More stories

  • in

    Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia

    1.Hotez, P. J. et al. An unfolding tragedy of chagas disease in North America. PLoS Negl. Trop. Dis. 7(10), e2300. https://doi.org/10.1371/journal.pntd.0002300 (2013) (PMID: 24205411).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Hotez, P. J., Bottazzi, M. E., Franco-Paredes, C., Ault, S. K. & Periago, M. R. The neglected tropical diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis. 2(9), e300. https://doi.org/10.1371/journal.pntd.0000300 (2008) (PMID: 18820747).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lee, B. Y., Bacon, K. M., Bottazzi, M. E. & Hotez, P. J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 13(4), 342–348. https://doi.org/10.1016/S1473-3099(13)70002-1 (2013) (PMID: 23395248).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.WHO. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 90(6), 33–43 (2015) (PMID: 25671846).
    Google Scholar 
    5.Pena-Garcia, V. H., Gomez-Palacio, A. M., Triana-Chavez, O. & Mejia-Jaramillo, A. M. Eco-epidemiology of Chagas disease in an endemic area of Colombia: Risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am. J. Trop. Med. Hyg. 91(6), 1116–1124. https://doi.org/10.4269/ajtmh.14-0112 (2014) (PMID: 25331808).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Mejia-Jaramillo, A. M. et al. Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease. Parasit. Vectors. 7, 108. https://doi.org/10.1186/1756-3305-7-108 (2014) (PMID: 24656115).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Dib, J. C., Agudelo, L. A. & Velez, I. D. Prevalencia de patologías tropicales y factores de riesgo en la comunidad indígena de Bunkwimake, Sierra Nevada de Santa Marta. DUAZARY. 3(1), 38–44 (2006).
    Google Scholar 
    8.Parra-Henao, G. et al. In search of congenital Chagas disease in the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 101(3), 482–483. https://doi.org/10.4269/ajtmh.19-0110 (2019) (PMID: 31264558).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Guhl, F., Aguilera, G., Pinto, N. & Vergara, D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomedica. 27(Suppl 1), 143–162 (2007) (PMID: 18154255).Article 

    Google Scholar 
    10.Parra-Henao, G., Suarez-Escudero, L. C. & Gonzalez-Caro, S. Potential distribution of Chagas disease vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, based on Ecological Niche Modeling. J. Trop. Med. 2016, 1439090. https://doi.org/10.1155/2016/1439090 (2016) (PMID: 28115946).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Rodriguez-Mongui, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E. & Cucunuba, Z. M. Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis. Parasit. Vectors. 12(1), 308. https://doi.org/10.1186/s13071-019-3541-5 (2019) (PMID: 31221188).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Dib, J., Barnabe, C., Tibayrenc, M. & Triana, O. Incrimination of Eratyrus cuspidatus (Stal) in the transmission of Chagas’ disease by molecular epidemiology analysis of Trypanosoma cruzi isolates from a geographically restricted area in the north of Colombia. Acta Trop. 111(3), 237–242. https://doi.org/10.1016/j.actatropica.2009.05.004 (2009) (PMID: 19442641).Article 
    PubMed 

    Google Scholar 
    13.Parra Henao, G., Angulo, V., Jaramillo, N. & Restrepo, M. Triatominos (Hemiptera: Reduviidae) de ka Sierra Nevada de Santa Marta, Colombia. Aspectos epidemiológicos, entomológicos y de distribución. Rev. CES Med. 23(1), 17–26 (2009).
    Google Scholar 
    14.Hernandez, C. et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: Parasite infection, feeding sources and discrete typing units. Parasit. Vectors. 9(1), 620. https://doi.org/10.1186/s13071-016-1907-5 (2016) (PMID: 27903288).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Cantillo-Barraza, O., Chaverra, D., Marcet, P., Arboleda-Sanchez, S. & Triana-Chavez, O. Trypanosoma cruzi transmission in a Colombian Caribbean region suggests that secondary vectors play an important epidemiological role. Parasit. Vectors. 7, 381. https://doi.org/10.1186/1756-3305-7-381 (2014) (PMID: 25141852).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Weiss, B. & Aksoy, S. Microbiome influences on insect host vector competence. Trends Parasitol. 27(11), 514–522. https://doi.org/10.1016/j.pt.2011.05.001 (2011) (PMID: 21697014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Azambuja, P., Garcia, E. S. & Ratcliffe, N. A. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 21(12), 568–572 (2005) (PMID: 16226491).Article 

