More stories

  • in

    Ecological factors influence balancing selection on leaf chemical profiles of a wildflower

    1.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).2.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 

    Google Scholar 
    3.Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26, 1101–1118 (2012).Article 

    Google Scholar 
    4.Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Kulbaba, M. W., Sheth, S. N., Pain, R. E., Eckhart, V. M. & Shaw, R. G. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 73, 1746–1758 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B 279, 3843–3852 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Steffen, W., Crutzen, P. J. & McNeil, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Zhang, X.-S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.McGuigan, K., Aguirre, J. D. & Blows, M. W. Simultaneous estimation of additive and mutational genetic variance in an outbred population of Drosophila serrata. Genetics 201, 1239–1251 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Huang, W. et al. Spontaneous mutations and the origin and maintenance of quantitative genetic variation. eLife 5, e14625 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8, 845–856 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Subramaniam, B. & Rausher, M. D. Balancing selection on a floral polymorphism. Evolution 54, 691–695 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Hedrick, P. W. & Thomson, G. Evidence for balancing selection at HLA. Genetics 104, 449–456 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Troth, A., Puzey, J. R., Kim, R. S., Willis, J. H. & Kelly, J. K. Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science 361, 475–478 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Delph, L. F. & Kelly, J. K. On the importance of balancing selection in plants. N. Phytol. 201, 45–56 (2014).Article 

    Google Scholar 
    20.Anderson, J. T., Wagner, M. R., Rushworth, C. A., Prasad, K. V. S. K. & Mitchell-Olds, T. The evolution of quantitative traits in complex environments. Heredity 112, 4–12 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Carmona, D., Lajeunesse, M. J. & Johnson, M. T. Plant traits that predict resistance to herbivores. Funct. Ecol. 25, 358–367 (2011).Article 

    Google Scholar 
    24.DeLucia, E. H., Nabity, P. D., Zavala, J. A. & Berenbaum, M. R. Climate change: resetting plant–insect interactions. Plant Physiol. 160, 1677–1685 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Prasad, K. V. S. K. et al. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337, 1081–1084 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Bergelson, J., Dwyer, G. & Emerson, J. J. Models and data on plant–enemy coevolution. Annu. Rev. Genet. 35, 469–499 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Hodgins, K. A. & Barrett, S. C. H. Female reproductive success and the evolution of mating-type frequencies in tristylous populations. N. Phytol. 171, 569–580 (2006).Article 

    Google Scholar 
    29.Trotter, M. V. & Spencer, H. G. Complex dynamics occur in a single-locus, multiallelic model of general frequency-dependent selection. Theor. Popul. Biol. 76, 292–298 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Tuinstra, M. R., Ejeta, G. & Goldsbrough, P. B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic loci that differ at quantitative traits. Theor. Appl. Genet. 95, 1005–1011 (1997).CAS 
    Article 

    Google Scholar 
    31.Salehin, M. et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat. Commun. 10, 4021 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Hossain, M. S. et al. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 77, 977–983 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Wang, B. et al. Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 126 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Bloom, T. C., Baskin, J. M. & Baskin, C. C. Ecological life history of the facultative woodland biennial Arabis laevigata variety laevigata (Brassicaceae): seed dispersal. J. Torrey Bot. Soc. 129, 21–28 (2002).Article 

    Google Scholar 
    36.Song, B.-H. et al. Multilocus patterns of nucleotide diversity, population structure, and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics 181, 1021–1033 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Mackay, T., Stone, E. & Ayroles, J. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Hedrick, P. W. Genetic polymorphism in heterogeneous environments: a decade later. Annu. Rev. Ecol. Syst. 17, 535–566 (1986).Article 

    Google Scholar 
    39.Hedrick, P. W. Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity 82, 126–133 (1999).Article 

    Google Scholar 
    40.Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Gillespie, J. H. & Langley, C. H. A general model to account for enzyme variation in natural populations. Genetics 76, 837–848 (1974).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Anderson, J. T., Willis, J. H. & Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 27, 258–266 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Oakley, C. G., Ågren, J., Atchison, R. A. & Schemske, D. W. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol. Ecol. 23, 4304–4315 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Price, N. et al. Combining population genomics and fitness QTLs to identify the genetics of local adaptation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 115, 5028–5033 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Abuelsoud, W., Hirschmann, F. & Papenbrock, J. in Drought Stress in Plants Vol. 1 (eds Hossain, M. A. et al.) 227–248 (Springer, 2016).48.Nguyen, D., Rieu, I., Mariani, C. & van Dam, N. M. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 91, 727–740 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Shani, E. M. et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr. Biol. 27, 437–444 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hopkins, R. J., van Dam, N. M. & van Loon, J. J. A. Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54, 57–83 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Burow, M., Müller, R., Gershenzon, J. & Wittstock, U. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol. 32, 2333–2349 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Wagner, M. R. & Mitchell-Olds, T. Plasticity of plant defense and its evolutionary implications in wild populations of Boechera stricta. Evolution 72, 1034–1049 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package version 2.56.0 (2020).55.Wang et al. Correction to: Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 16 (2019).Article 

    Google Scholar 
    56.Carley, L. et al. Data to accompany: Ecological factors influence balancing selection on leaf chemical profiles of a wildflower. Dryad Data https://doi.org/10.5061/dryad.7h44j0zsr (2021).57.Atkinson, N. J., Lilley, C. J. & Urwin, P. E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162, 2028–2041 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Sharma, A. et al. Comprehensive analysis of plant rapid alkalization factor (RALF) genes. Plant Physiol. Biochem. 106, 82–90 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Dutilleul, C., Jourdain, A., Bourguignon, J. & Hugouvieux, V. The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol. 147, 239–251 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Jiang, S.-C. et al. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 88, 369–385 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Wen, J., Vanek-Krebitz, M., Hoffmann-Sommergruber, K., Scheiner, O. & Breitender, H. The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol. Phylogenet. Evol. 8, 317–333 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Koo, A. J., Fulda, M., Browse, J. & Ohlrogge, J. B. Identification of a plastid acyl‐acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. Plant J. 44, 620–632 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Henrissat, B. et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl Acad. Sci. USA 92, 7090–7094 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Longevity and germination of Juniperus communis L. pollen after storage

