More stories

  • in

    Cyclotide host-defense tailored for species and environments in violets from the Canary Islands

    1.Craik, D. J., Daly, N. L., Bond, T. & Waine, C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Gran, L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol. Toxicol. (Copenh) 33, 400–408 (1973).CAS 
    Article 

    Google Scholar 
    3.Schoepke, T., Hasan Agha, M. I., Kraft, R., Otto, A. & Hiller, K. Haemolytisch aktive Komponenten aus Viola tricolor L. und Viola arvensis murray. Sci. Pharm. 61, 145–153 (1993).CAS 

    Google Scholar 
    4.Claeson, P., Göransson, U., Johansson, S., Luijendijk, T. & Bohlin, L. Fractionation protocol for the isolation of polypeptides from plant biomass. J. Nat. Prod. 61, 77–81 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Göransson, U., Luijendijk, T., Johansson, S., Bohlin, L. & Claeson, P. Seven novel macrocyclic polypeptides from Viola arvensis. J. Nat. Prod. 62, 283–286 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Poth, A. G. et al. Discovery of cyclotides in the Fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem. Biol. 6, 345–355 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Poth, A. G. et al. Cyclotides associate with leaf vasculature and are the products of a novel precursor in Petunia (Solanaceae). J. Biol. Chem. 287, 27033–27046 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Burman, R. et al. Distribution of circular proteins in plants: Large-scale mapping of cyclotides in the Violaceae. Front. Plant Sci. 6, 20 (2015).ADS 
    Article 

    Google Scholar 
    9.Hernandez, J. F. et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39, 5722–5730 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Nguyen, G. K. T. et al. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J. Biol. Chem. 288, 3370–3380 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Saether, O. et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34, 4147–4158 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ravipati, A. S. et al. Understanding the diversity and distribution of cyclotides from plants of varied genetic origin. J. Nat. Prod. 80, 1522–1530 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Gruber, C. W. et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20, 2471–2483 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Simonsen, S. M. et al. A continent of plant defense peptide diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17, 3176–3189 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Slazak, B., Jacobsson, E., Kuta, E. & Göransson, U. Exogenous plant hormones and cyclotide expression in Viola uliginosa (Violaceae). Phytochemistry 117, 527–536 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lindholm, P. et al. Cyclotides: A novel type of cytotoxic agents. Mol. Cancer Ther. 1, 365–369 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Ovesen, R. G. et al. Biomedicine in the environment: Cyclotides constitute potent natural toxins in plants and soil bacteria. Environ. Toxicol. Chem. 30, 1190–1196 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Pränting, M., Lööv, C., Burman, R., Göransson, U. & Andersson, D. I. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J. Antimicrob. Chemother. 65, 1964–1971 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Tam, J. P., Lu, Y. A., Yang, J. L. & Chiu, K. W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. USA 96, 8913–8918 (1999).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Slazak, B. et al. How Does the sweet violet (Viola odorata L.) fight pathogens and pests—cyclotides as a comprehensive plant host defense system. Front. Plant Sci. 9, 20 (2018).Article 

    Google Scholar 
    21.Colgrave, M. L. et al. Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms. Acta Trop. 109, 163–166 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Jennings, C., West, J., Waine, C., Craik, D. & Anderson, M. A. Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. USA. 98, 10614–10619 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Gilding, E. K. et al. Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol. 210, 717–730 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mylne, J. S., Wang, C. K., van der Weerden, N. L. & Craik, D. J. Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers 94, 635–646 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Dörnenburg, H. Cyclotide synthesis and supply: From plant to bioprocess. Biopolymers 94, 602–610 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Trabi, M. et al. Variations in cyclotide expression in Viola species. J. Nat. Prod. 67, 806–810 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). (Consejería de Política Territorial y Medio Ambiente. Gobierno de Canarias., 2001).28.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Gómez, M. V. M., Esquivel, J. L. M., Díaz, J. R. D. & Izquierdo, M. S. Viola guaxarensis (Violaceae): A new Viola from Tenerife, Canary Islands, Spain. Willdenowia 50, 13–21 (2020).Article 

    Google Scholar 
    30.Rodríguez-Rodríguez, P., De Castro, A. G. F., Seguí, J., Traveset, A. & Sosa, P. A. Alpine species in dynamic insular ecosystems through time: Conservation genetics and niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. Ann. Bot. 123, 505–519 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ireland, D. C., Colgrave, M. L. & Craik, D. J. A novel suite of cyclotides from Viola odorata: Sequence variation and the implications for structure, function and stability. Biochem. J. 400, 1–12 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Burman, R., Gunasekera, S., Strömstedt, A. A. & Göransson, U. Chemistry and biology of cyclotides: Circular plant peptides outside the box. J. Nat. Prod. 77, 724–736 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Trabi, M. & Craik, D. J. Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide1. Plant Cell 16, 2204–2216 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ballard, H. E., Sytsma, K. J. & Kowal, R. R. Shrinking the violets: Phylogenetic relationships of infrageneric groups in Viola (Violaceae) based on internal transcribed spacer DNA sequences. Syst. Bot. 23, 439 (1998).Article 

    Google Scholar 
    35.Batista, F. & Sosa, P. A. Allozyme diversity in natural populations of Viola palmensis. Webb & Berth (Violaceae) from La Palma (Canary Islands): Implications for conservation genetics. Ann. Bot. 90, 725–733 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Marcussen, T., Heier, L., Brysting, A. K., Oxelman, B. & Jakobsen, K. S. From gene trees to a dated allopolyploid network: Insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 64, 84–101 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Marcussen, T., Oxelman, B., Skog, A. & Jakobsen, K. S. Evolution of plant RNA polymerase IV/V genes: Evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae). BMC Evol. Biol. 10, 45 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Gilli, A. Viola anagae Gilli sp. Nov.. Feddes Repert. 89, 595–596 (1979).Article 

    Google Scholar 
    39.Moreno-Saiz, J. Lista Roja 2008 de la Flora Vascular Española (Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas, 2008).
    Google Scholar 
    40.Broussalis, A. M. et al. First cyclotide from Hybanthus (Violaceae). Phytochemistry 58, 47–51 (2001).41.Mulvenna, J. P., Wang, C. & Craik, D. J. CyBase: A database of cyclic protein sequence and structure. Nucleic Acids Res. 34, D192–D194 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hellinger, R. et al. Peptidomics of circular cysteine-rich plant peptides—analysis of the diversity of cyclotides from Viola tricolor by transcriptome- and proteome-mining. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.5b00681 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Slazak, B., Haugmo, T., Badyra, B. & Göransson, U. The life cycle of cyclotides: Biosynthesis and turnover in plant cells. Plant Cell Rep. 39, 1359–1367 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Colgrave, M. L., Jones, A. & Craik, D. J. Peptide quantification by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry: Investigations of the cyclotide kalata B1 in biological fluids. J. Chromatogr. A 1091, 187–193 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Marcussen, T. Allozymic variation in the widespread and cultivated Viola odorata (Violaceae) in western Eurasia. Bot. J. Linn. Soc. 151, 563–571 (2006).Article 

    Google Scholar 
    46.Källback, P., Nilsson, A., Shariatgorji, M. & Andrén, P. E. msIQuant—quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88, 4346–4353 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended.48.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media (Springer, 2009). https://doi.org/10.1007/978-0-387-98141-3.Book 
    MATH 

    Google Scholar 
    49.R Development Core Team, R. R A Language and Environment for Statistical Computing, Vol 1 409 (R Foundation for Statistical Computing, 2011).
    Google Scholar 
    50.Package, T. Package ‘ PMCMRplus ’ R topics documented (2019).51.Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. (2019). https://cran.r-project.org/package=pheatmap.52.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Sigrist, C. J. A. et al. PROSITE: A documented database using patterns and profiles as motif descriptors. Brief. Bioinform. 3, 265–274 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Burman, R. et al. Cyclotide proteins and precursors from the genus Gloeospermum: Filling a blank spot in the cyclotide map of Violaceae. Phytochemistry 71, 13–20 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Levenfors, J. J., Hedman, R., Thaning, C., Gerhardson, B. & Welch, C. J. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol. Biochem. 36, 677–685 (2004).CAS 
    Article 

    Google Scholar 
    58.Broekaert, W. F., Terras, R. F. G., Cammue, B. P. A. & Vandedeyden, J. An automated quantitative assay for fungal growth inhibition. Most 69, 20 (1990).
    Google Scholar 
    59.CLSI. M38–A2 reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard—second edition. Clin. Lab. Stand. Inst. 20, 20 (2008).
    Google Scholar  More

  • in

    Role of meteorological factors in the transmission of SARS-CoV-2 in the United States