    Google Scholar 
    18.Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol. 29(19), 3747–3761 (2020).Article 

    Google Scholar 
    19.Zingales, B. et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz. 104(7), 1051–1054 (2009) (PMID: 20027478).CAS 
    Article 

    Google Scholar 
    20.Zingales, B. et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009 (2012) (PMID: 22226704).Article 
    PubMed 

    Google Scholar 
    21.Tibayrenc, M. & Ayala, F. J. The population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop. 151, 156–165. https://doi.org/10.1016/j.actatropica.2015.05.006 (2015) (PMID: 26188332).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Majeau, A., Murphy, L., Herrera, C. & Dumonteil, E. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: Implications for disease epidemiology and diagnostics. Pathogens. 10, 212. https://doi.org/10.3390/pathogens10020212 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Flores-Ferrer, A., Marcou, O., Waleckx, E., Dumonteil, E. & Gourbière, S. Evolutionary ecology of Chagas disease; what do we know and what do we need?. Evol. Appl. 11(4), 470–487. https://doi.org/10.1111/eva.12582 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Tibayrenc, M., Kjellberg, F. & Ayala, F. J. A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl. Acad. Sci. USA 87, 2414–2418 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Berry, A. S. F. et al. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl. Trop. Dis. 13(5), e0007392. https://doi.org/10.1371/journal.pntd.0007392 (2019) (PMID: 31107905).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Schwabl, P. et al. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat. Commun. 10(1), 3972. https://doi.org/10.1038/s41467-019-11771-z (2019) (PMID: 31481692).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Falla, A. et al. Haplotype identification within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Trop. 110(1), 15–21 (2009) (PMID: 19135020).CAS 
    Article 

    Google Scholar 
    28.Cura, C. I. et al. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int. J. Parasitol. 40(14), 1599–1607. https://doi.org/10.1016/j.ijpara.2010.06.006 (2010) (PMID: 20670628).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Rodriguez, I. B. et al. Transmission dynamics of Trypanosoma cruzi determined by low-stringency single primer polymerase chain reaction and southern blot analyses in four indigenous communities of the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 81(3), 396–403 (2009) (PMID: 19706903).CAS 
    Article 

    Google Scholar 
    30.Waleckx, E., Gourbière, S. & Dumonteil, E. Intrusive triatomines and the challenge of adapting vector control practices. Mem. Inst. Oswaldo Cruz. 110(3), 324–338 (2015).CAS 
    Article 

    Google Scholar 
    31.Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10.1038/s41598-018-22455-x (2018) (PMID: 29515202).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol. Ecol. https://doi.org/10.1111/mec.15582 (2020) (PMID: 32749727).Article 
    PubMed 

    Google Scholar 
    33.O’Connor, O., Bosseno, M. F., Barnabe, C., Douzery, E. J. & Breniere, S. F. Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. Infect. Genet. Evol. 7(5), 587–593. https://doi.org/10.1016/j.meegid.2007.05.003 (2007) (PMID: 17553755).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Villanueva-Lizama, L., Teh-Poot, C., Majeau, A., Herrera, C. & Dumonteil, E. Molecular genotyping of Trypanosoma cruzi by next-generation sequencing of the mini-exon gene reveals infections with multiple parasite DTUs in Chagasic patients from Yucatan, Mexico. J. Inf. Dis. 219(12), 1980–1988 (2019).CAS 
    Article 

