atmospheric Administration (NOAA), Office for Coastal Management (OCM), NOAA Report on the US Marine Economy. NOAA OCM. 23p. https://coast.noaa.gov/digitalcoast/training/econreport.html (2020).27.Teh, L. C. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).Article 

    Google Scholar 
    28.Laterra, P. et al. How are jobs and ecosystem services linked at the local scale?. Ecosyst. Serv. 35, 207–218 (2019).Article 

    Google Scholar 
    29.Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).ADS 
    Article 

    Google Scholar 
    30.Graham, N. A. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Koslow, J. A. & Davison, P. C. Productivity and biomass of fishes in the California Current Large Marine Ecosystem: Comparison of fishery-dependent and-independent time series. Environ. Dev. 17, 23–32 (2016).Article 

    Google Scholar 
    32.Kahru, M., Kudela, R., Manzano-Sarabia, M. & Mitchell, B. G. Trends in primary production in the California Current detected with satellite data. J. Geophys. Res. Oceans 114, C02004 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    33.Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. ICES J. Mar. Sci. 70, 755–767 (2013).Article 

    Google Scholar 
    34.Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Critical points in ecosystem responses to fishing and environmental pressures. Mar. Ecol. Progr. Ser. 521, 1–17 (2015).ADS 
    Article 

    Google Scholar 
    35.Fogarty, M. J. & Murawski, S. A. Large-scale disturbance and the structure of marine systems: Fishery impacts on Georges Bank. Ecol. Appl. 8(sp1), S6–S22 (1998).Article 

    Google Scholar 
    36.Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).ADS 
    Article 

    Google Scholar 
    37.Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).ADS 
    Article 

    Google Scholar 
    38.Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2010).ADS 
    Article 

    Google Scholar 
    39.Banse, K. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 409–440 (Springer, 1992).Chapter 

    Google Scholar 
    40.Murray, C. J. et al. Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2 (2019).Article 

    Google Scholar 
    41.Möllmann, C. Effects of climate change and fisheries on the marine ecosystem of the Baltic Sea. In Oxford Research Encyclopedia of Climate Science (ed. Möllmann, C.) (University Press, 2019). https://doi.org/10.1093/acrefore/9780190228620.013.682.Chapter 

    Google Scholar 
    42.Intergovernmental Oceanographic Commission (IOC-UNESCO) and United Nations Environmental Program (UNEP). Large Marine Ecosystems: Status and Trends (United Nations Environment Programme UNEP, 2016).
    Google Scholar 
    43.Sangha, K. K., Stoeckl, N., Crossman, N. & Costanza, R. A state-wide economic assessment of coastal and marine ecosystem services to inform sustainable development policies in the Northern Territory, Australia. Mar. Policy 107, 103595 (2019).Article 

    Google Scholar 
    44.Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. USA 117, 2218–2224 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.McGowan, J. A., Bograd, S. J., Lynn, R. J. & Miller, A. J. The biological response to the 1977 regime shift in the California Current. Deep Sea Res. Pt. II 50(14–16), 2567–2582 (2003).ADS 
    Article 

    Google Scholar 
    46.Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60(2–4), 245–262 (2004).ADS 
    Article 

    Google Scholar 
    47.Kirkman, S. P. et al. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: A comparative assessment. Fish. Oceanogr. 24(S1), 15–30 (2015).Article 

    Google Scholar 
    48.Link, J. S., Watson, R. A., Pranovi, F. & Libralato, S. Comparative production of fisheries yields and ecosystem overfishing in African Large Marine Ecosystems. Environ. Devel. 36, 100529 (2020).Article 

    Google Scholar 
    49.Ye, Y. et al. Rebuilding global fisheries: The World Summit Goal, costs and benefits. Fish Fish. 14, 174–185 (2013).Article 

    Google Scholar 
    50.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ding, Q., Chen, X., Hilborn, R. & Chen, Y. Vulnerability to impacts of climate change on marine fisheries and food security. Mar. Policy 83, 55–61 (2017).Article 

    Google Scholar 
    52.NOAA Fisheries. NMFS Headquarters Ecosystem Based Fisheries Management Implementation Plan (NOAA Fisheries, 2019).
    Google Scholar 
    53.Witherell, D., Pautzke, C. & Fluharty, D. An ecosystem-based approach for Alaska groundfish fisheries. ICES J. Mar. Sci. 57, 771–777 (2000).Article 

    Google Scholar 
    54.National Aeronautics and Space Administration (NASA). NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Data. NASA OB.DAAC, Greenbelt, MD, USA. (2014)55.Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    56.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Peters, R. et al. Habitat science is a fundamental element in an ecosystem-based fisheries management framework: an update to the Marine Fisheries Habitat Assessment Improvement Plan. US Dept. of Commerce, NOAA. NOAA Tech. Memo. NMFS-F/SPO-181. (2018).58.Cannizzaro, J. P. & Carder, K. L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 101, 13–24 (2006).ADS 
    Article 

    Google Scholar 
    59.Reid, R. N., Almeida, F. P., & Zetlin, C. A. Essential fish habitat source document: Fishery-independent surveys, data sources, and methods. NOAA Tech. Memo. NMFS NE 122. (1999).60.Stauffer, G. NOAA Protocols for Groundfish Bottom Trawl Surveys of the Nation’s Fishery Resources. US Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-65. (2004).61.National Ocean Economics Program. State of the US Ocean and Coastal Economies 2016 Update. Middlebury Institute of International Studies at Monterey, Center for the Blue Economy. (2016).62.Craig, M. T. et al. Status review report of Pacific bluefin tuna (Thunnus orientalis). NOAA Tech. Memo. NMFS-SWFSC-587. (2017).63.National Oceanic and Atmospheric Administration (NOAA). Spatial trends in coastal socioeconomics (STICS): Coastal county definitions. NOAA. 12p. https://coast.noaa.gov/htdata/SocioEconomic/NOAA_CoastalCountyDefinitions.pdf (2013).64.National Oceanic and Atmospheric Administration (NOAA). NOAA Office of Coast Survey maritime zones of the United States. NOAA. (2021). https://nauticalcharts.noaa.gov/data/us-maritime-limits-and-boundaries.html.65.Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 1–9 (2017).Article 

    Google Scholar 
    66.NOAA Fisheries. National marine fisheries service—2nd quarter 2017 update. NOAA Fisheries 53p. (2017). More