1.Centers for Disease Control and Prevention https://www.cdc.gov/dengue/areaswithrisk/index.html (2021).2.Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).PubMed
PubMed Central
Article
Google Scholar
4.Centers for Disease Control and Prevention https://www.cdc.gov/parasites/malaria/index.html (2021)5.Gatton, M. L. et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution 67, 1218–1230 (2013).PubMed
PubMed Central
Article
Google Scholar
6.Sokhna, C., Ndiath, M. O. & Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19, 902–907 (2013).CAS
PubMed
Article
Google Scholar
7.Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).CAS
PubMed
Article
Google Scholar
8.Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 10, 295–311 (2010).PubMed
PubMed Central
Article
Google Scholar
9.Oliva, C. F., Damiens, D. & Benedict, M. Q. Male reproductive biology of Aedes mosquitoes. Acta Tropica 132, S12–S19 (2014).CAS
PubMed
Article
Google Scholar
10.Benelli, G. Research in mosquito control: current challenges for a brighter future. Parasitol. Res. 114, 2801–2805 (2015).PubMed
Article
PubMed Central
Google Scholar
11.Lees, R. S., Gilles, J. R. L., Hendrichs, J., Vreysen, M. J. B. & Bourtzis, K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 10, 156–162 (2015).PubMed
Article
PubMed Central
Google Scholar
12.Wilke, A. B. & Marrelli, M. T. Genetic control of mosquitoes: population suppression strategies. Rev. Inst. Med. Trop. Sao Paulo 54, 287–292 (2012).PubMed
Article
PubMed Central
Google Scholar
13.Alphey, L., Nimmo, D., O’Connell, S. & Alphey, N. Insect population suppression using engineered insects. Adv. Exp. Med. Biol. 627, 93–103 (2008).CAS
PubMed
Article
Google Scholar
14.Carvalho, D. O. et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 9, e0003864 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
15.Wilke, A. B. B. & Marrelli, M. T. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit. Vectors 8, 342 (2015).PubMed
PubMed Central
Article
Google Scholar
16.Hegde, S. & Hughes, G. L. Population modification of Anopheles mosquitoes for malaria control: pathways to implementation. Pathog. Glob. Health 111, 401–402 (2017).PubMed
Article
Google Scholar
17.Carballar-Lejarazu, R. & James, A. A. Population modification of Anopheline species to control malaria transmission. Pathog. Glob. Health 111, 424–35. (2017).PubMed
Article
Google Scholar
18.Li, Y. & Liu, X. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population. J. Theor. Biol. 448, 53–65 (2018).PubMed
Article
Google Scholar
19.Farkas, J. Z., Gourley, S. A., Liu, R. & Yakubu, A. A. Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus. J. Math. Biol. 75, 621–47. (2017).PubMed
PubMed Central
Article
Google Scholar
20.Zhang, X., Tang, S., Liu, Q., Cheke, R. A. & Zhu, H. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease. Math. Biosci. 299, 58–72 (2018).PubMed
Article
PubMed Central
Google Scholar
21.Almeida, L., Privat, Y., Strugarek, M. & Vauchelet, N. Optimal releases for population replacement strategies, application to Wolbachia. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics 51, 3170–3194 (2019).Article
Google Scholar
22.Clements, A. N. The Biology of Mosquitoes: Sensory Reception and Behaviour (Chapman & Hall, 1999).23.Downes, J. A. The swarming and mating flight of Diptera. Annu. Rev. Entomol. 14, 271–98. (1969).Article
Google Scholar
24.Yuval, B. Mating systems of blood-feeding flies. Annu Rev. Entomol. 51, 413–440 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles gambiae s.l. Physiol. Entomol. 5, 315–20. (1980).Article
Google Scholar
26.Pitts, R. J., Mozuraitis, R., Gauvin-Bialecki, A. & Lemperiere, G. The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes. Acta Tropica 132, S26–S34 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Hartberg, W. K. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 45, 847–850 (1971).CAS
PubMed
PubMed Central
Google Scholar
28.Sawadogo P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Tropica 132, S42-52 https://doi.org/10.1016/j.actatropica.2013.12.011 (2014).29.South, A. C. F. Progress in Mosquito Research (Elsevier Science, 2016).30.Cator, L. J. & Harrington, L. C. The harmonic convergence of fathers predicts the mating success of sons in Aedes aegypti. Anim. Behav. 82, 627–633 (2011).PubMed
PubMed Central
Article
Google Scholar
31.Benelli, G. The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 114, 887–94. (2015).PubMed
Article
PubMed Central
Google Scholar