    Google Scholar 
    35.Parra-Henao, G., Angulo, V. M., Osorio, L. & Jaramillo, O. N. Geographic distribution and ecology of Triatoma dimidiata (Hemiptera: Reduviidae) in Colombia. J. Med. Entomol. 53(1), 122–129. https://doi.org/10.1093/jme/tjv163 (2016) (PMID: 26487247).Article 
    PubMed 

    Google Scholar 
    36.Angulo, V. M., Esteban, L. & Luna, K. P. Attalea butyracea proximas a las viviendas como posible fuente de infestacion domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomedica. 32(2), 277–285. https://doi.org/10.1590/S0120-41572012000300016 (2012) (PMID: 23242302).Article 
    PubMed 

    Google Scholar 
    37.Feliciangeli, M. D., Sanchez-Martin, M., Marrero, R., Davies, C. & Dujardin, J. P. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Trop. 101(2), 169–177. https://doi.org/10.1016/j.actatropica.2006.12.010 (2007) (PMID: 17306204).Article 
    PubMed 

    Google Scholar 
    38.Fitzpatrick, S., Feliciangeli, M. D., Sanchez-Martin, M. J., Monteiro, F. A. & Miles, M. A. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl. Trop. Dis. 2(4), e210. https://doi.org/10.1371/journal.pntd.0000210 (2008) (PMID: 18382605).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Lopez, G. & Moreno, J. Genetic variability and differentiation between populations of Rhodnius prolixus and R. pallescens, vectors of Chagas’ disease in Colombia. Mem. Inst. Oswaldo Cruz. 90, 353–357 (1995).CAS 
    Article 

    Google Scholar 
    40.Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding based on next-generation sequencing: linking triatomine behavioral ecology and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10.1038/s41598-018-22455-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Hernández-Andrade, A., Moo-Millan, J., Cigarroa-Toledo, N., Ramos-Ligonio, A., Herrera, C., Bucheton, B., et al. Metabarcoding: A powerful yet still underestimated approach for the comprehensive study of vector-borne pathogen transmission cycles and their dynamics. in Vector-Borne Diseases: Recent Developments in Epidemiology and Control (ed. Claborn, D.) 1–6. (Intechopen, 2020). https://doi.org/10.5772/intechopen.8311042.Flores-Ferrer, A., Waleckx, E., Rascalou, G., Dumonteil, E. & Gourbière, S. Trypanosoma cruzi transmission dynamics in a synanthropic and domesticated host community. PLoS Negl. Trop. Dis. 13(12), e0007902. https://doi.org/10.1371/journal.pntd.0007902 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Llewellyn, M. S. et al. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog. 5(5), e1000410. https://doi.org/10.1371/journal.ppat.1000410 (2009) (PMID: 19412340).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Herrera, C. et al. Genetic variability and phylogenetic relationships within Trypanosoma cruzi I isolated in Colombia based on Miniexon Gene Sequences. J. Parasitol. Res. https://doi.org/10.1155/2009/897364 (2009) (PMID: 20798881).Article 
    PubMed 

    Google Scholar 
    45.Zumaya-Estrada, F. A. et al. North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasit. Vectors. 5, 226. https://doi.org/10.1186/1756-3305-5-226 (2012) (PMID: 23050833).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Montoya-Porras, L. M., Omar, T. C., Alzate, J. F., Moreno-Herrera, C. X. & Cadavid-Restrepo, G. E. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 178, 327–332. https://doi.org/10.1016/j.actatropica.2017.11.004 (2018) (PMID: 29154947).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Kieran, T. J. et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit. Vectors. 12(1), 504. https://doi.org/10.1186/s13071-019-3761-8 (2019) (PMID: 31665056).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Rodriguez-Ruano, S. M. et al. Microbiomes of North American Triatominae: The grounds for Chagas Disease epidemiology. Front. Microbiol. 9, 1167. https://doi.org/10.3389/fmicb.2018.01167 (2018) (PMID: 29951039).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Eichler, S. & Schaub, G. A. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp. Parasitol. 100(1), 17–27 (2002).CAS 
    Article 