    Data collectionWe extracted hourly air temperature and SH from the North America Land Data Assimilation System project46, a near real-time dataset with a 0.125° × 0.125° grid resolution. We spatially and temporally averaged these data into daily county-level records. SH is the mass of water vapor in a unit mass of moist air (g kg−1). Daily downward UV radiation at the surface, with a wavelength of 0.20–0.44 µm, was extracted from the European Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis47.Other characteristics of each county, including geographic location, population density, demographic structure of the population, socioeconomic factors, proportion of healthcare workers, intensive care unit (ICU) bed capacity, health risk factors, long-term and short-term air pollution, and climate zone were collected from multiple sources. Geographic coordinates, population density, median household income, percent of people older than 60 years, percent Black residents, percent Hispanic residents, percent owner-occupied housing, percent residents aged 25 years and over without a high school diploma, and percent healthcare practitioners or support staff were collected from the U.S. Census Bureau48. Total ICU beds in each county were derived from Kaiser Health News49. The prevalence of smoking and obesity among adults in each county was obtained from the Robert Wood Johnson Foundation’s 2020 County Health Rankings50. We extracted annual PM2.5 concentrations in the U.S. from 2014 to 2018 from the 0.01° × 0.01° grid resolution PM2.5 estimation provided by the Atmospheric Composition Analysis Group51, and calculated average PM2.5 levels during this 5-year period for each county to represent long-term PM2.5 exposure (Supplementary Fig. 5). Short-term air quality data during the study period, including daily mean PM2.5 and daily maximum 8-h O3, were obtained from the United States Environmental Protection Agency52. We categorized study counties into one of five climate zones based on the guide released by U.S. Department of Energy53 (Supplementary Fig. 6).The county-level COVID-19 case and death data were downloaded from the John Hopkins University Coronavirus Resource Center1. The U.S. county-to-county commuting data were available from the U.S. Census Bureau48. Daily numbers of inter-county visitors to points of interest (POI) were provided by SafeGraph54.Data ethicsSafeGraph utilizes data from mobile applications of which users optionally consent to provide their anonymous location data.Estimation of reproduction numberWe estimated the daily reproduction number (Rt) in all 3142 U.S. counties using a dynamic metapopulation model informed by human mobility data31,55. Rt is the mean number of new infections caused by a single infected person, given the public health measures in place, in a population in which everyone is assumed to be susceptible. In the metapopulation model, two types of movement were considered: daily work commuting and random movement. During the daytime, some commuters travel to a county other than their county of residence, where they work and mix with the populations of that county; after work, they return home and mix with individuals in their home, residential county. Apart from regular commuting, a fraction of the population in each county, assumed to be proportional to the number of inter-county commuters, travels for purposes other than work. As the population present in each county is different during daytime and night-time, we modelled the transmission dynamics of COVID-19 separately for these two time periods, each depicted by a set of ordinary differential equations (Supplementary Notes).To account for case underreporting, we explicitly simulated reported and unreported infections, for which separate transmission rates were defined. Recent studies from several countries indicate that asymptomatic cases of COVID-19, which are typically unreported, are less contagious than symptomatic cases56,57,58,59. Studies on the early transmission of SARS-CoV-2 in China18 and the U.S.60 also showed that undocumented infections are less transmissible than documented infections.In order to reflect the spatiotemporal variation of disease transmission rate and reporting, we allowed transmission rates and ascertainment rates to vary across counties and to change over time. The transmission model simulated daily confirmed cases and deaths for each county. To map infections to deaths, we used an age-stratified infection fatality rate (IFR)61 and computed the weekly IFR for each county as a weighted average using state-level age structure of confirmed cases reported by the U.S. Centers for Disease Control and Prevention. We further adjusted for reporting lags using an observational delay model informed by a U.S. line-list COVID-19 data record62.For the period prior to March 15, 2020, we used commuting data from the U.S. census survey to prescribe the inter-county movement in the transmission model48. Starting March 15, the census survey data are no longer representative due to changes in mobility behavior following the implementation of non-pharmaceutical interventions. We, therefore, used estimates of the reduction of inter-county visitors to POI (e.g., restaurants, stores, etc.) from SafeGraph54 to account for the change in inter-county movement on a county-by-county basis. Because there is no direct relationship between population-level mobility patterns and COVID-19 transmission rates63, we did not model local transmission rate as a function of inter-county mobility. Instead, the SafeGraph data were only used to inform the change of population mixing across counties.To infer key epidemiological parameters, we fitted the transmission model to county-level daily cases and deaths reported from March 15, 2020 to December 31, 2020. The estimated reproduction number was computed as follows:$${R}_{t}=beta Dleft[alpha +left(1-alpha right)mu right],$$
    (1)
    where β is the county-specific transmission rate, μ is the relative transmissibility of unreported infections, α is the county-specific ascertainment rate, and D is the average duration of infectiousness. Note (beta) and (alpha) were defined for each county separately and were allowed to vary over time. Unlike previous studies using effective reproduction number$${R}_{e}=beta Dleft[alpha +left(1-alpha right)mu right]s,$$
    (2)
    where s is the estimated local population susceptibility, we used reproduction number Rt to exclude the influence of population susceptibility on disease transmission rate.D, (mu), (Z) (the average latency period from infection to contagiousness), and a multiplicative factor adjusting random movement ((theta)) were randomly drawn from the posterior distributions inferred from case data through March 13, 202060: (D=3.56) (3.21–3.83), (mu =0.64) (0.56–0.70), (Z=3.59) (95% CI: 3.28–3.99), and (theta =0.15) (0.12–0.17). (Z) and (theta) are used in ordinary differential equations used to model transmission dynamics (Supplementary Notes).The daily transmission rate (beta) and ascertainment rate (alpha) were estimated sequentially for each county using the ensemble adjustment Kalman filter (EAKF)64. Specifically, parameters ({beta }_{i}) and ({alpha }_{i}) for county (i) were updated each day using incidence and death data. We used the estimates on day (t-1) as the prior parameters on day (t), and then updated the priors to posteriors using the EAKF and observations. The posteriors are the estimated parameter values on day (t). To ensure a smooth parameter estimation, we imposed a (pm 30 %) limit on the daily change of parameters ({beta }_{i}) and ({alpha }_{i}). Other smoothing constraints were tested and the results were similar. To avoid possible inaccurate estimation for counties with few cases, we inferred Rt in the 2669 U.S. counties with at least 400 cumulative confirmed cases as of December 31, 2020 (Supplementary Fig. 7).Statistical analysisAll statistical analyses were conducted with R software (version 3.6.1) using the mgcv and dlnm packages.Association between meteorological factors and R
    t
    Given the potential non-linear and temporally delayed effects of meteorological factors, a distributed lag non-linear model65 combined with generalized additive mixed models66 was applied to estimate the associations of daily mean temperature, daily mean SH, and daily mean UV radiation with SARS-CoV-2 Rt. To quantify the total contribution, independent effects, and relative importance of meteorological factors (i.e., temperature, SH, and UV radiation), we included all three variables in the same model. To reduce collinearity, we used cross-basis terms rather than the raw variables (Supplementary Tables 5–6). The full model can be expressed as:$$log (E({{{R}}}_{i,j,t}))= alpha +te(s({{rm{latitude}}}_{i}{,{rm{longitude}}}_{i},{rm{k}}=200),s({{rm{time}}}_{t},{rm{k}}=30))+{rm{cb}}.{rm{temperature}}+{rm{cb}}.{rm{SH}}+ {rm{cb}}.{rm{UV}}\ +{beta }_{1}({rm{population}},{rm{density}}_{i})+{beta }_{2}({rm{percent}},{rm{Black}},{rm{residents}}_{i})+{beta }_{3}({rm{percent}},{rm{Hispanic}},{rm{residents}}_{i})\ +{beta }_{4}({rm{percent}},{rm{people}},{rm{older}},{rm{than}},60,{rm{years}}_{i})+{beta }_{5}({rm{median}},{rm{household}},{rm{income}}_{i})\ +{beta }_{6}({rm{percent}},{rm{owner}}-{rm{occupied}},{rm{housing}}_{i})\ +{beta }_{7}({rm{percent}},{rm{residents}},{rm{older}},{rm{than}},25,{rm{years}},{rm{without}},{rm{a}},{rm{high}},{rm{school}},{rm{diploma}}_{i})\ +{beta }_{8}({rm{number}},{rm{of}},{rm{ICU}},{rm{beds}},{rm{per}},10,000,{rm{people}}_{i})+{beta }_{9}({rm{percent}},{rm{healthcare}},{rm{workers}}_{i})\ quad , {beta }_{10}({rm{day}},{rm{when}},100,{rm{cumulative}},{rm{cases}},{rm{per}},100,000,{rm{people}},{rm{was}},{rm{reached}}_{i})+{re}({rm{county}}_{i})+{re}({rm{state}}_{j})$$
    (3)
    where E(Ri,j,t) refers to the expected Rt in county i, state j, on day t, and α is the intercept. Given the distribution of Rt in our data close to a lognormal distribution (Supplementary Fig. 8), we used log-transformed Rt as the outcome variable, and the Gaussian family in the model. A thin plate spline with a maximum of 200 knots was used to control the coordinates of the centroid of each county; the time trend was controlled by a flexible natural cubic spline over the range of study dates with a maximum of 30 knots; due to the unique pattern of the non-linear time trend of Rt in each county (Supplementary Fig. 4), we constructed tensor product smooths (te) of the splines of geographical coordinates and time, to better control for the temporal and spatial variations (Supplementary Fig. 3).Cb.temperature, cb.SH, and cb.UV are cross-basis terms for the mean air temperature, mean SH and mean UV radiation, respectively. We modeled exposure-response associations (meteorological factors vs. percent change in Rt) using a natural cubic spline with 3 degrees of freedom (df) and modeled the lag-response association using a natural cubic spline with an intercept and 3 df with a maximum lag of 13 days. We adjusted for county-level characteristics, including population density, percent Black residents, percent Hispanic residents, percent people older than 60 years, median household income, percent owner-occupied housing, percent residents older than 25 years without a high school diploma, number of ICU beds per 10,000 people, and percent healthcare workers, given their potential relationship with SARS-CoV-2 transmission67,68,69,70. Day when 100 cumulative cases per 100,000 people was reached in each county was used to approximate local epidemic stage45 (Supplementary Fig. 9). The random effects of state and county were modeled by parametric terms penalized by a ridge penalty (re), to further control for unmeasured state- and county-level confounding. Residual plots were used to diagnose the model (Supplementary Fig. 10). In additional analyses, we included air temperature, SH, and UV radiation in separate models (Supplementary Fig. 2).Based on the estimated exposure-response curves, between the 1st and the 99th percentiles of the distribution of air temperature, SH, and UV radiation, we determined the value of exposure associated with the lowest relative risk of Rt to be the optimum temperature, the optimum SH, or the optimum UV radiation, respectively. The natural cubic spline functions of the exposure-response relationship were then re-centered with the optimum values of meteorological factors as reference values. We report the cumulative relative risk of Rt associated with daily temperature, SH, or UV radiation exposure in the previous two weeks (0– 13 lag days) as the percent changes in Rt when comparing the daily exposure with the optimum reference values (i.e., the cumulative relative risk of Rt equals one and the percent change in Rt equals zero when the temperature, SH, or UV radiation exposure is at its optimum value).Attribution of R
    t to meteorological factorsWe used the optimum value of temperature, SH, or UV radiation as the reference value for calculating the fraction of Rt attributable to each meteorological factor; i.e., the attributable fraction (AF). For these calculations, we assumed that the associations of meteorological factors with Rt were consistent across the counties. For each day in each county, based on the cumulative lagged effect (cumulative relative risk) corresponding to the temperature, SH, or UV radiation of that day, we calculated the attributable Rt in the current and next 13 days, using a previously established method71. Specifically, in a given county, the Rt attributable to a meteorological factor (xt) for a given day t was defined as the attributable absolute excess of Rt (AEx,t, the excess reproduction number on day t attributable to the deviation of temperature or SH from the optimum value) and the attributable fraction of Rt (AFx,, the fraction of Rt attributable to the deviation of the meteorological factor from its optimum value), each accumulated over the current and next 13 days. The formulas can be expressed as:$${{AF}}_{x,t}=1-{rm{exp }}left(-mathop{sum }limits_{l=0}^{13}{beta }_{{x}_{t},l}right)$$
    (4)
    $${{AE}}_{x,t}={{AF}}_{x,t}times mathop{sum }limits_{l=0}^{13}frac{{n}_{t+1}}{13+1},$$
    (5)
    where nt is the Rt on day t, and ({sum }_{l=0}^{13}{beta }_{{x}_{t},l}) is the overall cumulative log-relative risk for exposure xt on day t obtained by the exposure-response curves re-centered on the optimum values. Then, the total absolute excess of Rt attributable to temperature, SH, or UV radiation in each county was calculated by summing the absolute excesses of all days during the study period, and the attributable fraction was calculated by dividing the total absolute excess of Rt for the county by the sum of the Rt of all days during the study period for the county. The attributable fraction for the 2669 counties combined was calculated in a similar manner at the national level. We derived the 95% eCI for the attributable absolute excess and attributable fraction by 1000 Monte Carlo simulations71. The total fraction of Rt attributable to meteorological factors was the sum of the attributable fraction for temperature, SH, and UV radiation. We also calculated the attributable fractions by month in the study period.Sensitivity analysesWe conducted several sensitivity analyses to test the robustness of our results: (a) the lag dimension was redefined using a natural cubic spline and three equally placed internal knots in the log scale; (b) an alternative four df was used in the cross-basis term for meteorological factors in the exposure-response function; (c) the maximum number of knots was reduced to 25 in the flexible natural cubic spline to control time trend in the tensor product smooths; (d) all demographic and socioeconomic variables were excluded from the model; (e) adjustment for the prevalence of smoking and obesity among adults was included in the model; (f) adjustment for climate zone was included in the model; (g) additional adjustment was made for the average PM2.5 concentration in each county during 2014–201845; (h) additional adjustment was made for daily mean PM2.5, and daily maximum 8-h O3. For daily covariates with available data in only some of the counties or study period, the results of sensitivity analyses were compared to the main model re-run on the same partial dataset.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Community context matters for bacteria-phage ecology and evolution

