More stories

  • in

    Heterodissemination: precision insecticide delivery to mosquito larval habitats by cohabiting vertebrates

    1.Gubler, D. J. Prevention and control of Aedes aegypti-borne diseases: lesson learned from past successes and failures. AsPac. J. Mol. Biol. Biotechnol. 19, 111–114 (2011).
    Google Scholar 
    2.Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227. https://doi.org/10.1111/j.0269-283X.2004.00513.x (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Unlu, I. Aedes albopictus in America: current perspectives and future challenges. CAB Rev. 14, 1–22 (2019).Article 

    Google Scholar 
    4.Schoof, H. Dispersal of Aedes taeniorhynchus Wiede-mann near Savannah. Georgia. Mosq. News 23, 1–10 (1963).
    Google Scholar 
    5.Fonseca, D. M. et al. Area-wide management of Aedes albopictus. Part 2: gauging the efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Manag. Sci. 69, 1351–1361 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.YiBin, Z., TongYan, Z. & PeiEn, L. Evaluation on the control efficacy of source reduction to Aedes albopictus in Shanghai, China. Chin. J. Vector Biol. Control 20, 3–6 (2009).
    Google Scholar 
    7.Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L. & Farajollahi, A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS ONE 8, e60874. https://doi.org/10.1371/journal.pone.0060874 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Hawley, W. A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. Suppl. 1, 1–39 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Richards, S. L., Ghosh, S. K., Zeichner, B. C. & Apperson, C. S. Impact of source reduction on the spatial distribution of larvae and pupae of Aedes albopictus (Diptera: Culicidae) in suburban neighborhoods of a Piedmont community in North Carolina. J. Med. Entomol. 45, 617–628 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Unlu, I., Farajollahi, A., Strickman, D. & Fonseca, D. M. Crouching tiger, hidden trouble: Urban sources of Aedes albopictus (Diptera: Culicidae) refractory to source-reduction. PLoS ONE 8, e77999 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Lam, P. H. Y., Boon, C. S., Yng, N. Y. & Benjamin, S. Aedes albopictus control with spray application of Bacillus thuringiensis israelensis, strain AM 65-52. Southeast Asian J. Trop. Med. Public Health 41, 1071 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    12.Seleena, P., Lee, H. L., Nazni, W., Rohani, A. & Kadri, M. Microdroplet application of mosquitocidal Bacillus thuringiensis using ultra-low-volume generator for the control of mosquitos. Southeast Asian. J. Trop. Med. Public Health 27, 628–632 (1996).CAS 

    Google Scholar 
    13.Chandel, K. et al. Targeting a hidden enemy: Pyriproxyfen autodissemination strategy for the control of the container mosquito Aedes albopictus in cryptic habitats. PLoS Negl. Trop. Dis. 10, e0005235 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Pruszynski, C. A., Hribar, L. J., Mickle, R. & Leal, A. L. A large scale biorational approach using Bacillus thuringiensis israeliensis (strain AM65-52) for managing Aedes aegypti populations to prevent dengue, chikungunya and Zika transmission. PLoS ONE 12, e0170079 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Unlu, I., Faraji, A., Indelicato, N. & Fonseca, D. M. The hidden world of Asian tiger mosquitoes: immature Aedes albopictus (Skuse) dominate in rainwater corrugated extension spouts. Trans. R. Soc. Trop. Med. Hyg. 108, 699–705. https://doi.org/10.1093/trstmh/tru1139 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Itoh, T. Utilization of blood fed females of Aedes aegypti as a vehicle for the transfer of the insect growth regulator, pyriproxyfen, to larval habitats. Trop. Med. 36, 243–248 (1995).
    Google Scholar 
    17.Gaugler, R., Suman, D. & Wang, Y. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites. Med. Vet. Entomol. 26, 37–45 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Mbare, O., Lindsay, S. W. & Fillinger, U. Testing a pyriproxyfen auto-dissemination station attractive to gravid Anopheles gambiae sensu stricto for the development of a novel attract-release-and-kill strategy for malaria vector control. BMC Infect. Dis. 19, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    19.Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. 106, 11530–11534 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Caputo, B. et al. The “auto-dissemination” approach: a novel concept to fight Aedes albopictus in urban areas. PLoS Negl. Trop. Dis. 6, e1793 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Lwetoijera, D., Kiware, S., Okumu, F., Devine, G. J. & Majambere, S. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings. Malar. J. 18, 1–10 (2019).Article 

    Google Scholar 
    22.Unlu, I. et al. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature Asian Tiger Mosquito (Diptera: Culicidae) populations. J. Med. Entomol. 57, 1120–1130 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLoS Negl. Trop. Dis. 9, e0003406–e0003406 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Bibbs, C. S., Anderson, C. S., Smith, M. L. & Xue, R.-D. Direct and indirect efficacy of truck-mounted applications of s-methoprene against Aedes albopictus (Diptera: Culicidae). Int. J. Pest Manag. 64, 19–26 (2018).CAS 
    Article 

    Google Scholar 
    25.Wang, Y. et al. Heterodissemination: precision targeting container Aedes mosquitoes with a cohabiting midge species carrying insect growth regulator. Pest Manag. Sci. 76, 2105–2112 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Lopez, L. C. S., Filizola, B., Deiss, I. & Rios, R. I. Phoretic behaviour of bromeliad annelids (Dero) and ostracods (Elpidium) using frogs and lizards as dispersal vectors. Hydrobiologia 549, 15–22 (2005).Article 

    Google Scholar 
    27.Torresdal, J. D., Farrell, A. D. & Goldberg, C. S. Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. PLoS ONE 12, e0168787 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Wilke, A. B., Vasquez, C., Mauriello, P. J. & Beier, J. C. Ornamental bromeliads of Miami-Dade County, Florida are important breeding sites for Aedes aegypti (Diptera: Culicidae). Parasit. Vectors 11, 1–7 (2018).Article 

    Google Scholar 
    29.Council, N. R. Guide for the Care and Use of Laboratory Animals (National Academies Press, Washington, 2010).
    Google Scholar 
    30.Unlu, I. et al. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasit. Vectors 10, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    31.Unlu, I. et al. Effects of a red marker dye on Aedes and Culex larvae: are there implications for operational mosquito control?. J. Am. Mosq. Control Assoc. 31, 375–379 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Development, R. & Team, C. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria ( https://www.R-project.org/ ) (2019).33.Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1 (2014).34.Crawley, M. J. The R Book (Wiley, Chichester, 2012).MATH 
    Book 

    Google Scholar 
    35.Lenth, R. V. Using lsmeans. J. Stat. Softw. 69, 1–33 (2017).
    Google Scholar 
    36.Plummer, M. in Proceedings of the 3rd international workshop on distributed statistical computing. 1–10 (Vienna, Austria.).37.Kellner, K. jagsUI: a wrapper around rjags to streamline JAGS analyses. R Package Vers. 1, 2015 (2015).
    Google Scholar 
    38.Khan, G. Z., Khan, I., Khan, I. A., Salman, M. & Ullah, K. Evaluation of different formulations of IGRs against Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae). Asian. Pac. J. Trop. Biomed. 6, 485–491 (2016).CAS 
    Article 

    Google Scholar 
    39.Bury, R. B. & Whelan, J. A. Ecology and Management of the Bullfrog Vol. 155 (Fish and Wildlife Service, Washington, 1985).
    Google Scholar 
    40.WHO. Review of the insect growth regulator pyriproxyfen GR, pp. 50–67. InReport of the 4th WHOPES Working Group Meeting, 2000 December 4–5, Geneva Switzerland Geneva. WHO/CDS, WHOPES/2001. (2001).41.Devillers, J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ. Sci. Pollut. Res. 1–17 (2020).42.Schaefer, C. & Miura, T. Chemical persistence and effects of S-31183, 2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine, on aquatic organisms in field tests. J. Econ. Entomol. 83, 1768–1776 (1990).CAS 
    Article 

    Google Scholar 
    43.Ose, K., Miyamoto, M., Fujisawa, T. & Katagi, T. Bioconcentration and metabolism of pyriproxyfen in tadpoles of African clawed frogs, Xenopus laevis. J. Agric. Food Chem. 65, 9980–9986 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Lajmanovich, R. C. et al. Insecticide pyriproxyfen (Dragón®) damage biotransformation, thyroid hormones, heart rate, and swimming performance of Odontophrynus americanus tadpoles. Chemosphere 220, 714–722 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.https://edis.ifas.ufl.edu/uw259. The Cuban Treefrog (Osteopilus septentrionalis) in Florida. This document is WEC218, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. (2017).46.Glorioso, B. M. et al. Osteopilus septentrionalis (Cuban treefrog). Herpetol. Rev. 49, 70–71 (2018).
    Google Scholar 
    47.Wermelinger, E. D. & Carvalho, RWd. Methods and procedures used in Aedes aegypti control in the successful campaign for yellow fever prophylaxis in Rio de Janeiro, Brazil, in 1928 and 1929. Epidemiol. Serv. Saude. 25, 837–844 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Santos França, L. et al. Challanges for the control and prevention of the Aedes aegypti mosquito. Rev. Enferm. UFPE. 11, 4913 (2017).Article 

    Google Scholar 
    49.Minakawa, N., Mutero, C. M., Githure, J. I., Beier, J. C. & Yan, G. Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am. J. Trop. Med. Hyg. 61, 1010–1016 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Mutuku, F. M. et al. Pupal habitat productivity of Anopheles gambiae complex mosquitoes in a rural village in western Kenya. Am. J. Trop. Med. Hyg. 74, 54–61 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    An evolutionary perspective on kin care directed up the generations