    A uniform response of the pollen grains towards storage conditions was registered in all five shrubs investigated with a conspicuous decline in germination percentage and pollen tube length after storage. Pollen tube growth reacted more sensitively to storage than germination. The most profound reductions in pollen viability traits were observed in samples stored at + 4 °C. The germination percentage of freshly collected pollen of individual shrubs ranged between 67.3 and 88.6%, whereas that in stored pollen was between 18.0 and 39.6%. In relative terms, storage represented a 49.3–73.2% decline in germination (Fig. 1). The same tendency was also observed in pollen tube growth, when freshly collected pollen possessed 248.0–367.3 µm long pollen tubes, and pollen stored at + 4 °C was characterised by 93.9–218.5 µm long pollen tubes. The corresponding decline reached 32.5–68.7%.Figure 1Graphical illustrations of variation in pollen germination percentage (a) and pollen tube length (b) of individual shrubs revealed in fresh pollen and in pollen under storage. Different letters refer to the statistical significance of the differences between tested individuals and storage variants, resulting from Duncan’s pairwise tests.Full size imageContrary to storage at + 4 °C, pollen stored at − 20 °C had an increased germination by 0.3% in shrub no. 1 and 0.6% in shrub no. 5 as compared with fresh pollen. A more conspicuous increase in pollen germinability was registered in individual no. 4, exhibiting 70.0% germination in fresh pollen and 93.6% in pollen stored at − 20 °C. In the remaining two shrubs (no. 2, 3), only a negligible decline in pollen germination was recorded. The deviation from freshly collected pollen varied within 0.5–16.8%. In general, the germination characteristics of pollen stored at − 20 °C were comparable with those of the fresh pollen and varied between 67.6 and 93.6%. As a second viability trait, pollen tube growth deviated more profoundly from that of fresh pollen than germination. On average, the pollen tube length of pollen stored at − 20 °C ranged from 163.0 to 286.6 µm, which represents a 11.4–45.7% decline compared to fresh pollen (Figs. 1, S1). ANOVA and Duncan`s grouping confirmed the highly significant differences between tested shrubs in both pollen germination percentage (P  More

  • in

    Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin

    1.Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA. 2012;109:16213–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Lloyd KG, May MK, Kevorkian RT, Steen AD. Meta-analysis of quantification methods shows that Archaea and Bacteria have similar abundances in the subseafloor. Appl Environ Microbiol. 2013;79:7790–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Hoshino T, Inagaki F. Abundance and distribution of Archaea in the subseafloor sedimentary biosphere. ISME J. 2019;13:227–31.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Lipp JS, Morono Y, Inagaki F, Hinrichs K-U. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature. 2008;454:991–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv. 2019;5:eaaw4108.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Zhao R, Hannisdal B, Mogollon JM, Jørgensen SL. Nitrifier abundance and diversity peak at deep redox transition zones. Sci Rep. 2019;9:8633.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Hoshino T, Doi H, Uramoto GI, Wörmer L, Adhikari RR, Xiao N, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci. 2020;117:27587–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Durbin AM, Teske A. Archaea in organic-lean and organic-rich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front Microbiol. 2012;3:168.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA. 2006;103:3846–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant archaea in marine sediments degrade detrital proteins. Nature. 2013;496:215–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Yu T, Wu W, Liang W, Lever MA, Hinrichs K-U, Wang F. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci. 2018;115:6022–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541:353–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521:173–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017;357:eaaf3883.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Manoharan L, Kozlowski JA, Murdoch RW, Löffler FE, Sousa FL, Schleper C. Metagenomes from coastal marine sediments give insights into the ecological role and cellular features of Loki-and Thorarchaeota. mBio. 2019;10:e02039–02019.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 2020;577:519–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Farag IF, Zhao R, Biddle JF. “Sifarchaeota” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Microbiol. 2021;87:e02584–02520.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol. 2019;4:1138–48.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature. 2016;539:396–401.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature. 2019;568:108–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Wang Y, Wegener G, Hou J, Wang F, Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol. 2019;4:595–602.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Laso-Pérez R, Hahn C, van Vliet DM, Tegetmeyer HE, Schubotz F, Smit NT, et al. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio. 2019;10:e01814–01819.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate‐reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol. 2016;18:3073–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Martino A, Rhodes ME, León-Zayas R, Valente IE, Biddle JF, House CH. Microbial diversity in sub-seafloor sediments from the Costa Rica Margin. Geosciences. 2019;9:218.CAS 
    Article 

    Google Scholar 
    28.Farag IF, Biddle JF, Zhao R, Martino AJ, House CH, León-Zayas RI. Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME J. 2020;14:1345–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Barry PH, de Moor JM, Giovannelli D, Schrenk M, Hummer DR, Lopez T, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature. 2019;568:487–92.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Expedition 334 Scientists. Site U1379. In Vannucchi, P, Ujiie, K, Stroncik, N, Malinverno, A, and the Expedition 334 Scientists, Proc IODP, 334: Tokyo (Integrated Ocean Drilling Program Management International, Inc) (2012).31.Formolo M, Nuzzo M, Torres M, Solomon E. Expedition I Gas geochemical results from IODP Expedition 334: Influence of subsurface structure and fluid flow on gas composition. In: Proceedings of AGU Fall Meeting Abstracts) 2011.32.Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN, Hodgkins SB, et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 2018;12:2544–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-García IN, Sieber C, et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol. 2019;4:603–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Hua Z-S, Wang YL, Evans PN, Qu YN, Goh KM, Rao YZ, et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat Commun. 2019;10:1–11.Article 
    CAS 

    Google Scholar 
    36.Cai M, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Science China Life Sciences, (2020).37.Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Hahn CJ, Laso-Pérez R, Vulcano F, Vaziourakis KM, Stokke R, Steen IH, et al. “Candidatus Ethanoperedens,” a thermophilic genus of Archaea mediating the anaerobic oxidation of ethane. mBio. 2020;11:e00600–00620.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rastogi S, Liberles DA. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evolut Biol. 2005;5:28.Article 
    CAS 

    Google Scholar 
    40.Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    42.Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio. 2017;8:e00530–00517.PubMed 
    PubMed Central 

    Google Scholar 
    43.Beulig F, Røy H, McGlynn SE, Jørgensen BB. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME J. 2019;13:250–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Dombrowski N, Teske AP, Baker BJ. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun. 2018;9:4999.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Dong X, Greening C, Rattray JE, Chakraborty A, Chuvochina M, Mayumi D, et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun. 2019;10:1816.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol. 2016;34:1256–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Shimoyama T, Kato S, Ishii SI, Watanabe K. Flagellum mediates symbiosis. Science. 2009;323:1574–1574.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Valentine DL, Reeburgh WS. New perspectives on anaerobic methane oxidation: minireview. Environ Microbiol. 2000;2:477–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Vannucchi P, Ujiie K, Stroncik N, the IESP. IODP Expedition 334: An investigation of the sedimentary record, fluid flow and state of stress on top of the seismogenic zone of an erosive subduction margin. Sci Dril. 2013;15:23–30.Article 

    Google Scholar 
    52.Torres ME, Muratli JM, Solomon EA Data report: minor element concentrations in pore fluids from the CRISP-A transect drilled during Expedition 334. In: Proceeding sof IODP | Volume) 2014.53.Riedinger N, Torres ME, Screaton E, Solomon EA, Kutterolf S, Schindlbeck‐Belo J, et al. Interplay of subduction tectonics, sedimentation, and carbon cycling. Geochem, Geophys, Geosyst. 2019;20:4939–55.CAS 
    Article 

    Google Scholar 
    54.Andrews S. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 2010.55.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems. 2020;5:e00920–00920.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Li DH, Liu CM, Luo RB, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Seah BK, Gruber-Vodicka HR. gbtools: interactive visualization of metagenome bins in R. Front. Microbiol. 2015;6:1451.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) (2014).62.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    64.Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–D293.CAS 
    Article 

    Google Scholar 
    65.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research. 2011;40:D109–D114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Garcia PS, Jauffrit F, Grangeasse C. Brochier-Armanet C. GeneSpy, a user-friendly and flexible genomic context visualizer. Bioinformatics. 2018;35:329–31.Article 
    CAS 

