The applicability of species sensitivity distributions to the development of generic doses for phytosanitary irradiation
Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. https://doi.org/10.1016/j.ecolecon.2004.10.002 (2005).Article
Google Scholar
Linders, T. E. W. et al. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. https://doi.org/10.1111/1365-2745.13268 (2019).Article
Google Scholar
Campbell, F. T. The science of risk assessment for phytosanitary regulation and the impact of changing trade regulations. Bioscience https://doi.org/10.1641/0006-3568(2001)051[0148:TSORAF]2.0.CO;2 (2001).Article
Google Scholar
Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1602205113 (2016).Article
Google Scholar
Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and the global distribution of invasive alien species. Biol. Invasions https://doi.org/10.1007/s10530-007-9138-5 (2008).Article
Google Scholar
Hennessey, M. et al. Phytosanitary Treatments. In The Handbook of Plant Biosecurity (eds Gordh, G. & Mckirdy, S.) 269–308 (Springer, Dordrecht, 2014).
Google Scholar
Melvin Couey, H. & Chew, V. Confidence limits and sample size in quarantine research. J. Econ. Entomol. 79, 887–890 (1986).
Google Scholar
Schortemeyer, M. et al. Appropriateness of probit-9 in the development of quarantine treatments for timber and timber commodities. J. Econ. Entomol. 104, 717–731 (2011).CAS
Google Scholar
Haack, R. A., Uzunovic, A., Hoover, K. & Cook, J. A. Seeking alternatives to probit 9 when developing treatments for wood packaging materials under ISPM No. 15. EPPO Bull. 41, 39–45 (2011).
Google Scholar
Liqudio, N. J., Griffin, R. L. & Vick, K. W. Quarantine security for commodities: current approaches and potential strategies. In Proceedings of Joint Workshops of the Agricultural Research Service and the Animal and Plant Health Inspection Service, June 5–9 and July 31 -August 5, 1995 56 (1997).Follett, P. A. Phytosanitary irradiation for fresh horticultural commodities: Generic treatments, current issues, and next steps. Stewart Postharvest Rev. 3, 1–7 (2014).MathSciNet
Google Scholar
Hallman, G. J. & Loaharanu, P. Generic ionizing radiation quarantine treatments against fruit flies (Diptera: Tephritidae) proposed. J. Econ. Entomol. 95, 893–901 (2002).
Google Scholar
Follett, P. A. & Armstrong, J. W. Revised irradiation doses to control melon fly, mediterranean fruit fly, and oriental fruit fly (Diptera: Tephritidae) and a generic dose for tephritid fruit flies. J. Econ. Entomol. 97, 1254–1262 (2004).
Google Scholar
Follett, P. A. & Snook, K. Irradiation for quarantine control of the invasive light brown apple moth (Lepidoptera: Tortricidae) and a generic dose for tortricid eggs and larvae. J. Econ. Entomol. 105, 1971–1978 (2013).
Google Scholar
Hallman, G. J., Arthur, V., Blackburn, C. M. & Parker, A. G. The case for a generic phytosanitary irradiation dose of 250Gy for Lepidoptera eggs and larvae. Radiat. Phys. Chem. 89, 70–75 (2013).ADS
CAS
Google Scholar
Hallman, G. J. Generic phytosanitary irradiation dose of 300 Gy proposed for the Insecta excluding pupal and adult Lepidoptera. Florida Entomol. 99, 206–210 (2016).