    ParticipantsData were drawn from the NCDS, which is a nationally representative study that has followed a cohort of participants all born in a single week in the United Kingdom since 1958. Since birth, they have been followed up a total of 11 times at ages 7, 11, 16, 23, 33, 42, 44, 46, 50 and 55. As data on time spent caring for grandchildren is only available from the most recent interview, all analyses here are cross-sectional, with all women included in the sample being aged either 55 or 56 (depending on whether the interview was conducted in 2013 or 2014) and representing the third generation of women in Fig. 1. The sample was limited to women who had at least one parent alive and at least one grandchild (n = 934). Data from the NCDS are available from the UK Data Service, and the participant characteristics shown in Supplementary Table S1.VariablesHours spent helping parents per weekInformation regarding parental caregiving was included as a count variable. In the most recent interviews, participants were asked whether they ever do various activities for their parents (e.g. shopping for them, helping with basic personal needs, giving them lifts, etc.), and if they do, how many hours on average per week do they spend doing so. Any women who reported not helping their parents do any of the activities were coded as helping their parents for zero hours per week.Hours spent caring for grandchildren per monthThe number of hours spent caring for grandchildren per month was also included as a count variable. Women were asked whether they ever look after their grandchildren without the grandchild’s parents being present, and if they do, at what frequency and for how many hours. Women who stated that they did not care for their grandchildren or did so less often than monthly were coded as caring for their grandchildren for zero hours per month. This measure also includes overnight stays.Fecundity status at age 55Fecundity status was derived from information on age, year and reason for last menstrual period, which was collected at ages 44, 50, and 55. Based on this, a binary categorical variable was derived where women were coded as either ‘Still menstruating’ or ‘No longer menstruating’. The latter category comprised of women who were post-menopausal or who had stopped menstruating for another reason, such as a surgical menopause. Women who had stopped menstruating due to menopause or other reasons were grouped together as the direct fitness implications of no longer menstruating are the same, regardless of the reason for it.Control variablesCovariates included were selected based on their expected effect on the woman’s ability to help other family members. As a proxy of socioeconomic status, the age at which the woman left education was included. Employment status was utilised to give an indication of the woman’s time constraints (i.e. if she was employed, it can be expected she had less time to care for kin)24, with women being coded as either employed, unemployed, or other, with the latter category including those who are doing something other than formal employment but do not classify themselves as unemployed (e.g. retired, volunteering, studying, etc.). Self-perceived health was used as a measure of how physically able the woman is to help family members25, and number of grandchildren was also included to adjust for how many grandparenting responsibilities a woman had. We also included information on the mortality status of the woman’s parents (i.e. whether she had both parents alive or not), which was derived from interviews at ages 7, 11, 16, 23, 42, 46, 50 and 55. The focal woman’s mother’s and father’s age at birth (collected in the perinatal interview) were also included to control for the amount of help her parents may need, as older parents would expected to be more in need of assistance. Finally, in models predicting hours spent caring for parents, time spent caring for grandchildren was adjusted for, and vice versa for models where hours spent caring for grandchildren was the outcome.AnalysesTime spent helping parents and caring for grandchildren were both modelled using zero-inflated negative binomial regression (ZINB). This modelling procedure was selected both due to the over-dispersed nature of the data with excess zeros, and because zero-inflated models allow for zeros to be generated through two distinct processes. Here, the model distinguishes between excess zeroes, which occur when the event could not have happened, and true zeros, which occur when there could have been an event. Therefore, the model estimates a binary outcome (does not care versus does care) and a count outcome (the number of hours spent caring). This method is theoretically appropriate, as there are many different reasons people would offer no care to kin: while some people may choose to invest less, for some people the choice is out of their control, with external factors influencing caring behaviours, such as living far away from kin26. In addition to this, ZINB was found to better fit the data than negative binomial regression (Supplementary Table S2).Time spent helping parents was first modelled. A ‘base’ model was first made containing the age the woman left education, employment status, marital status, self-perceived health, number of grandchildren, parent mortality status, age of parents, and time spent caring for grandchildren. Fecundity status was subsequently added, and model fitting then carried out on these two models, utilising their Akaike Information Criterion (AIC) value to understand whether a model including fecundity better fit the data than one without. The model with the lowest AIC value is taken to best fit the data. As AIC values penalise models for complexity, it means the model with the most terms will not automatically be selected as the best. The ΔAIC was also calculated, which is the difference between the candidate models AIC and the AIC value of the best fitting candidate model. If the ΔAIC value is ≤ 2, then it indicates that there is still good evidence to support the candidate model, meaning that a candidate model with a ΔAIC of ≤ 2 is almost as good as the best fitting model. A ΔAIC value of between 4 and 7 is taken to indicate the candidate model has considerably less support, and a ΔAIC of greater than 10 indicates there is no support for the candidate model27. The Akaike weights (wi) were also calculated to evaluate model fit, which give the probability that the candidate model is the best among the set of presented candidate models27. The same procedure was then used to model time spent caring for grandchild per month: a model including just the covariates was first made, but this time adjusting for time spent helping parents rather than time caring for grandchildren, with fecundity status then being added, and model fitting was once again carried out using the methods outlined above. All analyses were carried in R using the zeroinfl function with a negative binomial distribution specified28, and model fitting carried out with the package AICcmodavg29. All visualisations were created using ggplot230. More

  • in

    Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants

    1.Pontier, D. et al. Postnatal growth rate and adult body weight in mammals: A new approach. Oecologia 80, 390–394 (1989).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Dmitriew, C. M. The evolution of growth trajectories: What limits growth rate?. Biol. Rev. 86, 97–116 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Gotthard, K., Nylin, S. & Wiklund, C. Adaptive variation in growth rate: Life history costs and consequences in the speckled wood butterfly, Pararge aegeria. Oecologia 99, 281–289 (1994).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Arendt, J. D. Adaptive intrinsic growth rates: An integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).Article 

    Google Scholar 
    5.Gaillard, J. M. et al. Variation in growth form and precocity at birth in eutherian mammals. Proc. R. Soc. B Biol. Sci. 264, 859–868 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Gillooly, J. F., Charnov, E. L., Geoffrey, B. W., Savage, V. M. & James, H. B. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Brown, J. H., Gillooly, J. F., Allen, P. A., Savage, V. M. & Geoffrey, B. W. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    8.Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Sinauer Associates, 1992).9.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).10.Ferré, P., Decaux, J. F., Issad, T. & Girard, J. Changes in energy metabolism during the suckling and weaning period in the newborn. Reprod. Nutr. Dev. 26, 619–631 (1986).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Gadgil, M. & Bossert, W. H. Life history consequences of natural selection. Am. Nat. 104, 1–24 (1970).Article 

    Google Scholar 
    12.Lee, A. H., Huttenlocker, A. K., Padian, K. & Woodward, H. N. Analysis of growth rates. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 217–264 (University of California Press, 2013).13.Amprino, R. L. structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroisement. Arch. Biol. (Liege) 58, 315–330 (1947).
    Google Scholar 
    14.Nacarino-Meneses, C. & Köhler, M. Limb bone histology records birth in mammals. PLoS One 13, 20 (2018).
    Google Scholar 
    15.Morris, P. A. A method for determining absolute age in the hedgehog. Notes Mammal Soc. 20, 277–280 (1970).
    Google Scholar 
    16.Castanet, et al. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39 (2004).Article 

    Google Scholar 
    17.Klevezal, G. A. & Kleinenberg, S. E. Age determination of mammals by layered structures of teeth and bones. (1967).18.Barker, J. M., Boonstra, R. & Schulte-Hostedde, A. I. Age determination in yellow-pine chipmunks (Tamias amoenus): A comparison of eye lens masses and bone sections. Can. J. Zool. 81, 1774–1779 (2003).Article 

    Google Scholar 
    19.Amson, E., Kolb, C., Scheyer, T. M. & Sánchez-Villagra, M. R. Growth and life history of Middle Miocene deer (Mammalia, Cervidae) based on bone histology. C.R. Palevol 14, 637–645 (2015).Article 

    Google Scholar 
    20.Kolb, C. et al. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol. Biol. 15, 19 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.de Buffrénil, V. & Pascal, M. Croissance et morphogénèse postnatales de la mandibule du vison (Mustela vison Schreiber): Données sur la dynamique et l’interprétation fonctionnelle des dépôts osseux mandibulaires. Can. J. Zool. 62, 2026–2037 (1984).Article 

    Google Scholar 
    22.Castanet, J., CurryRogers, K., Cubo, J. & Jacques-Boisard, J. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. Comptes Rendus Acad. Sci. Ser. III Sci. Vie 323, 543–550 (2000).CAS 

    Google Scholar 
    23.Starck, J. M. & Chinsamy, A. Bone microstructure and developmental plasticity in birds and other dinosaurs. J. Morphol. 254, 232–246 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.de Margerie, E., Cubo, J. & Castanet, J. Bone typology and growth rate: Testing and quantifying ‘Amprino’s rule’ in the mallard (Anas platyrhynchos). Comptes Rendus Biol. 325, 221–230 (2002).Article 

    Google Scholar 
    25.de Margerie, E. et al. Assessing a relationship between bone microstructure and growth rate: A fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). J. Exp. Biol. 207, 869–879 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler-Crish, C. M. & Chinsamy, A. Bone remodeling in the longest living rodent, the naked mole-rat: Interelement variation and the effects of reproduction. J. Anat. https://doi.org/10.1111/joa.13404 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Smith, T. M. Experimental determination of the periodicity of incremental features in enamel. J. Anat. 208, 99–113 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kierdorf, H., Kierdorf, U., Frölich, K. & Witzel, C. Lines of evidence-incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS One 8, 20 (2013).
    Google Scholar 
    29.Witzel, C., Kierdorf, U., Frölich, K. & Kierdorf, H. The pay-off of hypsodonty—timing and dynamics of crown growth and wear in molars of Soay sheep. BMC Evol. Biol. 18, 1–14 (2018).Article 