    Google Scholar 
    68.Badalamenti JP, Summers ZM, Chan CH, Gralnick JA, Bond DR. Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal-and electrode-respiring bacterium from anoxic deep subsurface brine. Front Microbiol. 2016;7:913.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    70.Hernsdorf AW, Amano Y, Miyakawa K, Ise K, Suzuki Y, Anantharaman K, et al. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 2017;11:1915–29.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Sorek R, Zhu YW, Creevey CJ, Francino MP, Bork P, Rubin EM. Genome-wide experimental determination of barriers to horizontal gene transfer. Science. 2007;318:1449–52.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci USA. 2013;110:5540–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platformfor ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evolut. 2015;32:268–74.CAS 
    Article 

    Google Scholar 
    79.Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evolut. 2018;35:518–22.CAS 
    Article 

    Google Scholar 
    81.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evolut. 2013;30:772–80.CAS 
    Article 

    Google Scholar 
    83.Okonechnikov K, Golosova O, Fursov M, Team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Matheus Carnevali PB, Schulz F, Castelle CJ, Kantor RS, Shih PM, Sharon I, et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat Commun. 2019;10:463.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Kessler AJ, Chen YJ, Waite DW, Hutchinson T, Koh S, Popa ME, et al. Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. Nat Microbiol. 2019;4:1014–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.R Development Core Team. R: a language and environment for statistical computing.). R foundation for statistical computing, Vienna, Austria (2011). More

  • in

    Seasonality modulates the direct and indirect influences of forest cover on larval anopheline assemblages in western Amazônia

    We untangled how the direct and indirect paths of forest cover and water quality variables interact and shape anopheline assemblages in two seasons. Although previous studies determined how environmental variables at different spatial extents affected anopheline distributions in Amazônia, most studies focused on a single effect of an environmental variable or focused on single habitat types (terrestrial or aquatic)22,23,41,42. Our most important finding is that seasonality modulates the direct and indirect effects of forest cover on Amazônian anopheline larval distributions. In particular, we found that forest cover had stronger direct and indirect influence on larval anopheline assemblage composition in the rainy season than the dry season.The different paths and strengths of forest cover influences on anopheline assemblages during the rainy and dry seasons can be associated with the responses of adults and larvae to forest characteristics. Forest cover influences water quality variables of ponds by shading, organic matter inputs and erosion processes43. These effects have consequences for pond water quality44 and favor the establishment of different culicid species45. We showed that during the rainy season, forest cover directly and indirectly influenced site water quality. Greater forest cover in the rainy season directly and indirectly affected A. nimbus and the secondary malaria vectors A. triannulatus and A. braziliensis positively. In the dry season, greater forest cover positively but marginally affected A. peryassui, A. nuneztovari and A. albitarsis, but only indirectly through water quality. Some species like A. triannulatus, A. nuneztovari and A. braziliensis coexist with the malaria vector, A. darlingi, in breeding sites46, and these species have been positively associated with pH, dissolved oxygen and total suspended solids in natural and artificial habitats20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, which are environmental conditions favored by greater forest cover. The marginal indirect effect of forest cover on anopheline assemblage in the dry season suggests that we need caution in the interpretation of this result and long-term temporal data is required to confirm if this effect is corroborated.Forest conditions influence mosquito vectors and their hosts. For example, some mosquitoes are zoophiles that feed on the blood of birds, reptiles, and mammals48, which are often more abundant in conserved areas. Other species are anthropophilic and prefer to feed on human blood49 and altered environments can force these species to migrate and, consequently, to change hosts48. In our study, A. triannulatus and A. minbus were more abundant in sites with more natural characteristics, whereas A. darlingi and A. nuneztovari were more abundant in altered landscapes. In addition, urbanization and deforestation increase the proximities of humans and domestic animals to mosquito vectors and their hosts, thereby maintaining and increasing transmission cycles50.Forest conditions influence anopheline diversity by different paths, which may alter the strength of their seasonal effects. During the dry season, mosquito survival is also affected by altered microclimate (e.g., lower humidity)51 and lentic habitats contain less water, increased nutrient concentrations and decreased abundance and richness of mosquitoes52,53. We observed that rainfall plays an important role in the larval abundance of Anopheles in artificial larval habitats in Manaus. In addition, climatic factors such as rainfall and river levels are strongly associated with vector abundance and malaria cases in the region54,55. During the rainy season, increased water volume in artificial habitats provides more areas for distribution and development of mosquito species56 and we detected a significant increase in abundance of A. triannulatus, A. darlingi and A. nuneztovari. These observations may partially explain why we found a direct effect of forest cover on mosquitoes only during the rainy season.Our results add more evidence that managing and conserving forest cover is important to control anophelines, thereby decreasing the contact of potential vectors (e.g., A. darlingi) with humans. In general, our results support the idea that mosquitoes are directly affected by the loss of native forest cover57 in the rainy season. Mosquitoes associated with serious human diseases (e.g., malaria, yellow fever, dengue, leishmaniasis) are more abundant in areas with low levels of native forest cover14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58. This is a critically important finding because recent studies have shown that forest cover plays an important role in the vector dynamics of mosquitoes and forest conservation keeps pathogens within the forest, avoiding spillover to human settlements59. On the other hand, deforestation provides favorable conditions for these vectors, thereby increasing malária cases and decreasing scores of the Human Development Index60. In addition, there is a positive correlation between mosquito abundance in fragmented forests and the prevalence of Plasmodium, the protozoan that causes malaria61.Artificial larval habitats promote conditions for malaria vectors in Amazônia62,63. Therefore, the best way to develop control techniques would be to understand larval ecology in these habitats, where they are more sensitive to infections by pathogens, parasites, predation, larvicides and growth regulators64. This information is necessary to minimize failures in programs to control or eradicate the vector and the disease. Under this perspective, our study adds a new piece in the puzzle of mosquito control in Amazônia. For example, during the rainy season when forest cover directly and indirectly influences larval habitats, control programs can strengthen the control of key limnological variables, habitat structure, and entomological aspects, intensifying the environmental filter, particularly in areas with little forest cover and greater human concentrations near those habitats. The limnological study of Anopheles larval habitats is still far from complete, as each case has peculiarities inherent to them. Despite attempts, anophelines demonstrate versatility in relation to abiotic parameters20,21,22,23,24,25,26,65,66. However, we can use approaches that modify the larval environments. For example, more efficient management of water levels in fish farming ponds could decrease larval numbers and anopheline reproduction, Similarly, greater rationing of fish feed would decrease the supply of food resources for mosquito larvae. It is also worth mentioning that some variables are related to the efficiency of others. Regarding biological control via entomopathogenic bacteria, environmental factors (solar radiation) and water quality (amounts of total suspended solids and organic matter), can interfere with the effectiveness of the formulated Bacillus sphaericus applied in habitats for vector control62,63,64,65,66,67. Furthermore, eutrophication decreased the assemblages of aquatic invertebrates predating mosquito larvae.Another alternative is the use of physical control (removal of grasses and macrophytes from the edge of habitats), helping to reduce microhabitats that provide larval refuges. Also, increased light and water temperature at the edges favor natural predation and biological control processes from potential fish and macroinvertebrates. The conservation of natural enemies and the use of biotic agents in the population control of vector mosquitoes have been recommended in small and medium-sized natural and artificial breeding sites19,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53. A combination of techniques that shape the important environmental variables for the establishment of these species are essential for vector control.The analytical approach used here opens some windows of opportunity for improvements that are important to be recognized. First, our model did not incorporate important complexity of natural systems, such as ecological interactions among vectors and hosts, including human behavior. Agent-based models, including different host behavior, could provide important insights in this way. Second, our study is very limited in terms of temporal climatic variability. Additional information is needed to better understand the effects of long-term changes in land-use, water quality and climate and their interactions with mosquito assemblages in the region, particularly considering an ecological-evolutionary perspective. Third, it is important to highlight that the magnitude of effects of the estimated drivers were not the same in the rainy and dry seasons. Also, they may not remain constant in coming decades, especially considering potential regional process on mosquito assemblages, such as spillover effects, mass effects and host changes. Fourth, our study was carried out in an area of Amazonia that has experienced, a relatively old land use conversion from forest to urban areas (urban expansion rate of around 12% per year for the past 34 years)68. Beginning in the 1970s, human population increased at a rate of around 23% per decade and 25% in Manaus11. Therefore, the region we studied is very relevant in terms of historical interactions among human populations, mosquitoes and land use changes. However, understanding the effect of these changes on mosquito assemblages in areas with different land-use change dynamics, provides us with important information69, particularly those with very rapid urbanization processes, such as in the Arch of Deforestation70. Lastly, we need studies that consider the nexus among climate and land use changes, human and animal population health, economic conditions, and ecosystem services provided by these forest-urban transitional regions. Such information would facilitate including mosquito information in land use planning and climate mitigation programs based on forest management in and around cities.Therefore, identifying ecological factors and paths that affect the composition of species of epidemiological importance are essential because they inform vector integrated management strategies. We emphasize that larval control in lentic habitats requires knowledge about larval ecology and the effects of biotic and abiotic variables on larvae, especially when it comes to biological controls. The application of integrated pest management can be conducted in both dry and rainy seasons. However, we recommend focusing on the dry season when larval habitats are more limited, in smaller volumes and more accessible for entry and application of vector control techniques. These are critically important considerations because over 2 million people live in Amazonas state11 and anophelines transmitted over 59,637 malaria cases in the Amazon region in the first half of 2020, and about 44.4% came from the state of Amazonas71. More