    1.Crick FHC, Barnett FRSL, Brenner S, Watts-Tobin RJ. General Nature of the Genetic Code for Proteins. Nature. 1961;192:1227–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952;36:39–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Luria S, Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943;28:491–511.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: a Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25:219–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Mushegian AR. Are there 10^31 virus particles on Earth, or more, or less? J Bacteriol. 2020;202:e00052–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Dennehy JJ. What Can Phages Tell Us about Host-Pathogen Coevolution? Int J Evol Biol. 2012;2012:1–12.Article 

    Google Scholar 
    7.Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, et al. Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol. 2004;19:189–97.PubMed 
    Article 

    Google Scholar 
    8.Tecon R, Mitri S, Ciccarese D, Or D, Meer JR, van der, Johnson DR. Bridging the Holistic-Reductionist Divide in Microbial Ecology. MSystems. 2019;4:e00265–18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Bohannan BJM, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett. 2000;3:362–77.Article 

    Google Scholar 
    10.Buckling A, Brockhurst MA. Bacteria-Virus Coevolution. In: Orkun S Soyer, editor. Evolutionary Systems Biology. 2012. New York, NY: Springer; 2012. p. 347–70.11.Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:1–16.Article 
    CAS 

    Google Scholar 
    12.De Sordi L, Lourenço M, Debarbieux L. The Battle Within: interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. Cell Host Microbe. 2019;25:210–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    13.Scanlan PD. Bacteria–Bacteriophage Coevolution in the Human Gut: implications for Microbial Diversity and Functionality. Trends Microbiol. 2017;25:614–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Breitbart M. Marine viruses: truth or dare. Annu Rev Mar Sci. 2012;4:425–48.Article 

    Google Scholar 
    15.Pratama AA, van Elsas JD. The ‘neglected’ soil virome–potential role and impact. Trends Microbiol. 2018;26:649–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Lourenço M, De Sordi L, Debarbieux L. The diversity of bacterial lifestyles hampers bacteriophage tenacity. Viruses. 2018;10:1–11.Article 
    CAS 

    Google Scholar 
    17.Martiny JBH, Riemann L, Marston MF, Middelboe M. Antagonistic Coevolution of Marine Planktonic Viruses and Their Hosts. Annu Rev Mar Sci. 2014;6:393–414.Article 

    Google Scholar 
    18.Díaz-Muñoz SL, Koskella B. Bacteria–Phage Interactions in Natural Environments. In: Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology. Cambridge, MA:Academic Press; 2014. p.135–83.19.Avrani S, Schwartz DA, Lindell D. Virus-host swinging party in the oceans. Mob Genet Elem. 2012;2:88–95.Article 

    Google Scholar 
    20.Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-Offs between Competition and Defense Specialists among Unicellular Planktonic Organisms: the “Killing the Winner” Hypothesis Revisited. Microbiol Mol Biol Rev. 2010;74:42–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hansen MF, Svenningsen SL, Røder HL, Middelboe M, Burmølle M. Big Impact of the Tiny: bacteriophage–bacteria Interactions in Biofilms. Trends Microbiol. 2019;27:739–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.O’Brien S, Hodgson DJ, Buckling A. The interplay between microevolution and community structure in microbial populations. Curr Opin Biotechnol. 2013;24:821–5.PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Brockhurst MA, Koskella B. Experimental coevolution of species interactions. Trends Ecol Evol. 2013;28:367–75.PubMed 
    Article 

    Google Scholar 
    24.Geredew Kifelew L, Mitchell JG, Speck P. Mini-review: efficacy of lytic bacteriophages on multispecies biofilms. Biofouling. 2019;35:472–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Miki T, Jacquet S. Complex interactions in the microbial world: Underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquat Micro Ecol. 2008;51:195–208.Article 

    Google Scholar 
    26.Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A. Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol. 2014;27:185–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Hall AR, Ashby B, Bascompte J, King KC. Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends Ecol Evol. 2020;35:539–50.PubMed 
    Article 

    Google Scholar 
    28.Strauss SY. Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos. 2014;123:257–66.Article 

    Google Scholar 
    29.Strauss SY, Irwin RE. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst. 2004;35:435–66.Article 

    Google Scholar 
    30.Inouye B, Stinchcombe JR. Relationships between ecological interaction modifications and diffuse coevolution: similarities, differences, and causal links. Oikos. 2011;95:353–60.Article 

    Google Scholar 
    31.Barraclough TG. How Do Species Interactions Affect Evolutionary Dynamics Across Whole Communities? Annu Rev Ecol Evol Syst. 2015;46:25–48.Article 

    Google Scholar 
    32.Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    33.Gómez P, Bennie J, Gaston KJ, Buckling A. The Impact of Resource Availability on Bacterial Resistance to Phages in Soil. PLoS ONE. 2015;10:e0123752.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Gorter FA, Scanlan PD, Buckling A. Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments. Biol Lett. 2016;12:20150879.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Scanlan JG, Hall AR, Scanlan PD. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. Infect Genet Evol. 2019;73:425–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Gómez P, Buckling A. Bacteria-phage antagonistic coevolution in soil. Science. 2011;332:106–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    37.Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 2004;6:1–11.PubMed 
    Article 

    Google Scholar 
    38.Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator Bdellovibrio. Front Ecol Evol. 2017;5:1–12.Article 

    Google Scholar 
    39.R Core Team. R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.40.Mumford R, Friman VP. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evol Appl. 2017;10:161–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Connell JH. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology. 1961;42:710–23.Article 

    Google Scholar 
    42.Vellend M. Conceptual Synthesis in Community Ecology. Q Rev Biol. 2010;85:183–206.PubMed 
    Article 

    Google Scholar 
    43.Alseth EO, Pursey E, Lujan AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance in Pseudomonas aeruginosa. Nature. 2019;574:549–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Goldhill DH, Turner PE. The evolution of life history trade-offs in viruses. Curr Opin Virol. 2014;8:79–84.PubMed 
    Article 

    Google Scholar 
    45.Keen EC. Tradeoffs in bacteriophage life histories. Bacteriophage. 2014;4:e28365.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Gómez P, Buckling A. Real-time microbial adaptive diversification in soil. Ecol Lett. 2013;16:650–5.PubMed 
    Article 

    Google Scholar 
    47.Houte S, van, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Middelboe M, Hagström A, Blackburn N, Sinn B, Fischer U, Borch NH, et al. Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Micro Ecol. 2001;42:395–406.CAS 
    Article 