    Google Scholar 
    30.Kahle, P., Witzel, C., Kierdorf, U., Frölich, K. & Kierdorf, H. Mineral apposition rates in coronal dentine of mandibular first molars in Soay sheep: Results of a fluorochrome labeling study. Anat. Rec. 301, 902–912 (2018).CAS 
    Article 

    Google Scholar 
    31.van Gaalen, S. M. et al. Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng. Part B. Rev. 16, 209–217 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Shim, M.-J. Bone changes in femoral bone of mice using calcein labeling. Korean J. Clin. Lab. Sci. 48, 114–117 (2016).Article 

    Google Scholar 
    33.Klevezal, G. A. Recording Structures of Mammals (Balkema Publishers, 1996).34.Klevezal, G. A. & Mina, M. V. Tetracycline labelling as a method of field studies of individual growth and population structure in rodents. Lynx (Praha) 22, 67–78 (1984).
    Google Scholar 
    35.Smith, T. M., Reid, D. J. & Sirianni, J. E. The accuracy of histological assessments of dental development and age at death. J. Anat. 208, 125–138 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Curtin, A. J. et al. Noninvasive histological comparison of bone growth patterns among fossil and extant neonatal elephantids using synchrotron radiation X-ray microtomography. J. Vertebr. Paleontol. 32, 939–955 (2012).Article 

    Google Scholar 
    37.Hugi, J. & Snchez-Villagra, M. R. Life history and skeletal adaptations in the galapagos marine iguana (Amblyrhynchus cristatus) as reconstructed with bone histological dataa comparative study of iguanines. J. Herpetol. 46, 312–324 (2012).Article 

    Google Scholar 
    38.Chinsamy, A. & Hurum, J. H. Bone microstructure and growth patterns of early mammals. Acta Palaeontol. Pol. 51, 325–338 (2006).
    Google Scholar 
    39.Teagasc. Development of the Calf Digestive System. Teagasc Calf Rearing Manual: Best Practice from Birth to Three Months 59–76 (2017).40.Warren, L. K., Lawrence, L. M., Parker, A. L., Barnes, T. & Griffin, A. S. The effect of weaning age on foal growth and radiographic bone density. J. Equine Vet. Sci. 18, 335–340 (1998).Article 

    Google Scholar 
    41.Holland, J. L. et al. Weaning stress is affected by nutrition and weaning methods. Pferdeheilkunde 12, 257–260 (1996).Article 

    Google Scholar 
    42.Enríquez, D., Hötzel, M. J. & Ungerfeld, R. Minimising the stress of weaning of beef calves: A review. Acta Vet. Scand. 53, 1–8 (2011).Article 

    Google Scholar 
    43.Pollard, J. C., Asher, G. W. & Littlejohn, R. P. Weaning date affects calf growth rates and hind conception dates in farmed red deer (Cervus elaphus). Anim. Sci. 74, 111–116 (2002).Article 

    Google Scholar 
    44.Wolter, B. F. & Ellis, M. The effects of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Can. J. Anim. Sci. 81, 363–369 (2001).Article 

    Google Scholar 
    45.Pluske, J. R., Dividich, J. L. & Verstegen, M. W. A. Weaning the pig. Concepts and Consequences Weaning the Pig (Wageningen Academic Publishers, 2003). https://doi.org/10.3920/978-90-8686-513-0.46.Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. The online version of this article, along with updated information and services, is located on the World Wide Web at: Milk production. J. Anim. Sci. 78, 2771–2777 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Wang, Y., Bekhit, A. E. D. A., Morton, J. D. & Mason, S. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications for Health and Disease 363–375 (2017). https://doi.org/10.1016/B978-0-12-809762-5.00028-048.Stein, K. & Prondvai, E. Rethinking the nature of fibrolamellar bone: An integrative biological revision of sauropod plexiform bone formation. Biol. Rev. 89, 24–47 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Clutton-Brock, T. H., Guiness, F. E. & Albon, S. D. Red Deer: Behaviour and Ecology of Two Sexes (The University of Chicago Press, 1982). https://doi.org/10.1016/0006-3207(83)90010-1.50.Festa-bianchet, M., Jorgenson, J. T. & Réale, D. Early development, adult mass, and reproductive success in bighorn sheep. Behav. Ecol. 11, 633–639 (2000).Article 

    Google Scholar 
    51.Cook, J. G. et al. Effects of summer–autumn nutrition and parturition date on reproduction and survival of elk. Wildl. Monogr. 20, 1–61 (2004).
    Google Scholar 
    52.Moore, G. H., Littlejohn, R. P. & Cowie, G. M. Liveweights, growth rates, and mortality of farmed red deer at Invermay. N. Z. J. Agric. Res. 31, 293–300 (1988).Article 

    Google Scholar 
    53.Ozanne, S. E. & Hales, C. N. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech. Ageing Dev. 126, 852–854 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Van Eetvelde, M. & Opsomer, G. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance. Reprod. Domest. Anim. 52, 30–36 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Calderón, T., DeMiguel, D., Arnold, W., Stalder, G. & Köhler, M. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. 20, 205–216. https://doi.org/10.1111/joa.13016 (2019).Article 

    Google Scholar 
    56.Horner, J. R., De Ricqlès, A. & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20, 115–129 (2000).Article 

    Google Scholar 
    57.Padian, K., De Ricqlès, A. J. & Horner, J. R. Dinosaurian growth rates and bird-origins. Nature 412, 405–408 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Woodward, H. N., Padian, K. & Lee, A. H. Skeletochronology. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 195–216 (University of California Press, 2013).59.Pratt, I. V. & Cooper, D. M. L. The effect of growth rate on the three-dimensional orientation of vascular canals in the cortical bone of broiler chickens. J. Anat. 233, 531–541 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Enlow, D. H. A study of the post-natal growth and remodelling of bone. Am. J. Anat. 110, 79–101 (1962).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Chinsamy-Turan, A. The Microstructure of Dinosaur Bone (The Johns Hopkins University Press, 2005).62.de Buffrénil, V. & Quilhac, A. Bone tissue types: A brief account of currently used categories. in Vertebrate Skeletal Histology and Paleohistology (eds. de Buffrénil, V., de Riclès, J. A., Zylbeberg, L. & Padian, K.) 148–192 (CRC Press, 2021).63.Padian, K., Lamm, E.-T. & Werning, S. Selection of specimens. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 35–54 (University of California Press, 2013).64.Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler-Crish, C. M. & Chinsamy, A. Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. J. Anat. https://doi.org/10.1111/joa.13381 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Calderón, T., DeMiguel, D., Arnold, W., Stalder, G. & Köhler, M. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. https://doi.org/10.1111/joa.13016 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Prondvai, E., Stein, K. H. W., de Ricqlès, A. & Cubo, J. Development-based revision of bone tissue classification: The importance of semantics for science. Biol. J. Linn. Soc. 112, 799–816 (2014).Article 

    Google Scholar 
    67.Francillon-Vieillot, H. et al. Microstructural and mineralization of vertebral skeletal tissues. In Skeletal Biommineralization: Patterns, Processes and Evolutionary Trends (ed. Carter, J. G.) (Van Nostrand Reinhold, 1990).68.Montes, L. et al. Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: A phylogenetic approach. Biol. J. Linn. Soc. 92, 63–76 (2007).Article 

    Google Scholar 
    69.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Team, Rs. RStudio: Integrated Development for R. (2019).71.Muggeo, V. M. R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 59, 311–322 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Reply to: Shark mortality cannot be assessed by fishery overlap alone

