More stories

  • in

    The applicability of species sensitivity distributions to the development of generic doses for phytosanitary irradiation

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. https://doi.org/10.1016/j.ecolecon.2004.10.002 (2005).Article 

    Google Scholar 
    Linders, T. E. W. et al. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. https://doi.org/10.1111/1365-2745.13268 (2019).Article 

    Google Scholar 
    Campbell, F. T. The science of risk assessment for phytosanitary regulation and the impact of changing trade regulations. Bioscience https://doi.org/10.1641/0006-3568(2001)051[0148:TSORAF]2.0.CO;2 (2001).Article 

    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1602205113 (2016).Article 

    Google Scholar 
    Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and the global distribution of invasive alien species. Biol. Invasions https://doi.org/10.1007/s10530-007-9138-5 (2008).Article 

    Google Scholar 
    Hennessey, M. et al. Phytosanitary Treatments. In The Handbook of Plant Biosecurity (eds Gordh, G. & Mckirdy, S.) 269–308 (Springer, Dordrecht, 2014).
    Google Scholar 
    Melvin Couey, H. & Chew, V. Confidence limits and sample size in quarantine research. J. Econ. Entomol. 79, 887–890 (1986).
    Google Scholar 
    Schortemeyer, M. et al. Appropriateness of probit-9 in the development of quarantine treatments for timber and timber commodities. J. Econ. Entomol. 104, 717–731 (2011).CAS 

    Google Scholar 
    Haack, R. A., Uzunovic, A., Hoover, K. & Cook, J. A. Seeking alternatives to probit 9 when developing treatments for wood packaging materials under ISPM No. 15. EPPO Bull. 41, 39–45 (2011).
    Google Scholar 
    Liqudio, N. J., Griffin, R. L. & Vick, K. W. Quarantine security for commodities: current approaches and potential strategies. In Proceedings of Joint Workshops of the Agricultural Research Service and the Animal and Plant Health Inspection Service, June 5–9 and July 31 -August 5, 1995 56 (1997).Follett, P. A. Phytosanitary irradiation for fresh horticultural commodities: Generic treatments, current issues, and next steps. Stewart Postharvest Rev. 3, 1–7 (2014).MathSciNet 

    Google Scholar 
    Hallman, G. J. & Loaharanu, P. Generic ionizing radiation quarantine treatments against fruit flies (Diptera: Tephritidae) proposed. J. Econ. Entomol. 95, 893–901 (2002).
    Google Scholar 
    Follett, P. A. & Armstrong, J. W. Revised irradiation doses to control melon fly, mediterranean fruit fly, and oriental fruit fly (Diptera: Tephritidae) and a generic dose for tephritid fruit flies. J. Econ. Entomol. 97, 1254–1262 (2004).
    Google Scholar 
    Follett, P. A. & Snook, K. Irradiation for quarantine control of the invasive light brown apple moth (Lepidoptera: Tortricidae) and a generic dose for tortricid eggs and larvae. J. Econ. Entomol. 105, 1971–1978 (2013).
    Google Scholar 
    Hallman, G. J., Arthur, V., Blackburn, C. M. & Parker, A. G. The case for a generic phytosanitary irradiation dose of 250Gy for Lepidoptera eggs and larvae. Radiat. Phys. Chem. 89, 70–75 (2013).ADS 
    CAS 

    Google Scholar 
    Hallman, G. J. Generic phytosanitary irradiation dose of 300 Gy proposed for the Insecta excluding pupal and adult Lepidoptera. Florida Entomol. 99, 206–210 (2016).
    Google Scholar 
    IPPC. ISPM 28. Annex 39. Irradiation treatment for the genus Anastrepha. 1–6 (2021).IPPC. ISPM 28. Annex 7. Irradiation Treatment for fruit flies of the family Tephritidae (generic). 1–6 (2021).Posthuma, L., Suter, G. W. & Traas, T. P. Species sensitivity distributions in ecotoxicology. Species sensitivity distributions in ecotoxicology (CRC Press, 2002). https://doi.org/10.1201/9781420032314.Book 

    Google Scholar 
    Newman, M. C. et al. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ. Toxicol. Chem. 19, 508–515 (2000).CAS 

    Google Scholar 
    van Straalen, N. M. & van Leeuwen, C. J. European history of species sensitivity distributions. In Species Sensitivity Distributions in Ecotoxicology 43–60 (CRC Press, 2001). Doi:https://doi.org/10.1201/9781420032314.ch3.ANZECC & ARMCANZ. Australian and New Zealand guidelines for fresh and marine water quality. aquatic ecosystems. Aust. New Zeal. Environ. Conserv. Counc. Agric. Resour. Manag. Counc. Aust. New Zeal. 1–103 (2000).Aldenberg, T. & Jaworska, J. S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol. Environ. Saf. 46, 1–18 (2000).CAS 

    Google Scholar 
    Hallman, G. J. Generic phytosanitary irradiation treatment for “true weevils” (Coleoptera: Curculionidae) infesting fresh commodities. Florida Entomol. 99, 197–201 (2016).
    Google Scholar 
    Follett, P. A. Irradiation for quarantine control of coffee berry borer, hypothenemus hampei (coleoptera: Curculionidae: Scolytinae) in coffee and a proposed generic dose for snout beetles (coleoptera: Curculionoidea). J. Econ. Entomol. 111, 1633–1637 (2018).CAS 

    Google Scholar 
    Earle, N. W., Simmons, L. A. & Nilakhe, S. S. Laboratory studies of sterility and competitiveness of boll weevils irradiated in an atmosphere of nitrogen, carbon dioxide, or air. J. Econ. Entomol. 72, 687–691 (1979).
    Google Scholar 
    Follett, P. A., McQuate, G. T., Sylva, C. D. & Swedman, A. Sensitivity of the quarantine pest rough Sweetpotato weevil, Blosyrus asellus to postharvest irradiation treatment. Proc. Hawaiian Entomol. Soc. 48, 23–27 (2016).
    Google Scholar 
    Hallman, G. J. Ionizing irradiation quarantine treatment against plum curculio (Coleoptera: Curculionidae). J. Econ. Entomol. 96, 1399–1404 (2003).
    Google Scholar 
    Jacklin, S. W., Richardson, E. C. & Yonce, C. E. Substerilizing doses of gamma irradiation to produce population suppression in plum curculio1. J. Econ. Entomol. 63, 1053–1057 (1970).
    Google Scholar 
    Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Control of harmful insects in timbers by irradiation: doses required for sterilization and inhibition of emergence of the minute pine bark beetle, Cryphalus fulvus. Jpn. J. Appl. Entomol. Zool. 18, 52–58 (1974).
    Google Scholar 
    Follett, P. A. Irradiation as a methyl bromide alternative for postharvest control of Omphisa anastomosalis (Lepidoptera: Pyralidae) and euscepes postfasciatus and cylas formicarius elegantulus (Coleoptera: Curculionidae) in sweet potatoes. J. Econ. Entomol. 99, 32–37 (2006).
    Google Scholar 
    Gould, W. P. & Hallman, G. J. Irradiation disinfestation of diaprepes root weevil (Coleoptera: Curculionidae) and papaya fruit fly (Diptera: Tephritidae). Florida Entomol. 87, 391–392 (2004).
    Google Scholar 
    van Haandel, A. et al. Tolerance of Hylurgus ligniperda (F.) (Coleoptera: Scolytinae) and Arhopalus ferus (Mulsant) (Coleoptera: Cerambycidae) to ionising radiation: a comparison with existing generic radiation phytosanitary treatments. New Zeal. J. For. Sci. 47, 1–9 (2017).Burgess, E. E. & Bennett, S. E. Sterilization of the male alfalfa weevil (Hypera postica: Curculionidae) by X-Radiation. J. Econ. Entomol. 59, 268–270 (1966).
    Google Scholar 
    Wood, D. L. & Stark, R. W. The effects of gamma radiation on the biology and behavior of adult ips confusus (LeConte) (Coleoptera: Scolytidae). Can. Entomol. 98, 1–10 (1966).
    Google Scholar 
    Wang, X. et al. Effect of X-ray (9 MeV) irradiation on the development and propagation of Ips sexdentatus. Plant Quar. 25, 28–31 (2011).
    Google Scholar 
    Zhan, G. et al. Effect of irradiation on development and propagation of larch bark beetle (Coleoptera: Scolytoidea). J. Nucl. Agric. Sci. 25, 1200–1205 (2011).
    Google Scholar 
    Gerstle, C. & Sazo, L. Efecto de las radiaciones de Cesio 137 sobre la fertilidad de hembras de Naupactus xanthographus (Germar) (Coleoptera: Curculionidae). Cienc. e Investig. Agrar. 16, 69–73 (1989).
    Google Scholar 
    Manoto, E. C., Obra, G. B., Reyes, M. R. & Resilva, S. S. Irradiation as a quarantine treatment for ornamentals. IAEA-Tecdoc 1082, 81–91 (1999).
    Google Scholar 
    Duvenhage, A. J. & Johnson, S. A. The potential of irradiation as a postharvest disinfestation treatment against phlyctinus callosus (Coleoptera: Curculionidae). J. Econ. Entomol. 107, 154–160 (2014).CAS 

    Google Scholar 
    Jaynes, A. & Godwin, P. A. Sterilization of the white-pine weevil with gamma radiation. J. Econ. Entomol. 50, 393–395 (1957).CAS 