  • in

    Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology

    1.Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).Article 

    Google Scholar 
    3.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    4.Kooyers, N. J., Greenlee, A. B., Coloicchio, J. M., Oh, M. & Blackman, B. K. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. New Phytol. 206, 152–165 (2015).5.Evans, L. M. et al. Population genomics of Populus trichocarpa identifies signature of selection and adaptive trait associations. Nat. Genet. 46, 1089–1096 (2016).Article 
    CAS 

    Google Scholar 
    6.Wadgymar, S. M., Daws, S. C. & Anderson, J. T. Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines. Evol. Lett. 1, 26–39 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Nord, E. A. & Lynch, J. P. Plant phenology: a critical controller of soil resource acquisition. J. Exp. Bot. 60, 1927–1937 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Polgar, C. A. & Primack, R. B. Tansley review: leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol. 191, 926–941 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Stephens, P. A. et al. Consistent response of bird population to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wagner, M. R. et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol. Lett. 17, 717–726 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Lu, T. et al. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231 (2018).14.Friesen, M. et al. Microbially mediated plant functional traits. Ann. Rev. Ecol. Evol. Syst. 42, 23–46 (2011).Article 

    Google Scholar 
    15.Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Panke-Buisse, K., Poole, A., Goodrich, J., Ley, R. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Fitzpatrick, C. R., Mustafa, Z. & Viliunas, J. Soil microbes alter plant fitness under competition and drought. J. Evol. Biol. https://doi.org/10.1111/jeb.13426 (2019).19.Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl Acad. Sci. USA 109, 14058–14062 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Van Nuland, M. E., Ware, I. M., Bailey, J. K. & Schweitzer, J. A. Ecosystem feedbacks contribute to geographic variation in the plant-soil evolutionary dynamics across fertility gradient. Funct. Ecol. 33, 95–106 (2019).21.Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K. & Vivanco, J. M. Soil microbiome vary in their ability to confer drought tolerance to Arabidopsis. Appl. Soil Ecol. 68, 1–9 (2013).Article 

    Google Scholar 
    22.Gehring, C. A., Sthultz, C. M., Flores-Renteria, L., Whipple, A. V. & Whitham, T. G. Tree genetics defines fungal partner communities that may confer drought tolerance. Proc. Natl Acad. Sci. USA 114, 11169–11174 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Woolbright, S. A., Whitham, T. G., Gehring, C. A., Allan, G. J. & Bailey, J. K. Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol. 29, 406–416 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lankau, R. A., Zhu, K. & Ordonez, A. Mycorrhizal strategies of tree species correlate with trailing range edge responses to current and past climate change. Ecology 96, 1451–1458 (2015).Article 

    Google Scholar 
    25.Ware, I. M. et al. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).Article 

    Google Scholar 
    26.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fung. Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    27.Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil Microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Martiny, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–111 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns of belowground communities. Ecol. Lett. 12, 1238–1249 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Fierer, N. et al. Comparative metagenomic, phylogenetic, and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Waldrop, M. P. et al. The interacting roles of climate, soils, and plant production, on soil microbial communities at a continental scale. Ecology 98, 1957–1967 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Nelson, M. B., Martiny, A. C. & Martiny, J. B. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schweitzer, J. A. et al. Plant-soil-microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89, 773–781 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.de Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Delgado-Baquerizo, M. et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytol. 219, 574–587 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Menzel, A. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol. 44, 76–81 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Morin, X. et al. Leaf phenology in 22 North American tree species during the 21st century. Glob. Change Biol. 15, 961–975 (2010).Article 

    Google Scholar 
    39.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Renwick, K. M. & Rocca, M. E. Temporal context affects the observed rate of climate-driven range shifts in tree species. Glob. Ecol. Biogeog. 24, 44–51 (2015).Article 

    Google Scholar 
    41.Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Kivlin, S. N., Emery, S. M. & Rudgers, J. A. Fungal symbionts alter plant responses to global change. Am. J. Bot. 100, 1445–1457 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils. New Phytol. 209, 1382–1394 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Fisher, D. G. et al. Plant genetic effects on soils under climate change. Plant Soil 379, 1–19 (2014).46.van der Wal, A., Geyden, T. D., Kuyper, T. W. & de Boer, W. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol. Rev. 37, 477–494 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Perez-Izquierdo, L. et al. Plant intraspecific variation modulates nutrient cycling through its belowground rhizospheric microbiome. J. Ecol. 107, 1594–1605 (2019).Article 

    Google Scholar 
    48.Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, https://doi.org/10.1126/science.aav0550 (2019).49.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.van der Putten, W. H., Bradford, M. A., Brinkman, E. P., van de Voorde, T. F. J. & Veen, G. F. Where, when and how plant-soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).Article 