    Centro de Investigação em Biodiversidade e Recursos Genéticos/Research Network in Biodiversity and Evolutionary Biology, Campus Agrário de Vairão, Universidade do Porto, Vairão, PortugalNuno Queiroz, Ana Couto, Marisa Vedor, Ivo da Costa, Gonzalo Mucientes & António M. SantosMarine Biological Association of the United Kingdom, Plymouth, UKNuno Queiroz, Nicolas E. Humphries, Lara L. Sousa, Samantha J. Simpson, Emily J. Southall & David W. SimsDepartamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, PortugalMarisa Vedor & António M. SantosUWA Oceans Institute, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, Western Australia, AustraliaAna M. M. SequeiraSchool of Biological Sciences, University of Western Australia, Crawley, Western Australia, AustraliaAna M. M. SequeiraSpanish Institute of Oceanography, Santa Cruz de Tenerife, SpainFrancisco J. AbascalAbercrombie and Fish, Port Jefferson Station, NY, USADebra L. AbercrombieMarine Biology and Aquaculture Unit, College of Science and Engineering, James Cook University, Cairns, Queensland, AustraliaKatya Abrantes, Adam Barnett, Richard Fitzpatrick & Marcus SheavesInstitute of Natural and Mathematical Sciences, Massey University, Palmerston North, New ZealandDavid Acuña-MarreroUniversidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, BrazilAndré S. Afonso, Natalia P. A. Bezerra, Fábio H. V. Hazin, Fernanda O. Lana, Bruno C. L. Macena & Paulo TravassosMARE, Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, Peniche, PortugalAndré S. AfonsoMARE, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, PortugalPedro Afonso, Jorge Fontes & Frederic VandeperreInstitute of Marine Research (IMAR), Departamento de Oceanografia e Pescas, Universidade dos Açores, Horta, PortugalPedro Afonso, Jorge Fontes, Bruno C. L. Macena & Frederic VandeperreOkeanos – Departamento de Oceanografia e Pescas, Universidade dos Açores, Horta, PortugalPedro Afonso, Jorge Fontes & Frederic VandeperreDepartment of Environmental Affairs, Oceans and Coasts Research, Cape Town, South AfricaDarrell Anders, Michael A. Meÿer, Sarika Singh & Laurenne B. SnydersLarge Marine Vertebrates Research Institute Philippines, Jagna, PhilippinesGonzalo AraujoFins Attached Marine Research and Conservation, Colorado Springs, CO, USARandall ArauzPrograma Restauración de Tortugas Marinas PRETOMA, San José, Costa RicaRandall ArauzMigraMar, Olema, CA, USARandall Arauz, Sandra Bessudo Lion, Eduardo Espinoza, Alex R. Hearn, Mauricio Hoyos, James T. Ketchum, A. Peter Klimley, Cesar Peñaherrera-Palma, George Shillinger & German SolerInstitut de Recherche pour le Développement, UMR MARBEC (IRD, Ifremer, Univ. Montpellier, CNRS), Sète, FrancePascal Bach, Antonin V. Blaison, Laurent Dagorn, John D. Filmalter, Fabien Forget, Francois Poisson, Marc Soria & Mariana T. TolottiBiology Department, University of Massachusetts Dartmouth, Dartmouth, MA, USADiego Bernal & Heather MarshallRed Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi ArabiaMichael L. Berumen, Jesse E. M. Cochran & Carlos M. DuarteFundación Malpelo y Otros Ecosistemas Marinos, Bogota, ColombiaSandra Bessudo Lion, Felipe Ladino, Lina Maria Quintero & German SolerHopkins Marine Station of Stanford University, Pacific Grove, CA, USABarbara A. Block, Taylor K. Chapple, George Shillinger & Timothy D. WhiteDepartment of Biological Sciences, Florida International University, North Miami, FL, USAMark E. Bond, Demian D. Chapman & Yannis P. PapastamatiouInstituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, BrazilRamon BonfilCSIRO Oceans and Atmosphere, Hobart, Tasmania, AustraliaRussell W. Bradford & Barry D. BruceSchool of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USACamrin D. BraunBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USACamrin D. Braun & Simon R. ThorroldShark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, BahamasEdward J. Brooks, Annabelle Brooks & Sean WilliamsUniversity of Exeter, Exeter, UKAnnabelle BrooksSouth Atlantic Environmental Research Institute, Stanley, Falkland IslandsJudith BrownDepartment of Biological Sciences, The Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL, USAMichael E. Byrne, Mahmood Shivji, Jeremy J. Vaudo & Bradley M. WetherbeeSchool of Natural Resources, University of Missouri, Columbia, MO, USAMichael E. ByrneLife and Environmental Sciences, University of Iceland, Reykjavik, IcelandSteven E. CampanaSchool of Marine Science and Policy, University of Delaware, Lewes, DE, USAAaron B. Carlisle & Gregory B. SkomalMassachusetts Division of Marine Fisheries, New Bedford, MA, USAJohn ChisholmMarine Research Facility, Jeddah, Saudi ArabiaChristopher R. Clarke & James S. E. LeaPSL, Labex CORAIL, CRIOBE USR3278 EPHE-CNRS-UPVD, Papetoai, French PolynesiaEric G. CluaAgence de Recherche pour la Biodiversité à la Réunion (ARBRE), Réunion, Marseille, FranceEstelle C. CrocheletInstitut de Recherche pour le Développement, UMR 228 ESPACE-DEV, Réunion, Marseille, FranceEstelle C. CrocheletSave Our Seas Foundation–D’Arros Research Centre (SOSF-DRC), Geneva, SwitzerlandRyan Daly & Clare A. Keating DalySouth African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South AfricaRyan Daly, John D. Filmalter, Enrico Gennari & Alison A. KockDepartment of Fisheries Evaluation, Fisheries Research Division, Instituto de Fomento Pesquero (IFOP), Valparaíso, ChileDaniel Devia CortésSchool of Biological, Earth and Environmental Sciences, University College Cork, Cork, IrelandThomas K. Doyle & Luke HarmanMaREI Centre, Environmental Research Institute, University College Cork, Cork, IrelandThomas K. DoyleCollege of Science and Engineering, Flinders University, Adelaide, South Australia, AustraliaMichael Drew, Matthew Heard & Charlie HuveneersDepartment of Conservation, Auckland, New ZealandClinton A. J. DuffySouth African Institute for Aquatic Biodiversity, Geological Sciences, UKZN, Durban, South AfricaThor EriksonDireccion Parque Nacional Galapagos, Puerto Ayora, Galapagos, EcuadorEduardo EspinozaAustralian Institute of Marine Science, Indian Ocean Marine Research Centre (UWA), Crawley, Western Australia, AustraliaLuciana C. Ferreira, Mark G. Meekan & Michele ThumsDepartment of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USAFrancesco FerrettiOCEARCH, Park City, UT, USAG. Chris FischerBedford Institute of Oceanography, Dartmouth, Nova Scotia, CanadaMark Fowler, Warren Joyce & Anna MacDonnellNational Institute of Water and Atmospheric Research, Wellington, New ZealandMalcolm P. Francis & Warrick S. LyonBeneath the Waves, Herndon, VA, USAAustin J. GallagherRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USAAustin J. Gallagher, Neil Hammerschlag & Emily R. NelsonOceans Research Institute, Mossel Bay, South AfricaEnrico GennariDepartment of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South AfricaEnrico Gennari & Alison TownerSARDI Aquatic Sciences, Adelaide, South Australia, AustraliaSimon D. Goldsworthy & Paul J. RogersZoological Society of London, London, UKMatthew J. Gollock & Fiona LlewellynGalapagos Whale Shark Project, Puerto Ayora, Galapagos, EcuadorJonathan R. GreenGriffith Centre for Coastal Management, Griffith University School of Engineering, Griffith University, Gold Coast, Queensland, AustraliaJohan A. GustafsonSaving the Blue, Cooper City, FL, USATristan L. GuttridgeSmithsonian Tropical Research Institute, Panama City, PanamaHector M. GuzmanLeonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL, USANeil HammerschlagGalapagos Science Center, San Cristobal, Galapagos, EcuadorAlex R. HearnUniversidad San Francisco de Quito, Quito, EcuadorAlex R. HearnBlue Water Marine Research, Tutukaka, New ZealandJohn C. HoldsworthUniversity of Queensland, Brisbane, Queensland, AustraliaBonnie J. HolmesMicrowave Telemetry, Columbia, MD, USALucy A. Howey & Lance K. B. JordanPelagios-Kakunja, La Paz, MexicoMauricio Hoyos & James T. KetchumMote Marine Laboratory, Center for Shark Research, Sarasota, FL, USARobert E. Hueter, John J. Morris & John P. TyminskiBiological Sciences, University of Windsor, Windsor, Ontario, CanadaNigel E. HusseyCape Research and Diver Development, Simon’s Town, South AfricaDylan T. IrionInstitute of Zoology, Zoological Society of London, London, UKDavid M. P. JacobyCentre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, AustraliaOliver J. D. JewellDyer Island Conservation Trust, Western Cape, South AfricaOliver J. D. Jewell & Alison TownerBlue Wilderness Research Unit, Scottburgh, South AfricaRyan JohnsonUniversity of California Davis, Davis, CA, USAA. Peter KlimleyCape Research Centre, South African National Parks, Steenberg, South AfricaAlison A. KockShark Spotters, Fish Hoek, South AfricaAlison A. KockInstitute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, South AfricaAlison A. KockWestern Cape Department of Agriculture, Veterinary Services, Elsenburg, South AfricaPieter KoenDepartamento de Biologia Marinha, Universidade Federal Fluminense (UFF), Niterói, BrazilFernanda O. LanaDepartment of Zoology, University of Cambridge, Cambridge, UKJames S. E. LeaAtlantic White Shark Conservancy, Chatham, MA, USAHeather MarshallFisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaJaime D. McAllister, Jayson M. Semmens, German Soler & Kilian M. StehfestPontificia Universidad Católica del Ecuador Sede Manabi, Portoviejo, EcuadorCesar Peñaherrera-PalmaMarine Megafauna Foundation, Truckee, CA, USASimon J. Pierce & Christoph A. RohnerConservation and Fisheries Department, Ascension Island Government, Georgetown, Ascension Island, UKAndrew J. RichardsonMarine Conservation Society Seychelles, Victoria, SeychellesDavid R. L. RowatCORDIO, East Africa, Mombasa, KenyaMelita SamoilysUpwell, Monterey, CA, USAGeorge ShillingerDepartment of Zoology and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South AfricaMalcolm J. SmaleNational Institute of Polar Research, Tachikawa, Tokyo, JapanYuuki Y. WatanabeSOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, JapanYuuki Y. WatanabeCentre for Ecology and Conservation, University of Exeter, Penryn, UKSam B. WeberDepartment of Biological Sciences, University of Rhode Island, Kingston, RI, USABradley M. WetherbeeDepartment of Oceanography and Environment, Fisheries Research Division, Instituto de Fomento Pesquero (IFOP), Valparaíso, ChilePatricia M. ZárateDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaRobert HarcourtSchool of Life and Environmental Sciences, Deakin University, Geelong, Victoria, AustraliaGraeme C. HaysAZTI – BRTA, Pasaia, SpainXabier IrigoienIKERBASQUE, Basque Foundation for Science, Bilbao, SpainXabier IrigoienInstituto de Fisica Interdisciplinar y Sistemas Complejos, Consejo Superior de Investigaciones Cientificas, University of the Balearic Islands, Palma de Mallorca, SpainVictor M. EguiluzWildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney, UKLara L. SousaOcean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UKSamantha J. Simpson & David W. SimsCentre for Biological Sciences, University of Southampton, Southampton, UKDavid W. SimsN.Q. and D.W.S. planned the data analysis. N.Q. led the data analysis with contributions from M.V., A.M.M.S. and D.W.S. N.E.H. contributed analysis tools. A.M.M.S. undertook linear-regression modelling. D.W.S. led the manuscript writing with contributions from N.Q., N.E.H., A.M.M.S and all authors. Six of the original authors were not included in the Reply authorship; two authors retired from science and the remaining four, although supportive of our Reply, declined to join the authorship due to potential conflicts of interest with the authors of the Comment and/or their institutions. More

  • in

    Spatiotemporal effects of urban sprawl on habitat quality in the Pearl River Delta from 1990 to 2018

    Study areaThe Pearl River Delta (112°45′–113°50′ E, 21°31′–23°10′ N) is located in the central and southern parts of Guangdong Province, including the lower reaches of the Pearl River, adjacent to Hong Kong and Macao, and facing Southeast Asia across the sea with convenient land and sea transportation. As shown in Fig. 1, the Pearl River Delta region includes nine prefecture-level cities, namely Guangzhou, Shenzhen, Zhongshan, Zhuhai, Dongguan, Zhaoqing, Foshan, Huizhou, and Jiangmen.Figure 1Geographical location of Pearl River Delta drawn in ArcGIS 10.6.Full size imageData sourceThe research framework of this paper is shown in Fig. 2, and the data sources are as follows. Taking the basin as the research unit, the raster data of 30 m and 1 km were analyzed by zoning statistics:

    (1)

    China’s land-use raster data for 1990, 2000, 2010, and 2018 were obtained from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn), with a spatial resolution of 30 m. According to land resources and their utilization attributes, the dataset divides land cover types into six first-level categories: cultivated land, woodland, grassland, water area, construction land, unused land, and land reclamation from ocean. The land urbanization rate (LUR) refers to the proportion of construction land in the whole region, which is calculated by dividing the area of construction land by the area of all land use types.