    Google Scholar 
    Aldryhim, Y. N. & Adam, E. E. Efficacy of gamma irradiation against Sitophilus granarius (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 35, 225–232 (1999).
    Google Scholar 
    Follett, P. A. et al. Irradiation quarantine treatment for control of Sitophilus oryzae (Coleoptera: Curculionidae) in rice. J. Stored Prod. Res. 52, 63–67 (2013).
    Google Scholar 
    Hu, T., Chen, C. C. & Peng, W. K. Lethal effect of gamma irradiation on Sitophilus zeamais (Coleoptera: Curculionidae). Formos. Entomol. 23, 145–150 (2003).
    Google Scholar 
    Arthur, V. & Wiendl, F. M. Comportamento e competitividade sexual de adultos de Sphenophorus levis Vaurie, 1978 (col., Curculionidae), uma praga da cana-de-açucar, irradiados com radiações gama do cobaldo-60. Brazilian J. Agric. 68, 57–66 (1993).
    Google Scholar 
    Obra, G. B., Resilva, S. S., Follett, P. A. & Lorenzana, L. R. J. Large-scale confirmatory tests of a phytosanitary irradiation treatment against Sternochetus frigidus (Coleoptera: Curculionidae) in Philippine mango. J. Econ. Entomol. 107, 161–165 (2014).
    Google Scholar 
    Seo, S. T. et al. Mango weevil: Cobalt-60 γ-irradiation of packaged mangoes. J. Econ. Entomol. 67, 504–505 (1974).
    Google Scholar 
    Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Effects of gamma radiation on Xyleborus perforans (Wollaston) pupae and adults. J. Pestic. Sci. 2, 413–420 (1977).
    Google Scholar 
    Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Control of the harmful insects in timbers by irradiation: Doses required for kill, sterilization and inhibition of emergence in three species of ambrosia beetles (Xyleborini) in Japan. Jpn. J. Appl. Entomol. Zool. 19, 193–202 (1975).
    Google Scholar 
    Follett, P. A. & McQuate, G. T. Accelerated development of quarantine treatments for insects on poor hosts. J. Econ. Entomol. https://doi.org/10.1603/0022-0493-94.5.1005 (2001).Article 

    Google Scholar 
    Plazzi, F., Ferrucci, R. R. & Passamonti, M. Phylogenetic representativeness: A new method for evaluating taxon sampling in evolutionary studies. BMC Bioinform. 11, 1–15 (2010).
    Google Scholar 
    Moore, D. R. J., Priest, C. D., Galic, N., Brain, R. A. & Rodney, S. I. Correcting for phylogenetic autocorrelation in species sensitivity distributions. Integr. Environ. Assess. Manag. 16, (2020).Carr, G. J. & Belanger, S. E. SSDs revisited: Part I—A framework for sample size guidance on species sensitivity distribution analysis. Environ. Toxicol. Chem. 38, 1514–1525 (2019).CAS 

    Google Scholar 
    Wheeler, J. R., Grist, E. P. M., Leung, K. M. Y., Morritt, D. & Crane, M. Species sensitivity distributions: Data and model choice. Mar. Pollut. Bull. 45, 192–202 (2002).CAS 

    Google Scholar 
    Duboudin, C., Ciffroy, P. & Magaud, H. Acute-to-chronic species sensitivity distribution extrapolation. Environ. Toxicol. Chem. 23, 1774–1785 (2004).CAS 

    Google Scholar 
    Esteves, S. M. et al. Can we predict diatoms herbicide sensitivities with phylogeny? Influence of intraspecific and interspecific variability. Ecotoxicology 26, 1065–1077 (2017).CAS 

    Google Scholar 
    Hiki, K. & Iwasaki, Y. Can we reasonably predict chronic species sensitivity distributions from acute species sensitivity distributions?. Environ. Sci. Technol. 54, 13131–13136 (2020).ADS 
    CAS 

    Google Scholar 
    Baird, D. J. & Van den Brink, P. J. Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol. Environ. Saf. 67, 296–301 (2007).CAS 

    Google Scholar 
    Guénard, G., von der Ohe, P. C., Walker, S. C., Lek, S. & Legendre, P. Using phylogenetic information and chemical properties to predict species tolerances to pesticides. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
    Google Scholar 
    Larras, F., Keck, F., Montuelle, B., Rimet, F. & Bouchez, A. Linking diatom sensitivity to herbicides to phylogeny: A step forward for biomonitoring?. Environ. Sci. Technol. 48, 1921–1930 (2014).ADS 
    CAS 

    Google Scholar 
    Hayashi, T. I. & Kashiwagi, N. A bayesian method for deriving species-sensitivity distributions: Selecting the best-fit tolerance distributions of taxonomic groups. Hum. Ecol. Risk Assess. 16, 251–263 (2010).CAS 

    Google Scholar 
    Xu, F. L. et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecol. Indic. 54, 227–237 (2015).CAS 

    Google Scholar 
    Dowse, R., Tang, D., Palmer, C. G. & Kefford, B. J. Risk assessment using the species sensitivity distribution method: Data quality versus data quantity. Environ. Toxicol. Chem. 32, 1360–1369 (2013).CAS 

    Google Scholar 
    Dias, V. S. et al. Relative tolerance of three morphotypes of the anastrepha fraterculus complex (Diptera: Tephritidae) to cold phytosanitary Treatment. J. Econ. Entomol. 113, 1176–1182 (2020).CAS 

    Google Scholar 
    Myers, S. W., Cancio-Martinez, E., Hallman, G. J., Fontenot, E. A. & Vreysen, M. J. B. Relative tolerance of six Bactrocera (Diptera: Tephritidae) species to phytosanitary cold treatment. J. Econ. Entomol. 109, 2341–2347 (2016).
    Google Scholar 
    Gazit, Y., Akiva, R. & Gavriel, S. Cold tolerance of the Mediterranean fruit fly in date and mandarin. J. Econ. Entomol. 107, 1745–1750 (2014).
    Google Scholar 
    Zhao, J. et al. Gamma radiation as a phytosanitary treatment against larvae and pupae of Bactrocera dorsalis (Diptera: Tephritidae) in guava fruits. Food Control 72, 360–366 (2017).
    Google Scholar 
    Thorley, J. & Schwarz, C. ssdtools: An R package to fit Species sensitivity distributions. J. Open Sour. Softw. 3, 1–2 (2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoritic Approach 2nd edn. (Springer, 2002). https://doi.org/10.1007/978-0-387-22456-5_7.Book 
    MATH 

    Google Scholar 
    Mazucheli, J., Menezes, A. F. B. & Nadarajah, S. mle.tools: An R package for maximum likelihood bias correction. R. J. 9, 268–290 (2017).
    Google Scholar 
    Cox, D. R. & Snell, E. J. A general definition of residuals. J. R. Stat. Soc. Ser. B 30, 248–265 (1968).MathSciNet 
    MATH 

    Google Scholar 
    Follett, P. A. Irradiation as a quarantine treatment for mango seed weevil (Coleoptera: Curculionidae). Proc. Hawaii. Entomol. Soc. 35, 95–100 (2001).
    Google Scholar  More

  • in

    Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria

    Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).Article 
    CAS 

    Google Scholar 
    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).Article 
    CAS 

    Google Scholar 
    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).Article 
    CAS 

    Google Scholar 
    Mayali, X. Metabolic interactions between bacteria and phytoplankton. Front. Microbiol. 9, 727 (2018).Article 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98 (2015).Article 
    CAS 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453 (2015).Article 
    CAS 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).Article 
    CAS 

    Google Scholar 
    Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).Article 

    Google Scholar 
    Azam, F. & Ammerman, J. W. in Flows of Energy and Materials in Marine Ecosystems 345–360 (Springer, 1984).Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C., Syit, D. A., Grossart, H.-P. & Ullrich, M. S. Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 78, 6900–6907 (2012).Article 
    CAS 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).Article 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).Article 
    CAS 

    Google Scholar 
    Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).Article 
    CAS 

    Google Scholar 
    Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 17100 (2017).Article 
    CAS 

    Google Scholar 
    Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).Article 
    CAS 

    Google Scholar 
    Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).Article 
    CAS 

    Google Scholar 
    Aharonovich, D. & Sher, D. Transcriptional response of Prochlorococcus to co-culture with a marine Alteromonas: differences between strains and the involvement of putative infochemicals. ISME J. 10, 2892–2906 (2016).Article 
    CAS 

    Google Scholar 
    Jackson, G. A. Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32, 1253–1266 (1987).Article 
    CAS 

    Google Scholar 
    Gärdes, A., Iversen, M. H., Grossart, H.-P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).Article 

    Google Scholar 
    Al-Wahaib, D., Al-Bader, D., Al-Shaikh Abdou, D. K., Eliyas, M. & Radwan, S. S. Consistent occurrence of hydrocarbonoclastic Marinobacter strains in various cultures of picocyanobacteria from the Arabian Gulf: promising associations for biodegradation of marine oil pollution. J. Mol. Microbiol. Biotechnol. 26, 261–268 (2016).CAS 

    Google Scholar 
    Raina, J.-B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).Article 

    Google Scholar 
    Gärdes, A. et al. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genom. Sci. 3, 97–107 (2010).Article 

    Google Scholar 
    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).Article 
    CAS 

    Google Scholar 
    Wawrik, B., Callaghan, A. V. & Bronk, D. A. Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida shelf as measured using stable isotope probing. Appl. Environ. Microbiol. 75, 6662–6670 (2009).Article 
    CAS 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).Article 
    CAS 

    Google Scholar 
    Raina, J.-B. et al. Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature 605, 132–138 (2022).Article 
    CAS 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).Article 
    CAS 

    Google Scholar 
    Myklestad, S. M. in Marine Chemistry (ed. Wangersky, P. J.) 111–148 (Springer Berlin Heidelberg, 2000).Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020).Article 
    CAS 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).Article 
    CAS 

    Google Scholar 
    Buitenhuis, E. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Raina, J.-B. et al. Symbiosis in the microbial world: from ecology to genome evolution. Biol. Open 7, bio032524 (2018).Article 

    Google Scholar 
    Giardina, M. et al. Quantifying inorganic nitrogen assimilation by Synechococcus using bulk and single-cell mass spectrometry: a comparative study. Front. Microbiol. 9, 2847 (2018).Article 

    Google Scholar 
    Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).Article 