    Google Scholar 
    51.Van Nuland, M. E. et al. Plant-soil feedbacks: connecting ecosystem ecology and evolution. Funct. Ecol. 30, 1032–1042 (2016).Article 

    Google Scholar 
    52.Ware, I. M. et al. Feedbacks link ecosystem ecology and evolution across spatial and temporal scales: empirical evidence and future directions. Funct. Ecol. 33, 31–42 (2019).Article 

    Google Scholar 
    53.Cooke, J. E. K. & Rood, S. B. Trees of the people: the growing science of poplars in Canada and worldwide. Can. J. Bot. 85, 1103–1110 (2007).Article 

    Google Scholar 
    54.Evans, L. M., Allan, G. J., Meneses, N., Max, T. L. & Whitham, T. G. Herbivore host-associated genetic differentiation depends on the scale of plant genetic variation examined. Evol. Ecol. 27, 65–81 (2013).Article 

    Google Scholar 
    55.Hijmans, R. J., Cameron, S. E., Para, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    56.Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J. & Schadt, C. W. Soil microbial community responses to multiple experimental climate change drivers. Appl. Environ. Microbiol. 76, 999–1007 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Van Nuland, M. E., Bailey, J. B. & Schweitzer, J. A. Divergent plant-soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nature Ecol. Evol. https://doi.org/10.1038/s41559-017-0150 (2017).59.Richardson, A. D. et al. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Phys. 29, 321–331 (2009).CAS 
    Article 

    Google Scholar 
    60.Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. Roy. Soc. B Biol. Sci. 365, 3227–3246 (2010).Article 

    Google Scholar 
    61.Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Tremblay, J. et al. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 6, 771 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    63.Chao, A., Chiu, C. H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Ann. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).Article 

    Google Scholar 
    64.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    65.Ma, Z. Measuring microbiome diversity and similarity with Hill numbers. Metagenomics https://doi.org/10.1016/B978-0-08-102268-9.00008-2 (2018).66.Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    67.Fitzpatrick, M. C. et al. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc. Biol. Sci. 280, 20131201 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    68.R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org (R Foundation for Statistical Computing, 2016). More

  • in

    A millennium of trophic stability in Atlantic cod (Gadus morhua): transition to a lower and converging trophic niche in modern times

    1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: Why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).Article 

    Google Scholar 
    7.Misarti, N., Finney, B. P., Maschner, H. & Wooller, M. J. Changes in northeast Pacific marine ecosystems over the last 4500 years: Evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19, 1139–1151 (2009).ADS 
    Article 

    Google Scholar 
    8.Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, 35–39 (2012).
    Google Scholar 
    9.Szpak, P., Orchard, T. J., Mckechnie, I. & Gröcke, D. R. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: Isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).Article 

    Google Scholar 
    10.McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. USA 111, E807–E816 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Orton, D. C. Archaeology as a tool for understanding past marine resource use and its impact. In Perspectives on Oceans Past (eds Schwerdtner Máñez, K. & Poulsen, B.) 47–69 (Springer, 2016).
    Google Scholar 
    12.Barrett, J. H., Locker, A. M. & Roberts, C. M. The origins of intensive marine fishing in medieval Europe: The English evidence. Proc. R. Soc. Lond. B. 271, 2417–2421 (2004).Article 

    Google Scholar 
    13.Edvardsson, R. The Role of Marine Resources in the Medieval Economy of Vestfirðir, Iceland (CUNY, 2019).
    Google Scholar 
    14.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    15.Wada, E., Kabaya, Y. & Kurihara, Y. Stable isotopic structure of aquatic ecosystems. J. Biosci. 18, 483–499 (1993).CAS 
    Article 

    Google Scholar 
    16.Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta. 48, 1135–1140 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Newsome, S. D. et al. Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: Isotopic analysis of northern fur seal teeth. Mar. Ecol. Prog. Ser. 332, 211–224 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: A long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    20.Emslie, S. D. & Patterson, W. P. Abrupt recent shift in δ13C and δ15N values in Adélie Penguin eggshell in Antarctica. Proc. Natl. Acad. Sci. USA 104, 11666–11669 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Emslie, S. D., Polito, M. J. & Patterson, W. P. Stable isotope analysis of ancient and modern Gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct. Sci. 25, 213–218 (2013).ADS 
    Article 

    Google Scholar 
    22.Drinkwater, K. F. The regime shift of the 1920s and 1930s in the North Atlantic. Prog. Oceanogr. 68, 134–151 (2006).ADS 
    Article 

    Google Scholar 
    23.Ástþórsson, Ó. S., Gíslason, Á. & Jónsson, S. Climate variability and the Icelandic marine ecosystem. Deep-Sea Res. PT II(54), 2456–2477 (2007).ADS 
    Article 

    Google Scholar 
    24.Edvardsson, R., Bárðarson, H., Patterson, W. P., Timsic, S. & Ólafsdóttir, G. Á. Change in Atlantic cod migrations and adaptability of early land-based fishers to severe climate variation in the North Atlantic. Quat. Res. (In press).25.Dahl-Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Ogilvie, A. E. & Jonsson, T. The Iceberg in the Mist: Northern Research in Pursuit of a Little Age (Kluwer Academic, 2001).Book 

    Google Scholar 
    27.Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K. L. & Seidenkrantz, M. S. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology 33, 73–76 (2005).ADS 
    Article 

    Google Scholar 
    28.Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522–538 (2010).ADS 
    Article 

    Google Scholar 
    29.Patterson, W. P., Dietrich, K. A., Holmden, C. & Andrews, J. T. Two millennia of North Atlantic seasonality and implications for Norse colonies. Proc. Natl. Acad. Sci. USA 107, 5306–5310 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Geffen, A. J. et al. High-latitude climate variability and its effect on fisheries resources as revealed by fossil cod otoliths. ICES J. Mar. Sci. 68, 1081–1089 (2011).Article 

    Google Scholar 
    31.Ólafsdóttir, G. Á., Westfall, K. M., Edvardsson, R. & Pálsson, S. Historical DNA reveals the demographic history of Atlantic cod (Gadus morhua) in medieval and early modern Iceland. Proc. R. Soc. Lond. B. 281, 20132976 (2014).
    Google Scholar 
    32.Ólafsdóttir, G. Á., Pétursdóttir, G., Bárðarson, H. & Edvardsson, R. A millennium of north-east Atlantic cod juvenile growth trajectories inferred from archaeological otoliths. PLoS One 12, e0187134 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).Article 

    Google Scholar 
    34.Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).Article 

    Google Scholar 
    37.Persson, A. & Hansson, L. A. Diet shift in fish following competitive release. CJFAS 56, 70–78 (1999).
    Google Scholar 
    38.Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, e103132 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Bas, M. et al. Back to the future? Late Holocene marine food web structure in a warm climatic phase as a predictor of trophodynamics in a warmer South-Western Atlantic Ocean. Glob. Change Biol. 25, 404–419 (2019).ADS 
    Article 