32.Benelli, G., Romano, D., Messing, R. H. & Canale, A. First report of behavioural lateralisation in mosquitoes: right-biased kicking behaviour against males in females of the Asian tiger mosquito, Aedes albopictus. Parasitol. Res. 114, 1613–1617 (2015).PubMed
Article
PubMed Central
Google Scholar
33.Cator, L. J. & Zanti, Z. Size, sounds and sex: interactions between body size and harmonic convergence signals determine mating success in Aedes aegypti. Parasites Vectors 9, 622 (2016).PubMed
PubMed Central
Article
Google Scholar
34.South, S. H., Steiner, D. & Arnqvist, G. Male mating costs in a polygynous mosquito with ornaments expressed in both sexes. Proc. R. Soc. B 276, 3671–3678 (2009).PubMed
Article
PubMed Central
Google Scholar
35.Roth, L. M. A study of mosquito behavior. An experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). Am. Midl. Nat. 40, 265–352 (1948).Article
Google Scholar
36.Wishart, G., van Sickle, G. R. & Riordan, D. F. Orientation of the males of Aedes aegypti (L.) (Diptera: Culicidae) to sound. Can. Entomol. 94, 613–26. (1962).Article
Google Scholar
37.Belton, P. Attraction of male mosquitoes to sound. J. Am. Mosq. Control Assoc. 10, 297–301 (1994).CAS
PubMed
Google Scholar
38.Simões, P. M. V., Ingham, R. A., Gibson, G. & Russell, I. J. A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes. J. Exp. Biol. 219, 2039–2047 (2016).PubMed
PubMed Central
Google Scholar
39.Simoes, P. M., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Exp. Biol. 220, 379–85. (2017).PubMed
Article
Google Scholar
40.Gibson, G. & Russell, I. Flying in tune: sexual recognition in mosquitoes. Curr. Biol. 16, 1311–1316 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Cator, L. J., Arthur, B. J., Harrington, L. C. & Hoy, R. R. Harmonic convergence in the love songs of the dengue vector mosquito. Science 323, 1077–1079 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
42.Warren, B., Gibson, G. & Russell, I. J. Sex recognition through midflight mating duets in culex mosquitoes is mediated by acoustic distortion. Curr. Biol. 19, 485–491 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. “Singing on the Wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Aldersley, A. & Cator, L. J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Sci. Rep. 9, 2145 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
45.League, G. P., Baxter, L. L., Wolfner, M. F. & Harrington, L. C. Male accessory gland molecules inhibit harmonic convergence in the mosquito Aedes aegypti. Curr. Biol. 29, R196–r7. (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
46.Villarreal, S. M. et al. Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. J. Insect Physiol. 108, 1–9 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Dobson, A. P. & Hudson, P. J. Regulation and stability of a free-living host–parasite system: Trichostrongylus tenuis in Red Grouse. II. Population models. J. Anim. Ecol. 61, 487–498 (1992).Article
Google Scholar
48.Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites? Science 218, 384–387 (1982).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Hillyer, J. F., Schmidt, S. L. & Christensen, B. M. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res. 313, 117–127 (2003).PubMed
Article
PubMed Central
Google Scholar
50.Moreno-García, M., Córdoba-Aguilar, A., Condé, R. & Lanz-Mendoza, H. Current immunity markers in insect ecological immunology: assumed trade-offs and methodological issues. Bull. Entomol. Res. 103, 127–139 (2012).PubMed
Article
CAS
PubMed Central
Google Scholar
51.Schoenle, L. A., Downs, C. J. & Martin L. B. An introduction to ecoimmunology. In Advances in Comparative Immunology (ed. Cooper, E. L.). 901–932 (Springer International Publishing, 2018).52.Barthel, A., Staudacher, H., Schmaltz, A., Heckel, D. G. & Groot, A. T. Sex-specific consequences of an induced immune response on reproduction in a moth. BMC Evol. Biol. 15, 282 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
53.Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).PubMed
PubMed Central
Article
Google Scholar