    Google Scholar 
    Guillard, R. R. L. in Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Walter, L. S. & Matoira, H. C.) 29–60 (Springer US, 1975).Kaeppel, E. C., Gärdes, A., Seebah, S., Grossart, H.-P. & Ullrich, M. S. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int. J. Syst. Evolut. Microbiol. 62, 124–128 (2012).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C. et al. Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J. Microbiol. Methods 87, 176–183 (2011).Article 
    CAS 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).Article 
    CAS 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
    CAS 

    Google Scholar 
    Hillion, F., Kilburn, M., Hoppe, P., Messenger, S. & Weber, P. K. The effect of QSA on S, C, O and Si isotopic ratio measurements. Geochim. Cosmochim. Acta 72, A377 (2008).
    Google Scholar 
    Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).Article 
    CAS 

    Google Scholar 
    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).Article 
    CAS 

    Google Scholar 
    Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. JoVE https://doi.org/10.3791/61062 (2020).Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).
    Google Scholar 
    Xie, L., Lu, C. & Wu, X.-L. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophys. J. 108, 766–774 (2015).Article 
    CAS 

    Google Scholar 
    Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).Article 
    CAS 

    Google Scholar 
    Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).Article 
    CAS 

    Google Scholar 
    Yamashita, Y. & Tanoue, E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem. 82, 145–160 (2003).Article 
    CAS 

    Google Scholar 
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).Article 
    CAS 

    Google Scholar 
    Mullin, M. M., Sloan, P. R. & Eppley, R. W. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11, 307–311 (1966).Article 

    Google Scholar  More

  • in

    Global patterns of water storage in the rooting zones of vegetation

    Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, L23403 (2006).Gao, H. et al. Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophys. Res. Lett. 41, 7916–7923 (2014).Article 

    Google Scholar 
    Milly, P. C. D. Climate, soil water storage, and the average annual water balance. Water Resour. Res. 30, 2143–2156 (1994).Article 

    Google Scholar 
    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    Thompson, S. E. et al. Comparative hydrology across AmeriFlux sites: the variable roles of climate, vegetation, and groundwater. Water Resour. Res. 47, W00J07 (2011).Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).Article 

    Google Scholar 
    Hain, C. R., Crow, W. T., Anderson, M. C. & Tugrul Yilmaz, M. Diagnosing neglected soil moisture source–sink processes via a thermal infrared-based two-source energy balance model. J. Hydrometeorol. 16, 1070–1086 (2015).Article 

    Google Scholar 
    Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).Article 

    Google Scholar 
    Dawson, T. E., Jesse Hahm, W. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. N. Phytol. 226, 666–671 (2020).Article 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 

    Google Scholar 
    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).Article 

    Google Scholar 
    Schlemmer, L., Schär, C., Lüthi, D. & Strebel, L. A groundwater and runoff formulation for weather and climate models. J. Adv. Model. Earth Syst. 10, 1809–1832 (2018).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).Article 

    Google Scholar 
    Koirala, S. et al. Global distribution of groundwater–vegetation spatial covariation. Geophys. Res. Lett. 44, 4134–4142 (2017).Article 

    Google Scholar 
    Esteban, E. J. L., Castilho, C. V., Melgaço, K. L. & Costa, F. R. C. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. N. Phytol. 229, 1995–2006 (2021).Article 

    Google Scholar 
    Liu, Y., Konings, A. G., Kennedy, D. & Gentine, P. Global coordination in plant physiological and rooting strategies in response to water stress. Glob. Biogeochem. Cycles 35, e2020GB006758 (2021).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).Article 

    Google Scholar 
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).Article 

    Google Scholar 
    Weaver, J. E. & Darland, R. W. Soil–root relationships of certain native grasses in various soil types. Ecol. Monogr. 19, 303–338 (1949).Article 

    Google Scholar 
    Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. N. Phytol. 231, 1798–1813 (2021).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126, 129–140 (2005).Article 

    Google Scholar 
    Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).Article 

    Google Scholar 
    Kleidon, A. & Heimann, M. A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle. Glob. Change Biol. 4, 275–286 (1998).Article 

    Google Scholar 
    Schymanski, S. J., Sivapalan, M., Roderick, M. L., Hutley, L. B. & Beringer, J. An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 45, W01412 (2009).Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).Article 

    Google Scholar 
    Anderson, M. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 60, 195–216 (1997).Article 

    Google Scholar 
    Hain, C. R. & Anderson, M. C. Estimating morning change in land surface temperature from MODIS day/night observations: applications for surface energy balance modeling. Geophys. Res. Lett. 44, 9723–9733 (2017).Article 

    Google Scholar 
    Tumber-Dávila, S. J., Schenk, H. J., Du, E. & Jackson, R. B. Plant sizes and shapes above- and belowground and their interactions with climate. New Phytol. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.18031 (2022).Harmonized World Soil Database Version 1.0 (FAO, 2008).Wieder, W. Regridded Harmonized World Soil Database Version 1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247Balland, V., Pollacco, J. A. P. & Arp, P. A. Modeling soil hydraulic properties for a wide range of soil conditions. Ecol. Model. 219, 300–316 (2008).Article 

    Google Scholar 
    Agee, E. et al. Root lateral interactions drive water uptake patterns under water limitation. Adv. Water Resour. 151, 103896 (2021).Article 

    Google Scholar 
    Krakauer, N. Y., Li, H. & Fan, Y. Groundwater flow across spatial scales: importance for climate modeling. Environ. Res. Lett. 9, 034003 (2014).Article 

    Google Scholar 
    Stoy, P. C. et al. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16, 3747–3775 (2019).Article 

    Google Scholar 
    Jackson, R. B., Moore, L. A., Hoffmann, W. A., Pockman, W. T. & Linder, C. R. Ecosystem rooting depth determined with caves and DNA. Proc. Natl Acad. Sci. USA 96, 11387–11392 (1999).Article 

    Google Scholar 
    Pelletier, J. D. et al. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv. Model. Earth Syst. 8, 41–65 (2016).Article 

    Google Scholar 
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).Article 

    Google Scholar 
    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).Article 

    Google Scholar 
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536 (2007).Article 

    Google Scholar 
    Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the international space station. Water Resour. Res. 56, e2019WR026058 (2020).Article 

    Google Scholar 
    Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).Article 

    Google Scholar 
    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Orth, R., Koster, R. D. & Seneviratne, S. I. Inferring soil moisture memory from streamflow observations using a simple water balance model. J. Hydrometeorol. 14, 1773–1790 (2013).Article 

    Google Scholar 
    Stocker, B. cwd v.1.0: R package for cumulative water deficit calculation. Zenodo https://doi.org/10.5281/zenodo.5359053 (2021).Zhang, Y. et al. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sens. Environ. 187, 145–155 (2016).Article 

    Google Scholar 
    Duveiller, G. et al. A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 12, 1101–1116 (2020).Article 

    Google Scholar 
    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).Article 

    Google Scholar 
    Köhler, P., Guanter, L. & Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 2589–2608 (2015).Article 

    Google Scholar 
    Jiang, B. et al. Validation of the surface daytime net radiation product from version 4.0 GLASS product suite. IEEE Geosci. Remote Sens. Lett. 16, 509–513 (2019).Article 

    Google Scholar 
    Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).Article 

    Google Scholar 
    Gilleland, E. & Katz, R. W. extRemes 2.0: an extreme value analysis package in R. J. Stat. Softw. 72, 1–39 (2016).Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S. & Gedney, N. High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 19, 91–104 (2015).Article 

    Google Scholar 
    Etopo1, Global 1 Arc-Minute Ocean Depth and Land Elevation from the US National Geophysical Data Center (NGDC) (National Geophysical Data Center, NESDIS, NOAA and US Department of Commerce, 2011); https://doi.org/10.5065/D69Z92Z5Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69 (1979).Article 

    Google Scholar 
    Hansen, M. C., Townshend, J. R. G., DeFries, R. S. & Carroll, M. Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int. J. Remote Sens. 26, 4359–4380 (2005).Article 

    Google Scholar 
    Stocker, B. D. Global rooting zone water storage capacity and rooting depth estimates. Zenodo https://doi.org/10.5281/zenodo.5515246 (2021).Stocker, B. stineb/mct: v3.0: re-submission to Nature Geoscience. Zenodo https://doi.org/10.5281/zenodo.6239187 (2022). More

  • in

    Genetic population structures of common scavenging species near hydrothermal vents in the Okinawa Trough

    Van Dover, C. L. et al. Environmental management of deep-sea chemosynthetic ecosystems: justification of and considerations for a spatially based approach. ISA Technical Study: No.9. (International Seabed Authority, 2011).Ikehata, K., Suzuki, R., Shimada, K., Ishibashi, J., & Urabe, T. Mineralogical and Geochemical Characteristics of Hydrothermal Minerals Collected from Hydrothermal Vent Fields in the Southern Mariana Spreading Center. In Subseafloor biosphere linked to hydrothermal systems: TAIGA Concept. 275–288 (Springer Tokyo, 2015).Rona, P. A. & Scott, S. D. A special issue on sea-floor hydrothermal mineralization; new perspectives; preface. Econ. Geol. 88, 1935–1976 (1993).
    Google Scholar 
    Glasby, G. P., Iizasa, K., Yuasa, M. & Usui, A. Submarine hydrothermal mineralization on the Izu-Bonin arc, south of Japan: an overview. Mar. Georesources Geotech. 18, 141–176 (2000).
    Google Scholar 
    Van Dover, C. L. Inactive sulfide ecosystems in the deep sea: a review. Front. Mar. Sci. 6, 461. https://doi.org/10.3389/fmars.2019.00461 (2019).Article 