    Google Scholar 
    50.Waltmann, A. et al. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl. Trop. Dis. 13(5), e0007383. https://doi.org/10.1371/journal.pntd.0007383 (2019) (PMID: 31059501).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Herren, J. K. et al. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat. Commun. 11(1), 2187. https://doi.org/10.1038/s41467-020-16121-y (2020) (PMID: 32366903).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7), 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042 (2009) (PMID: 20064373).Article 
    PubMed 

    Google Scholar 
    53.Angulo, V. M. & Esteban, L. Nueva trampa para la captura de triatominos en habitats silvestres y peridomesticos. Biomedica. 31(2), 264–268. https://doi.org/10.1590/S0120-41572011000200015 (2011) (PMID: 22159544).Article 
    PubMed 

    Google Scholar 
    54.Lent, H. & Wygodzinsky, P. Revision of Triatominae (Hemiptera: Reduviidae), and their significance as vectors of Chagas’ disease. Bull. Am. Mus. Nat. His. 163, 123–520 (1979).
    Google Scholar 
    55.Monteiro, F. A. et al. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol. Ecol. 12(4), 997–1006. https://doi.org/10.1046/j.1365-294x.2003.01802.x (2003) (PMID: 12753218).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Baker, G. C., Smith, J. J. & Cowan, D. A. Review and reanalysis of domain-specific 16s primers. J. Microbiol. Meth. 55, 541–555 (2003).CAS 
    Article 

    Google Scholar 
    57.Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63(8), 3233–3241 (1997).CAS 
    Article 

    Google Scholar 
    58.Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A. & Zingales, B. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 83(2), 141–152 (1996) (PMID: 9027747).CAS 
    Article 

    Google Scholar 
    59.Majeau, A., Herrera, C. & Dumonteil, E. An improved approach to Trypanosoma cruzi molecular genotyping by next-generation sequencing of the mini-exon gene. Methods Mol. Biol. 1955, 47–60 (2019).CAS 
    Article 

    Google Scholar 
    60.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011) (PMID: 21700674).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. (arXiv:1207.3907 [q-bio.GN]), 1–9. https://arxiv.org/abs/1207.3907v2 (2012).62.Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45(W1), W180–W188. https://doi.org/10.1093/nar/gkx295 (2017) (PMID: 28449106).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490 (2010) (PMID: 20224823).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019) (PMID: 30958812).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Torres-Silva, C. F. et al. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol. 41(2), 466–474. https://doi.org/10.1590/1678-4685-GMB-2017-0281 (2018) (PMID: 30088612).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).
    Google Scholar 
    67.Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(Database issue), D633–D642. https://doi.org/10.1093/nar/gkt1244 (2014) (PMID: 24288368).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific

    Mapping kelp persistenceThe study area for this analysis encompasses the region where Macrocystis pyrifera is the dominant canopy kelp species in the Northeast Pacific Ocean. The region extends from Año Nuevo Island in the north (latitude ~37.1°), California, USA, to Punta Prieta in the south (latitude ~27°), Baja California Sur, Mexico. We mapped the distribution of giant kelp canopy and characterized persistence using a 30-m resolution satellite-based time series covering our entire study area27. These data provide quarterly estimates of kelp canopy area across the study region from 1984 to 2018. We estimated giant kelp canopy from three Landsat sensors: Landsat 5 Thematic Mapper (1984–2011), Landsat 7 Enhanced Thematic Mapper+ (1999–present), and Landsat 8 Operational Land Imager (2013–present). We downloaded all imagery as atmospherically corrected Landsat Collection 1 Level-2 products. Each Landsat sensor has a pixel resolution of 30 × 30 m and a repeat time of 16 days (8 days when two Landsat sensors were operational). Since Landsat imagery can be obscured by cloud cover, we obtained a clear estimate of kelp areas ~16 times per year from 1984 to 2018 (mean = 16.2, std = 4.1). The repeated observations across the time series avoid missing kelp canopy due to physical processes such as tides and currents. Multiple Landsat passes over seasonal timescales are successful at mitigating the effect of tide and tidal currents on Landsat kelp canopy detection27.While the pixel resolution of Landsat sensors is 30 × 30 m, we were able to observe the presence and density of kelp canopy on subpixel scales using a fully automation procedure. We first masked all land areas using a global 30 m resolution digital elevation model (asterweb.jpl.nasa. gov/gdem.asp) and classified the remaining pixels as seawater, cloud, or kelp canopy using a binary decision tree classifier trained on a diverse array of pixels within the study region27. We then used Multiple Endmember Spectral Mixture Analysis39 to model each pixel as the linear combination of seawater and kelp canopy. This method can accurately obtain kelp canopy presence as long as kelp canopy covers ~13% of a 30 m pixel. These methods were validated using 15 years of monthly kelp canopy surveys by the Santa Barbara Coastal Long Term Ecological Research project at two sites in Southern California. We filtered errors of commission (such as free-floating kelp paddies) by removing any pixels classified as kelp canopy in More

  • in

    Landscape condition influences energetics, reproduction, and stress biomarkers in grizzly bears

    1.Coristine, L. E. & Kerr, J. T. Habitat loss, climate change, and emerging conservation challenges in Canada. Can. J. Zool. 89, 435–451 (2011).Article 

    Google Scholar 
    2.Proctor, M. F. et al. Population fragmentation and inter-ecosystem movements of grizzly bears in Western Canada and the Northern United States. Wildl. Monogr. 180, 1–46 (2012).Article 

    Google Scholar 
    3.Festa-Bianchet, M. Status of the grizzly bear (Ursus arctos) in Alberta: Update 2010. Wildlife Status Report No. 37. (Alberta Sustainable Resource Development, Fish and Wildlife Division, Alberta Conservation Association, Edmonton, Alberta, Canada, 2010).4.Berland, A., Nelson, T., Stenhouse, G., Graham, K. & Cranston, J. The impact of landscape disturbance on grizzly bear habitat use in Foothills Model Forest, Alberta, Canada. For. Ecol. Manag. 256, 1875–1883 (2008).Article 

    Google Scholar 
    5.Nielsen, S. E., Cranston, J. & Stenhouse, G. B. Identification of priority areas for grizzly bear conservation and recovery in Alberta, Canada. J. Conserv. Plan. 5, 38–60 (2009).
    Google Scholar 
    6.Boulanger, J. & Stenhouse, G. B. The impact of roads on the demography of grizzly bears in Alberta. PLoS ONE 9, e115535 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Acevedo-Whitehouse, K. & Duffus, A. L. J. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. B Biol. Sci. 364, 3429–3438 (2009).Article 

    Google Scholar 
    8.Stephen, C. Toward a new definition of animal health: Lessons from the Cohen Commission and the SPS agreement. Optim. Online 43, 1–8 (2013).
    Google Scholar 
    9.Stephen, C. Toward a modernized definition of wildlife health. J. Wildl. Dis. 50, 427–430 (2014).PubMed 
    Article 

    Google Scholar 
    10.Wittrock, J., Duncan, C. & Stephen, C. A determinants of health conceptual model for fish and wildlife health. J. Wildl. Dis. 55, 285–297 (2019).PubMed 
    Article 

    Google Scholar 
    11.Stephen, C. The Pan-Canadian approach to wildlife health. Can. Vet. J. 60, 145–146 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    12.Ricklefs, R. E. & Wikelski, M. The physiology/life- history nexus. Trends Ecol. Evol. 17, 462–468 (2002).Article 

