eDNA sampled from stream networks correlates with camera trap detection rates of terrestrial mammals
1.Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).ADS
CAS
PubMed
Article
Google Scholar
2.Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
3.Stem, C., Margoluis, R., Salafsky, N. & Brown, M. Monitoring and evaluation in conservation: a review of trends and approaches. Conserv. Biol. 19, 295–309 (2005).Article
Google Scholar
4.Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).ADS
PubMed
PubMed Central
Article
Google Scholar
5.Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol 2, e197 (2004).PubMed
PubMed Central
Article
Google Scholar
6.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed
Article
CAS
PubMed Central
Google Scholar
7.Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252 (2016).ADS
PubMed
PubMed Central
Article
Google Scholar
8.Kissling, W. D. et al. Building essential biodiversity variables (EBV s) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).PubMed
Article
PubMed Central
Google Scholar
9.Nesshöver, C., Livoreil, B., Schindler, S. & Vandewalle, M. Challenges and solutions for networking knowledge holders and better informing decision-making on biodiversity and ecosystem services. Biodivers. Conserv. 25, 1207–1214 (2016).Article
Google Scholar
10.Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).PubMed
Article
PubMed Central
Google Scholar
11.Field, S. A., Tyre, A. J. & Possingham, H. P. Optimizing allocation of monitoring effort under economic and observational constraints. J. Wildl. Manag. 69, 473–482 (2005).Article
Google Scholar
12.Braunisch, V. & Suchant, R. Predicting species distributions based on incomplete survey data: The trade-off between precision and scale. Ecography 33, 826–840 (2010).Article
Google Scholar
13.Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
14.Deiner, K. et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods Ecol. Evol. 8, 1888–1898 (2017).Article
Google Scholar
15.Deiner, K., Walser, J.-C., Mächler, E. & Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 183, 53–63 (2015).Article
Google Scholar
16.Tsuji, S., Takahara, T., Doi, H., Shibata, N. & Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. Environ. DNA 1, 99–108 (2019).Article
Google Scholar
17.Sales, N. G. et al. Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).CAS
Article
Google Scholar
18.Sales, N. G. et al. Assessing the potential of environmental DNA metabarcoding for monitoring Neotropical mammals: a case study in the Amazon and Atlantic Forest, Brazil. Mammal Rev. 50, 221–225 (2020).Article
Google Scholar
19.Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS
Article
Google Scholar
20.Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).PubMed
Article
PubMed Central
Google Scholar
21.Leempoel, K., Hebert, T. & Hadly, E. A. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proc. R. Soc. B Biol. Sci. 287, 20192353 (2020).CAS
Article
Google Scholar
22.Harper, L. R. et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 238, 108225 (2019).Article
Google Scholar
23.Rodgers, T. W. & Mock, K. E. Drinking water as a source of environmental DNA for the detection of terrestrial wildlife species. Conserv. Genet. Resour. 7, 693–696 (2015).Article
Google Scholar
24.Ushio, M. et al. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol. Ecol. Resour. 17, e63–e75 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Williams, K. E., Huyvaert, K. P., Vercauteren, K. C., Davis, A. J. & Piaggio, A. J. Detection and persistence of environmental DNA from an invasive, terrestrial mammal. Ecol. Evol. 8, 688–695 (2018).PubMed
Article
PubMed Central
Google Scholar
26.Merkes, C. M., McCalla, S. G., Jensen, N. R., Gaikowski, M. P. & Amberg, J. J. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS ONE 9, e113346 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
27.Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 1–13 (2018).ADS
CAS
Article
Google Scholar
28.Zinger, L. et al. Advances and prospects of environmental DNA in neotropical rainforests. Adv. Ecol. Res. 62, 331–373 (2020).Article
Google Scholar
29.Withers, P. C., Cooper, C. E., Maloney, S. K., Bozinovic, F. & Cruz-Neto, A. P. Ecological and Environmental Physiology of Mammals Vol. 5 (Oxford University Press, 2016).Book
Google Scholar
30.Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).Book
Google Scholar
31.Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).