    Google Scholar 
    40.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev. 106, 131–148 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Bas, M. & Cardona, L. Effects of skeletal element identity, delipidation and demineralization on the analysis of stable isotope ratios of C and N in fish bone. J. Fish. Biol. 92, 420–437 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Harrison, R. The Siglunes 2011/12 Archaeofauna. Interim Report on the Fishing Station’s Sampled Faunal Remains. (http://www.nabohome.org/uploads/ramonah/RH_Siglunes_Faunal_Report_5_30_2014.pdf (2014).43.Lárusdóttir, B., Roberts, H. M., Þorgeirsdóttir, S. S., Harrison, R. & Sigurgeirsson, Á. Siglunes. Archaeological investigations in 2011. http://www.nabohome.org/uploads/ramonah/FS480-11121_Siglunes_2011.pdf (2012).44.Leyden, J. J., Wassenaar, L. I., Hobson, K. A. & Walker, E. G. Stable hydrogen isotopes of bison bone collagen as a proxy for Holocene climate on the Northern Great Plains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 87–99 (2006).Article 

    Google Scholar 
    45.Craig, H. Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science 133, 1702–1703 (1961).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob. Change Biol. 12, 611–625 (2006).ADS 
    Article 

    Google Scholar 
    48.Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    49.Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Glob. Biogeochem. Cycles 13, 307–335 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & Mcnichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob. Biogeochem. Cycles 17, 1–20 (2003).Article 
    CAS 

    Google Scholar 
    51.Quay, P. D., Tilbrook, B. & Wong, C. S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256, 74–79 (1992).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.1 (2020).53.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Þór, J. Þ. British Trawlers in Icelandic Waters: History of British Steam Trawling off Iceland, 1889–1916, and the Anglo-Icelandic Fisheries Dispute, 1896–1897 (Fjölvi, 1992).
    Google Scholar 
    57.Þór, J. Þ. Saga Sjávarútvegs á Íslandi. 1902–1939 Vélaöld (Bókaútgáfan Hólar, 2003).
    Google Scholar 
    58.Gill, A. B. The dynamics of prey choice in fish: The importance of prey size and satiation. J. Fish. Biol. 63, 105–116 (2003).Article 

    Google Scholar 
    59.Jennings, S. Size-based analyses of aquatic food webs. In Aquatic Food Webs: An Ecosystem Approach (eds Belgrano, A. et al.) 86–97 (Oxford University Press, 2005).Chapter 

    Google Scholar 
    60.Zenteno, L. et al. Dietary consistency of male South American sea lions (Otaria flavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Biol. 162, 275–289 (2015).CAS 
    Article 

    Google Scholar 
    61.Vales, D. G. et al. Holocene changes in the trophic ecology of an apex marine predator in the South Atlantic Ocean. Oecologia 183, 555–570 (2017).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Bas, M. et al. Predicting habitat use by the Argentine hake Merluccius hubbsi in a warmer world: Inferences from the Middle Holocene. Oecologia 193, 461–474 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Sharpe, D. M. & Chapman, L. J. Niche expansion in a resilient endemic species following introduction of a novel top predator. Freshw. Biol. 59, 2539–2554 (2014).Article 

    Google Scholar 
    64.Jaworski, A. & Ragnarsson, S. Á. Feeding habits of demersal fish in Icelandic waters: A multivariate approach. ICES J. Mar. Sci. 63, 1682–1694 (2006).Article 

    Google Scholar 
    65.Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).Article 

    Google Scholar 
    66.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).Article 

    Google Scholar 
    67.Jennings, S. & Van Der Molen, J. Trophic levels of marine consumers from nitrogen stable isotope analysis: Estimation and uncertainty. ICES J. Mar. Sci. 72, 2289–2300 (2015).Article 

    Google Scholar 
    68.MFRI. Atlantic cod Gadus morhua (MFRI Assessment Reports 2020). Marine and Freshwater Research Institute. https://www.hafogvatn.is/static/extras/images/01-cod_tr_isl1232625.pdf (2020).69.Thorsteinsson, V., Pálsson, Ó. K., Tómasson, G. G., Jónsdóttir, I. G. & Pampoulie, C. Consistency in the behaviour types of the Atlantic cod: Repeatability, timing of migration and geo-location. Mar. Ecol. Prog. Ser. 462, 251–260 (2012).ADS 
    Article 

    Google Scholar  More

  • in

    Upper limits to sustainable organic wheat yields

    1.Goulding, K., Trewavas, A. & Giller, K. E. Feeding the world: a contribution to the debate. World Agric. 2, 32–38 (2011).
    Google Scholar 
    2.Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    3.Epule, T. E. Organic Farming 1–16 (Elsevier, 2019).Book 

    Google Scholar 
    4.FAO. FAO Statistical Pocketbook 2015: World Food and Agriculture. Food and Agriculture Organization; ISBN 978-92-5-108802-9. http://www.fao.org/documents/card/en/c/383d384a-28e6-47b3-a1a2-2496a9e017b2/. Accessed 30 November 2016, 2015.5.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    6.Hazell, P. & Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 495–515 (2008).Article 

    Google Scholar 
    7.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Ladha, J. et al. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6, 19355 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    9.de Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).Article 

    Google Scholar 
    10.Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    11.Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. Lond. B Biol. Sci. 282, 20141396 (2015).
    Google Scholar 
    12.Connor, D. J. Organically grown crops do not a cropping system make and nor can organic agriculture nearly feed the world. Field Crops Res. 144, 145–147. https://doi.org/10.1016/j.fcr.2012.12.013 (2013).Article 

    Google Scholar 
    13.Berry, P. M. et al. Is the productivity of organic farms restricted by the supply of available nitrogen?. Soil Use Manag. 18, 248–255 (2002).Article 

    Google Scholar 
    14.Adamtey, N. et al. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 235, 61–79 (2016).Article 

    Google Scholar 
    15.Poudel, D., Horwath, W., Lanini, W., Temple, S. & Van Bruggen, A. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 90, 125–137 (2002).CAS 
    Article 

    Google Scholar 
    16.Kravchenko, A. N., Snapp, S. S. & Robertson, G. P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Nat. Acad. Sci. 114, 926–931 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).Article 

    Google Scholar 
    18.David, C., Jeuffroy, M., Henning, J. & Meynard, J. Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron. Sust. Dev. 25, 213 (2005).Article 

    Google Scholar 
    19.Köpke, U. Nutrient management in organic farming systems—The Case of Nitrogen. Biol. Agr. Hort. 11, 15–29 (1995).Article 

    Google Scholar 
    20.Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R. & Rayns, F. W. Managing soil fertility in organic farming systems. Soil Use Manag. 18, 239–247 (2002).Article 

    Google Scholar 
    21.Watson, C. et al. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag. 18, 264–273 (2002).Article 

    Google Scholar 
    22.Nimmo, J., Lynch, D. & Owen, J. Quantification of nitrogen inputs from biological nitrogen fixation to whole farm nitrogen budgets of two dairy farms in Atlantic Canada. Nutr. Cycl. Agroecosyst. 96, 93–105 (2013).Article 

    Google Scholar 
    23.Van Kessel, C. & Hartley, C. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?. Field Crops Res. 65, 165–181 (2000).Article 

    Google Scholar 
    24.Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).CAS 
    Article 

    Google Scholar 
    25.Smith, O. M. et al. Organic farming provides reliable environmental benefits but increases variability in crop yields: A global meta-analysis. Front. Sustain. Food Syst. 3, 82 (2019).Article 