    Google Scholar 
    49.Gómez P, Buckling A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 2013;7:2242–4.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.De Sordi L, Khanna V, Debarbieux L. The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses. Cell Host Microbe. 2017;22:801–8.e3.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.De Sordi L, Lourenço M, Debarbieux L. “I will survive”: A tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes. 2019;10:92–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Landsberger M, Gandon S, Meaden S, Chabas H, Buckling A, Westra ER, et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell. 2018;174:908–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Westra ER, van Houte S, Oyesiku-Blakemore S, Makin B, Broniewski JM, Best A, et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol. 2015;25:1043–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol. 2014;1:307–31.PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Rostøl JT, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe. 2019;25:184–94.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Burmeister AR, Turner PE. Trading-off and trading-up in the world of bacteria–phage evolution. Curr Biol. 2020;30:R1120–R1124.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Vienna, Austria: Proc. 3rd Int. Workshop Distrib. Stat. Comput; 2003. p. 1–10.58.Wickham H. ggplot2: elegant Graphics for Data Analysis. Verlag New York: Springer; 2016.59.Wickham H. tidyr: Tidy Messy Data. 2020.60.Plummer M. rjags: Bayesian Graphical Models using MCMC. 2019.61.Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation. 2020.62.Gandon S, Buckling A, Decaestecker E, Day T. Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol. 2008;21:1861–6.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Publisher Correction: Reflections and projections on a decade of climate science

    Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyVeronika EyringInstitute of Environmental Physics (IUP), University of Bremen, Bremen, GermanyVeronika EyringCivil Engineering and Earth Sciences, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, IndiaVimal MishraNorwegian Polar Institute, FRAM – High North Research Centre on Climate and the Environment, Tromsø, NorwayGary P. GriffithLevin Lab, Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USAGary P. GriffithKey Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, ChinaLei ChenDepartment of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USATrevor KeenanEcology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USAMerritt R. TuretskyDepartment of Life and Environmental Sciences, Bournemouth University, Poole, UKSally BrownAustralian National University, Crawford School of Public Policy, Canberra, Australian Capital Territory, AustraliaFrank JotzoEnvironmental Science and Policy, University of California, Davis, Davis, CA, USAFrances C. MooreDepartment of Psychology, School of Biological Sciences, University of Cambridge, Cambridge, UKSander van der Linden More

  • in

    Short term fluctuating temperature alleviates Daphnia stoichiometric constraints

    1.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    2.Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706. https://doi.org/10.1038/nature09407 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).Article 

    Google Scholar 
    4.Elser, J., Obrien, W., Dobberfuhl, D. & Dowling, T. The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. J. Evol. Biol. 13, 845–853 (2000).Article 

    Google Scholar 
    5.Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Hessen, D. O., Faerovig, P. J. & Andersen, T. Light, nutrients, and P : C ratios in algae: Grazer performance related to food quality and quantity. Ecology 83, 1886–1898 (2002).Article 

    Google Scholar 
    7.Moody, E. K., Rugenski, A. T., Sabo, J. L., Turner, B. L. & Elser, J. J. Does the growth rate hypothesis apply across temperatures? Variation in the growth rate and body phosphorus of neotropical benthic grazers. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00014 (2017).Article 

    Google Scholar 
    8.Prater, C., Wagner, N. D. & Frost, P. C. Seasonal effects of food quality and temperature on body stoichiometry, biochemistry, and biomass production in Daphnia populations. Limnol. Oceanogr. 63, 1727–1740. https://doi.org/10.1002/lno.10803 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Boersma, M. et al. Temperature driven changes in the diet preference of omnivorous copepods: No more meat when it’s hot?. Ecol. Lett. 19, 45–53. https://doi.org/10.1111/ele.12541 (2016).Article 
    PubMed 

    Google Scholar 
    10.Wojewodzic, M. W., Kyle, M., Elser, J. J., Hessen, D. O. & Andersen, T. Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna. Oecologia 165, 837–846. https://doi.org/10.1007/s00442-010-1863-2 (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    11.Starke, C. W. E., Jones, C. L. C., Burr, W. S. & Frost, P. C. Interactive effects of water temperature and stoichiometric food quality on Daphnia pulicaria. Freshwat. Biol. 66, 256–265. https://doi.org/10.1111/fwb.13633 (2020).CAS 
    Article 

    Google Scholar 
    12.Ruiz, T. et al. U-shaped response Unifies views on temperature dependency of stoichiometric requirements. Ecol. Lett. 23, 860–869. https://doi.org/10.1111/ele.13493 (2020).Article 
    PubMed 

    Google Scholar 
    13.Persson, J., Wojewodzic, M. W., Hessen, D. O. & Andersen, T. Increased risk of phosphorus limitation at higher temperatures for Daphnia magna. Oecologia 165, 123–129. https://doi.org/10.1007/s00442-010-1756-4 (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    14.Malzahn, A. M., Doerfler, D. & Boersma, M. Junk food gets healthier when it’s warm. Limnol. Oceanogr. 61, 1677–1685. https://doi.org/10.1002/lno.10330 (2016).ADS 
    Article 

    Google Scholar 
    15.Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 21, 1025–1040. https://doi.org/10.1111/gcb.12809 (2015).ADS 
    Article 

    Google Scholar 
    16.Woods, H. A. et al. Temperature and the chemical composition of poikilothermic organisms. Funct. Ecol. 17, 237–245. https://doi.org/10.1046/j.1365-2435.2003.00724.x (2003).Article 

    Google Scholar 
    17.Cotner, J. B., Makino, W. & Biddanda, B. A. Temperature affects stoichiometry and biochemical composition of Escherichia coli. Microb. Ecol. 52, 26–33. https://doi.org/10.1007/s00248-006-9040-1 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Hessen, D. O. et al. Changes in stoichiometry, cellular RNA, and alkaline phosphatase activity of Chlamydomonas in response to temperature and nutrients. Front. Microbiol. 8, 18. https://doi.org/10.3389/fmicb.2017.00018 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Van Geest, G. J., Sachse, R., Brehm, M., van Donk, E. & Hessen, D. Maximizing growth rate at low temperatures: RNA:DNA allocation strategies and life history traits of Arctic and temperate Daphnia. Polar Biol. 33, 1255–1262 (2010).Article 

    Google Scholar 
    20.Prater, C., Wagner, N. D. & Frost, P. C. Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology 98, 1399–1408. https://doi.org/10.1002/ecy.1795 (2017).Article 
    PubMed 

    Google Scholar 
    21.Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).Article 

    Google Scholar 
    22.Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridge, J. K. Towards a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011).ADS 
    Article 

    Google Scholar 
    23.Dawidowicz, P. & Loose, C. J. Metabolic costs during predator-induced diel vertical migration of Daphnia. Limnol. Oceanogr. 37, 1589–1595 (1992).ADS 
    Article 

    Google Scholar 
    24.Mikulski, A., Grzesiuk, M., Rakowska, A., Bernatowicz, P. & Pijanowska, J. Thermal shock in Daphnia: cost of diel vertical migrations or inhabiting thermally-unstable waterbodies?. Fund. Appl. Limnol. 190, 213–220. https://doi.org/10.1127/fal/2017/0989 (2017).Article 

    Google Scholar 
    25.Reichwaldt, E. S., Wolf, I. D. & Stibor, H. Effects of a fluctuating temperature regime experienced by Daphnia during diel vertical migration on Daphnia life history parameters. Hydrobiologia 543, 199–205. https://doi.org/10.1007/s10750-004-7451-x (2005).Article 

    Google Scholar 
    26.Orcutt, J. D. & Porter, K. G. Diel vertical migration in zooplankton. Constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol. Oceanogr. 28, 720–730 (1983).ADS 
    Article 

    Google Scholar 
    27.Stich, H. B. & Lampert, W. Growth and reproduction of migrating and non-migrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration. Oecologia 61, 192–196. https://doi.org/10.1007/BF00396759 (1984).ADS 
    Article 
    PubMed 

    Google Scholar 
    28.Fischer, J. M. et al. Diel vertical migration of copepods in mountain lakes: The changing role of ultraviolet radiation across a transparency gradient. Limnol. Oceanogr. 60, 252–262. https://doi.org/10.1002/lno.10019 (2015).ADS 
    Article 

    Google Scholar 
    29.Kessler, K., Lockwood, R. S., Williamson, C. E. & Saros, J. E. Vertical distribution of zooplankton in subalpine and alpine lakes: Ultraviolet radiation, fish predation, and the transparency-gradient hypothesis. Limnol. Oceanogr. 53, 2374–2382 (2008).ADS 
    Article 

    Google Scholar 
    30.Bergström, A.-K., Karlsson, J., Karlsson, D. & Vrede, T. Contrasting plankton stoichiometry and nutrient regeneration in northern arctic and boreal lakes. Aquat. Sci. https://doi.org/10.1007/s00027-018-0575-2 (2018).Article 

    Google Scholar 
    31.Sterner, R. W. On the phosphorus limitation paradigm for lakes. Int. Rev. Hydrobiol. 93, 433–445. https://doi.org/10.1002/iroh.200811068 (2008).CAS 
    Article 

    Google Scholar 
    32.Sterner, R. W. C: N: P stoichiometry in Lake superior: Freshwater sea as end member. Inland Waters 1, 29–46 (2011).CAS 
    Article 

    Google Scholar 
    33.Modenutti, B. E. et al. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquat. Sci. 75, 361–371. https://doi.org/10.1007/s00027-012-0282-3 (2013).CAS 
    Article 

    Google Scholar 
    34.Longhi, M. L. & Beisner, B. E. Environmental factors controlling the vertical distribution of phytoplankton in lakes. J. Plankton Res. 31, 1195–1207. https://doi.org/10.1093/plankt/fbp065 (2009).CAS 
    Article 

    Google Scholar 
    35.Leach, T. H. et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 63, 628–646. https://doi.org/10.1002/lno.10656 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Laspoumaderes, C. et al. Glacier melting and stoichiometric implications for lake community structure: Zooplankton species distributions across a natural light gradient. Glob. Change Biol. 19, 316–326. https://doi.org/10.1111/gcb.12040 (2013).ADS 
    Article 

    Google Scholar 
    37.Jacobs, A. F. G., Jetten, T. H., Lucassen, D., Heusinkveld, B. G. & Joost, P. N. Diurnal temperature fluctuations in a natural shallow water body. Agric. For. Meteorol. 88, 269–277. https://doi.org/10.1016/S0168-1923(97)00039-7 (1997).ADS 
    Article 

