1.Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
2.Torres, A., Jaeger, J. A. G. & Alonso, J. C. Assessing large-scale wildlife responses to human infrastructure development. PNAS 113, 8472–8477 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
3.Bennett, V. J. Effects of road density and pattern on the conservation of species and biodiversity. Curr. Landsc. Ecol. Rep. 2, 1–11 (2017).Article
Google Scholar
4.Coffin, A. W. From roadkill to road ecology: a review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406 (2007).Article
Google Scholar
5.Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. Soc. 14, 21 (2009).Article
Google Scholar
6.Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231 (1998).Article
Google Scholar
7.Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).Article
Google Scholar
8.Ascensão, F. et al. Disentangle the causes of the road barrier effect in small mammals through genetic patterns. PLoS ONE 11, e0151500 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
9.Dyer, S. J., O’Neill, J. P., Wasel, S. M. & Boutin, S. Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can. J. Zool. 80, 839–845 (2002).Article
Google Scholar
10.Glista, D. J., DeVault, T. L. & DeWoody, J. A. A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plan. 91, 1–7 (2009).Article
Google Scholar
11.Taylor, B. D. & Goldingay, R. L. Roads and wildlife: impacts, mitigation and implications for wildlife management in Australia. Wildl. Res. 37, 320–331 (2010).Article
Google Scholar
12.Tigas, L. A., Van Vuren, D. H. & Sauvajot, R. M. Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol. Conserv. 108, 299–306 (2002).Article
Google Scholar
13.Herrmann, H.-W., Pozarowski, K. M., Ochoa, A. & Schuett, G. W. An interstate highway affects gene flow in a top reptilian predator (Crotalus atrox) of the Sonoran Desert. Conserv. Genet. 18, 911–924 (2017).CAS
Article
Google Scholar
14.Holderegger, R. & Di Giulio, M. The genetic effects of roads: a review of empirical evidence. Basic Appl. Ecol. 11, 522–531 (2010).Article
Google Scholar
15.Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article
Google Scholar
16.Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).Article
Google Scholar
17.Kerley, L. L. et al. Effects of roads and human disturbance on Amur tigers. Conserv. Biol. 16, 97–108 (2002).Article
Google Scholar
18.Roedenbeck, I. A. & Voser, P. Effects of roads on spatial distribution, abundance and mortality of brown hare (Lepus europaeus) in Switzerland. Eur. J. Wildl. Res. 54, 425–437 (2008).Article
Google Scholar
19.Clark, R. W., Brown, W. S., Stechert, R. & Zamudio, K. R. Roads, interrupted dispersal, and genetic diversity in timber Rattlesnakes. Conserv. Biol. 24, 1059–1069 (2010).PubMed
Article
PubMed Central
Google Scholar
20.Niko, B. & Waits, L. P. Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18, 4151–4164 (2009).Article
Google Scholar
21.Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book
Google Scholar
22.Amos, W. & Balmford, A. When does conservation genetics matter?. Heredity 87, 257–265 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
23.Frankham, R. Genetics and extinction. Biol. Cons. 126, 131–140 (2005).Article
Google Scholar
24.Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, e2015096118 (2021).PubMed
PubMed Central
Article
CAS
Google Scholar
25.Keller, I. & Largiadèr, C. R. Recent Habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc. Biol. Sci. 270, 417–423 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
26.Noël, S., Ouellet, M., Galois, P. & Lapointe, F.-J. Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv. Genet. 8, 599–606 (2007).Article
CAS
Google Scholar
27.Marsh, D. M. et al. Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv. Genet. 9, 603–613 (2008).Article
Google Scholar
28.Brehme, C. S., Tracey, J. A., Mcclenaghan, L. R. & Fisher, R. N. Permeability of roads to movement of scrubland lizards and small mammals. Conserv. Biol. 27, 710–720 (2013).PubMed
Article
PubMed Central
Google Scholar
29.Ford, A. T. & Clevenger, A. P. Factors affecting the permeability of road mitigation measures to the movement of small mammals. Can. J. Zool. 97, 379–384 (2018).Article
Google Scholar
30.Claireau, F. et al. Major roads have important negative effects on insectivorous bat activity. Biol. Conserv. 235, 53–62 (2019).Article
Google Scholar
31.Jacobson, S. L., Bliss-Ketchum, L. L., Rivera, C. E. & Smith, W. P. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7, e01345 (2016).Article
Google Scholar
32.Assis, J. C., Giacomini, H. C. & Ribeiro, M. C. Road permeability index: evaluating the heterogeneous permeability of roads for wildlife crossing. Ecol. Ind. 99, 365–374 (2019).Article
Google Scholar
33.Lesbarrères, D., Primmer, C. R., Lodé, T. & Merilä, J. The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Écoscience 13, 531–538 (2006).Article
Google Scholar
34.Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics: quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19, 4179–4191 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040 (2015).PubMed
Article
PubMed Central
Google Scholar
36.Blair, C. et al. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol. Ecol. Resour. 12, 822–833 (2012).PubMed
Article
PubMed Central