Google Scholar
32.Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 1–11 (2019).CAS
Article
Google Scholar
33.Tarboton, D. G., Bras, R. L. & Rodriguez-Iturbe, I. The fractal nature of river networks. Water Resour. Res. 24, 1317–1322 (1988).ADS
Article
Google Scholar
34.Ishige, T. et al. Tropical-forest mammals as detected by environmental DNA at natural saltlicks in Borneo. Biol. Conserv. 210, 281–285 (2017).Article
Google Scholar
35.Joseph, L. N., Field, S. A., Wilcox, C. & Possingham, H. P. Presence–absence versus abundance data for monitoring threatened species. Conserv. Biol. 20, 1679–1687 (2006).PubMed
Article
PubMed Central
Google Scholar
36.Lacy, R. C. Lessons from 30 years of population viability analysis of wildlife populations. Zoo Biol. 38, 67–77 (2019).PubMed
Article
Google Scholar
37.Gärdenfors, U., Hilton-Taylor, C., Mace, G. M. & Rodríguez, J. P. The application of IUCN Red List criteria at regional levels. Conserv. Biol. 15, 1206–1212 (2001).Article
Google Scholar
38.Munro, R., Nielsen, S. E., Price, M., Stenhouse, G. & Boyce, M. S. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 87, 1112–1121 (2006).Article
Google Scholar
39.Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9, e88786 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
40.Hunter, M. E. et al. Detection limits of quantitative and digital PCR assays and their influence in presence–absence surveys of environmental DNA. Mol. Ecol. Resour. 17, 221–229 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Roussel, J.-M., Paillisson, J.-M., Treguier, A. & Petit, E. The downside of eDNA as a survey tool in water bodies. J. Appl. Ecol. 52, 823–826 (2015).CAS
Article
Google Scholar
42.Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).
Google Scholar
43.Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article
Google Scholar
44.Morris, W. F. et al. Quantitative Conservation Biology (Sinauer Sunderland, 2002).
Google Scholar
45.Parks, B. C. South Chilcotin Mountains Park and Big Creek Park Management Plan (2019).46.McLellan, M. L. et al. Divergent population trends following the cessation of legal grizzly bear hunting in southwestern British Columbia, Canada. Biol. Conserv. 233, 247–254 (2019).Article
Google Scholar
47.Kays, R. et al. Camera traps as sensor networks for monitoring animal communities. In 2009 IEEE 34th Conference on Local Computer Networks 811–818. https://doi.org/10.1109/LCN.2009.5355046 (IEEE, 2009).48.Hendry, H. & Mann, C. Camelot–intuitive software for camera trap data management. BioRxiv 203216 (2017).49.Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For biodiversity research and monitoring (Oxford University Press, Oxford, 2018).Book
Google Scholar
51.Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
52.De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).PubMed
Article
CAS
PubMed Central
Google Scholar
53.Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Wearn, O. & Glover-Kapfer, P. Camera-trapping for conservation: A guide to best-practices. WWF Conserv. Technol. Ser. 1, 2019–2104 (2017).
Google Scholar
55.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
Google Scholar
56.Plummer, M., et al.. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing vol. 124, 1–10 (Vienna, Austria, 2003).57.Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).Article
Google Scholar
58.Ahumada, J. A. et al. Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philos. Trans. R. Soc. B Biol. Sci. 366, 2703–2711 (2011).Article
Google Scholar
59.Samejima, H., Ong, R., Lagan, P. & Kitayama, K. Camera-trapping rates of mammals and birds in a Bornean tropical rainforest under sustainable forest management. For. Ecol. Manag. 270, 248–256 (2012).Article
Google Scholar
60.Parsons, A. W. et al. Do occupancy or detection rates from camera traps reflect deer density?. J. Mammal. 98, 1547–1557 (2017).Article
Google Scholar
61.Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution–Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).Article
Google Scholar
62.Villette, P., Krebs, C. J., Jung, T. S. & Boonstra, R. Can camera trapping provide accurate estimates of small mammal (Myodes rutilus and Peromyscus maniculatus) density in the boreal forest?. J. Mammal. 97, 32–40 (2016).Article
Google Scholar
63.Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. Wild Mammals of North America: Biology, Management, and Conservation (The Johns Hopkins University Press, 2003).
Google Scholar
64.Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection Multimodel Inference 2nd edn, Vol. 2 (Springer, Berlin, 2002).MATH
Google Scholar More