    Google Scholar 
    38.Vilas, M. P., Marti, C. L., Adams, M. P., Oldham, C. E. & Hipsey, M. R. Invasive macrophytes control the spatial and temporal patterns of temperature and dissolved oxygen in a shallow lake: A proposed feedback mechanism of macrophyte loss. Front. Plant Sci. 8, 2097. https://doi.org/10.3389/fpls.2017.02097 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Burks, R. L., Lodge, D. M., Jeppesen, E. & Lauridsen, T. L. Diel horizontal migration of zooplankton: Costs and benefits of inhabiting the littoral. Freshwat. Biol. 47, 343–365 (2002).Article 

    Google Scholar 
    40.Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Balseiro, E. G., Modenutti, B. E., Queimaliños, C. & Reissig, M. Daphnia distribution in Andean Patagonian lakes: Effect of low food quality and fish predation. Aquat. Ecol. 41, 599–609 (2007).CAS 
    Article 

    Google Scholar 
    42.Modenutti, B. E., Wolinski, L., Souza, M. S. & Balseiro, E. G. When eating a prey is risky: Implications for predator diel vertical migration. Limnol. Oceanogr. 63, 939–950. https://doi.org/10.1002/lno.10681 (2018).ADS 
    Article 

    Google Scholar 
    43.Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73. https://doi.org/10.1038/417070a (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Acharya, K., Kyle, M. & Elser, J. J. Biological stoichiometry of Daphnia growth: An ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 49, 656–665 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Souza, M. S., Hansson, L.-A., Hylander, S., Modenutti, B. E. & Balseiro, E. G. Rapid enzymatic response to compensate UV radiation in copepods. PLoS ONE 7, e32046. https://doi.org/10.1371/journal.pone.0032046 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Wolinski, L., Modenutti, B., Souza, M. S. & Balseiro, E. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity. Environ. Pollut. 213, 135–142. https://doi.org/10.1016/j.envpol.2016.02.016 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Xie, J. et al. Physiological effects of compensatory growth during the larval stage of the ladybird Cryptolaemus montrouzieri. J. Insect Physiol. 83, 37–42. https://doi.org/10.1016/j.jinsphys.2015.11.001 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Dmitriew, C. & Rowe, L. Resource limitation, predation risk and compensatory growth in a damselfly. Oecologia 142, 150–154. https://doi.org/10.1007/s00442-004-1712-2 (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    49.Malzahn, A. M. & Boersma, M. Effects of poor food quality on copepod growth are dose dependent and non-reversible. Oikos 121, 1408–1416. https://doi.org/10.1111/j.1600-0706.2011.20186.x (2012).Article 

    Google Scholar 
    50.Droop, M. R. Some thoughts on nutrient limitation in algae. J. PhycoI. 9, 264–272 (1973).CAS 
    Article 

    Google Scholar 
    51.Boersma, M. The nutritional quality of P-limited algae for Daphnia. Limnol. Oceanogr. 45, 1157–1161 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Plath, K. & Boersma, M. Mineral limitation of zooplankton: Stoichiometric constraints and optimal foraging. Ecology 82, 1260–1269 (2001).Article 

    Google Scholar 
    53.Barbiero, R. P. & Tuchman, M. L. Results from the US EPA’s biological open water surveillance program of the Laurentian Great Lakes: II. Deep chlorophyll maxima. J. Great Lakes Res. 27, 155–166 (2001).CAS 
    Article 

    Google Scholar 
    54.Camacho, A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25, 453–478 (2006).
    Google Scholar 
    55.Pérez, G. L., Queimaliños, C. P. & Modenutti, B. E. Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J. Plankton Res. 24, 591–599 (2002).Article 

    Google Scholar 
    56.Magee, M. R. & Wu, C. H. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrol. Earth Syst. Sci. 21, 6253–6274. https://doi.org/10.5194/hess-21-6253-2017 (2017).ADS 
    Article 

    Google Scholar 
    57.Niedrist, G. H., Psenner, R. & Sommaruga, R. Climate warming increases vertical and seasonal water temperature differences and inter-annual variability in a mountain lake. Clim. Change 151, 473–490. https://doi.org/10.1007/s10584-018-2328-6 (2018).ADS 
    Article 

    Google Scholar 
    58.Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E. & Herrera, L. COMBO – A defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377, 147–159 (1998).CAS 
    Article 

    Google Scholar 
    59.Guillard, R. R. L. & Lorenzen, C. J. Yellow-green algae with chlorophyllide c. J. Phycol. 8, 10–14 (1972).CAS 

    Google Scholar 
    60.Balseiro, E. G., Souza, M. S., Modenutti, B. E. & Reissig, M. Living in transparent lakes: Low food P: C ratio decreases antioxidant response to ultraviolet radiation in Daphnia. Limnol. Oceanogr. 53, 2383–2390 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Laspoumaderes, C., Souza, M. S., Modenutti, B. E. & Balseiro, E. Glacier melting and response of Daphnia oxidative stress. J. Plankton Res. 39, 675–686. https://doi.org/10.1093/plankt/fbx028 (2017).CAS 
    Article 

    Google Scholar 
    62.APHA. Standard methods for the examination of water and wastewater. (American Public Health Association, AWWA, 2005).63.Gorokhova, E. & Kyle, M. Analysis of nucleic acids in Daphnia: development of methods and ontogenetic variations in RNA-DNA content. J. Plankton Res. 24, 511–522 (2002).CAS 
    Article 

    Google Scholar  More

  • in

    Sex, age, and parental harmonic convergence behavior affect the immune performance of Aedes aegypti offspring

    1.Centers for Disease Control and Prevention https://www.cdc.gov/dengue/areaswithrisk/index.html (2021).2.Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Centers for Disease Control and Prevention https://www.cdc.gov/parasites/malaria/index.html (2021)5.Gatton, M. L. et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution 67, 1218–1230 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Sokhna, C., Ndiath, M. O. & Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19, 902–907 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 10, 295–311 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Oliva, C. F., Damiens, D. & Benedict, M. Q. Male reproductive biology of Aedes mosquitoes. Acta Tropica 132, S12–S19 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Benelli, G. Research in mosquito control: current challenges for a brighter future. Parasitol. Res. 114, 2801–2805 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Lees, R. S., Gilles, J. R. L., Hendrichs, J., Vreysen, M. J. B. & Bourtzis, K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 10, 156–162 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wilke, A. B. & Marrelli, M. T. Genetic control of mosquitoes: population suppression strategies. Rev. Inst. Med. Trop. Sao Paulo 54, 287–292 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Alphey, L., Nimmo, D., O’Connell, S. & Alphey, N. Insect population suppression using engineered insects. Adv. Exp. Med. Biol. 627, 93–103 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Carvalho, D. O. et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 9, e0003864 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Wilke, A. B. B. & Marrelli, M. T. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit. Vectors 8, 342 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Hegde, S. & Hughes, G. L. Population modification of Anopheles mosquitoes for malaria control: pathways to implementation. Pathog. Glob. Health 111, 401–402 (2017).PubMed 
    Article 

    Google Scholar 
    17.Carballar-Lejarazu, R. & James, A. A. Population modification of Anopheline species to control malaria transmission. Pathog. Glob. Health 111, 424–35. (2017).PubMed 
    Article 

    Google Scholar 
    18.Li, Y. & Liu, X. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population. J. Theor. Biol. 448, 53–65 (2018).PubMed 
    Article 

    Google Scholar 
    19.Farkas, J. Z., Gourley, S. A., Liu, R. & Yakubu, A. A. Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus. J. Math. Biol. 75, 621–47. (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Zhang, X., Tang, S., Liu, Q., Cheke, R. A. & Zhu, H. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease. Math. Biosci. 299, 58–72 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Almeida, L., Privat, Y., Strugarek, M. & Vauchelet, N. Optimal releases for population replacement strategies, application to Wolbachia. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics 51, 3170–3194 (2019).Article 

    Google Scholar 
    22.Clements, A. N. The Biology of Mosquitoes: Sensory Reception and Behaviour (Chapman & Hall, 1999).23.Downes, J. A. The swarming and mating flight of Diptera. Annu. Rev. Entomol. 14, 271–98. (1969).Article 

    Google Scholar 
    24.Yuval, B. Mating systems of blood-feeding flies. Annu Rev. Entomol. 51, 413–440 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles gambiae s.l. Physiol. Entomol. 5, 315–20. (1980).Article 

    Google Scholar 
    26.Pitts, R. J., Mozuraitis, R., Gauvin-Bialecki, A. & Lemperiere, G. The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes. Acta Tropica 132, S26–S34 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Hartberg, W. K. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 45, 847–850 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Sawadogo P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Tropica 132, S42-52 https://doi.org/10.1016/j.actatropica.2013.12.011 (2014).29.South, A. C. F. Progress in Mosquito Research (Elsevier Science, 2016).30.Cator, L. J. & Harrington, L. C. The harmonic convergence of fathers predicts the mating success of sons in Aedes aegypti. Anim. Behav. 82, 627–633 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Benelli, G. The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 114, 887–94. (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Benelli, G., Romano, D., Messing, R. H. & Canale, A. First report of behavioural lateralisation in mosquitoes: right-biased kicking behaviour against males in females of the Asian tiger mosquito, Aedes albopictus. Parasitol. Res. 114, 1613–1617 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Cator, L. J. & Zanti, Z. Size, sounds and sex: interactions between body size and harmonic convergence signals determine mating success in Aedes aegypti. Parasites Vectors 9, 622 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.South, S. H., Steiner, D. & Arnqvist, G. Male mating costs in a polygynous mosquito with ornaments expressed in both sexes. Proc. R. Soc. B 276, 3671–3678 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Roth, L. M. A study of mosquito behavior. An experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). Am. Midl. Nat. 40, 265–352 (1948).Article 

    Google Scholar 
    36.Wishart, G., van Sickle, G. R. & Riordan, D. F. Orientation of the males of Aedes aegypti (L.) (Diptera: Culicidae) to sound. Can. Entomol. 94, 613–26. (1962).Article 