    Google Scholar 
    Boschen, R. E., Rowde, A. A., Clark, M. R. & Gardner, J. P. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 84, 54–67 (2013).
    Google Scholar 
    Washburn, T. W. et al. Ecological risk assessment for deep-sea mining. Ocean Coast. Manag. 176, 24–39 (2019).
    Google Scholar 
    Matsui, T., Sugishima, H., Okamoto, N., Igarashi, Y. Evaluation of turbidity and resedimentation through seafloor disturbance experiments for assessment of environmental impacts associated with exploitation of seafloor massive sulfides mining. Proceedings of the Twenty-eighth. International Ocean and Polar Engineering Conference. 144–151 (2018).International Seabed Authority. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area. https://www.isa.org.jm/documents/isba19ltc8 (2013).Suzuki, K., Yoshida, K., Watanabe, H. & Yamamoto, H. Mapping the resilience of chemosynthetic communities in hydrothermal vent fields. Sci. Rep. 8, 9364. https://doi.org/10.1038/s41598-018-27596-7 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yahagi, T., Watanabe, H., Ishibashi, J. I. & Kojima, S. Genetic population structure of four hydrothermal vent shrimp species (Alvinocarididae) in the Okinawa Trough, Northwest Pacific. Mar. Ecol. Prog. Ser. 529, 159–169 (2015).ADS 

    Google Scholar 
    Mullineaux, L. S. Deep-sea hydrothermal vent communities. In Marine community ecology and conservation (eds Bertness, M. D. et al.) 383–400 (Sinauer, 2013).
    Google Scholar 
    Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M. & Vrijenhoek, R. C. Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295, 1253–1257 (2002).ADS 

    Google Scholar 
    Yahagi, T., Kayama-Watanabe, H., Kojima, S. & Kano, Y. Do larvae from deep-sea hydrothermal vents disperse in surface waters?. Ecology 98, 1524–1534 (2017).
    Google Scholar 
    Hebert, P. D. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).
    Google Scholar 
    Iguchi, A. et al. Comparative analysis on the genetic population structures of the deep-sea whelks Buccinum tsubai and Neptunea constricta in the Sea of Japan. Mar. Biol. 151, 31–39 (2007).
    Google Scholar 
    Goode, G. B. & Bean, T. H. A catalogue of the fishes of Essex County, Massachusetts, including the fauna of Massachusetts Bay and the contiguous deep waters. Bull. Essex Inst. 11, 1–38 (1879).
    Google Scholar 
    Johnson, J. Y. Descriptions of some new genera and species of fishes obtained at Madeira. Proc. Zool. Soc. Lond. 1862, 167–180 (1862).
    Google Scholar 
    Bate, C. S. Report on the Crustacea Macrura collected by the Challenger during the years 1873–76. Report on the scientific results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology 24, 1–942 (1888).
    Google Scholar 
    Folmer, O., Black, M., Hoeh, W. R., Lutz, R. & Vrijenhoek, R. C. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol Biotech. 3, 294–299 (1994).CAS 

    Google Scholar 
    Pilgrim, E. M., Blum, M. J., Reusser, D. A., Lee, H. & Darling, J. A. Geographic range and structure of cryptic genetic diversity among Pacific North American populations of the non-native amphipod Grandidierella japonica. Biol. Invasions 15, 2415–2428 (2013).
    Google Scholar 
    Suyama, Y. & Matsuki, Y. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 5, 16963. https://doi.org/10.1038/srep16963 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 

    Google Scholar 
    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962. https://doi.org/10.1371/journal.pone.0163962 (2016).Article 
    CAS 

    Google Scholar 
    Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).CAS 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 

    Google Scholar 
    Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).CAS 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RaxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 

    Google Scholar 
    Ronquist, F. R. & Huelsenbeck, J. P. MRBAYES 3: Bayesian inference of phylogeny. Bioinformatics 19, 1572–1574 (2003).CAS 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2021).
    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, http://journal.embnet.org/index.php/embnetjournal/article/view/200/479 (2011).Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).CAS 

    Google Scholar 
    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 

    Google Scholar 
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2013).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).Dana, J. D. Synopsis of the genera of Gammaracea. Am. J. Sci. Arts 8, 135–140 (1849).
    Google Scholar 
    Hansen, H. J. Malacostraca marina Groenlandiæ occidentalis Oversigt over det vestlige Grønlands Fauna af malakostrake Havkrebsdyr. Vidensk. Meddel. Natuirist. Foren Kjobenhavn, Aaret 9, 5–226 (1888).
    Google Scholar 
    Van Dover, C. L. The ecology of deep-sea hydrothermal vents (Princeton University Press, 2000).
    Google Scholar 
    Tunnicliffe, V. The biology of hydrothermal vents: ecology and evolution. Oceanogr. Mar. Biol. Annu. Rev. 29, 319–407 (1991).
    Google Scholar 
    Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. U. K. 74, 481–498 (1994).
    Google Scholar 
    Causse, R., Biscoito, M. & Briand, P. First record of the deep-sea eel Ilyophis saldanhai (Synaphobranchidae, Anguilliformes) from the Pacific Ocean. Cybium 29, 413–416 (2005).
    Google Scholar 
    King, N. J., Bagley, P. M. & Priede, I. G. Depth zonation and latitudinal distribution of deep-sea scavenging demersal fishes of the Mid-Atlantic Ridge, 42 to 53°N. Mar. Ecol. Prog. Ser. 319, 263–274 (2006).ADS 

    Google Scholar 
    Leitner, A. B., Durden, J. M., Smith, C. R., Klingberg, E. D. & Drazen, J. C. Synaphobranchid eel swarms on abyssal seamounts: largest aggregation of fishes ever observed at abyssal depths. Deep Sea Res. Oceanogr. Res. Part I Pap. 167, 103423. https://doi.org/10.1016/j.dsr.2020.103423 (2021).Article 

    Google Scholar 
    Fishelson, L. Comparative internal morphology of deep-sea eels, with particular emphasis on gonads and gut structure. J. Fish. Biol. 44, 75–101 (1994).
    Google Scholar 
    Bailey, D. M. et al. High swimming and metabolic activity in the deep-sea eel Synaphobranchus kaupii revealed by integrated in situ and in vitro measurements. Physiol. Biochem. Zool. 78, 335–346 (2005).
    Google Scholar 
    Trenkel, V. M. & Lorance, P. Estimating Synaphobranchus kaupii densities: contribution of fish behaviour to differences between bait experiments and visual strip transects. Deep Sea Res. Oceanogr. Res. Part I Pap. 58, 63–71 (2011).ADS 

    Google Scholar 
    Raupach, M. J. et al. Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar. Biol. 157, 1783–1797 (2010).CAS 

    Google Scholar 
    Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344 (2016).ADS 
    CAS 

    Google Scholar 
    Dambach, J., Raupach, M. J., Mayer, C., Schwarzer, J. & Leese, F. Isolation and characterization of nine polymorphic microsatellite markers for the deep-sea shrimp Nematocarcinus lanceopes (Crustacea: Decapoda: Caridea). BMC Res. Notes 6, 75. https://doi.org/10.1186/1756-0500-6-75 (2013).Article 

    Google Scholar 
    Ritchie, H., Jamieson, A. J. & Piertney, S. B. Phylogenetic relationships among hadal amphipods of the Superfamily Lysianassoidea: Implications for taxonomy and biogeography. Deep Sea Res. Part I 105, 119–131 (2015).CAS 

    Google Scholar 
    Bowen, B. W. et al. Phylogeography unplugged: comparative surveys in the genomic era. Bull. Mar. Sci. 90, 13–46 (2014).
    Google Scholar 
    Ritchie, H., Jamieson, A. J. & Piertney, S. B. Population genetic structure of two congeneric deep-sea amphipod species from geographically isolated hadal trenches in the Pacific Ocean. Deep Sea Res. Part I. 119, 50–57 (2017).
    Google Scholar 
    Iguchi, A. et al. Deep-sea amphipods around cobalt-rich ferromanganese crusts: taxonomic diversity and selection of candidate species for connectivity analysis. PLoS ONE 15, e0228483. https://doi.org/10.1371/journal.pone.0228483 (2020).Article 
    CAS 

    Google Scholar 
    Baco, A. R. et al. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 25, 3276–3298 (2016).
    Google Scholar 
    Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol. Ecol. 26, 4872–4896 (2017).CAS 

    Google Scholar  More

  • in

    Integrated biochar solutions can achieve carbon-neutral staple crop production

    Martin-Roberts, E. et al. Carbon capture and storage at the end of a lost decade. One Earth 4, 1569–1584 (2021).Article 
    ADS 

    Google Scholar 
    Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022).Article 
    ADS 

    Google Scholar 
    Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).CAS 

    Google Scholar 
    Third National Communication of Climate Change in the People’s Republic of China (Ministry of Ecology and Environment of the People’s Republic of China, 2018).Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, B. et al. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food 2, 570–577 (2021).Article 

    Google Scholar 
    Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crops Res. 234, 47–54 (2019).Article 

    Google Scholar 
    Shang, Z. et al. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob. Change Biol. 27, 4657–4670 (2021).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 23, 1917–1925 (2016).Article 
    ADS 

    Google Scholar 
    Ju, X. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, B. et al. Four pathways towards carbon neutrality by controlling net greenhouse gas emissions in Chinese cropland. Resour. Conserv. Recycl. 186, 106576 (2022).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 12, 5919–5932 (2018).Article 

    Google Scholar 
    Zhao, Y. et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change guidelines. Glob. Biogeochemical Cycles 23, GB2002 (2009).Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Z. et al. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials. Environ. Pollut. 284, 117176 (2021).Article 
    CAS 

    Google Scholar 
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L., Wang, S. & Yan, X. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agric. Ecosyst. Environ. 197, 118–127 (2014).Article 

    Google Scholar 
    Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y. et al. Restoring abandoned farmland to mitigate climate change on a full Earth. One Earth 3, 176–186 (2020).Article 
    ADS 

    Google Scholar 
    Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).Article 
    ADS 

    Google Scholar 
    Jeffery, S., Verheijen, F. G., Kammann, C. & Abalos, D. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101, 251–258 (2016).Article 
    CAS 