    (2)

    Raster data of population density (POP) from 1990, 2000, 2010, and 2015 were obtained from the Environment and Resources Data Cloud Platform of the Chinese Academy of Sciences, with a spatial resolution of 1 km. Owing to the stable growth of population density under normal circumstances, the population density data of 2018 were obtained by linear fitting based on POP data from 2010 and 2015.

    (3)

    Nighttime Light (NTL) raster data from 1992 to 2018 were obtained from the Nature journal data (https://doi.org/10.6084/m9.figshare.9828827.v2) with a spatial resolution of 500 m45 Calibration was performed to eliminate the differences in the DMSP (1992–2013) and VIIRS (2012–2018) data, generating a complete and consistent NTL dataset on a global scale.

    Figure 2Research framework.Full size imageLand-use information TUPUThe land-use information graph is a geospatial analysis model combining attributes, processes, and spaces, which can reflect the spatial differences and temporal changes in land-use types46. In its function expression, let the state variables be (pleft( {p_{1} ,p_{2} ,p_{3} , ldots ,p_{n} } right)), and then set p as a function of spatial position r and time t, as follows:$$ begin{array}{*{20}c} {p = fleft( {r,t} right)} \ end{array} $$
    (1)
    where (p) represents land-use characteristics. (1) To realize the spatial description of land attributes, when t is constant, the function relation of (p) changing with (r) is constructed. (2) The process description of land attributes can be realized, and when (r) is constant, the function relation of (p) changing with (t) can be constructed. The combination of these two functions can form a conceptual model of the land-use information graph and realize a composite study of land space, process, and attributes.Habitat qualityHabitat quality evaluationWe used InVEST-HQ to evaluate the habitat quality in the Pearl River Delta region. Based on land-use types, InVEST-HQ calculated the habitat degradation degree and habitat quality index by using threat factors, the sensitivity of different habitat types to threat factors, and habitat suitability15. The InVEST-HQ model was co-developed by Stanford University, the Nature Conservancy, and the World Wide Fund for Nature15. InVEST-HQ has a low demand for data and a better spatial visualization effect, which is widely used in the field of urban ecology47,48,49. For example, The InVEST-HQ model has been used to assess dynamic changes in habitat quality in Scottish11, China50,51 and Portugal47. Habitat degradation and habitat quality were calculated using the following formulas:$$ begin{array}{*{20}c} {Q_{{xj}} = ~H_{j} left[ {1 – left( {frac{{D_{{xj}}^{2} }}{{D_{{xj}}^{2} + k^{2} )}}} right)} right]} \ end{array} $$
    (2)
    $$ begin{array}{*{20}c} {D_{{xj}} = ~mathop sum limits_{{r = 1}}^{r} mathop sum limits_{{y = 1}}^{y} left( {frac{{w_{r} }}{{mathop sum nolimits_{{r = 1}}^{r} w_{r} }}} right)r_{y} i_{{rxy}} beta _{x} S_{{jr}} } \ end{array} $$
    (3)
    where (Q_{{xj}}) is the habitat quality of grid x in land-use type j, (H_{j}) is the habitat suitability of land-use type j, (D_{{xj}}) is the habitat degradation degree of grid x in land-use type j, k is the half-satiety sum constant, r is the number of threat factors, and y is the relative sensitivity of threat sources. (r_{y} ,w_{r}), and (i_{{rxy}}) are, respectively, the interference intensity and weight of the grid where the threat factor r is located, and the interference generated by the habitat. (beta _{x} ,S_{{jr}}) are the anti-disturbance ability of habitat type x and its relative sensitivity to various threat sources, respectively.The value range of habitat degradation degree is [0, 1], and the larger the value, the more serious the habitat degradation. The value of habitat quality is between 0 and 1, and the higher the value, the better the habitat quality.$$ begin{array}{*{20}c} {Linear,attenuation:~i_{{rxy}} = 1 – left( {d_{{xy}} /d_{{r,max}} } right)} \ end{array} $$
    (4)
    $$ begin{array}{*{20}c} {Exponential,decay:~i_{{rxy}} = expleft[ { – 2.99d_{{xy}} /d_{{r{text{~}}max}} } right]} \ end{array} $$
    (5)

    where (d_{{xy}}) is the straight-line distance between grids x and y, and (d_{{r,max}}) is the maximum threat distance of threat factor r.Five categories of documentation are prepared before using InVEST-HQ: LULC maps, threat factor data, threat sources, accessibility of degradation sources, habitat types and their sensitivity to each threat. Threat sources were divided into Cropland, City/town, Rural settlements, Other construction land, Unused land, and land applications. The maps of threat sources are generated in ArcGIS. For example, in the map of threat sources of cultivated land, the raster value of cultivated land is set to 1, and the raster value of other land types is set to 0. Distance between habitats and threat sources, weight of threat factors, decay type of threats factors, habitat suitability and the sensitivity of different habitat types to threat factors were derived from previous studies in similar regions2,25,38,39,50 and user guide manual of InVEST model15, as shown in Tables 1 and 2.Table 1 Threat factors and related coefficients.Full size tableTable 2  Sensitivity of habitat types to each threat factor.Full size tableHabitat quality change index and contribution indexThe CI was used to analyze the causes of the changes in habitat quality, and the following formula was used to qu2,25,38,39,50antitatively represent the contribution of land-use conversion to habitat quality change. In this study, the total value of habitat quality loss caused by land transfer in areas related to construction land expansion from 1990 to 2018 can be expressed as follows:$$ begin{array}{*{20}c} {CI~ = ~frac{{mathop sum nolimits_{1}^{n} left( {Q_{{ij2018}} – Q_{{xj1990}} } right)}}{n}} \ end{array} $$
    (6)

    where n is the grid number of cultivated land transferred to construction land.To analyze the relationship between land-use change and habitat quality, the HQCI was constructed to describe the mean value of habitat quality reduction caused by land transfer in the areas related to construction land expansion during the study period. The formula is as follows:$$ begin{array}{*{20}c} {HQCI~ = CI_{{ij}} /S_{{ij}} } \ end{array} $$
    (7)
    where (CI_{{ij}}) represents the total value of habitat quality change when land-use type (i) is converted into land-use type (j), and (S_{{ij}}) represents the area converted from land-use type (i) into land-use type (j). The positive and negative values of HQCI, respectively, represent the positive and negative impacts of land-use change on the habitat, and the higher the absolute value of HQCI, the greater the impact.Correlation analysisGeographically weighted regressionBased on traditional OLS, GWR establishes local spatial regression and considers spatial location factors, which can effectively analyze the spatial heterogeneity of various elements at different locations52. The calculation formula is as follows:$$ Y_{i} = ~beta _{0} left( {mu _{i} ,v_{i} } right) + sum kbeta _{k} left( {mu _{i} ,v_{i} } right)X_{{ik}} + varepsilon _{i} $$where (Y_{i}) is the coupling coordination degree of the ith sample point, (left( {mu _{i} ,v_{i} } right)) is the spatial position coordinate of the ith sample point, (beta _{k} left( {mu _{i} ,v_{i} } right)) is the value of the continuous function (beta _{k} left( {mu ,v} right)) at (left( {mu _{i} ,v_{i} } right)), (X_{{ik}}) is the independent variable, (varepsilon _{i}) is the random error term, and k is the number of spatial units.To simplify the complicated urbanization process, it was divided into three aspects: economic urbanization, population urbanization, and land urbanization according to the existing research38. The NTL, POP, and LUR were used to represent the economic development, population scale, and land urbanization level of the city.The research unit is a river basin, which has both natural and social attributes. It is a relatively independent and complete system, which can connect and explain the coupling phenomenon of society, economy, and nature53. The hydrological analysis module in ArcGIS was used to divide the research area into 374 small basins. When calculating the cumulative flow of the grid, 100,000 was used as the threshold value, and basins less than 5 km2 were combined with the adjacent basins.Zone classification using the Self-organizing feature mapping neural networkThe SOFM neural network was proposed by Kohonen, a Finnish scholar, and constructed by simulating a “lateral inhibition” phenomenon in the human cerebral cortex. It has been widely applied in classification research in geographic and land system science42,43. The advantages of the SOFM neural network in classifying the coupling relationship between urbanization and habitat quality are as follows : (1) it simulates human brain neurons through unsupervised learning, which is objective and reliable. (2) It maintains the data topology during self-learning, training, and simulation to obtain reasonable partition results and identify the differences between different basins. (3) For massive data, the SOFM network has a good clustering function while maintaining its characteristics and uses the weight vector of the output node to represent the original input. The SOFM neural network can compress the data while maintaining a high similarity between the compression results and the original input data54. We exported the data from ArcGIS, and conducted cluster analysis on the four factors of NTL, POP, LUR and habitat quality using SOFM. Finally, the analysis results are imported into ArcGIS for display. More