54.Chun, J., Riehle, M. & Paskewitz, S. M. Effect of mosquito age and reproductive status on melanization of sephadex beads in Plasmodium-refractory and -susceptible strains of Anopheles gambiae. J. Invertebr. Pathol. 66, 11–17 (1995).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Li, J., Tracy, J. W. & Christensen, B. M. Relationship of hemolymph phenol oxidase and mosquito age in Aedes aegypti. J. Invertebr. Pathol. 60, 188–191 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Rolff, J. & Siva-Jothy, M. T. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc. Natl Acad. Sci. USA 99, 9916–9918 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Schwenke, R. A. & Lazzaro, B. P. Juvenile hormone suppresses resistance to infection in mated female Drosophila melanogaster. Curr. Biol. 27, 596–601 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
58.Reavey, C. E., Warnock, N. D., Cotter, S. C. & Vogel, H. Trade-offs between personal immunity and reproduction in the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 25, 415–23. (2014).Article
Google Scholar
59.Christensen, B. M., Li, J. Y., Chen, C. C. & Nappi, A. J. Melanization immune responses in mosquito vectors. Trends Parasitol. 21, 192–199 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Harris, K. L., Christensen, B. M. & Miranpuri, G. S. Comparative studies on the melanization response of male and female mosquitoes against microfilariae. Dev. Comp. Immunol. 10, 305–310 (1986).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Syed, Z. A., Gupta, V., Arun, M. G., Dhiman, A., Nandy, B. & Prasad, N. G. Absence of reproduction-immunity trade-off in male Drosophila melanogaster evolving under differential sexual selection. BMC Evol. Biol. 20, 13 (2020).PubMed
PubMed Central
Article
Google Scholar
62.Schwenke R. A., Lazzaro B. P., Wolfner M. F. Reproduction-immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).63.Schmid-Hempel, P. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
64.Armitage, S. A., Thompson, J. J., Rolff, J. & Siva-Jothy, M. T. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16, 1038–1044 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Schwartz, A. & Koella, J. C. The cost of immunity in the yellow fever mosquito, Aedes aegypti depends on immune activation. J. Evol. Biol. 17, 834–840 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Rauw, W. M. Immune response from a resource allocation perspective. Front. Genet. 3, 267 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
67.Levashina, E. A., Moita, L. F., Blandin, S., Vriend, G., Lagueux, M. & Kafatos, F. C. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709–718 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Strand, M. R. The insect cellular immune response. Insect Sci. 15, 1–14 (2008).CAS
Article
Google Scholar
69.Das, S., Dong, Y., Garver, L. & Dimopoulos, G. Specificity of the Innate Immune System: a Closer Look at the Mosquito Pattern-recognition Receptor Repertoire. (Oxford University Press, 2009).
Google Scholar
70.King, J. G. & Hillyer, J. F. Infection-induced interaction between the mosquito circulatory and immune systems. PLoS Pathog. 8, e1003058–e1003058 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Murdock, C. C., Paaijmans, K. P., Bell, A. S., King, J. G., Hillyer, J. F. & Read, A. F. et al. Complex effects of temperature on mosquito immune function. Proc. R. Soc. B 279, 3357–3366 (2012).CAS
PubMed
Article
Google Scholar
72.Liu, W.-T., Tu, W.-C., Lin, C.-H., Yang, U.-C. & Chen, C.-C. Involvement of cecropin B in the formation of the Aedes aegypti mosquito cuticle. Sci. Rep. 7, 16395 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
73.Hillyer, J. F., Schmidt, S. L., Fuchs, J. F., Boyle, J. P. & Christensen, B. M. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell. Microbiol. 7, 39–51 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
74.Coggins, S., Estévez-Lao, T. & Hillyer, J. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. Dev. Comp. Immunol. 37, 390–401 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
75.Luckhart, S., Vodovotz, Y., Cui, L. & Rosenberg, R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc. Natl Acad. Sci. USA 95, 5700–5705 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
76.Graça-Souza, A. V., Maya-Monteiro, C., Paiva-Silva, G. O., Braz, G. R., Paes, M. C. & Sorgine, M. H. et al. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem. Mol. Biol. 36, 322–335 (2006).PubMed
Article
CAS
PubMed Central
Google Scholar
77.Cirimotich, C. M., Ramirez, J. L. & Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10, 307–310 (2011).78.Sánchez-Vargas, I., Scott, J. C., Poole-Smith, B. K., Franz, A. W., Barbosa-Solomieu, V. & Wilusz, J. et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 5, e1000299 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