    Google Scholar 
    Schmidt, H. P. et al. Biochar in agriculture – a systematic review of 26 global meta-analyses. GCB Bioenergy 13, 1708–1730 (2021).Article 
    CAS 

    Google Scholar 
    Cayuela, M. L. et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci. Rep. 3, 1732 (2013).Article 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Glob. Change Biol. 25, 2077–2093 (2019).Article 
    ADS 

    Google Scholar 
    He, X. et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143, 746–756 (2018).Article 
    CAS 

    Google Scholar 
    Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).Ritchie, H., Roser, M. & Rosado, P. CO2 and Greenhouse Gas Emissions (Our World in Data, 2020); https://ourworldindata.org/co2-and-other-greenhouse-gas-emissionsLiu, Y. et al. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: a meta-analysis. Sci. Total Environ. 830, 154792 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y., Reilly, E. C., Jungers, J. M., Chen, J. & Smith, T. M. Climate benefits of increasing plant diversity in perennial bioenergy crops. One Earth 1, 434–445 (2019).Article 
    ADS 

    Google Scholar 
    Weller, S. et al. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycling Agroecosyst. 101, 37–53 (2015).Article 
    CAS 

    Google Scholar 
    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lee, X. J., Ong, H. C., Gan, Y. Y., Chen, W. H. & Mahlia, T. M. I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manag. 210, 112707 (2020).Article 
    CAS 

    Google Scholar 
    Nevzorova, T. & Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energy Strategy Rev. 26, 100414 (2019).Article 

    Google Scholar 
    Xia, S. et al. Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. Bioresource Technol. 270, 189–197 (2018).Article 
    CAS 

    Google Scholar 
    Liu, Z., Niu, W., Chu, H., Zhou, T. & Niu, Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13, 3429–3446 (2018).Article 
    CAS 

    Google Scholar 
    Hengeveld, E. J., Bekkering, J., van Gemert, W. J. T. & Broekhuis, A. A. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids. Biomass Bioenergy 86, 43–52 (2016).Article 

    Google Scholar 
    Ansari, S. H. et al. Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power. Environ. Pollut. 266, 115103 (2020).Article 
    CAS 

    Google Scholar 
    Yang, S. I., Wu, M. S. & Hsu, T. C. Spray combustion characteristics of kerosene/bio-oil part I: experimental study. Energy 119, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth 4, 1752–1763 (2022).Article 
    ADS 

    Google Scholar 
    Gu, B. et al. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ. Sci. Technol. 46, 9420–9427 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L. et al. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences 13, 4569–4579 (2016).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Intra-individual variation of hen movements is associated with later keel bone fractures in a quasi-commercial aviary

    Rufener, C. et al. Keel bone fractures are associated with individual mobility of laying hens in an aviary system. Appl. Anim. Behav. Sci. 217, 48–56 (2019).
    Google Scholar 
    Rentsch, A. K., Rufener, C. B., Spadavecchia, C., Stratmann, A. & Toscano, M. J. Laying hen’s mobility is impaired by keel bone fractures and does not improve with paracetamol treatment. Appl. Anim. Behav. Sci. 216, 19–25 (2019).
    Google Scholar 
    Rodriguez-Aurrekoetxea, A. & Estevez, I. Use of space and its impact on the welfare of laying hens in a commercial free-range system. Poult. Sci. 95, 2503–2513 (2016).CAS 

    Google Scholar 
    Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).
    Google Scholar 
    Campbell, D. L. M., Talk, A. C., Loh, Z. A., Dyall, T. R. & Lee, C. Spatial cognition and range use in free-range laying hens. Animals 8, 26 (2018).
    Google Scholar 
    de Jager, M., Weissing, F. J., Herman, P. M. J., Nolet, B. A. & van de Koppel, J. Lévy walks evolve through interaction between movement and environmental complexity. Science 1979(332), 1551–1553 (2011).
    Google Scholar 
    Krause, J., James, R. & Croft, D. P. Personality in the context of social networks. Philos. Trans. R. Soc. B Biol. Sci. 365, 4099–4106 (2010).CAS 

    Google Scholar 
    Ihwagi, F. W. et al. Poaching lowers elephant path tortuosity: Implications for conservation. J. Wildl. Manag. 83, 1022–1031 (2019).
    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    Matthews, S. G., Miller, A. L., Plötz, T. & Kyriazakis, I. Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Berger-Tal, O. & Saltz, D. Using the movement patterns of reintroduced animals to improve reintroduction success. Curr. Zool. 60, 515–526 (2014).
    Google Scholar 
    Stuber, E. F., Carlson, B. S. & Jesmer, B. R. Spatial personalities: A meta-analysis of consistent individual differences in spatial behavior. Behav. Ecol. https://doi.org/10.1093/BEHECO/ARAB147 (2022).Article 

    Google Scholar 
    Sirovnik, J., Würbel, H. & Toscano, M. J. Feeder space affects access to the feeder, aggression, and feed conversion in laying hens in an aviary system. Appl. Anim. Behav. Sci. 198, 75–82 (2018).
    Google Scholar 
    Sirovnik, J., Voelkl, B., Keeling, L. J., Würbel, H. & Toscano, M. J. Breakdown of the ideal free distribution under conditions of severe and low competition. Behav. Ecol. Sociobiol. 75, 1–11 (2021).
    Google Scholar 
    Becot, L., Bedere, N., Burlot, T., Coton, J. & le Roy, P. Nest acceptance, clutch, and oviposition traits are promising selection criteria to improve egg production in cage-free system. PLoS ONE 16, e0251037 (2021).CAS 

    Google Scholar 
    Thompson, M. J., Evans, J. C., Parsons, S. & Morand-Ferron, J. Urbanization and individual differences in exploration and plasticity. Behav. Ecol. 29, 1415–1425 (2018).
    Google Scholar 
    Stamps, J. & Groothuis, T. G. G. The development of animal personality: Relevance, concepts and perspectives. Biol. Rev. 85, 301–325 (2010).
    Google Scholar 
    Salinas-Melgoza, A., Salinas-Melgoza, V. & Wright, T. F. Behavioral plasticity of a threatened parrot in human-modified landscapes. Biol. Conserv. 159, 303–312 (2013).
    Google Scholar 
    Stamps, J. A., Briffa, M. & Biro, P. A. Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim. Behav. 83, 1325–1334 (2012).
    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Biro, P. A. & Adriaenssens, B. Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. Am. Nat. 182, 621–629 (2013).
    Google Scholar 
    Henriksen, R. et al. Intra-individual behavioural variability: A trait under genetic control. Int. J. Mol. Sci. 21, 8069 (2020).CAS 

    Google Scholar 
    Rufener, C. et al. Finding hens in a haystack: Consistency of movement patterns within and across individual laying hens maintained in large groups. Sci. Rep. 8, (2018).Campbell, D. L. M., Karcher, D. M. & Siegford, J. M. Location tracking of individual laying hens housed in aviaries with different litter substrates. Appl. Anim. Behav. 184, 74–79 (2016).
    Google Scholar 
    Weeks, C. A. & Nicol, C. J. Behavioural needs, priorities and preferences of laying hens. Worlds Poult. Sci. J. 62, 296–307 (2006).
    Google Scholar 
    Hartcher, K. M. & Jones, B. The welfare of layer hens in cage and cage-free housing systems. Worlds Poult. Sci. J. 73, 767–782 (2017).
    Google Scholar 
    Zeltner, E. & Hirt, H. Effect of artificial structuring on the use of laying hen runs in a free-range system. Br. Poult. Sci. 44, 533–537 (2010).
    Google Scholar 
    Stratmann, A. et al. Modification of aviary design reduces incidence of falls, collisions and keel bone damage in laying hens. Appl. Anim. Behav. Sci. 165, 112–123 (2015).
    Google Scholar 
    Vandekerchove, D., Herdt, P., Laevens, H. & Pasmans, F. Colibacillosis in caged layer hens: Characteristics of the disease and the aetiological agent. Avian Pathol. 33, 117–125 (2004).CAS 

    Google Scholar 
    Montalcini, C. M., Voelkl, B., Gómez, Y., Gantner, M. & Toscano, M. J. Evaluation of an active LF tracking system and data processing methods for livestock precision farming in the poultry sector. Sensors 22, 659 (2022).ADS 

    Google Scholar 
    Revelle, W. Procedures for psychological, psychometric, and personality research. (2021).Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).
    Google Scholar 
    Rufener, C., Baur, S., Stratmann, A. & Toscano, M. J. A reliable method to assess keel bone fractures in laying hens from radiographs using a tagged visual analogue scale. Front. Vet. Sci. 5, 124 (2018).
    Google Scholar 
    Tauson, R., Kjaer, J., Maria, G. A., Cepero, R. & Holm, K.-E. The creation of a common scoring system for the integument and health of laying hens: Applied scoring of integument and health in laying hens. Final report Health from the Laywell project. https://www.laywel.eu/web/pdf/deliverables%2031-33%20health.pdf (2005).Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, (2020).Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 85, 935–956 (2010).
    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J Stat Softw 67, (2015).Cleasby, I. R., Nakagawa, S. & Schielzeth, H. Quantifying the predictability of behaviour: Statistical approaches for the study of between-individual variation in the within-individual variance. Methods Ecol. Evol. 6, 27–37 (2015).
    Google Scholar 
    Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).
    Google Scholar 
    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).
    Google Scholar 
    Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).ADS 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).
    Google Scholar 
    Occhiuto, F., Vázquez-Diosdado, J. A., Carslake, C. & Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 9, (2022).Moinard, C. et al. Accuracy of laying hens in jumping upwards and downwards between perches in different light environments. Appl. Anim. Behav. Sci. 85, 77–92 (2004).
    Google Scholar 
    Baur, S., Rufener, C., Toscano, M. J. & Geissbühler, U. Radiographic evaluation of keel bone damage in laying hens—Morphologic and temporal observations in a longitudinal study. Front. Vet. Sci. 1, 129 (2020).
    Google Scholar 
    Cordiner, L. S. & Savory, C. J. Use of perches and nestboxes by laying hens in relation to social status, based on examination of consistency of ranking orders and frequency of interaction. Appl. Anim. Behav. Sci. 71, 305–317 (2001).
    Google Scholar 
    Rufener, C. & Makagon, M. M. Keel bone fractures in laying hens: A systematic review of prevalence across age, housing systems, and strains. J. Anim. Sci. 98, S36–S51 (2020).
    Google Scholar 
    Nasr, M. A. F., Nicol, C. J., Wilkins, L. & Murrell, J. C. The effects of two non-steroidal anti-inflammatory drugs on the mobility of laying hens with keel bone fractures. Vet. Anaesth. Analg. 42, 197–204 (2015).CAS 