    Google Scholar 
    13.Dammhahn, M., Dingemanse, N. J., Niemelä, P. T. & Réale, D. Pace-of-life syndromes: A framework for the adaptive integration of behaviour, physiology and life history. Behav. Ecol. Sociobiol. 72, 62 (2018).Article 

    Google Scholar 
    14.Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B Biol. Sci. 365, 4051–4063 (2010).Article 

    Google Scholar 
    15.Lovegrove, B. G. The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 173, 87–112 (2003).CAS 
    Article 

    Google Scholar 
    16.Garshelis, D., Gibeau, M. & Herrero, S. Grizzly bear demographics in and around Banff National Park and Kananaskis Country, Alberta. J. Wildl. Manag. 69, 277–297 (2005).Article 

    Google Scholar 
    17.Ferguson, S. H. & Mcloughlin, P. D. Effect of Energy Availability, Seasonality, and Geographic Range on Brown Bear Life History. Ecography (Cop.) 23, 193–200 (2000).Article 

    Google Scholar 
    18.Brewis, I. A. & Brennan, P. Proteomics Technologies for the Global Identification and Quantification of Proteins. Advances in Protein Chemistry and Structural Biology Vol. 80 (Elsevier, 2010).
    Google Scholar 
    19.Cox, J. & Mann, M. Is proteomics the new genomics?. Cell 130, 395–398 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Vidova, V. & Spacil, Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta 964, 7–23 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Hoofnagle, A. N. et al. Multiple-reaction monitoring-mass spectrometric assays can accurately measure the relative protein abundance in complex mixtures. Clin. Chem. 58, 777–781 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Addona, T. A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Percy, A. J., Chambers, A. G., Yang, J., Hardie, D. B. & Borchers, C. H. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim. Biophys. Acta 1844, 917–926 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Michaud, S. A. et al. Molecular phenotyping of laboratory mouse strains using 500 multiple reaction monitoring mass spectrometry plasma assays. Commun. Biol. 1, 1–9 (2018).CAS 
    Article 

    Google Scholar 
    26.Burke, H. B. Predicting clinical outcomes using molecular biomarkers. Biomark. Cancer 8, BIC.S33380 (2016).Article 

    Google Scholar 
    27.Zhang, A., Sun, H., Wang, P. & Wang, X. Salivary proteomics in biomedical research. Clin. Chim. Acta 415, 261–265 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Wilson, A. E. et al. Development and validation of protein biomarkers of health in grizzly bears. Conserv. Physiol. 8, coaa056 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Zmijewski, M. A. & Slominski, A. T. Neuroendocrinology of the skin: An overview and selective analysis. Dermatoendocrinol. 3, 3–10 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Slominski, A. T., Zmijewski, M. A., Plonka, P. M., Szaflarski, J. P. & Paus, R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology 159, 1992–2007 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Slominski, A. T. et al. Sensing the environment: Regulation of local and global homeostasis by the skin neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 212, 1–98 (2012).Article 

    Google Scholar 
    32.Esmaili, S., Hemmati, M. & Karamian, M. Physiological role of adiponectin in different tissues: A review. Arch. Physiol. Biochem. 126, 67–73 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Ishaq, S., Kaur, H. & Bhatia, S. Clusterin: It’s implication in health and diseases. Ann. Appl. Bio-Sciences 4, R30–R34 (2017).Article 

    Google Scholar 
    34.Bali, S. & Utaal, M. S. Serum lipids and lipoproteins: A brief review of the composition, transport and physiological functions. Int. J. Sci. Rep. 5, 309 (2019).Article 

    Google Scholar 
    35.Linder, M. C. Ceruloplasmin and other copper binding components of blood plasma and their functions: An update. Metallomics 8, 887–905 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Dietzel, E., Floehr, J. & Jahnen-dechent, W. The biological role of fetuin-B in female reproduction. Ann. Reprod. Med. Treat 1(1), 1003 (2016).
    Google Scholar 
    37.Helliwell, R. J. A., Adams, L. F. & Mitchell, M. D. Prostaglandin synthases: Recent developments and a novel hypothesis. Prostaglandins Leukot. Essent. Fat. Acids 70, 101–113 (2004).CAS 
    Article 