79.Souza-Neto, J. A., Sim, S. & Dimopoulos, G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc. Natl Acad. Sci. 106, 17841–17846 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Castillo, J., Brown, M. R. & Strand, M. R. Blood feeding and insulin-like peptide 3 stimulate proliferation of hemocytes in the mosquito Aedes aegypti. PLoS Pathog. 7, e1002274 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
81.Bryant, W. B. & Michel, K. Blood feeding induces hemocyte proliferation and activation in the African malaria mosquito, Anopheles gambiae Giles. J. Exp. Biol. 217, 1238–1245 (2014).CAS
PubMed
PubMed Central
Google Scholar
82.Xi, Z., Ramirez, J. L. & Dimopoulos, G. The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog. 4, e1000098 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
83.Bottino-Rojas, V., Talyuli, O. A., Jupatanakul, N., Sim, S., Dimopoulos, G. & Venancio, T. M. et al. Heme signaling impacts global gene expression, immunity and dengue virus infectivity in Aedes aegypti. PLoS ONE 10, e0135985 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
84.Oliveira, J. H. M., Talyuli, O. A. C., Goncalves, R. L. S., Paiva-Silva, G. O., Sorgine, M. H. F. & Alvarenga, P. H. et al. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS Negl. Trop. Dis. 11, e0005525 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
85.Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363 (2001).CAS
PubMed
Article
Google Scholar
86.Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
88.Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
89.Rand, T. A., Ginalski, K., Grishin, N. V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl Acad. Sci. USA 101, 14385–14389 (2004).CAS
PubMed
Article
Google Scholar
90.Ramos-Castaneda, J., Gonzalez, C., Jimenez, M. A., Duran, J., Hernandez-Martinez, S. & Rodriguez, M. H. et al. Effect of nitric oxide on dengue virus replication in Aedes aegypti and Anopheles albimanus. Intervirology 51, 335–341 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
91.Xiao, X., Liu, Y., Zhang, X., Wang, J., Li, Z. & Pang, X. et al. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Pathog. 10, e1004027 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
92.Waldock, J., Olson, K. E. & Christophides, G. K. Anopheles gambiae antiviral immune response to systemic O’nyong-nyong infection. PLoS Negl. Trop. Dis. 6, e1565 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
93.Colpitts, T. M., Cox, J., Vanlandingham, D. L., Feitosa, F. M., Cheng, G. & Kurscheid, S. et al. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever Viruses. PLoS Pathog. 7, e1002189 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
94.Moon, A. E., Walker A. J. & Goodbourn S. Regulation of transcription of the Aedes albopictus cecropin A1 gene: a role for p38 mitogen-activated protein kinase. Insect Biochem. Mol. Biol. 41, 628–636 (2011).95.Jordan, T. X. & Randall, G. Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. J. Virol. 91, e02020–16 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
96.Urbanowski, M. D. & Hobman, T. C. The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. J. Virol. 87, 872–881 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
97.Lazzaro, B. P., Flores, H. A., Lorigan, J. G. & Yourth, C. P. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster. PLoS Pathog. 4, e1000025 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
98.Jupatanakul, N. et al. Engineered Aedes aegypti JAK/STAT pathway-mediated immunity to dengue virus. PLoS Negl. Trop. Dis. 11, e0005187 (2017).99.Martin-Acebes M. A. et al. The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis. J. Virol. 88, 12041–12054 (2014).100.Barletta, A. B., Alves, L. R., Silva, M. C., Sim, S., Dimopoulos, G. & Liechocki, S. et al. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and dengue virus. Sci. Rep. 6, 19928 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
101.Fu, Q., Inankur, B., Yin, J., Striker, R. & Lan, Q. Sterol carrier protein 2, a critical host factor for dengue virus infection, alters the cholesterol distribution in mosquito Aag2 Cells. J. Med. Entomol. 52, 1124–1134 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
102.Jupatanakul, N., Sim, S. & Dimopoulos, G. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. Dev. Comp. Immunol. 43, 1–9 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