Google Scholar
IPPC. ISPM 28. Annex 39. Irradiation treatment for the genus Anastrepha. 1–6 (2021).IPPC. ISPM 28. Annex 7. Irradiation Treatment for fruit flies of the family Tephritidae (generic). 1–6 (2021).Posthuma, L., Suter, G. W. & Traas, T. P. Species sensitivity distributions in ecotoxicology. Species sensitivity distributions in ecotoxicology (CRC Press, 2002). https://doi.org/10.1201/9781420032314.Book
Google Scholar
Newman, M. C. et al. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ. Toxicol. Chem. 19, 508–515 (2000).CAS
Google Scholar
van Straalen, N. M. & van Leeuwen, C. J. European history of species sensitivity distributions. In Species Sensitivity Distributions in Ecotoxicology 43–60 (CRC Press, 2001). Doi:https://doi.org/10.1201/9781420032314.ch3.ANZECC & ARMCANZ. Australian and New Zealand guidelines for fresh and marine water quality. aquatic ecosystems. Aust. New Zeal. Environ. Conserv. Counc. Agric. Resour. Manag. Counc. Aust. New Zeal. 1–103 (2000).Aldenberg, T. & Jaworska, J. S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol. Environ. Saf. 46, 1–18 (2000).CAS
Google Scholar
Hallman, G. J. Generic phytosanitary irradiation treatment for “true weevils” (Coleoptera: Curculionidae) infesting fresh commodities. Florida Entomol. 99, 197–201 (2016).
Google Scholar
Follett, P. A. Irradiation for quarantine control of coffee berry borer, hypothenemus hampei (coleoptera: Curculionidae: Scolytinae) in coffee and a proposed generic dose for snout beetles (coleoptera: Curculionoidea). J. Econ. Entomol. 111, 1633–1637 (2018).CAS
Google Scholar
Earle, N. W., Simmons, L. A. & Nilakhe, S. S. Laboratory studies of sterility and competitiveness of boll weevils irradiated in an atmosphere of nitrogen, carbon dioxide, or air. J. Econ. Entomol. 72, 687–691 (1979).
Google Scholar
Follett, P. A., McQuate, G. T., Sylva, C. D. & Swedman, A. Sensitivity of the quarantine pest rough Sweetpotato weevil, Blosyrus asellus to postharvest irradiation treatment. Proc. Hawaiian Entomol. Soc. 48, 23–27 (2016).
Google Scholar
Hallman, G. J. Ionizing irradiation quarantine treatment against plum curculio (Coleoptera: Curculionidae). J. Econ. Entomol. 96, 1399–1404 (2003).
Google Scholar
Jacklin, S. W., Richardson, E. C. & Yonce, C. E. Substerilizing doses of gamma irradiation to produce population suppression in plum curculio1. J. Econ. Entomol. 63, 1053–1057 (1970).
Google Scholar
Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Control of harmful insects in timbers by irradiation: doses required for sterilization and inhibition of emergence of the minute pine bark beetle, Cryphalus fulvus. Jpn. J. Appl. Entomol. Zool. 18, 52–58 (1974).
Google Scholar
Follett, P. A. Irradiation as a methyl bromide alternative for postharvest control of Omphisa anastomosalis (Lepidoptera: Pyralidae) and euscepes postfasciatus and cylas formicarius elegantulus (Coleoptera: Curculionidae) in sweet potatoes. J. Econ. Entomol. 99, 32–37 (2006).
Google Scholar
Gould, W. P. & Hallman, G. J. Irradiation disinfestation of diaprepes root weevil (Coleoptera: Curculionidae) and papaya fruit fly (Diptera: Tephritidae). Florida Entomol. 87, 391–392 (2004).
Google Scholar
van Haandel, A. et al. Tolerance of Hylurgus ligniperda (F.) (Coleoptera: Scolytinae) and Arhopalus ferus (Mulsant) (Coleoptera: Cerambycidae) to ionising radiation: a comparison with existing generic radiation phytosanitary treatments. New Zeal. J. For. Sci. 47, 1–9 (2017).Burgess, E. E. & Bennett, S. E. Sterilization of the male alfalfa weevil (Hypera postica: Curculionidae) by X-Radiation. J. Econ. Entomol. 59, 268–270 (1966).
Google Scholar
Wood, D. L. & Stark, R. W. The effects of gamma radiation on the biology and behavior of adult ips confusus (LeConte) (Coleoptera: Scolytidae). Can. Entomol. 98, 1–10 (1966).
Google Scholar
Wang, X. et al. Effect of X-ray (9 MeV) irradiation on the development and propagation of Ips sexdentatus. Plant Quar. 25, 28–31 (2011).