    Google Scholar 
    38.Meyer, E. J., Nenke, M. A., Rankin, W., Lewis, J. G. & Torpy, D. J. Corticosteroid-binding globulin: A review of basic and clinical advances. Horm. Metab. Res. 48, 359–371 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Hoter, A., El-Sabban, M. E. & Naim, H. Y. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19, 2560 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Bruschi, M. et al. Annexin a1 and autoimmunity: From basic science to clinical applications. Int. J. Mol. Sci. 19, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    41.Bogdan, A. R., Miyazawa, M., Hashimoto, K. & Tsuji, Y. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem. Sci. 41, 274–286 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Dieplinger, H. & Dieplinger, B. Afamin—A pleiotropic glycoprotein involved in various disease states. Clin. Chim. Acta 446, 105–110 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Ricklin, D., Reis, E. S., Mastellos, D. C., Gros, P. & Lambris, J. D. Complement component C3—The “Swiss Army Knife” of innate immunity and host defense. Immunol. Rev. 274, 33–58 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Bteich, M. An overview of albumin and alpha-1-acid glycoprotein main characteristics: Highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon 5, e02879 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Tóthová, C. & Nagy, O. Transthyretin in the evaluation of health and disease in human and veterinary medicine. In Pathophysiology—Altered Physiological States (ed. Gaze, D. C.) (IntechOpen, 2017). https://doi.org/10.5772/57353.Chapter 

    Google Scholar 
    46.Willis, E. L., Kersey, D. C., Durrant, B. S. & Kouba, A. J. The acute phase protein ceruloplasmin as a non-invasive marker of pseudopregnancy, pregnancy, and pregnancy loss in the giant panda. PLoS One 6, e21159 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Floehr, J. et al. Association of high fetuin-B concentrations in serum with fertilization rate in IVF: A cross-sectional pilot study. Hum. Reprod. 31, 630–637 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Khalkhali-Ellis, Z. Maspin: The new frontier. Clin. Cancer Res. 12, 7279–7283 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Chim, S. S. C. et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl. Acad. Sci. U.S.A. 102, 14753–14758 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Carillon, J., Rouanet, J. M., Cristol, J. P. & Brion, R. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: Several routes of supplementation and proposal of an original mechanism of action. Pharm. Res. 30, 2718–2728 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Demers, N. & Bayne, C. Immediate increase of plasma protein complement C3 in response to an acute stressor. Fish Shellfish Immunol. 107, 411–413 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Bourbonnais, M. L., Nelson, T. A., Cattet, M. R. L., Darimont, C. T. & Stenhouse, G. B. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of alberta, canada. PLoS One 8, e83768 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. Genetic estimates of annual reproductive success in male brown bears: The effects of body size, age, internal relatedness and population density. J. Anim. Ecol. 76, 368–375 (2007).PubMed 
    Article 

    Google Scholar 
    54.Pop, M. I., Iosif, R., Miu, I. V., Rozylowicz, L. & Popescu, V. D. Combining resource selection functions and home-range data to identify habitat conservation priorities for brown bears. Anim. Conserv. 21, 352–362 (2018).Article 

    Google Scholar 
    55.Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science 359, 568–572 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Wasser, S. K. et al. Scat detection dogs in wildlife research and management: Application to grizzly and black bears in the Yellowhead Ecosystem, Alberta, Canada. Can. J. Zool. 82, 475–492 (2004).Article 

    Google Scholar 
    57.Cristescu, B., Stenhouse, G. B., Symbaluk, M., Nielsen, S. E. & Boyce, M. S. Wildlife habitat selection on landscapes with industrial disturbance. Environ. Conserv. 43, 327–336 (2016).Article 