Google Scholar
37.Mona, S., Ray, N., Arenas, M. & Excoffier, L. Genetic consequences of habitat fragmentation during a range expansion. Heredity 112, 291–299 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Weyer, J., Jørgensen, D., Schmitt, T., Maxwell, T. J. & Anderson, C. D. Lack of detectable genetic differentiation between den populations of the Prairie Rattlesnake (Crotalus viridis) in a fragmented landscape. Can. J. Zool. 92, 837–846 (2014).Article
Google Scholar
39.Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10, 1500–1508 (1996).Article
Google Scholar
40.Ehrich, D. & Jorde, P. E. High genetic variability despite high-amplitude population cycles in lemmings. J. Mammal. 86, 380–385 (2005).Article
Google Scholar
41.Gauffre, B. et al. Short-term variations in gene flow related to cyclic density fluctuations in the common vole. Mol. Ecol. 23, 3214–3225 (2014).PubMed
Article
PubMed Central
Google Scholar
42.Schweizer, M., Excoffier, L. & Heckel, G. Fine-scale genetic structure and dispersal in the common vole (Microtus arvalis). Mol. Ecol. 16, 2463–2473 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Keane, B., Ross, S., Crist, T. O. & Solomon, N. G. Fine-scale spatial patterns of genetic relatedness among resident adult prairie voles. J. Mammal. 96, 1194–1202 (2015).PubMed
PubMed Central
Article
Google Scholar
44.Boyce, C. C. K. & Boyce, J. L. Population biology of Microtus arvalis. II. Natal and breeding dispersal of females. J. Anim. Ecol. 57, 723–736 (1988).Article
Google Scholar
45.Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).Article
Google Scholar
46.Salamolard, M., Butet, A., Leroux, A. & Bretagnolle, V. Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81, 2428–2441 (2000).Article
Google Scholar
47.Krebs, C. J. & Myers, J. H. Population cycles in small mammals. In Advances in Ecological Research Vol. 8 (ed. MacFadyen, A.) 267–399 (Academic Press, 1974).
Google Scholar
48.Gerlach, G. & Musolf, K. Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv. Biol. 14, 1066–1074 (2000).Article
Google Scholar
49.Rico, A., Kindlmann, P. & Sedláček, F. Can the barrier effect of highways cause genetic subdivision in small mammals?. Acta Theriol. 54, 297–310 (2009).Article
Google Scholar
50.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed
PubMed Central
Article
Google Scholar
51.Motro, U. & Thomson, G. On heterozygosity and the effective size of populations subject to size changes. Evolution 36, 1059–1066 (1982).PubMed
Article
PubMed Central
Google Scholar
52.Kirkpatrick, M. & Jarne, P. The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155, 154–167 (2000).PubMed
Article
PubMed Central
Google Scholar
53.Xenikoudakis, G. et al. Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol. Ecol. 24, 3441–3454 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Parra, G. J. et al. Low genetic diversity, limited gene flow and widespread genetic bottleneck effects in a threatened dolphin species, the Australian humpback dolphin. Biol. Conserv. 220, 192–200 (2018).Article
Google Scholar
55.Berthier, K., Charbonnel, N., Galan, M., Chaval, Y. & Cosson, J.-F. Migration and recovery of the genetic diversity during the increasing density phase in cyclic vole populations. Mol. Ecol. 15, 2665–2676 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Norén, K. & Angerbjörn, A. Genetic perspectives on northern population cycles: bridging the gap between theory and empirical studies: GENETIC structure in cyclic populations. Biol. Rev. 89, 493–510 (2014).PubMed
Article
PubMed Central
Google Scholar
57.Jangjoo, M., Matter, S. F., Roland, J. & Keyghobadi, N. Demographic fluctuations lead to rapid and cyclic shifts in genetic structure among populations of an alpine butterfly, Parnassius smintheus. J. Evol. Biol. 33, 668–681 (2020).PubMed
Article
PubMed Central
Google Scholar
58.ESRI. ArcGIS desktop: release 10.3 Environmental Systems Research Institute, Redlands, CA (2015).59.Saunders, S. C., Mislivets, M. R., Chen, J. & Cleland, D. T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103, 209–225 (2002).Article
Google Scholar
60.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article
Google Scholar
61.Schlaepfer, D. R., Braschler, B., Rusterholz, H.-P. & Baur, B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9, e02488 (2018).Article
Google Scholar
62.Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Compton, B. W., McGarigal, K., Cushman, S. A. & Gamble, L. R. A resistant-Kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21, 788–799 (2007).PubMed
Article
PubMed Central
Google Scholar
64.Balkenhol, N., Cushman, S., Storfer, A. & Waits, L. Landscape Genetics: Concepts, Methods, Applications (Wiley, 2015).Book
Google Scholar
65.Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).PubMed
Article
PubMed Central
Google Scholar
66.Lloyd, M. W., Campbell, L. & Neel, M. C. The Power to Detect Recent Fragmentation Events Using Genetic Differentiation Methods. PLoS ONE 8, e63981 (2013).ADS
PubMed
PubMed Central
Article
Google Scholar
67.Smouse, P. E., Long, J. C. & Sokal, R. R. Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst. Zool. 35, 627–632 (1986).Article
Google Scholar
68.Nowak, R. M. Walker’s Mammals of the World (Johns Hopkins University Press, 1999).