Google Scholar
Zhan, G. et al. Effect of irradiation on development and propagation of larch bark beetle (Coleoptera: Scolytoidea). J. Nucl. Agric. Sci. 25, 1200–1205 (2011).
Google Scholar
Gerstle, C. & Sazo, L. Efecto de las radiaciones de Cesio 137 sobre la fertilidad de hembras de Naupactus xanthographus (Germar) (Coleoptera: Curculionidae). Cienc. e Investig. Agrar. 16, 69–73 (1989).
Google Scholar
Manoto, E. C., Obra, G. B., Reyes, M. R. & Resilva, S. S. Irradiation as a quarantine treatment for ornamentals. IAEA-Tecdoc 1082, 81–91 (1999).
Google Scholar
Duvenhage, A. J. & Johnson, S. A. The potential of irradiation as a postharvest disinfestation treatment against phlyctinus callosus (Coleoptera: Curculionidae). J. Econ. Entomol. 107, 154–160 (2014).CAS
Google Scholar
Jaynes, A. & Godwin, P. A. Sterilization of the white-pine weevil with gamma radiation. J. Econ. Entomol. 50, 393–395 (1957).CAS
Google Scholar
Aldryhim, Y. N. & Adam, E. E. Efficacy of gamma irradiation against Sitophilus granarius (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 35, 225–232 (1999).
Google Scholar
Follett, P. A. et al. Irradiation quarantine treatment for control of Sitophilus oryzae (Coleoptera: Curculionidae) in rice. J. Stored Prod. Res. 52, 63–67 (2013).
Google Scholar
Hu, T., Chen, C. C. & Peng, W. K. Lethal effect of gamma irradiation on Sitophilus zeamais (Coleoptera: Curculionidae). Formos. Entomol. 23, 145–150 (2003).
Google Scholar
Arthur, V. & Wiendl, F. M. Comportamento e competitividade sexual de adultos de Sphenophorus levis Vaurie, 1978 (col., Curculionidae), uma praga da cana-de-açucar, irradiados com radiações gama do cobaldo-60. Brazilian J. Agric. 68, 57–66 (1993).
Google Scholar
Obra, G. B., Resilva, S. S., Follett, P. A. & Lorenzana, L. R. J. Large-scale confirmatory tests of a phytosanitary irradiation treatment against Sternochetus frigidus (Coleoptera: Curculionidae) in Philippine mango. J. Econ. Entomol. 107, 161–165 (2014).
Google Scholar
Seo, S. T. et al. Mango weevil: Cobalt-60 γ-irradiation of packaged mangoes. J. Econ. Entomol. 67, 504–505 (1974).
Google Scholar
Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Effects of gamma radiation on Xyleborus perforans (Wollaston) pupae and adults. J. Pestic. Sci. 2, 413–420 (1977).
Google Scholar
Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Control of the harmful insects in timbers by irradiation: Doses required for kill, sterilization and inhibition of emergence in three species of ambrosia beetles (Xyleborini) in Japan. Jpn. J. Appl. Entomol. Zool. 19, 193–202 (1975).
Google Scholar
Follett, P. A. & McQuate, G. T. Accelerated development of quarantine treatments for insects on poor hosts. J. Econ. Entomol. https://doi.org/10.1603/0022-0493-94.5.1005 (2001).Article
Google Scholar
Plazzi, F., Ferrucci, R. R. & Passamonti, M. Phylogenetic representativeness: A new method for evaluating taxon sampling in evolutionary studies. BMC Bioinform. 11, 1–15 (2010).