  • in

    Newfound ‘fairy lantern’ could soon be snuffed out forever

    An umbrella-shaped structure of unknown function crowns a recently described species of fairy lantern. Credit: Siti Munirah Mat Yunoh et al./PhytoKeys (CC BY 4.0)

    Conservation biology
    07 July 2021
    Newfound ‘fairy lantern’ could soon be snuffed out forever

    Wild boars have destroyed three of the four known specimens of a bizarre plant in the forests of Malaysia.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Researchers have discovered a new species of ‘fairy lantern’, leafless plants that look like tiny glowing lights. Sadly, however, the organism might already be on the verge of extinction.Plants in the genus Thismia, colloquially called ‘fairy lanterns’, draw nutrients from underground fungi and grow in parts of Asia, Australasia and the Americas. Siti Munirah Mat Yunoh at the Forest Research Institute Malaysia in Kepong and her colleagues described a new species of Thismia that was first found in 2019 in a Malaysian rain forest. The scientists named the plant Thismia sitimeriamiae after the mother of the local explorer who discovered it, in honour of her support for her son’s nature-conservation efforts.Thismia sitimeriamiae is only about two centimetres tall, and sports an orange flower shaped like a funnel with an umbrella-like structure on top. The plant seems to be so rare that it should be considered critically endangered: just four individuals of T. sitimeriamiae have ever been seen, and wild boars have destroyed all but one of these, the authors say.

    PhytoKeys (2021)

    Conservation biology More

  • in

    Reply to: Caution over the use of ecological big data for conservation

    Centro de Investigação em Biodiversidade e Recursos Genéticos/Research Network in Biodiversity and Evolutionary Biology, Campus Agrário de Vairão, Universidade do Porto, Vairão, PortugalNuno Queiroz, Ana Couto, Marisa Vedor, Ivo da Costa, Gonzalo Mucientes & António M. SantosMarine Biological Association of the United Kingdom, Plymouth, UKNuno Queiroz, Nicolas E. Humphries, Lara L. Sousa, Samantha J. Simpson, Emily J. Southall & David W. SimsDepartamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, PortugalMarisa Vedor & António M. SantosUWA Oceans Institute, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, Western Australia, AustraliaAna M. M. SequeiraSchool of Biological Sciences, University of Western Australia, Crawley, Western Australia, AustraliaAna M. M. SequeiraSpanish Institute of Oceanography, Santa Cruz de Tenerife, SpainFrancisco J. AbascalAbercrombie and Fish, Port Jefferson Station, NY, USADebra L. AbercrombieMarine Biology and Aquaculture Unit, College of Science and Engineering, James Cook University, Cairns, Queensland, AustraliaKatya Abrantes, Adam Barnett, Richard Fitzpatrick & Marcus SheavesInstitute of Natural and Mathematical Sciences, Massey University, Palmerston North, New ZealandDavid Acuña-MarreroUniversidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, BrazilAndré S. Afonso, Natalia P. A. Bezerra, Fábio H. V. Hazin, Fernanda O. Lana, Bruno C. L. Macena & Paulo TravassosMARE, Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, Peniche, PortugalAndré S. AfonsoMARE, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, PortugalPedro Afonso, Jorge Fontes & Frederic VandeperreInstitute of Marine Research (IMAR), Departamento de Oceanografia e Pescas, Universidade dos Açores, Horta, PortugalPedro Afonso, Jorge Fontes, Bruno C. L. Macena & Frederic VandeperreOkeanos – Departamento de Oceanografia e Pescas, Universidade dos Açores, Horta, PortugalPedro Afonso, Jorge Fontes & Frederic VandeperreDepartment of Environmental Affairs, Oceans and Coasts Research, Cape Town, South AfricaDarrell Anders, Michael A. Meÿer, Sarika Singh & Laurenne B. SnydersLarge Marine Vertebrates Research Institute Philippines, Jagna, PhilippinesGonzalo AraujoFins Attached Marine Research and Conservation, Colorado Springs, CO, USARandall ArauzPrograma Restauración de Tortugas Marinas PRETOMA, San José, Costa RicaRandall ArauzMigraMar, Olema, CA, USARandall Arauz, Sandra Bessudo Lion, Eduardo Espinoza, Alex R. Hearn, Mauricio Hoyos, James T. Ketchum, A. Peter Klimley, Cesar Peñaherrera-Palma, George Shillinger, German Soler & Patricia M. ZárateInstitut de Recherche pour le Développement, UMR MARBEC (IRD, Ifremer, Univ. Montpellier, CNRS), Sète, FrancePascal Bach, Antonin V. Blaison, Laurent Dagorn, John D. Filmalter, Fabien Forget, Francois Poisson, Marc Soria & Mariana T. TolottiBiology Department, University of Massachusetts Dartmouth, Dartmouth, MA, USADiego Bernal & Heather MarshallRed Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi ArabiaMichael L. Berumen, Jesse E. M. Cochran & Carlos M. DuarteFundación Malpelo y Otros Ecosistemas Marinos, Bogota, ColombiaSandra Bessudo Lion, Felipe Ladino, Lina Maria Quintero & German SolerHopkins Marine Station of Stanford University, Pacific Grove, CA, USABarbara A. Block, Taylor K. Chapple, George Shillinger & Timothy D. WhiteDepartment of Biological Sciences, Florida International University, North Miami, FL, USAMark E. Bond, Demian D. Chapman & Yannis P. PapastamatiouInstituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, BrazilRamon BonfilSchool of Fishery and Aquatic Sciences, University of Washington, Seattle, WA, USACamrin D. BraunBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USACamrin D. Braun & Simon R. ThorroldShark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, BahamasEdward J. Brooks, Annabelle Brooks & Sean WilliamsUniversity of Exeter, Exeter, UKAnnabelle BrooksSouth Atlantic Environmental Research Institute, Stanley, Falkland IslandsJudith BrownDepartment of Biological Sciences, The Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL, USAMichael E. Byrne, Mahmood Shivji, Jeremy J. Vaudo & Bradley M. WetherbeeSchool of Natural Resources, University of Missouri, Columbia, MO, USAMichael E. ByrneLife and Environmental Sciences, University of Iceland, Reykjavik, IcelandSteven E. CampanaSchool of Marine Science and Policy, University of Delaware, Lewes, DE, USAAaron B. CarlisleMassachusetts Division of Marine Fisheries, New Bedford, MA, USAJohn Chisholm & Gregory B. SkomalMarine Research Facility, Jeddah, Saudi ArabiaChristopher R. Clarke & James S. E. LeaPSL, Labex CORAIL, CRIOBE USR3278 EPHE-CNRS-UPVD, Papetoai, French PolynesiaEric G. CluaAgence de Recherche pour la Biodiversité à la Réunion (ARBRE), Réunion, Marseille, FranceEstelle C. CrocheletInstitut de Recherche pour le Développement, UMR 228 ESPACE-DEV, Réunion, Marseille, FranceEstelle C. CrocheletSave Our Seas Foundation–D’Arros Research Centre (SOSF-DRC), Geneva, SwitzerlandRyan Daly & Clare A. Keating DalySouth African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South AfricaRyan Daly, John D. Filmalter, Enrico Gennari & Alison A. KockDepartment of Fisheries Evaluation, Fisheries Research Division, Instituto de Fomento Pesquero (IFOP), Valparaíso, ChileDaniel Devia CortésSchool of Biological, Earth and Environmental Sciences, University College Cork, Cork, IrelandThomas K. Doyle & Luke HarmanMaREI Centre, Environmental Research Institute, University College Cork, Cork, IrelandThomas K. DoyleCollege of Science and Engineering, Flinders University, Adelaide, South Australia, AustraliaMichael Drew, Matthew Heard & Charlie HuveneersDepartment of Conservation, Auckland, New ZealandClinton A. J. DuffySouth African Institute for Aquatic Biodiversity, Geological Sciences, UKZN, Durban, South AfricaThor EriksonDireccion Parque Nacional Galapagos, Puerto Ayora, Galapagos, EcuadorEduardo EspinozaAustralian Institute of Marine Science, Indian Ocean Marine Research Centre (UWA), Crawley Western Australia, Crawley, AustraliaLuciana C. Ferreira, Mark G. Meekan & Michele ThumsDepartment of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USAFrancesco FerrettiOCEARCH, Park City, Utah, USAG. Chris FischerBedford Institute of Oceanography, Dartmouth, Nova Scotia, CanadaMark Fowler, Warren Joyce & Anna MacDonnellNational Institute of Water and Atmospheric Research, Wellington, New ZealandMalcolm P. Francis & Warrick S. LyonBeneath the Waves, Herndon, VA, USAAustin J. GallagherRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USAAustin J. Gallagher, Neil Hammerschlag & Emily R. NelsonOceans Research Institute, Mossel Bay, South AfricaEnrico GennariDepartment of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South AfricaEnrico Gennari & Alison TownerSARDI Aquatic Sciences, Adelaide, South Australia, AustraliaSimon D. Goldsworthy & Paul J. RogersZoological Society of London, London, UKMatthew J. Gollock & Fiona LlewellynGalapagos Whale Shark Project, Puerto Ayora, Galapagos, EcuadorJonathan R. GreenGriffith Centre for Coastal Management, Griffith University School of Engineering, Griffith University, Gold Coast, Queensland, AustraliaJohan A. GustafsonSaving the Blue, Cooper City, FL, USATristan L. GuttridgeSmithsonian Tropical Research Institute, Panama City, PanamaHector M. GuzmanLeonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL, USANeil HammerschlagGalapagos Science Center, San Cristobal, Galapagos, EcuadorAlex R. HearnUniversidad San Francisco de Quito, Quito, EcuadorAlex R. HearnBlue Water Marine Research, Tutukaka, New ZealandJohn C. HoldsworthUniversity of QueenslandBrisbane, Queensland, AustraliaBonnie J. HolmesMicrowave Telemetry, Columbia, MD, USALucy A. Howey & Lance K. B. JordanPelagios-Kakunja, La Paz, MexicoMauricio Hoyos & James T. KetchumMote Marine Laboratory, Center for Shark Research, Sarasota, FL, USARobert E. Hueter, John J. Morris & John P. TyminskiBiological Sciences, University of Windsor, Windsor, Ontario, CanadaNigel E. HusseyCape Research and Diver Development, Simon’s Town, South AfricaDylan T. IrionInstitute of Zoology, Zoological Society of London, London, UKDavid M. P. JacobyCentre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, AustraliaOliver J. D. JewellDyer Island Conservation Trust, Western Cape, South AfricaOliver J. D. Jewell & Alison TownerBlue Wilderness Research Unit, Scottburgh, South AfricaRyan JohnsonUniversity of California Davis, Davis, CA, USAA. Peter KlimleyCape Research Centre, South African National Parks, Steenberg, South AfricaAlison A. KockShark Spotters, Fish Hoek, South AfricaAlison A. KockInstitute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, South AfricaAlison A. KockWestern Cape Department of Agriculture, Veterinary Services, Elsenburg, South AfricaPieter KoenDepartamento de Biologia Marinha, Universidade Federal Fluminense (UFF), Niterói, BrazilFernanda O. LanaDepartment of Zoology, University of Cambridge, Cambridge, UKJames S. E. LeaAtlantic White Shark Conservancy, Chatham, MA, USAHeather MarshallFisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaJaime D. McAllister, Jayson M. Semmens, German Soler & Kilian M. StehfestPontificia Universidad Católica del Ecuador Sede Manabi, Portoviejo, EcuadorCesar Peñaherrera-PalmaMarine Megafauna Foundation, Truckee, CA, USASimon J. Pierce & Christoph A. RohnerConservation and Fisheries Department, Ascension Island Government, Georgetown, Ascension Island, UKAndrew J. RichardsonMarine Conservation Society Seychelles, Victoria, SeychellesDavid R. L. RowatCORDIO, East Africa, Mombasa, KenyaMelita SamoilysUpwell, Monterey, CA, USAGeorge ShillingerDepartment of Zoology and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South AfricaMalcolm J. SmaleNational Institute of Polar Research, Tachikawa, Tokyo, JapanYuuki Y. WatanabeSOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, JapanYuuki Y. WatanabeCentre for Ecology and Conservation, University of Exeter, Penryn, UKSam B. WeberDepartment of Biological Sciences, University of Rhode Island, Kingston, RI, USABradley M. WetherbeeDepartment of Oceanography and Environment, Fisheries Research Division, Instituto de Fomento Pesquero (IFOP), Valparaíso, ChilePatricia M. ZárateDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaRobert HarcourtSchool of Life and Environmental Sciences, Deakin University, Geelong, Victoria, AustraliaGraeme C. HaysAZTI – BRTA, Pasaia, SpainXabier IrigoienIKERBASQUE, Basque Foundation for Science, Bilbao, SpainXabier IrigoienInstituto de Fisica Interdisciplinar y Sistemas Complejos, Consejo Superior de Investigaciones Cientificas, University of the Balearic Islands, Palma de Mallorca, SpainVictor M. EguiluzWildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney, UKLara L. SousaOcean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UKSamantha J. Simpson & David W. SimsCentre for Biological Sciences, University of Southampton, Southampton, UKDavid W. SimsN.Q. and D.W.S. planned the data analysis. N.Q. led the data analysis with contributions from M.V. and D.W.S. N.E.H. contributed analysis tools. D.W.S. led the manuscript writing with contributions from N.Q., N.E.H. and all authors. Seven of the original authors were not included in the Reply authorship; two authors retired from science and the remaining five, although supportive of our Reply, declined to join the authorship due to potential conflicts of interest with the authors of the Comment and/or their institutions. More