Google Scholar
69.García, J. T. et al. A complex scenario of glacial survival in Mediterranean and continental refugia of a temperate continental vole species (Microtus arvalis) in Europe. J. Zool. Syst. Evol. Res. 58, 459–474 (2020).Article
Google Scholar
70.Martínková, N. et al. Divergent evolutionary processes associated with colonization of offshore islands. Mol. Ecol. 22, 5205–5220 (2013).PubMed
PubMed Central
Article
Google Scholar
71.Keyghobadi, N. K. The genetic implications of habitat fragmentation for animals. Can. J. Zool. 85(10), 1049–1064 (2007).Article
Google Scholar
72.Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16, 977–992 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
73.Zellmer, A. J. & Knowles, L. L. Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol. Ecol. 18, 3593–3602 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
74.Delaney, K. S., Riley, S. P. D. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
75.Tkadlec, E. & Stenseth, N. C. A new geographical gradient in vole population dynamics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1547–1552 (2001).CAS
Article
Google Scholar
76.Lambin, X., Bretagnolle, V. & Yoccoz, N. G. Vole population cycles in northern and southern Europe: Is there a need for different explanations for single pattern?. J. Anim. Ecol. 75, 340–349 (2006).PubMed
Article
PubMed Central
Google Scholar
77.Ehrich, D. & Stenseth, N. C. Genetic structure of Siberian lemmings (Lemmus sibiricus) in a continuous habitat: large patches rather than isolation by distance. Heredity 86, 716–730 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
78.Gauffre, B., Estoup, A., Bretagnolle, V. & Cosson, J. F. Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol. Ecol. 17, 4619–4629 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
79.Galliard, J.-F.L., Rémy, A., Ims, R. A. & Lambin, X. Patterns and processes of dispersal behaviour in arvicoline rodents. Mol. Ecol. 21, 505–523 (2012).PubMed
Article
PubMed Central
Google Scholar
80.Gauffre, B., Petit, E., Brodier, S., Bretagnolle, V. & Cosson, J. F. Sex-biased dispersal patterns depend on the spatial scale in a social rodent. Proc. R. Soc. B Biol. Sci. 276, 3487 (2009).CAS
Article
Google Scholar
81.Lidicker, W.Z. Jr. The role of dispersal in the demography of small mammals, in Small Mammals: their production and population dynamics. Eds F.B. Golley, K. Petrusewicz and L. Ryszkowski, 103–28 (Cambridge University Press, London, 1975).82.Gaines, M. S. & McClenaghan, L. R. Dispersal in small mammals. Annu. Rev. Ecol. Syst. 11, 163–196 (1980).Article
Google Scholar
83.Swingland, I. R. & Greenwood, P. J. The Ecology of Animal Movement (Clarendon Press, 1983).
