Ecological factors influence balancing selection on leaf chemical profiles of a wildflower
1.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).2.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article
Google Scholar
3.Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26, 1101–1118 (2012).Article
Google Scholar
4.Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed
Article
PubMed Central
Google Scholar
5.Kulbaba, M. W., Sheth, S. N., Pain, R. E., Eckhart, V. M. & Shaw, R. G. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 73, 1746–1758 (2019).PubMed
Article
PubMed Central
Google Scholar
6.Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).PubMed
Article
PubMed Central
Google Scholar
7.Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B 279, 3843–3852 (2012).PubMed
Article
PubMed Central
Google Scholar
9.Steffen, W., Crutzen, P. J. & McNeil, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
10.Zhang, X.-S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).PubMed
Article
PubMed Central
Google Scholar
11.McGuigan, K., Aguirre, J. D. & Blows, M. W. Simultaneous estimation of additive and mutational genetic variance in an outbred population of Drosophila serrata. Genetics 201, 1239–1251 (2015).PubMed
PubMed Central
Article
Google Scholar
12.Huang, W. et al. Spontaneous mutations and the origin and maintenance of quantitative genetic variation. eLife 5, e14625 (2016).PubMed
PubMed Central
Article
Google Scholar
13.Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8, 845–856 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
14.Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Subramaniam, B. & Rausher, M. D. Balancing selection on a floral polymorphism. Evolution 54, 691–695 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).PubMed
PubMed Central
Article
CAS
Google Scholar
17.Hedrick, P. W. & Thomson, G. Evidence for balancing selection at HLA. Genetics 104, 449–456 (1983).CAS
PubMed
PubMed Central
Article
Google Scholar
18.Troth, A., Puzey, J. R., Kim, R. S., Willis, J. H. & Kelly, J. K. Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science 361, 475–478 (2018).CAS
PubMed
PubMed Central
Google Scholar
19.Delph, L. F. & Kelly, J. K. On the importance of balancing selection in plants. N. Phytol. 201, 45–56 (2014).Article
Google Scholar
20.Anderson, J. T., Wagner, M. R., Rushworth, C. A., Prasad, K. V. S. K. & Mitchell-Olds, T. The evolution of quantitative traits in complex environments. Heredity 112, 4–12 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).PubMed
Article
PubMed Central
Google Scholar
22.Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).PubMed
Article
PubMed Central
Google Scholar
23.Carmona, D., Lajeunesse, M. J. & Johnson, M. T. Plant traits that predict resistance to herbivores. Funct. Ecol. 25, 358–367 (2011).Article
Google Scholar
24.DeLucia, E. H., Nabity, P. D., Zavala, J. A. & Berenbaum, M. R. Climate change: resetting plant–insect interactions. Plant Physiol. 160, 1677–1685 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
25.Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).PubMed
Article
CAS
PubMed Central
Google Scholar
26.Prasad, K. V. S. K. et al. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337, 1081–1084 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Bergelson, J., Dwyer, G. & Emerson, J. J. Models and data on plant–enemy coevolution. Annu. Rev. Genet. 35, 469–499 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Hodgins, K. A. & Barrett, S. C. H. Female reproductive success and the evolution of mating-type frequencies in tristylous populations. N. Phytol. 171, 569–580 (2006).Article
Google Scholar
29.Trotter, M. V. & Spencer, H. G. Complex dynamics occur in a single-locus, multiallelic model of general frequency-dependent selection. Theor. Popul. Biol. 76, 292–298 (2009).PubMed
Article
PubMed Central
Google Scholar
30.Tuinstra, M. R., Ejeta, G. & Goldsbrough, P. B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic loci that differ at quantitative traits. Theor. Appl. Genet. 95, 1005–1011 (1997).CAS
Article
Google Scholar
31.Salehin, M. et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat. Commun. 10, 4021 (2019).PubMed
PubMed Central
Article
Google Scholar
32.Hossain, M. S. et al. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 77, 977–983 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
33.Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
34.Wang, B. et al. Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 126 (2019).PubMed
PubMed Central
Article
Google Scholar
35.Bloom, T. C., Baskin, J. M. & Baskin, C. C. Ecological life history of the facultative woodland biennial Arabis laevigata variety laevigata (Brassicaceae): seed dispersal. J. Torrey Bot. Soc. 129, 21–28 (2002).Article
Google Scholar
36.Song, B.-H. et al. Multilocus patterns of nucleotide diversity, population structure, and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics 181, 1021–1033 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Mackay, T., Stone, E. & Ayroles, J. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Hedrick, P. W. Genetic polymorphism in heterogeneous environments: a decade later. Annu. Rev. Ecol. Syst. 17, 535–566 (1986).Article
Google Scholar
39.Hedrick, P. W. Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity 82, 126–133 (1999).Article
Google Scholar
40.Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).PubMed
PubMed Central
Article
Google Scholar
41.Gillespie, J. H. & Langley, C. H. A general model to account for enzyme variation in natural populations. Genetics 76, 837–848 (1974).CAS
PubMed
PubMed Central
Article
Google Scholar
42.Anderson, J. T., Willis, J. H. & Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 27, 258–266 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).PubMed
Article
PubMed Central
Google Scholar
44.Oakley, C. G., Ågren, J., Atchison, R. A. & Schemske, D. W. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol. Ecol. 23, 4304–4315 (2014).PubMed
Article
PubMed Central
Google Scholar
45.Price, N. et al. Combining population genomics and fitness QTLs to identify the genetics of local adaptation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 115, 5028–5033 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Abuelsoud, W., Hirschmann, F. & Papenbrock, J. in Drought Stress in Plants Vol. 1 (eds Hossain, M. A. et al.) 227–248 (Springer, 2016).48.Nguyen, D., Rieu, I., Mariani, C. & van Dam, N. M. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 91, 727–740 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Shani, E. M. et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr. Biol. 27, 437–444 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Hopkins, R. J., van Dam, N. M. & van Loon, J. J. A. Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54, 57–83 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Burow, M., Müller, R., Gershenzon, J. & Wittstock, U. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol. 32, 2333–2349 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
52.Wagner, M. R. & Mitchell-Olds, T. Plasticity of plant defense and its evolutionary implications in wild populations of Boechera stricta. Evolution 72, 1034–1049 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
54.Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package version 2.56.0 (2020).55.Wang et al. Correction to: Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 16 (2019).Article
Google Scholar
56.Carley, L. et al. Data to accompany: Ecological factors influence balancing selection on leaf chemical profiles of a wildflower. Dryad Data https://doi.org/10.5061/dryad.7h44j0zsr (2021).57.Atkinson, N. J., Lilley, C. J. & Urwin, P. E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162, 2028–2041 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
58.Sharma, A. et al. Comprehensive analysis of plant rapid alkalization factor (RALF) genes. Plant Physiol. Biochem. 106, 82–90 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Dutilleul, C., Jourdain, A., Bourguignon, J. & Hugouvieux, V. The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol. 147, 239–251 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Jiang, S.-C. et al. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 88, 369–385 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Wen, J., Vanek-Krebitz, M., Hoffmann-Sommergruber, K., Scheiner, O. & Breitender, H. The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol. Phylogenet. Evol. 8, 317–333 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Koo, A. J., Fulda, M., Browse, J. & Ohlrogge, J. B. Identification of a plastid acyl‐acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. Plant J. 44, 620–632 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Henrissat, B. et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl Acad. Sci. USA 92, 7090–7094 (1995).CAS
PubMed
Article
PubMed Central
Google Scholar More