    Google Scholar 
    Nasr, M., Murrell, J., Wilkins, L. J. & Nicol, C. J. The effect of keel fractures on egg-production parameters, mobility and behaviour in individual laying hens. Anim. Welf. 21, 127–135 (2012).CAS 

    Google Scholar 
    Koolhaas, J. M. & van Reenen, C. G. Animal behavior and well-being symposium: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals. J. Anim. Sci. 94, 2284–2296 (2016).CAS 

    Google Scholar 
    Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 365, 4021 (2010).
    Google Scholar 
    Koolhaas, J. M., de Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front. Neuroendocrinol. 31, 307–321 (2010).CAS 

    Google Scholar 
    Finkemeier, M.-A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures, and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).
    Google Scholar 
    Martin, J. G. A., Pirotta, E., Petelle, M. B. & Blumstein, D. T. Genetic basis of between-individual and within-individual variance of docility. J. Evol. Biol. 30, 796–805 (2017).CAS 

    Google Scholar 
    Prentice, P. M., Houslay, T. M., Martin, J. G. A. & Wilson, A. J. Genetic variance for behavioural ‘predictability’ of stress response. J. Evol. Biol. 33, 642–652 (2020).
    Google Scholar  More

  • in

    Atmospheric–ocean coupling drives prevailing and synchronic dispersal patterns of marine species with long pelagic durations

    Guichard, F., Levin, S. A., Hastings, A. & Siegel, D. Toward a dynamic metacommunity approach to marine reserve theory. BioScience 54(11), 1003. https://doi.org/10.1641/0006-3568(2004)054[1003:tadmat]2.0.co;2 (2004).Article 

    Google Scholar 
    Wieters, E. A., Gaines, S. D., Navarrete, S. A., Blanchette, C. A. & Menge, B. A. Scales of dispersal and the biogeography of marine predator-prey interactions. Am. Nat. 171(3), 405–417. https://doi.org/10.1086/527492 (2008).Article 

    Google Scholar 
    Martínez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Changehttps://doi.org/10.1038/s41558-021-01006-9 (2021).Article 

    Google Scholar 
    van Gennip, S. J. et al. Going with the flow: The role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23(7), 2602–2617. https://doi.org/10.1111/gcb.13586 (2017).Article 
    ADS 

    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. U.S.A. 104(4), 1266–1271. https://doi.org/10.1073/pnas.0603422104 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1(1), 443–466. https://doi.org/10.1146/annurev.marine.010908.163757 (2009).Article 

    Google Scholar 
    Ospina-Alvarez, A., Parada, C. & Palomera, I. Vertical migration effects on the dispersion and recruitment of European anchovy larvae: From spawning to nursery areas. Ecol. Model. 231, 65–79. https://doi.org/10.1016/j.ecolmodel.2012.02.001 (2012).Article 

    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Marine connectivity: A new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436, 291–305. https://doi.org/10.3354/meps09238 (2011).Article 
    ADS 

    Google Scholar 
    Siegel, D. A. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. U.S.A. 105(26), 8974–8979. https://doi.org/10.1073/pnas.0802544105 (2008).Article 
    ADS 

    Google Scholar 
    De Lestang, S. et al. What caused seven consecutive years of low puerulus settlement in the western rock lobster fishery of Western Australia?. ICES J. Mar. Sci. 72, i49–i58. https://doi.org/10.1093/icesjms/fsu177 (2015).Article 

    Google Scholar 
    Linnane, A. et al. Evidence of large-scale spatial declines in recruitment patterns of southern rock lobster Jasus edwardsii, across south-eastern Australia. Fish. Res. 105(3), 163–171. https://doi.org/10.1016/j.fishres.2010.04.001 (2010).Article 

    Google Scholar 
    Briones-Fourzán, P., Candela, J. & Lozano-Álvarez, E. Postlarval settlement of the spiny lobster Panulirus argus along the Caribbean coast of Mexico: Patterns, influence of physical factors, and possible sources of origin. Limnol. Oceanogr. 53(3), 970–985. https://doi.org/10.4319/lo.2008.53.3.0970 (2008).Article 
    ADS 

    Google Scholar 
    Haury, L. R., McGowan, J. A. & Wiebe, P. H. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities (ed. Steele, J. H.) 277–327 (Springer US, 1978). https://doi.org/10.1007/978-1-4899-2195-6_12.Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311(5760), 522–527. https://doi.org/10.1126/science.1122039 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kavanaugh, M. T. et al. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES J. Mar. Sci. 73(7), 1839–1850. https://doi.org/10.1093/icesjms/fsw086 (2016).Article 

    Google Scholar 
    Ospina-Alvarez, A., Weidberg, N., Aiken, C. M. & Navarrete, S. A. Larval transport in the upwelling ecosystem of central Chile: The effects of vertical migration, developmental time and coastal topography on recruitment. Prog. Oceanogr. 168, 82–99. https://doi.org/10.1016/j.pocean.2018.09.016 (2018) http://www.sciencedirect.com/science/article/pii/S0079661117300800.Article 
    ADS 

    Google Scholar 
    Palumbi, S. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13(1 Supplement), S146–S158 (2003).Article 

    Google Scholar 
    Barahona, M. et al. Environmental and demographic factors influence the spatial genetic structure of an intertidal barnacle in central-northern Chile. Mar. Ecol. Prog. Ser. 612, 151–165. https://doi.org/10.3354/meps12855 (2019) http://www.int-res.com/abstracts/meps/v612/p151-165/.Article 
    ADS 

    Google Scholar 
    Spanier, E. et al. A concise review of lobster utilization by worldwide human populations from prehistory to the modern era. ICES J. Mar. Sci. 72(May), i7–i21. https://doi.org/10.1093/icesjms/fsv066 (2015).Article 

    Google Scholar 
    IUCN. Palinurus elephas: Goñi, R.: The IUCN Red List of Threatened Species 2014: e.T169975A1281221. Tech. Rep., International Union for Conservation of Nature (2013). http://www.iucnredlist.org/details/169975/0. Type: dataset.Canepa, A. et al. Pelagia noctiluca in the mediterranean sea (eds Pitt, K. A. & Lucas, C. H.) In Jellyfish Blooms, Vol. 9789400770 237–266 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-007-7015-7_11.Bosch-Belmar, M. et al. Jellyfish blooms perception in Mediterranean finfish aquaculture. Mar. Policy 76, 1–7. https://doi.org/10.1016/j.marpol.2016.11.005 (2017).Article 

    Google Scholar 
    Exceltur. Impactur baleares 2014. Tech. Rep., EXCELTUR – Govern de les Illes Balears, Madrid (2014).Vignudelli, S., Gasparini, G. P., Astraldi, M. & Schiano, M. E. A possible influence of the North Atlantic Oscillation on the circulation of the Western Mediterranean Sea. Geophys. Res. Lett. 26(5), 623–626. https://doi.org/10.1029/1999GL900038 (1999).Article 
    ADS 

    Google Scholar 
    Somot, S. et al. Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea. Clim. Dyn. 51(3), 1179–1210. https://doi.org/10.1007/s00382-016-3295-0 (2018).Article 

    Google Scholar 
    Díaz, D., Marí, M., Abelló, P. & Demestre, M. Settlement and juvenile habitat of the European spiny lobster Palinurus elephas (Crustacea: Decapoda: Palinuridae) in the Western Mediterranean Sea. Sci. Mar. 65(4), 347–356. https://doi.org/10.3989/scimar.2001.65n4347 (2001).Article 

    Google Scholar 
    Muñoz, A. et al. Exploration of the inter-annual variability and multi-scale environmental drivers of European spiny lobster, Palinurus elephas (Decapoda: Palinuridae) settlement in the NW Mediterranean. Mar. Ecol.https://doi.org/10.1111/maec.12654 (2021).Article 

    Google Scholar 
    Malej, A. & Malej, M. Population dynamics of the jellyfish Pelagia noctiluca (Forsskal, 1775) In Marine Eutrophication and Population Dynamics (eds Colombo, G., Ferrari, I., V., C. & R., R.) 215–219 (Olsen and Olsen, 1992).Ottmann, D. et al. Abundance of Pelagia noctiluca early life stages in the western Mediterranean Sea scales with surface chlorophyll. Mar. Ecol. Prog. Ser. 658, 75–88. https://doi.org/10.3354/meps13423 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Benedetti-Cecchi, L. et al. Deterministic factors overwhelm stochastic environmental fluctuations as drivers of jellyfish outbreaks. PLoS One 10(10), 1–16. https://doi.org/10.1371/journal.pone.0141060 (2015).Article 
    CAS 

    Google Scholar 
    Licandro, P. et al. A blooming jellyfish in the northeast Atlantic and Mediterranean. Biol. Lett. 6(5), 688–691. https://doi.org/10.1098/rsbl.2010.0150 (2010).Article 
    CAS 