Google Scholar
84.Burton, C., Krebs, C. J. & Taylor, E. B. Population genetic structure of the cyclic snowshoe hare (Lepus americanus) in southwestern Yukon, Canada. Mol. Ecol. 11, 1689–1701 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
85.Plante, Y., Boag, P. T. & White, B. N. Microgeographic variation in mitochondrial DNA of meadow voles (Microtus pennsylvanicus) in relation to population density. Evolution 43, 1522–1537 (1989).PubMed
PubMed Central
Google Scholar
86.Encuesta sobre superficies y rendimientos del cultivo 2012. Catálogo de publicaciones de la Administración General del Estado (MAGRAMA, 2013).87.Oñate, J. J. et al. Programa piloto de acciones de conservación de la biodiversidad en sistemas ambientales con usos agrarios en el marco del desarrollo rural. Convenio de colaboración entre la Dirección General para la Biodiversidad (Ministerio de Medio Ambiente) y el Departamento Interuniversitario de Ecología (Universidad Autónoma de Madrid, 2003).88.Ji, S. et al. Impact of different road types on small mammals in Mt. Kalamaili Nature Reserve. Transp. Res. Part D Transp. Environ. 50, 223–233 (2017).Article
Google Scholar
89.Vignieri, S. N. Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus): connectivity patterns in pacific jumping mice. Mol. Ecol. 14, 1925–1937 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
90.Russo, I.-R.M., Sole, C. L., Barbato, M., von Bramann, U. & Bruford, M. W. Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-iMfolozi Park, South Africa). Sci. Rep. 6, 29168 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
91.Mougeot, F., Lambin, X., Rodríguez-Pastor, R., Romairone, J. & Luque-Larena, J.-J. Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 100, e02776 (2019).PubMed
Article
PubMed Central
Google Scholar
92.Schwartz, M. K. & McKelvey, K. S. Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv. Genet. 10, 441 (2009).Article
Google Scholar
93.Strauss, W. M. Preparation of genomic DNA from Mammalian tissue. Curr. Protoc. Mol. Biol. 42, 1–3 (1998).Article
Google Scholar
94.Ishibashi, Y. et al. Polymorphic microsatellite DNA markers in the field vole Microtus montebelli. Mol. Ecol. 8, 163–164 (1999).CAS
PubMed
PubMed Central
Google Scholar
95.Gauffre, B., Galan, M., Bretagnolle, V. & Cosson, J. Polymorphic microsatellite loci and PCR multiplexing in the common vole, Microtus arvalis. Mol. Ecol. Notes 7, 830–832 (2007).CAS
Article
Google Scholar
96.Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 1, 71–75 (2009).PubMed
PubMed Central
Google Scholar
97.Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).CAS
Article
Google Scholar
98.Brookfield, J. F. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
99.Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article
Google Scholar
100.Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010).PubMed
Article
PubMed Central
Google Scholar
101.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article
Google Scholar
102.Coulon, A. genhet: an easy-to-use R function to estimate individual heterozygosity. Mol. Ecol. Resour. 10, 167–169 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
103.Coltman, D. W., Pilkington, J. G. & Pemberton, J. M. Fine-scale genetic structure in a free-living ungulate population. Mol. Ecol. 12, 733–742 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
104.Amos, W. et al. The influence of parental relatedness on reproductive success. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2021–2027 (2001).CAS
Article
Google Scholar
105.Aparicio, J. M., Ortego, J. & Cordero, P. J. What should we weigh to estimate heterozygosity, alleles or loci? Estimating heterozygosity from neutral markers. Mol. Ecol. 15, 4659–4665 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
106.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed
PubMed Central
Article
Google Scholar
107.Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
108.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
109.Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).PubMed
Article
PubMed Central
Google Scholar
110.Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).PubMed
Article
PubMed Central
Google Scholar
111.Nei, M. Analysis of gene diversity in subdivided populations. PNAS 70, 3321–3323 (1973).ADS
CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
112.Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
113.Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
114.Takezaki, N. & Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144, 389–399 (1996).CAS
PubMed
PubMed Central
Article
Google Scholar
115.Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573 (1999).PubMed
Article
PubMed Central
Google Scholar
116.Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).PubMed
Article
PubMed Central
Google Scholar
117.Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185 (1996).Article
Google Scholar
118.Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
119.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS
Article
Google Scholar
120.Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).Article
Google Scholar
121.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data (Springer, Berlin, 2007).MATH
Book
Google Scholar
122.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, 2014).MATH
Google Scholar
123.Kirby, K. N. & Gerlanc, D. BootES: an R package for bootstrap confidence intervals on effect sizes. Behav. Res. Methods 45, 905–927 (2013).PubMed
Article
PubMed Central
Google Scholar
124.Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
125.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).MATH
Book
Google Scholar
126.González-Esteban, J. & Villate I. Microtus arvalis Pallas, 1778. In: Atlas y Libro Rojo de los Mamíferos Terrestres de España, Palomo, L.J., Gisbert, J. & Blanco J.C. (Eds.), Dirección General para la Biodiversidad-SECEM-SECEMU, 426-428 (2007). More