    Google Scholar 
    37.Belton, P. Attraction of male mosquitoes to sound. J. Am. Mosq. Control Assoc. 10, 297–301 (1994).CAS 
    PubMed 

    Google Scholar 
    38.Simões, P. M. V., Ingham, R. A., Gibson, G. & Russell, I. J. A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes. J. Exp. Biol. 219, 2039–2047 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    39.Simoes, P. M., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Exp. Biol. 220, 379–85. (2017).PubMed 
    Article 

    Google Scholar 
    40.Gibson, G. & Russell, I. Flying in tune: sexual recognition in mosquitoes. Curr. Biol. 16, 1311–1316 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Cator, L. J., Arthur, B. J., Harrington, L. C. & Hoy, R. R. Harmonic convergence in the love songs of the dengue vector mosquito. Science 323, 1077–1079 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Warren, B., Gibson, G. & Russell, I. J. Sex recognition through midflight mating duets in culex mosquitoes is mediated by acoustic distortion. Curr. Biol. 19, 485–491 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. “Singing on the Wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Aldersley, A. & Cator, L. J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Sci. Rep. 9, 2145 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.League, G. P., Baxter, L. L., Wolfner, M. F. & Harrington, L. C. Male accessory gland molecules inhibit harmonic convergence in the mosquito Aedes aegypti. Curr. Biol. 29, R196–r7. (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Villarreal, S. M. et al. Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. J. Insect Physiol. 108, 1–9 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Dobson, A. P. & Hudson, P. J. Regulation and stability of a free-living host–parasite system: Trichostrongylus tenuis in Red Grouse. II. Population models. J. Anim. Ecol. 61, 487–498 (1992).Article 

    Google Scholar 
    48.Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites? Science 218, 384–387 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Hillyer, J. F., Schmidt, S. L. & Christensen, B. M. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res. 313, 117–127 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Moreno-García, M., Córdoba-Aguilar, A., Condé, R. & Lanz-Mendoza, H. Current immunity markers in insect ecological immunology: assumed trade-offs and methodological issues. Bull. Entomol. Res. 103, 127–139 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    51.Schoenle, L. A., Downs, C. J. & Martin L. B. An introduction to ecoimmunology. In Advances in Comparative Immunology (ed. Cooper, E. L.). 901–932 (Springer International Publishing, 2018).52.Barthel, A., Staudacher, H., Schmaltz, A., Heckel, D. G. & Groot, A. T. Sex-specific consequences of an induced immune response on reproduction in a moth. BMC Evol. Biol. 15, 282 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Chun, J., Riehle, M. & Paskewitz, S. M. Effect of mosquito age and reproductive status on melanization of sephadex beads in Plasmodium-refractory and -susceptible strains of Anopheles gambiae. J. Invertebr. Pathol. 66, 11–17 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Li, J., Tracy, J. W. & Christensen, B. M. Relationship of hemolymph phenol oxidase and mosquito age in Aedes aegypti. J. Invertebr. Pathol. 60, 188–191 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Rolff, J. & Siva-Jothy, M. T. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc. Natl Acad. Sci. USA 99, 9916–9918 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Schwenke, R. A. & Lazzaro, B. P. Juvenile hormone suppresses resistance to infection in mated female Drosophila melanogaster. Curr. Biol. 27, 596–601 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Reavey, C. E., Warnock, N. D., Cotter, S. C. & Vogel, H. Trade-offs between personal immunity and reproduction in the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 25, 415–23. (2014).Article 

    Google Scholar 
    59.Christensen, B. M., Li, J. Y., Chen, C. C. & Nappi, A. J. Melanization immune responses in mosquito vectors. Trends Parasitol. 21, 192–199 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Harris, K. L., Christensen, B. M. & Miranpuri, G. S. Comparative studies on the melanization response of male and female mosquitoes against microfilariae. Dev. Comp. Immunol. 10, 305–310 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Syed, Z. A., Gupta, V., Arun, M. G., Dhiman, A., Nandy, B. & Prasad, N. G. Absence of reproduction-immunity trade-off in male Drosophila melanogaster evolving under differential sexual selection. BMC Evol. Biol. 20, 13 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Schwenke R. A., Lazzaro B. P., Wolfner M. F. Reproduction-immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).63.Schmid-Hempel, P. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Armitage, S. A., Thompson, J. J., Rolff, J. & Siva-Jothy, M. T. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16, 1038–1044 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Schwartz, A. & Koella, J. C. The cost of immunity in the yellow fever mosquito, Aedes aegypti depends on immune activation. J. Evol. Biol. 17, 834–840 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Rauw, W. M. Immune response from a resource allocation perspective. Front. Genet. 3, 267 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Levashina, E. A., Moita, L. F., Blandin, S., Vriend, G., Lagueux, M. & Kafatos, F. C. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709–718 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Strand, M. R. The insect cellular immune response. Insect Sci. 15, 1–14 (2008).CAS 
    Article 

    Google Scholar 
    69.Das, S., Dong, Y., Garver, L. & Dimopoulos, G. Specificity of the Innate Immune System: a Closer Look at the Mosquito Pattern-recognition Receptor Repertoire. (Oxford University Press, 2009).
    Google Scholar 
    70.King, J. G. & Hillyer, J. F. Infection-induced interaction between the mosquito circulatory and immune systems. PLoS Pathog. 8, e1003058–e1003058 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Murdock, C. C., Paaijmans, K. P., Bell, A. S., King, J. G., Hillyer, J. F. & Read, A. F. et al. Complex effects of temperature on mosquito immune function. Proc. R. Soc. B 279, 3357–3366 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Liu, W.-T., Tu, W.-C., Lin, C.-H., Yang, U.-C. & Chen, C.-C. Involvement of cecropin B in the formation of the Aedes aegypti mosquito cuticle. Sci. Rep. 7, 16395 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Hillyer, J. F., Schmidt, S. L., Fuchs, J. F., Boyle, J. P. & Christensen, B. M. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell. Microbiol. 7, 39–51 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Coggins, S., Estévez-Lao, T. & Hillyer, J. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. Dev. Comp. Immunol. 37, 390–401 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Luckhart, S., Vodovotz, Y., Cui, L. & Rosenberg, R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc. Natl Acad. Sci. USA 95, 5700–5705 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Graça-Souza, A. V., Maya-Monteiro, C., Paiva-Silva, G. O., Braz, G. R., Paes, M. C. & Sorgine, M. H. et al. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem. Mol. Biol. 36, 322–335 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    77.Cirimotich, C. M., Ramirez, J. L. & Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10, 307–310 (2011).78.Sánchez-Vargas, I., Scott, J. C., Poole-Smith, B. K., Franz, A. W., Barbosa-Solomieu, V. & Wilusz, J. et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 5, e1000299 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Souza-Neto, J. A., Sim, S. & Dimopoulos, G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc. Natl Acad. Sci. 106, 17841–17846 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Castillo, J., Brown, M. R. & Strand, M. R. Blood feeding and insulin-like peptide 3 stimulate proliferation of hemocytes in the mosquito Aedes aegypti. PLoS Pathog. 7, e1002274 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Bryant, W. B. & Michel, K. Blood feeding induces hemocyte proliferation and activation in the African malaria mosquito, Anopheles gambiae Giles. J. Exp. Biol. 217, 1238–1245 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Xi, Z., Ramirez, J. L. & Dimopoulos, G. The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog. 4, e1000098 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Bottino-Rojas, V., Talyuli, O. A., Jupatanakul, N., Sim, S., Dimopoulos, G. & Venancio, T. M. et al. Heme signaling impacts global gene expression, immunity and dengue virus infectivity in Aedes aegypti. PLoS ONE 10, e0135985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Oliveira, J. H. M., Talyuli, O. A. C., Goncalves, R. L. S., Paiva-Silva, G. O., Sorgine, M. H. F. & Alvarenga, P. H. et al. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS Negl. Trop. Dis. 11, e0005525 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Rand, T. A., Ginalski, K., Grishin, N. V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl Acad. Sci. USA 101, 14385–14389 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Ramos-Castaneda, J., Gonzalez, C., Jimenez, M. A., Duran, J., Hernandez-Martinez, S. & Rodriguez, M. H. et al. Effect of nitric oxide on dengue virus replication in Aedes aegypti and Anopheles albimanus. Intervirology 51, 335–341 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Xiao, X., Liu, Y., Zhang, X., Wang, J., Li, Z. & Pang, X. et al. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Pathog. 10, e1004027 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Waldock, J., Olson, K. E. & Christophides, G. K. Anopheles gambiae antiviral immune response to systemic O’nyong-nyong infection. PLoS Negl. Trop. Dis. 6, e1565 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Colpitts, T. M., Cox, J., Vanlandingham, D. L., Feitosa, F. M., Cheng, G. & Kurscheid, S. et al. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever Viruses. PLoS Pathog. 7, e1002189 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Moon, A. E., Walker A. J. & Goodbourn S. Regulation of transcription of the Aedes albopictus cecropin A1 gene: a role for p38 mitogen-activated protein kinase. Insect Biochem. Mol. Biol. 41, 628–636 (2011).95.Jordan, T. X. & Randall, G. Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. J. Virol. 91, e02020–16 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Urbanowski, M. D. & Hobman, T. C. The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. J. Virol. 87, 872–881 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Lazzaro, B. P., Flores, H. A., Lorigan, J. G. & Yourth, C. P. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster. PLoS Pathog. 4, e1000025 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Jupatanakul, N. et al. Engineered Aedes aegypti JAK/STAT pathway-mediated immunity to dengue virus. PLoS Negl. Trop. Dis. 11, e0005187 (2017).99.Martin-Acebes M. A. et al. The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis. J. Virol. 88, 12041–12054 (2014).100.Barletta, A. B., Alves, L. R., Silva, M. C., Sim, S., Dimopoulos, G. & Liechocki, S. et al. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and dengue virus. Sci. Rep. 6, 19928 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Fu, Q., Inankur, B., Yin, J., Striker, R. & Lan, Q. Sterol carrier protein 2, a critical host factor for dengue virus infection, alters the cholesterol distribution in mosquito Aag2 Cells. J. Med. Entomol. 52, 1124–1134 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Jupatanakul, N., Sim, S. & Dimopoulos, G. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. Dev. Comp. Immunol. 43, 1–9 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Evans, M. V. et al. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasites Vectors 11, 426 (2018).104.Salazar, M. I., Richardson, J. H., Sánchez-Vargas, I., Olson, K. E. & Beaty, B. J. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 7, 9 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    105.Gloria-Soria, A., Soghigian, J., Kellner, D. & Powell, J. R. Genetic diversity of laboratory strains and implications for research: the case of Aedes aegypti. PLoS Negl. Trop. Dis. 13, e0007930 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Souza-Neto, J. A., Powell, J. R. & Bonizzoni, M. Aedes aegypti vector competence studies: a review. Infect. Genet. Evol. 67, 191–209 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Franz, A. W. et al. Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl. Trop. Dis. 8, e2833 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    108.Irvin, N., Hoddle, M. S., O’Brochta, D. A., Carey, B. & Atkinson, P. W. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc. Natl Acad. Sci. USA 101, 891–896 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Pompon, J. & Levashina, E. A. A new role of the mosquito complement-like cascade in male fertility in Anopheles gambiae. PLoS Biol. 13, e1002255–e1002255 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    110.Mitchell, S. N., Kakani, E. G., South, A., Howell, P. I., Waterhouse, R. M. & Catteruccia, F. Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science 347, 985–988 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.League G. P. et al. Sexual selection theory meets disease vector control: Testing harmonic convergence as a “good genes” signal in Aedes aegypti mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2020.10.29.360651 (2020).112.Hillyer, J. F. & Estevez-Lao, T. Y. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev. Comp. Immunol. 34, 141–149 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    113.Warburg, A., Shtern, A., Cohen, N. & Dahan, N. Laminin and a Plasmodium ookinete surface protein inhibit melanotic encapsulation of Sephadex beads in the hemocoel of mosquitoes. Microbes Infect. 9, 192–199 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Lambrechts, L., Vulule, J. M. & Koella, J. C. Genetic correlation between melanization and antibacterial immune responses in a natural population of the malaria vector Anopheles gambiae. Evolution 58, 2377–2381 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    115.Lambrechts, L., Morlais, I., Awono-Ambene, P. H., Cohuet, A., Simard, F. & Jacques, J.-C. et al. Effect of infection by Plasmodium falciparum on the melanization immune response of Anopheles gambiae. Am. J. Tropic. Med. Hyg. 76, 475–480 (2007).Article 