103.Evans, M. V. et al. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasites Vectors 11, 426 (2018).104.Salazar, M. I., Richardson, J. H., Sánchez-Vargas, I., Olson, K. E. & Beaty, B. J. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 7, 9 (2007).PubMed
PubMed Central
Article
CAS
Google Scholar
105.Gloria-Soria, A., Soghigian, J., Kellner, D. & Powell, J. R. Genetic diversity of laboratory strains and implications for research: the case of Aedes aegypti. PLoS Negl. Trop. Dis. 13, e0007930 (2019).PubMed
PubMed Central
Article
Google Scholar
106.Souza-Neto, J. A., Powell, J. R. & Bonizzoni, M. Aedes aegypti vector competence studies: a review. Infect. Genet. Evol. 67, 191–209 (2019).PubMed
Article
PubMed Central
Google Scholar
107.Franz, A. W. et al. Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl. Trop. Dis. 8, e2833 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
108.Irvin, N., Hoddle, M. S., O’Brochta, D. A., Carey, B. & Atkinson, P. W. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc. Natl Acad. Sci. USA 101, 891–896 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
109.Pompon, J. & Levashina, E. A. A new role of the mosquito complement-like cascade in male fertility in Anopheles gambiae. PLoS Biol. 13, e1002255–e1002255 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
110.Mitchell, S. N., Kakani, E. G., South, A., Howell, P. I., Waterhouse, R. M. & Catteruccia, F. Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science 347, 985–988 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
111.League G. P. et al. Sexual selection theory meets disease vector control: Testing harmonic convergence as a “good genes” signal in Aedes aegypti mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2020.10.29.360651 (2020).112.Hillyer, J. F. & Estevez-Lao, T. Y. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev. Comp. Immunol. 34, 141–149 (2010).CAS
PubMed
Article
Google Scholar
113.Warburg, A., Shtern, A., Cohen, N. & Dahan, N. Laminin and a Plasmodium ookinete surface protein inhibit melanotic encapsulation of Sephadex beads in the hemocoel of mosquitoes. Microbes Infect. 9, 192–199 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
114.Lambrechts, L., Vulule, J. M. & Koella, J. C. Genetic correlation between melanization and antibacterial immune responses in a natural population of the malaria vector Anopheles gambiae. Evolution 58, 2377–2381 (2004).PubMed
Article
PubMed Central
Google Scholar
115.Lambrechts, L., Morlais, I., Awono-Ambene, P. H., Cohuet, A., Simard, F. & Jacques, J.-C. et al. Effect of infection by Plasmodium falciparum on the melanization immune response of Anopheles gambiae. Am. J. Tropic. Med. Hyg. 76, 475–480 (2007).Article
Google Scholar
116.Boëte, C., Paul, R. E. L. & Koella, J. C. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector. Proc. R. Soc. Lond. Ser. B 271, 1611–1615 (2004).Article
Google Scholar
117.Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5, 85–86 (2016).PubMed
PubMed Central
Article
Google Scholar
118.Tesla, B., Demakovsky, L. R., Mordecai, E. A., Ryan, S. J., Bonds, M. H. & Ngonghala, C. N. et al. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc. R. Soc. B 285, 20180795 (2018).PubMed
Article
Google Scholar
119.Franz, A. W., Kantor, A. M., Passarelli, A. L. & Clem, R. J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7, 3741–3767 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
120.Lanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G. J. & Vorndam, A. V. Rapid detection and typing of dengue viruses from clinical-samples by using reverse transcriptase-polymerase chain-reaction. J. Clin. Microbiol 30, 545–551 (1992).CAS
PubMed
PubMed Central
Article
Google Scholar
121.RStudio Team. RStudio: Integrated Development Environment for R (RStudio, Inc., 2016).122.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).123.Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W. & Nielsen, A. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).Article
Google Scholar
124.Christensen, R. H. B. Ordinal-Regression Models for Ordinal Data. R package version 2015.6-28 (R Foundation for Statistical Computing, 2015).125.Bates, D., Mächler, M., Bolker, B. & Walker S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 48 (2015).Article
Google Scholar
126.Bolker, B. R Development Core Team. bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.20 (CRAN, 2017).127.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.4 ed (CRAN, 2019).128.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.3, ed (CRAN, 2019). More