  • in

    Developmental environment shapes honeybee worker response to virus infection

    1.Gilbert, S. F. Ecological Developmental Biology. in eLS 1–8 (Wiley, 2017). https://doi.org/10.1002/9780470015902.a0020479.pub2.2.Bateson, P., Gluckman, P. & Hanson, M. The biology of developmental plasticity and the predictive adaptive response hypothesis. J. Physiol. https://doi.org/10.1113/jphysiol.2014.271460 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Emlen, D. J. & Nijhout, H. F. The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. https://doi.org/10.1146/annurev.ento.45.1.661 (2000).Article 
    PubMed 

    Google Scholar 
    4.Koyama, T., Mendes, C. C. & Mirth, C. K. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front. Physiol. https://doi.org/10.3389/fphys.2013.00263 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Wilson, E. O. The Insect Societies (Harvard University Press, 1971).
    Google Scholar 
    6.Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. https://doi.org/10.1056/nejmra0708473 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Lummaa, V. & Clutton-Brock, T. Early development, survival and reproduction in humans. Trends Ecol. Evol. 17, 141–147 (2002).Article 

    Google Scholar 
    8.Griffin, R. M., Hayward, A. D., Bolund, E., Maklakov, A. A. & Lummaa, V. Sex differences in adult mortality rate mediated by early-life environmental conditions. Ecol. Lett. https://doi.org/10.1111/ele.12888 (2018).Article 
    PubMed 

    Google Scholar 
    9.Briga, M., Koetsier, E., Boonekamp, J. J., Jimeno, B. & Verhulst, S. Food availability affects adult survival trajectories depending on early developmental conditions. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.2287 (2017).Article 

    Google Scholar 
    10.Barrett, E. L. B., Hunt, J., Moore, A. J. & Moore, P. J. Separate and combined effects of nutrition during juvenile and sexual development on female life-history trajectories: The thrifty phenotype in a cockroach. Proc. R. Soc. B Biol. Sci. 276, 3257–3264 (2009).Article 

    Google Scholar 
    11.Kriengwatana, B., Wada, H., Macmillan, A. & MacDougall-Shackleton, S. A. Juvenile nutritional stress affects growth rate, adult organ mass, and innate immune function in zebra finches (Taeniopygia guttata). Physiol. Biochem. Zool. 86, 769–781 (2013).Article 

    Google Scholar 
    12.Birkhead, T. R., Fletcher, F. & Pellatt, E. J. Nestling diet, secondary sexual traits and fitness in the zebra finch. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.1999.0649 (1999).Article 

    Google Scholar 
    13.Tella, J. L. et al. Offspring body condition and immunocompetence are negatively affected by high breeding densities in a colonial seabird: A multiscale approach. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2001.1688 (2001).Article 

    Google Scholar 
    14.Naguib, M., Amrhein, V. & Kunc, H. P. Effects of territorial intrusions on eavesdropping neighbors: Communication networks in nightingales. Behav. Ecol. https://doi.org/10.1093/beheco/arh108 (2004).Article 

    Google Scholar 
    15.Stjernman, M., Råberg, L. & Nilsson, J. Å. Long-term effects of nestling condition on blood parasite resistance in blue tits (Cyanistes caeruleus). Can. J. Zool. https://doi.org/10.1139/Z08-071 (2008).Article 

    Google Scholar 
    16.Butler, M. W. & McGraw, K. J. Past or present? Relative contributions of developmental and adult conditions to adult immune function and coloration in mallard ducks (Anas platyrhynchos). J. Comp. Physiol. B. https://doi.org/10.1007/s00360-010-0529-z (2011).Article 
    PubMed 

    Google Scholar 
    17.De Coster, G. et al. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches. Naturwissenschaften https://doi.org/10.1007/s00114-011-0863-3 (2011).Article 
    PubMed 

    Google Scholar 
    18.Albon, S. D., Clutton-Brock, T. H. & Guinness, F. E. Early development and population dynamics in red deer. II. Density-independent effects and cohort variation. J. Anim. Ecol. https://doi.org/10.2307/4800 (1987).Article 

    Google Scholar 
    19.Meikle, D. & Westberg, M. Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus). Reproduction https://doi.org/10.1530/rep.0.1220437 (2001).Article 
    PubMed 

    Google Scholar 
    20.Burton, T. & Metcalfe, N. B. Can environmental conditions experienced in early life influence future generations?. Proc. R. Soc. B Biol. Sci. 281, 20140311 (2014).Article 

    Google Scholar 
    21.Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science https://doi.org/10.1126/science.1153069 (2008).Article 
    PubMed 

    Google Scholar 
    22.Roth, A. et al. A genetic switch for worker nutritionmediated traits in honeybees. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000171 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Slater, G. P., Yocum, G. D. & Bowsher, J. H. Diet quantity influences caste determination in honeybees (Apis mellifera). Proc. Biol. Sci. https://doi.org/10.1098/rspb.2020.0614 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Rembold, H., Lackner, B. & Geistbeck, I. The chemical basis of honeybee, Apis mellifera, caste formation: Partial purification of queen bee determinator from royal jelly. J. Insect Physiol. https://doi.org/10.1016/0022-1910(74)90063-8 (1974).Article 
    PubMed 

    Google Scholar 
    25.Mutti, N. S. et al. IRS and tor nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. https://doi.org/10.1242/jeb.061499 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Scofield, H. N. & Mattila, H. R. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS ONE https://doi.org/10.1371/journal.pone.0121731 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Rittschof, C. C., Coombs, C. B., Frazier, M., Grozinger, C. M. & Robinson, G. E. Early-life experience affects honey bee aggression and resilience to immune challenge. Sci. Rep. https://doi.org/10.1038/srep15572 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Walton, A., Dolezal, A. G., Bakken, M. A. & Toth, A. L. Hungry for the queen: Honeybee nutritional environment affects worker pheromone response in a life stage-dependent manner. Funct. Ecol. https://doi.org/10.1111/1365-2435.13222 (2018).Article 