    Google Scholar 
    Goy, J., Morand, P. & Etienne, M. Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep Sea Res. Part A Oceanogr. Res. Pap. 36(2), 269–279 (1989). https://doi.org/10.1016/0198-0149(89)90138-6 .Yahia, M. N. D. et al. Are the outbreaks timing of Pelagia noctiluca (Forsskal, 1775) getting more frequent in the Mediterranean basin?. ICES Cooper. Res. Rep. 300, 8–14 (2010).
    Google Scholar 
    Ferraris, M. et al. Distribution of Pelagia noctiluca (Cnidaria, Scyphozoa) in the Ligurian Sea (NW Mediterranean Sea). J. Plankton Res. 34(10), 874–885. https://doi.org/10.1093/plankt/fbs049 (2012).Article 

    Google Scholar 
    Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20(1–4), 423–442. https://doi.org/10.1016/S0924-7963(98)00078-5 (1999).Article 

    Google Scholar 
    Galarza, J. A. et al. The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc. Natl. Acad. Sci. 106(5), 1473–1478. https://doi.org/10.1073/pnas.0806804106 (2009).Article 
    ADS 

    Google Scholar 
    Fernández de Puelles, M. L. & Molinero, J. C. Decadal changes in hydrographic and ecological time-series in the Balearic Sea (western Mediterranean), identifying links between climate and zooplankton. ICES J. Mar. Sci. 65(3), 311–317. https://doi.org/10.1093/icesjms/fsn017 (2008).Article 

    Google Scholar 
    Arsouze, T. et al. CIESM (ed.) Sensibility analysis of the Western Mediterranean Transition inferred by four companion simulations. (ed. CIESM) EGU General Assembly Conference Abstracts, Vol. 1 of EGU General Assembly Conference Abstracts, 13073 (2013).Amores, A., Jordà, G., Arsouze, T. & Le Sommer, J. Up to what extent can we characterize ocean eddies using present-day gridded altimetric products?. J. Geophys. Res. Oceans 123(10), 7220–7236. https://doi.org/10.1029/2018JC014140 (2018).Article 
    ADS 

    Google Scholar 
    Waldman, R. et al. Impact of the mesoscale dynamics on ocean deep convection: The 2012–2013 case study in the northwestern mediterranean sea. J. Geophys. Res. Oceans 122(11), 8813–8840. https://doi.org/10.1002/2016JC012587 (2017).Article 
    ADS 

    Google Scholar 
    Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Softw. 23(9), 1210–1214. https://doi.org/10.1016/j.envsoft.2008.02.005 (2008).Article 

    Google Scholar 
    Brickman, D. & Smith, P. C. Lagrangian stochastic modeling in coastal oceanography. J. Atmos. Ocean. Technol. 19(1), 83–99. https://doi.org/10.1175/1520-0426(2002)0192.0.CO;2 (2002).Article 
    ADS 

    Google Scholar 
    Goñi, R. & Latrouite, D. Review of the biology, ecology and fisheries of Palinurus spp. species of European waters: Palinurus elephas (Fabricius, 1787) and Palinurus mauritanicus (Gruvel, 1911). Cahiers de Biol. Mar. 46(2), 127–142 (2005).
    Google Scholar 
    Bjornsson, H. & Venegas, S. A manual for EOF and SVD analyses of climatic data. Tech. Rep. CCGCR Report No. 97-1, McGill s Centre for Climate and Global Change Research (C2GCR) (1997).Herrmann, M., Somot, S., Sevault, F., Estournel, C. & Déqué, M. Modeling the deep convection in the northwestern mediterranean sea using an eddy-permitting and an eddy-resolving model: Case study of winter 1986–1987. J. Geophys. Res. Oceans 113(C4) (2008). https://doi.org/10.1029/2006JC003991.Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 10, 252–266 (2019). https://doi.org/10.24381/cds.f17050d7 .Bernard, P., Berline, L. & Gorsky, G. Long term (1981–2008) monitoring of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) on Mediterranean Coasts (Principality of Monaco and French Riviera). J. Oceanogr. Res. Data 4(1), 1–10 (2011).
    Google Scholar 
    Kough, A. S., Paris, C. B. & Butler, M. J. IV. Larval connectivity and the international management of fisheries. PLoS One 8(6), 1–12. https://doi.org/10.1371/journal.pone.0064970 (2013).Article 
    CAS 

    Google Scholar 
    Sandvik, H. et al. Modelled drift patterns of fish larvae link coastal morphology to seabird colony distribution. Nat. Commun. 7(May), 1–8. https://doi.org/10.1038/ncomms11599 (2016).Article 
    CAS 

    Google Scholar 
    Notarbartolo-Di-Sciara, G., Agardy, T., Hyrenbach, D., Scovazzi, T. & Van Klaveren, P. The Pelagos Sanctuary for Mediterranean marine mammals. Aquat. Conserv. Mar. Freshw. Ecosyst. 18(4), 367–391. https://doi.org/10.1002/aqc.855 (2008).Article 

    Google Scholar 
    Astraldi, M., Gasparini, G. P., Vetrano, a. & Vignudelli, S. Hydrographic characteristics and interannual variability of water masses in the central Mediterranean: A sensitivity test for long-term changes in the Mediterranean Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 661–680 (2002). https://doi.org/10.1016/S0967-0637(01)00059-0 .Muffett, K. & Miglietta, M. P. Planktonic associations between medusae (classes Scyphozoa and Hydrozoa) and epifaunal crustaceans. PeerJ 9, e11281. https://doi.org/10.7717/peerj.11281 (2021) https://peerj.com/articles/11281.Article 

    Google Scholar 
    Stopar, K., Ramšak, A., Trontelj, P. & Malej, A. Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Mol. Phylogenet. Evol. 57(1), 417–428. https://doi.org/10.1016/j.ympev.2010.07.004 (2010).Article 
    CAS 

    Google Scholar 
    Berline, L., Zakardjian, B., Molcard, A., Ourmières, Y. & Guihou, K. Modeling jellyfish Pelagia noctiluca transport and stranding in the Ligurian Sea. Mar. Pollut. Bull. 70(1–2), 90–99. https://doi.org/10.1016/j.marpolbul.2013.02.016 (2013).Article 
    CAS 

    Google Scholar 
    Prieto, L., Macías, D., Peliz, A. & Ruiz, J. Portuguese Man-of-War (Physalia physalis) in the Mediterranean: A permanent invasion or a casual appearance? Sci. Rep. 5 (2015). https://doi.org/10.1038/srep11545.Houghton, J. D. R. et al. Identification of genetically and oceanographically distinct blooms of jellyfish. J. R. Soc. Interface 10(80), 20120920–20120920. https://doi.org/10.1098/rsif.2012.0920 (2013).Article 

    Google Scholar 
    Segura-García, I. et al. Reconstruction of larval origins based on genetic relatedness and biophysical modeling. Sci. Rep. 9(1), 1–9. https://doi.org/10.1038/s41598-019-43435-9 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Elphie, H., Raquel, G., David, D. & Serge, P. Detecting immigrants in a highly genetically homogeneous spiny lobster population (Palinurus elephas) in the northwest Mediterranean Sea. Ecol. Evol. 2(10), 2387–2396. https://doi.org/10.1002/ece3.349 (2012).Article 

    Google Scholar 
    Babbucci, M. et al. Population structure, demographic history, and selective processes: Contrasting evidences from mitochondrial and nuclear markers in the European spiny lobster Palinurus elephas (Fabricius, 1787). Mol. Phylogenet. Evol. 56(3), 1040–1050. https://doi.org/10.1016/j.ympev.2010.05.014 (2010).Article 
    CAS 

    Google Scholar 
    Cau, A. et al. European spiny lobster recovery from overfishing enhanced through active restocking in Fully Protected Areas. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-019-49553-8 .Macias, D., Garcia-Gorriz, E. & Stips, A. Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (Horizon 2030) scenarios. Sci. Rep. 8(1), 1–15. https://doi.org/10.1038/s41598-018-24965-0 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Fractal dimension complexity of gravitation fractals in central place theory