    Google Scholar 
    116.Boëte, C., Paul, R. E. L. & Koella, J. C. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector. Proc. R. Soc. Lond. Ser. B 271, 1611–1615 (2004).Article 

    Google Scholar 
    117.Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5, 85–86 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Tesla, B., Demakovsky, L. R., Mordecai, E. A., Ryan, S. J., Bonds, M. H. & Ngonghala, C. N. et al. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc. R. Soc. B 285, 20180795 (2018).PubMed 
    Article 

    Google Scholar 
    119.Franz, A. W., Kantor, A. M., Passarelli, A. L. & Clem, R. J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7, 3741–3767 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    120.Lanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G. J. & Vorndam, A. V. Rapid detection and typing of dengue viruses from clinical-samples by using reverse transcriptase-polymerase chain-reaction. J. Clin. Microbiol 30, 545–551 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.RStudio Team. RStudio: Integrated Development Environment for R (RStudio, Inc., 2016).122.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).123.Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W. & Nielsen, A. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).Article 

    Google Scholar 
    124.Christensen, R. H. B. Ordinal-Regression Models for Ordinal Data. R package version 2015.6-28 (R Foundation for Statistical Computing, 2015).125.Bates, D., Mächler, M., Bolker, B. & Walker S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 48 (2015).Article 

    Google Scholar 
    126.Bolker, B. R Development Core Team. bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.20 (CRAN, 2017).127.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.4 ed (CRAN, 2019).128.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.3, ed (CRAN, 2019). More

  • in

    Adapted tolerance to virus infections in four geographically distinct Varroa destructor-resistant honeybee populations

    1.Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science (80–.) 351, 594–597 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Levin, S., Sela, N. & Chejanovsky, N. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci. Rep. 6, 37710 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Tentcheva, D. et al. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Environ. Microbiol. 70, 7185–7191 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Martin, S. The role of Varroa and viral pathogens in the collapse of honeybee colonies: A modeling approach. J. Appl. Ecol. 38, 1082–1093 (2001).Article 

    Google Scholar 
    6.Mordecai, G. J., Wilfert, L., Martin, S. J., Jones, I. M. & Schroeder, D. C. Diversity in a honey bee pathogen: First report of a third master variant of the Deformed Wing Virus quasispecies. ISME J. 10, 1264–1273 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.de Miranda, J. R., Cordoni, G. & Budge, G. The Acute bee paralysis virus—Kashmir bee virus—Israeli acute paralysis virus complex. J. Invertebr. Pathol. 103, S30–S47 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.de Miranda, J. R. & Genersch, E. Deformed wing virus. J. Invertebr. Pathol. 103, 48–61 (2010).Article 
    CAS 

    Google Scholar 
    9.Bowen-Walker, P. L., Martin, S. J. & Gunn, A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invertebr. Pathol. 73, 101–106 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Yue, C., Schroeder, M., Gisder, S. & Genersch, E. Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera). J. Gen. Virol. 88, 2329–2336 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.de Miranda, J. R. & Fries, I. Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J. Invertebr. Pathol. 98, 184–189 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Genersch, E. & Aubert, M. Emerging and re-emerging viruses of the honey bee (Apis mellifera L). Vet. Res. 41, 54 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.de Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    14.Amiri, E. et al. Quantitative patterns of vertical transmission of deformed wing virus in honey bees. PLoS ONE 13, e0195283 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Moeckel, N., Gisder, S. & Genersch, E. Horizontal transmission of deformed wing virus: Pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J. Gen. Virol. 92, 370–377 (2011).CAS 
    Article 

    Google Scholar 
    16.Boecking, O. & Genersch, E. Varroosis—The ongoing crisis in bee keeping. J. für Verbraucherschutz und Leb. 3, 221–228 (2008).Article 

    Google Scholar 
    17.Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47, 467–482 (2016).Article 

    Google Scholar 
    18.Locke, B. & Fries, I. Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42, 533–542 (2011).Article 

    Google Scholar 
    19.Locke, B., Le Conte, Y., Crauser, D. & Fries, I. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations. Ecol. Evol. 2, 1144–1150 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Oddie, M. A. Y., Dahle, B. & Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 5, e3956 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Panziera, D., van Langevelde, F. & Blacquière, T. Varroa sensitive hygiene contributes to naturally selected varroa resistance in honey bees. J. Apic. Res. 56, 635–642 (2017).Article 

    Google Scholar 
    22.Schmid-Hempel, P. Parasites and their social hosts. Trends Parasitol. 33, 453–462 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Thaduri, S., Stephan, J. G., de Miranda, J. R. & Locke, B. Disentangling host–parasite–pathogen interactions in a varroa-resistant honeybee population reveals virus tolerance as an independent, naturally adapted survival mechanism. Sci. Rep. 9, 6221 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Locke, B., Forsgren, E. & de Miranda, J. R. Increased tolerance and resistance to virus infections: A possible factor in the survival of Varroa destructor-resistant honey bees (Apis mellifera). PLoS ONE 9, e99998 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Thaduri, S., Locke, B., Granberg, F. & de Miranda, J. R. Temporal changes in the viromes of Swedish Varroa-resistant and Varroa-susceptible honeybee populations. PLoS ONE 13, e0206938 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Le Conte, Y. et al. Honey bee colonies that have survived Varroa destructor. Apidologie 38, 566–572 (2007).Article 

    Google Scholar 
    27.Fries, I., Imdorf, A. & Rosenkranz, P. Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate. Apidologie 37, 564–570 (2006).Article 

    Google Scholar 
    28.Dietemann, V. et al. Standard methods for varroa research. J. Apic. Res. 52, 1–54 (2013).
    Google Scholar 
    29.Meeus, I., de Miranda, J. R., de Graaf, D. C., Wäckers, F. & Smagghe, G. Effect of oral infection with Kashmir bee virus and Israeli acute paralysis virus on bumblebee (Bombus terrestris) reproductive success. J. Invertebr. Pathol. 121, 64–69 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Carrillo-Tripp, J. et al. In vivo and in vitro infection dynamics of honey bee viruses. Sci. Rep. 6, 22265 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Aupinel, P. et al. Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. Bull. Insectol. 58, 107–111 (2005).
    Google Scholar 
    32.Crailsheim, K. et al. Standard methods for artificial rearing of Apis mellifera larvae. J. Apic. Res. 52, 1–16 (2013).Article 

    Google Scholar 
    33.Forsgren, E., Locke, B., Semberg, E., Laugen, A. T. & de Miranda, J. R. Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization. J. Virol. Methods 246, 81–89 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Williams, G. R. et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 52, 1–36 (2013).Article 

    Google Scholar 
    35.Locke, B., Forsgren, E., Fries, I. & de Miranda, J. R. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl. Environ. Microbiol. 78, 227–235 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Lourenco, A. P., Mackert, A., Cristino, A. D. S. & Simoes, Z. L. P. Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39, 372–385 (2008).CAS 
    Article 

    Google Scholar 
    37.R Core Team. R: A language and environment for statistical computing (2017).38.Kuznetsova, A., Brockhoff, P. & Christensen, R. H. B. Package ‘lmerTest’: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    39.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    40.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    41.Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. Ser. B 34, 187–202 (1972).MathSciNet 
    MATH 