Google Scholar
Moore, D. R. J., Priest, C. D., Galic, N., Brain, R. A. & Rodney, S. I. Correcting for phylogenetic autocorrelation in species sensitivity distributions. Integr. Environ. Assess. Manag. 16, (2020).Carr, G. J. & Belanger, S. E. SSDs revisited: Part I—A framework for sample size guidance on species sensitivity distribution analysis. Environ. Toxicol. Chem. 38, 1514–1525 (2019).CAS
Google Scholar
Wheeler, J. R., Grist, E. P. M., Leung, K. M. Y., Morritt, D. & Crane, M. Species sensitivity distributions: Data and model choice. Mar. Pollut. Bull. 45, 192–202 (2002).CAS
Google Scholar
Duboudin, C., Ciffroy, P. & Magaud, H. Acute-to-chronic species sensitivity distribution extrapolation. Environ. Toxicol. Chem. 23, 1774–1785 (2004).CAS
Google Scholar
Esteves, S. M. et al. Can we predict diatoms herbicide sensitivities with phylogeny? Influence of intraspecific and interspecific variability. Ecotoxicology 26, 1065–1077 (2017).CAS
Google Scholar
Hiki, K. & Iwasaki, Y. Can we reasonably predict chronic species sensitivity distributions from acute species sensitivity distributions?. Environ. Sci. Technol. 54, 13131–13136 (2020).ADS
CAS
Google Scholar
Baird, D. J. & Van den Brink, P. J. Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol. Environ. Saf. 67, 296–301 (2007).CAS
Google Scholar
Guénard, G., von der Ohe, P. C., Walker, S. C., Lek, S. & Legendre, P. Using phylogenetic information and chemical properties to predict species tolerances to pesticides. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
Google Scholar
Larras, F., Keck, F., Montuelle, B., Rimet, F. & Bouchez, A. Linking diatom sensitivity to herbicides to phylogeny: A step forward for biomonitoring?. Environ. Sci. Technol. 48, 1921–1930 (2014).ADS
CAS
Google Scholar
Hayashi, T. I. & Kashiwagi, N. A bayesian method for deriving species-sensitivity distributions: Selecting the best-fit tolerance distributions of taxonomic groups. Hum. Ecol. Risk Assess. 16, 251–263 (2010).CAS
Google Scholar
Xu, F. L. et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecol. Indic. 54, 227–237 (2015).CAS
Google Scholar
Dowse, R., Tang, D., Palmer, C. G. & Kefford, B. J. Risk assessment using the species sensitivity distribution method: Data quality versus data quantity. Environ. Toxicol. Chem. 32, 1360–1369 (2013).CAS
Google Scholar
Dias, V. S. et al. Relative tolerance of three morphotypes of the anastrepha fraterculus complex (Diptera: Tephritidae) to cold phytosanitary Treatment. J. Econ. Entomol. 113, 1176–1182 (2020).CAS
Google Scholar
Myers, S. W., Cancio-Martinez, E., Hallman, G. J., Fontenot, E. A. & Vreysen, M. J. B. Relative tolerance of six Bactrocera (Diptera: Tephritidae) species to phytosanitary cold treatment. J. Econ. Entomol. 109, 2341–2347 (2016).
Google Scholar
Gazit, Y., Akiva, R. & Gavriel, S. Cold tolerance of the Mediterranean fruit fly in date and mandarin. J. Econ. Entomol. 107, 1745–1750 (2014).
Google Scholar
Zhao, J. et al. Gamma radiation as a phytosanitary treatment against larvae and pupae of Bactrocera dorsalis (Diptera: Tephritidae) in guava fruits. Food Control 72, 360–366 (2017).
Google Scholar
Thorley, J. & Schwarz, C. ssdtools: An R package to fit Species sensitivity distributions. J. Open Sour. Softw. 3, 1–2 (2018).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoritic Approach 2nd edn. (Springer, 2002). https://doi.org/10.1007/978-0-387-22456-5_7.Book
MATH
Google Scholar
Mazucheli, J., Menezes, A. F. B. & Nadarajah, S. mle.tools: An R package for maximum likelihood bias correction. R. J. 9, 268–290 (2017).
Google Scholar
Cox, D. R. & Snell, E. J. A general definition of residuals. J. R. Stat. Soc. Ser. B 30, 248–265 (1968).MathSciNet
MATH
Google Scholar
Follett, P. A. Irradiation as a quarantine treatment for mango seed weevil (Coleoptera: Curculionidae). Proc. Hawaii. Entomol. Soc. 35, 95–100 (2001).
Google Scholar More