    Google Scholar 
    26.Becker, M., Ali, M., Ladha, J. & Ottow, J. Agronomic and economic evaluation of Sesbania rostrata green manure establishment in irrigated rice. Field Crops Res. 40, 135–141 (1995).Article 

    Google Scholar 
    27.Ventura, W. & Watanabe, I. Green manure production of Azolla microphylla and Sesbania rostrata and their long-term effects on rice yields and soil fertility. Biol. Fert. Soils 15, 241–248 (1993).CAS 
    Article 

    Google Scholar 
    28.Bussink, D. & Oenema, O. Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr. Cycl. Agroecosyst. 51, 19–33 (1998).Article 

    Google Scholar 
    29.Fillery, I. The fate of biologically fixed nitrogen in legume-based dryland farming systems: a review. Anim. Prod. Sci. 41, 361–381 (2001).CAS 
    Article 

    Google Scholar 
    30.Oenema, O., Witzke, H., Klimont, Z., Lesschen, J. & Velthof, G. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric. Ecosyst. Environ. 133, 280–288 (2009).CAS 
    Article 

    Google Scholar 
    31.Graham, P. H. & Vance, C. P. Legumes: Importance and constraints to greater use. Plant Physiol. 131, 872–877 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Cassman, K., Whitney, A. & Stockinger, K. Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen source. Crop Sci. 20, 239–244 (1980).CAS 
    Article 

    Google Scholar 
    33.Gunawardena, S., Danso, S. & Zapata, F. Phosphorus requirement and sources of nitrogen in three soybean (Glycine max) genotypes, Bragg, nts 382 and Chippewa. Plant Soil 151, 1–9 (1993).CAS 
    Article 

    Google Scholar 
    34.Scherer, H., Pacyna, S., Manthey, N. & Schulz, M. Sulphur supply to peas (Pisum sativum L.) influences symbiotic N2 fixation. Plant Soil Environ. 52, 72–77 (2006).CAS 
    Article 

    Google Scholar 
    35.Anderson, A. & Spencer, D. Molybdenum in nitrogen metabolism of legumes and non-legumes. Aust. J. Sci. Res. 3, 414–430 (1950).CAS 

    Google Scholar 
    36.Fuchs, J. G. et al. Evaluation of the causes of legume yield depression syndrome using an improved diagnostic tool. Appl. Soil Ecol. 79, 26–36 (2014).Article 

    Google Scholar 
    37.Cassmann, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen use efficiency and nitrogen management. J. Human Environ. 31, 132–140 (2002).Article 

    Google Scholar 
    38.Kramer, A. W., Doane, T. A., Horwath, W. R. & van Kessel, C. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agric. Ecosyst. Envir. 91, 233–243 (2002).Article 

    Google Scholar 
    39.Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    40.van Bruggen, A. H. C. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Dis. 79, 976–984 (1995).Article 

    Google Scholar 
    41.Zehnder, G. et al. Arthropod pest management in organic crops. Annu. Rev. Entomol. 52, 57–80 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bond, W. & Grundy, A. C. Non-chemical weed management in organic farming systems. Weed Res. 41, 383–405 (2001).Article 

    Google Scholar 
    43.Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycl. 23, 99. https://doi.org/10.1029/2009GB003576 (2009).CAS 
    Article 

    Google Scholar 
    44.Lu, C. C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Sci. Data 9, 181 (2017).Article 
    ADS 

    Google Scholar 
    45.Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycl. 13, 647–662 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    46.Crews, T. & Peoples, M. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Envir. 102, 279–297 (2004).Article 

    Google Scholar 
    47.Köpke, U. & Nemecek, T. Ecological services of faba bean. Field Crops Res. 115, 217–233. https://doi.org/10.1016/j.fcr.2009.10.012 (2010).Article 

    Google Scholar 
    48.Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390–397 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Peterson, T. A. & Russelle, M. P. Alfalfa and the nitrogen cycle in the Corn Belt. J. Soil Water Conserv. 46, 229–235 (1991).
    Google Scholar 
    50.Peoples, M., Herridge, D. & Ladha, J. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production?. Plant Soil 174, 3–28 (1995).CAS 
    Article 

    Google Scholar 
    51.Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).Article 

    Google Scholar 
    53.Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    54.Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Kijlstra, A. & Eijck, I. Animal health in organic livestock production systems: A review. NJAS-Wagen. J. Life Sci. 54, 77–94 (2006).Article 

    Google Scholar 
    56.Kramer, S. B., Reganold, J. P., Glover, J. D., Bohannan, B. J. M. & Mooney, H. A. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. PNAS 103, 4522–4527 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    57.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    58.Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sust. 2, 34–42 (2010).Article 

    Google Scholar 
    59.Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 447–465 (2008).PubMed 
    Article 

    Google Scholar 
    60.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    61.Haas, G., Wetterich, F. & Kopke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Envir. 83, 43–53 (2001).Article 

    Google Scholar 
    62.Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945. https://doi.org/10.1016/j.envpol.2010.06.006 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Primary production ultimately limits fisheries economic performance

    1.Kildow, J. T. & McIlgorm, A. The importance of estimating the contribution of the oceans to national economies. Mar. Policy 34, 367–374 (2010).Article 

    Google Scholar 
    2.Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).Article 

    Google Scholar 
    4.National Marine Fisheries Service. Fisheries Economics of the United States, 2016. US Dept. of Commerce, NOAA Tech. Memo. NMFS-F/SPO-187 (2018).5.Jennings, S., Lee, J. & Hiddink, J. G. Assessing fishery footprints and the trade-offs between landings value, habitat sensitivity, and fishing impacts to inform marine spatial planning and an ecosystem approach. ICES J. Mar. Sci. 69, 1053–1063 (2012).Article 

    Google Scholar 
    6.Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. USA 114, E1441–E1449 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).Article 

    Google Scholar 
    12.Marshall, K. N. et al. Ecosystem-based fisheries management for social–ecological systems: Renewing the focus in the United States with next generation fishery ecosystem plans. Conserv. Lett. 11, e12367 (2018).Article 

    Google Scholar 
    13.Link, J. Ecosystem-Based Fisheries Management: Confronting Tradeoffs (Cambridge University Press, 2010).Book 

    Google Scholar 
    14.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    15.Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).PubMed 
    Article 

    Google Scholar 
    17.Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Murawski, S. A. Definitions of overfishing from an ecosystem perspective. ICES J. Mar. Sci. 57, 649–658 (2000).Article 

    Google Scholar 
    19.Breitburg, D. L. et al. Nutrient enrichment and fisheries exploitation: Interactive effects on estuarine living resources and their management. Hydrobiologia 629, 31–47 (2009).CAS 
    Article 

    Google Scholar 
    20.Hondorp, D. W., Breitburg, D. L. & Davias, L. A. Eutrophication and fisheries: Separating the effects of nitrogen loads and hypoxia on the pelagic-to-demersal ratio and other measures of landings composition. Mar. Coast. Fish. 2, 339–361 (2010).Article 

    Google Scholar 
    21.Link, J. S. et al. Emergent properties delineate marine ecosystem perturbation and recovery. Trends Ecol. Evol. 30, 649–661 (2015).PubMed 
    Article 