    This paper describes the complexity of gravitational fractals in terms of global and local dimensions. They are presented in Table 1.Table 1 Global and local dimensions of gravitational fractals and attraction basins.Full size tableThe fractal in hexagonal CPT space, shown in Fig. 1, has a very rich structure, and therefore its characterization by means of fractal dimensions requires two approaches: (1) a global approach treating the fractal as a complex whole and (2) a local approach which allows us to determine the dimension of its fragments which are particularly interesting from a research perspective (see also Table 1). In the subsequent part of the paper, the results obtained are presented and interpreted according to the division in the table.Global dimension of boundaries of gravity attraction basinsTwo types of fractal dimensions have been thus far used in this analysis, i.e., the box and ruler dimensions. Figure 3 shows the distribution of the values of these dimensions determined for the boundaries of attraction as a function of space friction μ.Figure 3Comparison of the variability of the global ruler and box dimensions. Legend: The edge of all attraction basins is a function of the μ coefficient; 1–edges of all basins, 2–entire basins.Full size imageFigure 3 empirically confirms a fact known from chaos theory that whenever a fractal represents full chaos, the ruler dimension may be greater than 2 (Peitgen et al.33, 192–209), whereas the box dimension never exceeds this extreme value. Clearly, for a certain value of μ (in this case μ = 0.19), the numerical values of both types of dimensions are identical.In the bottom part of Fig. 3, line 1 illustrates the variability of the shapes of the attraction basins of individual cities depending on the value of μ, i.e., space resistance. The initially extremely complex shapes of the boundaries are smoothed to take the form of straight lines in the case of a large value of μ (μ = 0.52).In turn, line 2 illustrates not only the boundaries of the attraction basins, but also their internal structure. Clearly, the initially chaotic impacts of individual cities on the agent (μ = 0.005) are gradually smoothed out, so that in the final stage of the process they fully stabilize. This means that each city has a geometrically identical basin of attraction. Hence, if the agent is in the attraction basin of city 1 (purple color), it will always be attracted only by that city. This rule also applies to the other cities. It is obvious that the random process occurring at μ = 0.09 is then replaced by a strictly deterministic one. When chaos becomes complete order (Banaszak et al.15, the numerical values of both types of dimensions appear to stabilize at the level of 1.Global dimension of the boundary of each separate attraction basinFigure 1 also shows the geometric image of the attraction basins of individual cities. They were almost identical, and therefore also the fractal dimensions of the boundaries of these basins must match. The validity of this proposition is confirmed by Fig. 4. Six lines representing the distribution of the fractal dimension of the boundaries of the six basins coincide with almost full accuracy. Further analysis of Fig. 4 allows us to infer the conclusion that there is almost total chaos at the value db = 1.9021 (μ = 0.005). On the other hand, as space resistance increases to the value of μ = 0.22, there is a rapid decrease in the value of the fractal dimension of the boundary of each basin to the level of 1.2628; when μ = 0.34, then db = 1.2382. In that case, the value of the fractal dimension stabilizes, and at μ = 0.46, db = 1.2444 and finally for μ = 0.52, db reaches the value of 1.0412. The icons presented in Fig. 4 in lines 1 and 2 have slightly different structures than the icons in Fig. 3, due to different values of μ in certain cases.Figure 4The box dimension of the edges of the attraction basins depending on the μ coefficient (separately for each attractor). Legend: 1–boundaries of single attraction basins, 2–entire basins.Full size imageThe global dimension of the attraction basin of each city as an irregular geometric figureThe full symmetry of the basins of attraction of individual cities can be disturbed by the shape of the geometric figure on which the deterministic fractal is modeled. Such a situation occurs in the present case. Due to the fact that the fractal in Fig. 1 is formed on the surface of a square, the final basins of attraction of cities 1, 3, 4 and 6 are obviously larger than those of cities 2 and 5. Of course, these differences do not occur when considering the surface inside the hexagon.In Fig. 5, the line marked in black color represents the average value of the fractal dimension of the basins of attraction of individual cities, the value of which is (overline{{d }_{b}}=1.77). It can be seen that at very high values of the fractal dimension in the range (1.750, 1.775), there are db oscillations around this line. This is precisely the effect of modeling the fractal on the surface of the square, rather than the properties of this fractal. Therefore, (overline{{d }_{b}}=1.77) should be regarded as the global dimension of the basin of attraction (of each city) treated as an irregular figure.Figure 5Box dimension of the attraction basins as a geometric irregular figure in the gravitational fractal. Legend: 1-basins of the first city, 2-basins of the second city, 7-basins of all cities.Full size imageLocal dimensions of the boundary of the selected characteristic fragmentsFigure 6 presents fractal dimensions, with the Box and Ruler as functions of μ, and the boundaries of the attraction basins of individual cities occurring in all fragments A, …, E.Figure 6Distribution of the values of fractal dimensions of the boundaries of the attraction basins identified in selected fragments of a fractal; Legend: (A, D)-fragments marked in Fig. 1.Full size imageIt is evident that the structures of Fig. 6 (Box and Ruler) are almost identical. This means that, as has been stated earlier, when describing complex fractal objects, it does not really matter which type of dimension is used.Of interest here is the variability of the structure of both figures along with the increase in the value of the parameter μ. Fragments A, …, E (see Fig. 1) are characterized by high complexity, i.e. the intertwining attraction basins of the individual attractors (cities). This observation is confirmed by the numerical results of both fractal dimensions whose values are in the range (1.68–1.82). To illustrate the spatial complexity of these fragments, and thus their dimensions, by way of example, two fractal fragments are considered below: fragments A and D (see also Fig. 7).Figure 7Box dimension of the edge of each gravitation basin in A and D. Legend: The icons show the variability of the fragments A and D due to the share of the attraction basins of individual cities (3, 4 and 6).Full size imageFigure 6 offers important conclusions concerning the organization of social and economic life in the geographical area surrounding individual cities (attractors).

    1.

    Out of all the separated fragments, only in fragment A do we find the attraction basins of all the cities intertwined across the entire range of variation μ, i.e. (0.00–0.48). Hence, the graph of fractal dimension (db) (blue line) as a function of μ is continuous, and when the resistance of space is the greatest (μ = 0.48), the fractal dimension d = 1.00. This means that chaos has given way to total order, and fragment A has been symmetrically divided between cities 1 and 6. Hence, there are two colors left, namely red and purple.

    2.

    A similar situation occurs in the case of fragment D (yellow line), where the attraction basins of individual cities intertwine continuously within the range: 0.00 ≤ μ ≤ 0.46. Beyond the value of 0.46, the entire fragment D is filled with purple: the closest city 1 dominates it.

    The research conducted here also confirms the conclusions presented in previous works by Banaszak et al.15,16 concerning the transformation of chaos into spatial order, which means the stabilization of permanent dominance, usually of one attractor (city). Thus, with regard to fragments A and D, in fragment A there is a constant dominance (in half of the area) of cities 1 and 6, from the limit value of μ = 0.24 onward. In the case of fragment D, beginning with the value of μ = 0.36, only city 1 dominates (purple). That is, in the final phase of establishing the order in spatial interactions in the arrangement of areas A and D, the role of the dominant attractor (city) is played by city 1 (purple).Due to the symmetry of Fig. 1, similar effects can be observed in other parts of this fractal, located symmetrically in relation to A, …, E (see Supplementary Material).Figures 1 and 6 confirm the findings, known in the theory of city development, that urban (and other) centers rise in the hierarchy (or their rank decreases), depending on the external and internal factors conditioning their development. In the model used in this study, the parameter μ represents external factors (space resistance). If μ values are low, all cities are attractive from the point of view of spatial interactions and create their own but symmetrical basins of attraction. When the resistance of space increases, one city becomes the dominant center, and its basin of attraction is a uniform compact isotropic surface.However, this is not a simple mechanism, since, as has been demonstrated by simulation experiments described in this paper, within a certain range of μ values, another city (attractor) may dominate the others during chaotic interactions. The dynamic history of urban development confirms this observation, for example, in relation to historical capitals of some countries that have lost their functions as administrative capitals.Local dimension of the boundary of each attraction basin in a selected fragment of a fractalFragments A, …, E (Fig. 1 and the Supplementary Material) consist of mutually intertwined basins of attraction (six cities) whose boundaries with complicated courses have a fractal dimension, e.g. a box dimension.Figure 7(fragment A) shows the distribution of db as a function of μ in this fragment. In the case of total internal chaos, the fractal dimension of the boundaries of the attraction basins of all cities is identical and amounts to 1.9152. A clear differentiation of db is noticeable from μ = 0.1 onward. It should also be noted that orange and blue, red and purple, yellow and green lines mutually coincide. The red–purple line tend towards db = 1 as μ increases. However, orange, blue, yellow and green lines reach a value of db = 0.The fractal dimension db = 1.0 is most closely represented by the blue line (city 2), then the red line (city 6) and the purple line (city 1). Since these lines almost coincide, and the red and purple lines are the last to reach the value db = 1, at μ = 0.48, fragment A is symmetrically covered in red and purple. Therefore, with very high spatial resistance, fragment A is dominated by two cities, namely by 1 and 6.In turn, Fig. 7(fragment D) illustrates the variability of the fractal dimension of boundaries of the attraction basins in this fragment. This dimension depends on the complexity of the mosaic patterns formed in this fragment, with varying μ values. When the values of μ are close to zero, all cities contribute to filling the space of fragment D. When μ = 0.18, city 1 (purple color) falls out of the competition for space, but only up to the value of μ = 0.24, when it starts to compete again with other cities. From the point of view of spatial interactions, in the final phase of this process (μ = 0.44), city 2 (blue) and city 6 (red) dominate to a small extent, because cities 3, 4 and 6, starting from μ = 0.3, do not play any role in fragment D.Figure 7 shows that the value μ = 0.3 is a characteristic point. It is a locus where all the curves representing the attraction basins of individual cities meet. As has already been stated, three of them lose their influence over the space of fragment D.Local dimensions of parts of the attraction basins treated as an irregular geometric figureIn each of the selected fragments A, …, E, some of the boundaries of the attraction basins of individual cities are distributed differently. They create certain holes in the form of irregularly colored mosaic patterns that have a certain fractal dimension. To present its variability, fragments A and D were used again. Figure 8 shows the distribution of db values depending on the value of μ.Figure 8Local dimensions of parts of the attraction basins treated as an irregular geometric figure in (A) and (D). Legend: The icons illustrate the variability of the shape of some of the attraction basins of individual cities in fragment (A) and (D) for cities 3, 4 and 6.Full size imageThe function has several characteristic points. Up to the value of μ = 0.04, attraction basins show a jumble in which no predominant color or shape can be identified. The fractal dimension is then: db = 1.7697. From this value onwards, where μ = 0.042, the interior of fragment A becomes increasingly ordered. With a value of μ = 0.125, the city’s attraction basins 3 and 4 begin to disappear in fragment A. The same happens to the city attraction basins 2 and 5 for the value of μ = 0.24.The final effect of the increase in space resistance (with μ = 0.50) leads to the filling of fragment A with two colors, i.e., purple and red. This means that cities 1 and 6, have won the competition for the space of fragment A. In this case, the fractal dimensions db equal 1.90.Figure 8 presents the variability of the fractal dimension and the effects of the competition for space between cities in fragment D. As is the case in fragment A and all others, i.e. B, C and E (see the Annex with Supplementary Material), the intertwined attraction basins are represented by the area consisting of an endless number of differently colored dots. Hence, up to the value of μ = 0.042, fragment D is dominated by pure spatial chaos that extends over its entire area. It is characterized by the fractal dimension db = 1.7697. This means that with an increase in the value of μ, for the emergence of an irregular shape of a geometric figure, chaos must be accompanied by an increase in the value of the fractal dimension. Its limiting value is number 2. Then, spatial dominance is usually gained by one city and the examined fragment is filled with one color (‘the winner takes it all’).This is precisely the situation in Fig. 8 where city 1 (purple color) has apparently won the competition. Since this color fills area D completely, we find the plausible result db = 2.0. More