    Google Scholar 
    29.Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Alaux, C. et al. A ‘Landscape physiology’ approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Sci. Rep. https://doi.org/10.1038/srep40568 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. https://doi.org/10.1016/j.biocon.2009.04.007 (2009).Article 

    Google Scholar 
    32.Dolezal, A. G. & Toth, A. L. Feedbacks between nutrition and disease in honey bee health. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2018.02.006 (2018).Article 
    PubMed 

    Google Scholar 
    33.Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. https://doi.org/10.1098/rsbl.2009.0986 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Jack, C. J., Uppala, S. S., Lucas, H. M. & Sagili, R. R. Effects of pollen dilution on infection of Nosema ceranae in honey bees. J. Insect Physiol. 87, 12–19 (2016).CAS 
    Article 

    Google Scholar 
    35.Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter?. PLoS ONE 8, e72016 (2013).ADS 
    Article 

    Google Scholar 
    36.Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1818371116 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. https://doi.org/10.1146/annurev-ento-011118-111942 (2019).Article 
    PubMed 

    Google Scholar 
    38.Traynor, K. S. et al. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.04.004 (2020).Article 
    PubMed 

    Google Scholar 
    39.DeGrandi-Hoffman, G., Chen, Y., Huang, E. & Huang, M. H. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2010.03.017 (2010).Article 
    PubMed 

    Google Scholar 
    40.Hsieh, E. M., Berenbaum, M. R. & Dolezal, A. G. Ameliorative effects of phytochemical ingestion on viral infection in honey bees. Insects https://doi.org/10.3390/insects11100698 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Rutter, L. et al. Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics https://doi.org/10.1186/s12864-019-5767-1 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Chen, Y. P. et al. Israeli acute paralysis virus: Epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004261 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science https://doi.org/10.1126/science.1146498 (2007).Article 
    PubMed 

    Google Scholar 
    44.Maori, E. et al. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. https://doi.org/10.1111/j.1365-2583.2009.00847.x (2009).Article 
    PubMed 

    Google Scholar 
    45.Hsieh, E. M., Carrillo-Tripp, J. & Dolezal, A. G. Preparation of virus-enriched inoculum for oral infection of honey bees (Apis Mellifera). J. Vis. Exp. https://doi.org/10.3791/61725 (2020).Article 
    PubMed 

    Google Scholar 
    46.Wang, Y., Kaftanoglu, O., Fondrk, M. K. & Page, R. E. Nurse bee behaviour manipulates worker honeybee (Apis mellifera L.) reproductive development. Anim. Behav. https://doi.org/10.1016/j.anbehav.2014.02.012 (2014).Article 

    Google Scholar 
    47.Wang, Y. et al. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.). J. Exp. Biol. 219, 960–968 (2016).Article 

    Google Scholar 
    48.Wang, Y., Kaftanoglu, O., Brent, C. S., Page, R. E. & Amdam, G. V. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.). J. Exp. Biol. https://doi.org/10.1242/jeb.130435 (2016).Article 
    PubMed 

    Google Scholar 
    49.Toth, A. L. & Robinson, G. E. Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435 (2005).Article 

    Google Scholar 
    50.Dolezal, A. G., Carrillo-Tripp, J., Miller, W. A., Bonning, B. C. & Toth, A. L. Pollen contaminated with field-relevant levels of cyhalothrin affects honey bee survival, nutritional physiology, and pollen consumption behavior. J. Econ. Entomol. https://doi.org/10.1093/jee/tov301 (2016).Article 
    PubMed 

    Google Scholar 
    51.Carrillo-Tripp, J. et al. In vivo and in vitro infection dynamics of honey bee viruses. Sci. Rep. https://doi.org/10.1038/srep22265 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000412 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2002268117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods https://doi.org/10.1006/meth.2001.1262 (2001).Article 
    PubMed 

    Google Scholar 
    55.Richard, F. J., Holt, H. L. & Grozinger, C. M. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics https://doi.org/10.1186/1471-2164-13-558 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. https://doi.org/10.1111/j.1365-2583.2006.00682.x (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Ryabov, E. V., Fannon, J. M., Moore, J. D., Wood, G. R. & Evans, D. J. The Iflaviruses Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ https://doi.org/10.7717/peerj.1591 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Cerutti, H. & Casas-Mollano, J. A. On the origin and functions of RNA-mediated silencing: From protists to man. Curr. Genet. https://doi.org/10.1007/s00294-006-0078-x (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Harwood, G. P., Ihle, K. E., Salmela, H. & Amdam, G. V. Regulation of honeybee worker (Apis mellifera) life histories by Vitellogenin. in Hormones, Brain and Behavior: Third Edition (2017). https://doi.org/10.1016/B978-0-12-803592-4.00036-5.60.Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2016).61.Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team (2014). nlme: linear and nonlinear mixed effects models. R package version 3.1–117. http://cran.r-project.org/web/packages/nlme/index.html (2014).62.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means. R package version 1.15–15 (2020) https://doi.org/10.1080/00031305.1980.10483031 >.License.63.Crailsheim, K., Riessberger, U., Blaschon, B., Nowogrodzki, R. & Hrassnigg, N. Short-term effects of simulated bad weather conditions upon the behaviour of food-storer honeybees during day and night (Apis mellifera carnica Pollmann). Apidologie https://doi.org/10.1051/apido:19990406 (1999).Article 

    Google Scholar 
    64.McMullan, J. B. & Brown, M. J. F. The influence of small-cell brood combs on the morphometry of honeybees (Apis mellifera). Apidologie https://doi.org/10.1051/apido:2006041 (2006).Article 

    Google Scholar 
    65.Teicher, M. H. et al. The neurobiological consequences of early stress and childhood maltreatment. Neurosci. Biobehav. Rev. https://doi.org/10.1016/S0149-7634(03)00007-1 (2003).Article 
    PubMed 

    Google Scholar 
    66.Harlow, H. F., Dodsworth, R. O. & Harlow, M. K. Total social isolation in monkeys. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.54.1.90 (1965).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. https://doi.org/10.1242/jeb.01956 (2005).Article 
    PubMed 

    Google Scholar 
    68.St Clair, A. L., Zhang, G., Dolezal, A. G., O’Neal, M. E. & Toth, A. L. Diversified farming in a monoculture landscape: Effects on honey bee health and wild bee communities. Environ. Entomol. https://doi.org/10.1093/ee/nvaa031 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Dolezal, A. G., Clair, A. L. S., Zhang, G., Toth, A. L. & O’Neal, M. E. Native habitat mitigates feast–famine conditions faced by honey bees in an agricultural landscape. Proc. Natl. Acad. Sci. USA. 116, 25147–25155 (2019).CAS 
    Article 

    Google Scholar 
    70.Smart, M. D., Otto, C. R. V. & Lundgren, J. G. Nutritional status of honey bee (Apis mellifera L.) workers across an agricultural land-use gradient. Sci. Rep. https://doi.org/10.1038/s41598-019-52485-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Schmidt, J. O., Thoenes, S. C. & Levin, M. D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/80.2.176 (1987).Article 

    Google Scholar 
    72.Schmidt, L. S., Schmidt, J. O., Hima, R., Wang, W. & Xu, L. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. https://doi.org/10.1093/jee/88.6.1591 (1995).Article 

    Google Scholar 
    73.Dolezal, A. G., Carrillo-Tripp, J., Allen Miller, W., Bonning, B. C. & Toth, A. L. Intensively cultivated landscape and varroa mite infestation are associated with reduced honey bee nutritional state. PLoS ONE https://doi.org/10.1371/journal.pone.0153531 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Failla, M. L. Trace elements and host defense: Recent advances and continuing challenges. J. Nutr. https://doi.org/10.1093/jn/133.5.1443s (2003).Article 
    PubMed 

    Google Scholar 
    75.Filipiak, M. et al. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS ONE https://doi.org/10.1371/journal.pone.0183236 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Gems, D. & Partridge, L. Stress-response hormesis and aging: ‘That which does not kill us makes us stronger’. Cell Metab. https://doi.org/10.1016/j.cmet.2008.01.001 (2008).Article 
    PubMed 

    Google Scholar 
    77.Ihle, K. E., Baker, N. A. & Amdam, G. V. Insulin-like peptide response to nutritional input in honey bee workers. J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2014.05.026 (2014).Article 
    PubMed 

    Google Scholar 
    78.Paul, S. & Keshan, B. Ovarian development and vitellogenin gene expression under heat stress in silkworm, Bombyx mori. Psyche https://doi.org/10.1155/2016/4242317 (2016).Article 

    Google Scholar 
    79.Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: Grow now, pay later?. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(01)02124-3 (2001).Article 
    PubMed 

    Google Scholar 
    80.Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2007.0011 (2008).Article 

    Google Scholar 
    81.Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(99)01639-0 (1999).Article 
    PubMed 

    Google Scholar 
    82.Smart, M. D., Pettis, J. S., Euliss, N. & Spivak, M. S. Land use in the Northern Great Plains region of the US influences the survival and productivity of honey bee colonies. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2016.05.030 (2016).Article 

    Google Scholar 
    83.Otto, C. R. V., Roth, C. L., Carlson, B. L. & Smart, M. D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.1603481113 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE https://doi.org/10.1371/journal.pone.0152685 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. https://doi.org/10.1146/annurev-ento-020117-043423 (2018).Article 
    PubMed 

    Google Scholar 
    86.De Smet, L. et al. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments. PLoS ONE https://doi.org/10.1371/journal.pone.0171529 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.de Graaf, D. C. et al. Heritability estimates of the novel trait ‘suppressed in ovo virus infection’ in honey bees (Apis mellifera). Sci. Rep. https://doi.org/10.6084/m9.figshare.8170925 (2020). More