    Google Scholar 
    22.Tam, J. C. et al. Comparing apples to oranges: Common trends and thresholds in anthropogenic and environmental pressures across multiple marine ecosystems. Front. Mar. Sci. 4, 282 (2017).Article 

    Google Scholar 
    23.Link, J. S. et al. Marine ecosystem assessment in a fisheries management context. Can. J. Fish. Aquat. Sci. 59, 1429–1440 (2002).Article 

    Google Scholar 
    24.Garcia, S. M., Rice, J. & Charles, A. Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-evolution (Wiley-Blackwell, 2014).Book 

    Google Scholar 
    25.Colloca, F. et al. Rebuilding Mediterranean fisheries: A new paradigm for ecological sustainability. Fish Fish. 14, 89–109 (2013).Article 

    Google Scholar 
    26.National Oceanic and Atmospheric Administration (NOAA), Office for Coastal Management (OCM), NOAA Report on the US Marine Economy. NOAA OCM. 23p. https://coast.noaa.gov/digitalcoast/training/econreport.html (2020).27.Teh, L. C. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).Article 

    Google Scholar 
    28.Laterra, P. et al. How are jobs and ecosystem services linked at the local scale?. Ecosyst. Serv. 35, 207–218 (2019).Article 

    Google Scholar 
    29.Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).ADS 
    Article 

    Google Scholar 
    30.Graham, N. A. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Koslow, J. A. & Davison, P. C. Productivity and biomass of fishes in the California Current Large Marine Ecosystem: Comparison of fishery-dependent and-independent time series. Environ. Dev. 17, 23–32 (2016).Article 

    Google Scholar 
    32.Kahru, M., Kudela, R., Manzano-Sarabia, M. & Mitchell, B. G. Trends in primary production in the California Current detected with satellite data. J. Geophys. Res. Oceans 114, C02004 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    33.Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. ICES J. Mar. Sci. 70, 755–767 (2013).Article 

    Google Scholar 
    34.Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Critical points in ecosystem responses to fishing and environmental pressures. Mar. Ecol. Progr. Ser. 521, 1–17 (2015).ADS 
    Article 

    Google Scholar 
    35.Fogarty, M. J. & Murawski, S. A. Large-scale disturbance and the structure of marine systems: Fishery impacts on Georges Bank. Ecol. Appl. 8(sp1), S6–S22 (1998).Article 

    Google Scholar 
    36.Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).ADS 
    Article 

    Google Scholar 
    37.Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).ADS 
    Article 

    Google Scholar 
    38.Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2010).ADS 
    Article 

    Google Scholar 
    39.Banse, K. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 409–440 (Springer, 1992).Chapter 

    Google Scholar 
    40.Murray, C. J. et al. Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2 (2019).Article 

    Google Scholar 
    41.Möllmann, C. Effects of climate change and fisheries on the marine ecosystem of the Baltic Sea. In Oxford Research Encyclopedia of Climate Science (ed. Möllmann, C.) (University Press, 2019). https://doi.org/10.1093/acrefore/9780190228620.013.682.Chapter 

    Google Scholar 
    42.Intergovernmental Oceanographic Commission (IOC-UNESCO) and United Nations Environmental Program (UNEP). Large Marine Ecosystems: Status and Trends (United Nations Environment Programme UNEP, 2016).
    Google Scholar 
    43.Sangha, K. K., Stoeckl, N., Crossman, N. & Costanza, R. A state-wide economic assessment of coastal and marine ecosystem services to inform sustainable development policies in the Northern Territory, Australia. Mar. Policy 107, 103595 (2019).Article 

    Google Scholar 
    44.Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. USA 117, 2218–2224 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.McGowan, J. A., Bograd, S. J., Lynn, R. J. & Miller, A. J. The biological response to the 1977 regime shift in the California Current. Deep Sea Res. Pt. II 50(14–16), 2567–2582 (2003).ADS 
    Article 

    Google Scholar 
    46.Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60(2–4), 245–262 (2004).ADS 
    Article 

    Google Scholar 
    47.Kirkman, S. P. et al. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: A comparative assessment. Fish. Oceanogr. 24(S1), 15–30 (2015).Article 

    Google Scholar 
    48.Link, J. S., Watson, R. A., Pranovi, F. & Libralato, S. Comparative production of fisheries yields and ecosystem overfishing in African Large Marine Ecosystems. Environ. Devel. 36, 100529 (2020).Article 

    Google Scholar 
    49.Ye, Y. et al. Rebuilding global fisheries: The World Summit Goal, costs and benefits. Fish Fish. 14, 174–185 (2013).Article 

    Google Scholar 
    50.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ding, Q., Chen, X., Hilborn, R. & Chen, Y. Vulnerability to impacts of climate change on marine fisheries and food security. Mar. Policy 83, 55–61 (2017).Article 

    Google Scholar 
    52.NOAA Fisheries. NMFS Headquarters Ecosystem Based Fisheries Management Implementation Plan (NOAA Fisheries, 2019).
    Google Scholar 
    53.Witherell, D., Pautzke, C. & Fluharty, D. An ecosystem-based approach for Alaska groundfish fisheries. ICES J. Mar. Sci. 57, 771–777 (2000).Article 

    Google Scholar 
    54.National Aeronautics and Space Administration (NASA). NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Data. NASA OB.DAAC, Greenbelt, MD, USA. (2014)55.Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    56.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Peters, R. et al. Habitat science is a fundamental element in an ecosystem-based fisheries management framework: an update to the Marine Fisheries Habitat Assessment Improvement Plan. US Dept. of Commerce, NOAA. NOAA Tech. Memo. NMFS-F/SPO-181. (2018).58.Cannizzaro, J. P. & Carder, K. L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 101, 13–24 (2006).ADS 
    Article 

    Google Scholar 
    59.Reid, R. N., Almeida, F. P., & Zetlin, C. A. Essential fish habitat source document: Fishery-independent surveys, data sources, and methods. NOAA Tech. Memo. NMFS NE 122. (1999).60.Stauffer, G. NOAA Protocols for Groundfish Bottom Trawl Surveys of the Nation’s Fishery Resources. US Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-65. (2004).61.National Ocean Economics Program. State of the US Ocean and Coastal Economies 2016 Update. Middlebury Institute of International Studies at Monterey, Center for the Blue Economy. (2016).62.Craig, M. T. et al. Status review report of Pacific bluefin tuna (Thunnus orientalis). NOAA Tech. Memo. NMFS-SWFSC-587. (2017).63.National Oceanic and Atmospheric Administration (NOAA). Spatial trends in coastal socioeconomics (STICS): Coastal county definitions. NOAA. 12p. https://coast.noaa.gov/htdata/SocioEconomic/NOAA_CoastalCountyDefinitions.pdf (2013).64.National Oceanic and Atmospheric Administration (NOAA). NOAA Office of Coast Survey maritime zones of the United States. NOAA. (2021). https://nauticalcharts.noaa.gov/data/us-maritime-limits-and-boundaries.html.65.Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 1–9 (2017).Article 

    Google Scholar 
    66.NOAA Fisheries. National marine fisheries service—2nd quarter 2017 update. NOAA Fisheries 53p. (2017). More