    Google Scholar 
    42.Therneau, T. M. & Grambsch, P. M. The Cox model 39–77 (Springer, 2000). https://doi.org/10.1007/978-1-4757-3294-8_3.Book 
    MATH 

    Google Scholar 
    43.Schoenfeld, D. Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 67, 145–153 (1980).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    44.Therneau, T. M. Package ‘coxme’: Mixed effects Cox models. R package version 2.2-10; 2018 (2018).45.De Jong, P. S., De Jong, L. & Goncalves, D. H. Weight loss and other damage to developing worker honeybees from infestation with Varroa Jacobsoni. J. Apic. Res. https://doi.org/10.1080/00218839.1982.11100535 (1983).Article 

    Google Scholar 
    46.Sumpter, D. J. T. & Martin, S. J. The dynamics of virus epidemics in Varroa-infested honey bee colonies. J. Anim. Ecol. 73, 51–63 (2004).Article 

    Google Scholar 
    47.Mondet, F., de Miranda, J. R., Kretzschmar, A., Le Conte, Y. & Mercer, A. R. On the front line: Quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 10, e1004323 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Mondet, F. et al. Specific cues associated with honey bee social defence against Varroa destructor infested brood. Sci. Rep. 6, 25444 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Brutscher, L. M., Daughenbaugh, K. F. & Flenniken, M. L. Antiviral defense mechanisms in honey bees. Curr. Opin. Insect Sci. 10, 71–82 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Annu. Rev. Virol. 6, annurev-virology-092818-015700 (2019).Article 
    CAS 

    Google Scholar 
    51.Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Amiri, E., Meixner, M. D. & Kryger, P. Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens. Sci. Rep. 6, 33065 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Yue, C. & Genersch, E. RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 86, 3419–3424 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Chen, Y., Evans, J. & Feldlaufer, M. Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. J. Invertebr. Pathol. 92, 152–159 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Gauthier, L. et al. Viruses associated with ovarian degeneration in Apis mellifera L. queens. PLoS ONE 6, e16217 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Nordström, S., Fries, I., Aarhus, A., Hansen, H. & Korpela, S. Virus infections in Nordic honey bee colonies with no, low or severe Varroa jacobsoni infestations. Apidologie 30, 475–484 (1999).Article 

    Google Scholar 
    57.Biesmeijer, K. Report Honeybee Surveillance Program the Netherlands 2006–2017. (2017).58.Strauss, U. et al. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). J. Invertebr. Pathol. 114, 45–52 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Khongphinitbunjong, K. et al. Responses of Varroa-resistant honey bees (Apis mellifera L.) to deformed wing virus. J. Asia Pac. Entomol. 19, 921–927 (2016).Article 

    Google Scholar 
    60.Råberg, L., Graham, A. L. & Read, A. F. Decomposing health: Tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. B 364, 37–49 (2009).Article 

    Google Scholar 
    61.Thompson, J. N. The Coevolutionary Process (University of Chicago Press, 1994).Book 

    Google Scholar 
    62.Ongus, J. R. et al. Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J. Gen. Virol. 85, 3747–3755 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Gisder, S., Aumeier, P. & Genersch, E. Deformed wing virus: Replication and viral load in mites (Varroa destructor). J. Gen. Virol. 90, 463–467 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Nazzi, F. et al. Synergistic parasite–pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog. 8, e1002735 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Yang, X. & Cox-Foster, D. L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. 102, 7470–7475 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Yang, X. & Cox-Foster, D. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134, 405 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Ryabov, E. V. et al. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro transmission. PLoS Pathog. 10, e1004230 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Ryabov, E. V., Fannon, J. M., Moore, J. D., Wood, G. R. & Evans, D. J. The Iflaviruses Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ 4, e1591 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Desai, S. D., Eu, Y.-J., Whyard, S. & Currie, R. W. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol. Biol. 21, 446–455 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Maori, E. et al. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. 18, 55–60 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Di Prisco, G. et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. 113, 3203–3208 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses

    1.Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. ISME J. 2017;11:1949–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol. 2021;19:225–40.CAS 
    Article 

    Google Scholar 
    5.Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017;357:eaaf3883.7.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    Article 

    Google Scholar 
    8.Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 2019;568:108–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;18:241–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol. 2002;5:246–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Galbán-Malagón C, Berrojalbiz N, Ojeda M-J, Dachs J. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nat Commun 2012;3:862.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 2005;67:170–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA. 2006;103:15280.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol. 2004;186:5189–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA. 2006;103:15582.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Lee TK, Lee J, Sul WJ, Iwai S, Chai BC, Tiedje JM, et al. Novel biphenyl-oxidizing bacteria and dioxygenase genes from a Korean tidal mudflat. Appl Environ Microbiol. 2011;77:3888–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Sul WJ, Park J, Quensen JF, Rodrigues JLM, Seliger L, Tsoi TV, et al. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol. 2009;75:5501–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Uhlik O, Jecna K, Mackova M, Vlcek C, Hroudova M, Demnerova K, et al. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol. 2009;75:6471.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Jiang LF, Luo CL, Zhang DY, Song MK, Sun YT, Zhang G. Biphenyl-Metabolizing microbial community and a functional operon revealed in e-waste-contaminated soil. Environ Sci Technol. 2018;52:8558–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Tillmann S, Strompl C, Timmis KN, Abraham WR. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol. 2005;52:207–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 2007;1:134–48.CAS 
    Article 

    Google Scholar 
    24.Chen S-C, Duan G-L, Ding K, Huang F-Y, Zhu Y-G. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol Ecol. 2018;94:fiy026.25.Neufeld JD, Dumont MG, Vohra J, Murrell JC. Methodological considerations for the use of stable isotope probing in microbial ecology. Micro Ecol. 2007;53:435–42.CAS 
    Article 

    Google Scholar 
    26.Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Mohn WW, Westerberg K, Cullen WR, Reimer KJ. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms. Appl Environ Microbiol. 1997;63:3378–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Wagner-Dobler I, Bennasar A, Vancanneyt M, Strompl C, Brummer I, Eichner C, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol. 1998;64:3014–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Allen MB. Studies with cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol. 1959;32:270–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995;163:96–103.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ouyang WY, Su JQ, Richnow HH, Adrian L. Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing. Environ Int. 2019;126:118–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Tischer K, Zeder M, Klug R, Pernthaler J, Schattenhofer M, Harms H, et al. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol. 2012;35:526–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from SIP-NanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:2342.38.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019;7:e7359–e.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–7.CAS 

    Google Scholar 
    43.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    45.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D14. (D1)CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.Article 
    CAS 

    Google Scholar 
    49.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Budhraja R, Karande S, Ding C, Ullrich MK, Wagner S, Reemtsma T, et al. Characterization of membrane-bound metalloproteins in the anaerobic ammonium-oxidizing bacterium “Candidatus Kuenenia stuttgartiensis” strain CSTR1. Talanta. 2021;223:121711.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20:1466–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13:741–8.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Sachsenberg T, Herbst F-A, Taubert M, Kermer R, Jehmlich N, von Bergen M, et al. MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res. 2015;14:619–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Liu J, He XX, Lin XR, Chen WC, Zhou QX, Shu WS, et al. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. Environ Sci Technol. 2015;49:6438–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol. 1998;16:663–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Garrido-Sanz D, Manzano J, Martín M, Redondo-Nieto M, Rivilla R. Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations. Front Microbiol. 2018;9:232.58.Kikuchi Y, Nagata Y, Ohtsubo Y, Koana T, Takagi M. Pseudomonas fluorescens KKL101, a benzoic acid degrader in a mixed culture that degrades biphenyl and polychlorinated biphenyls. Biosci Biotechnol Biochem. 1995;59:2303–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA. 2008;105:17861.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Robertson BR, Button DK, Koch AL. Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl Environ Microbiol. 1998;64:3900–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Troussellier M, Bouvy M, Courties C, Dupuy C. Variation of carbon content among bacterial species under starvation condition. Aquat Micro Ecol. 1997;13:113–9.Article 

    Google Scholar 
    63.Furukawa K, Miyazaki T. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol. 1986;166:392–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Seeger M, Timmis KN, Hofer B. Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl Environ Microbiol. 1995;61:2654–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Chadhain SM, Moritz EM, Kim E, Zylstra GJ. Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol. 2007;34:605–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Hofer B, Backhaus S, Timmis KN. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 1994;144:9–16.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Harwood CS, Parales RE. The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Rather LJ, Knapp B, Haehnel W, Fuchs G. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J Biol Chem. 2010;285:20615–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, Arntzen EV, et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat Commun. 2016;7:1–12.70.Corteselli EM, Aitken MD, Singleton DR. Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds. Int J Syst Evol Microbiol 2017;67:311–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Fernandez H, Prandoni N, Fernandez-Pascual M, Fajardo S, Morcillo C, Diaz E, et al. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS ONE. 2014;9:e110771.72.Iwai S, Johnson TA, Chai BL, Hashsham SA, Tiedje JM. Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol. 2011;77:3551–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol. 2003;14:262–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol. 2016;1:1–7.75.de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol. 2008;19:579–89.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    76.Rabus R, Wöhlbrand L, Thies D, Meyer M, Reinhold-Hurek B, Kämpfer P. Aromatoleum gen. nov., a novel genus accommodating the phylogenetic lineage including Azoarcus evansii and related species, and proposal of Aromatoleum aromaticum sp. nov., Aromatoleum petrolei sp. nov., Aromatoleum bremense sp. nov., Aromatoleum toluolicum sp. nov. and Aromatoleum diolicum sp. nov. Int J Syst Evol Microbiol. 2019;69:982–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Vogt C, Richnow HH. Bioremediation via in situ microbial degradation of organic pollutants. Adv Biochem Engin/Biotechnol. 2014;142:123–46.
    Google Scholar 
    78.Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol. 2001;35:1663–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Mondello FJ, Turcich MP, Lobos JH, Erickson BD. Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl Environ Microbiol. 1997;63:3096–103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Gomez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol. 2007;189:5705–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More