    Google Scholar 
    58.Naves, J., Wiegand, T., Revilla, E. & Delibes, M. Endangered species constrained by natural and human factors: The case of brown bears in northern Spain. Conserv. Biol. 17, 1276–1289 (2003).Article 

    Google Scholar 
    59.Munro, R. H. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B. & Boyce, M. S. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 87, 1112–1121 (2006).Article 

    Google Scholar 
    60.Nielsen, S. E., Boyce, M. S. & Stenhouse, G. B. Grizzly bears and forestry: I. Selection of clearcuts by grizzly bears in west-central Alberta, Canada. For. Ecol. Manag. 199, 51–65 (2004).Article 

    Google Scholar 
    61.Larsen, T. A., Nielsen, S. E., Cranston, J. & Stenhouse, G. B. Do remnant retention patches and forest edges increase grizzly bear food supply?. For. Ecol. Manag. 433, 741–761 (2019).Article 

    Google Scholar 
    62.Nielsen, S. E., Stenhouse, G. B. & Boyce, M. S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 130, 217–229 (2006).Article 

    Google Scholar 
    63.Wilson, A. E. et al. Population-level monitoring of stress in grizzly bears between 2004 and 2014. Ecosphere 11, e03181 (2020).Article 

    Google Scholar 
    64.Graham, K. & Stenhouse, G. B. Home range, movements, and denning chronology of the grizzly bear (Ursus arctos) in west-central Alberta. Can. Field-Nat. 128, 223–234 (2014).Article 

    Google Scholar 
    65.Blanchard, B. M. & Knight, R. R. Movements of yellowstone grizzly bears. Biol. Conserv. 58, 41–67 (1991).Article 

    Google Scholar 
    66.McLoughlin, P. D., Case, R. L., Gau, R. J., Ferguson, S. H. & Messier, F. Annual and seasonal movement patterns of barren-ground grizzly bears in the central northwest territories. Ursus 11, 79–86 (1999).
    Google Scholar 
    67.Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 116, 1784–1792 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Rivet, D. R., Nelson, O. L., Vella, C. A., Jansen, H. T. & Robbins, C. T. Systemic effects of a high saturated fat diet in grizzly bears (Ursus arctos horribilis). Can. J. Zool. 95, 797–807 (2017).CAS 
    Article 

    Google Scholar 
    69.Rigano, K. S. et al. Life in the fat lane: Seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 187, 649–676 (2017).CAS 
    Article 

    Google Scholar 
    70.Lee, Y. S. et al. Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation. J. Biol. Chem. 285, 22174–22185 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Ráez-bravo, A. et al. Acute phase proteins increase with sarcoptic mange status and severity in Iberian ibex (Capra pyrenaica, Schinz 1838). Parasitol. Res. 114, 4005–4010. https://doi.org/10.1007/s00436-015-4628-3 (2015).Article 
    PubMed 

    Google Scholar 
    72.Agra, R. M. et al. Orosomucoid as prognosis factor associated with inflammation in acute or nutritional status in chronic heart failure. Int. J. Cardiol. 228, 488–494 (2017).PubMed 
    Article 

    Google Scholar 
    73.Mugahid, D. A. et al. Proteomic and transcriptomic changes in hibernating grizzly bears reveal metabolic and signaling pathways that protect against muscle atrophy. Sci. Rep. 9, 1–16 (2019).Article 
    CAS 

    Google Scholar 
    74.Vella, C. A. et al. Regulation of metabolism during hibernation in brown bears (Ursus arctos): Involvement of cortisol, PGC-1α and AMPK in adipose tissue and skeletal muscle. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 240, 110591 (2020).CAS 
    Article 

    Google Scholar 
    75.Jansen, H. T. et al. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun. Biol. 2, 336 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Phoebus, I., Segelbacher, G. & Stenhouse, G. B. Do large carnivores use riparian zones? Ecological implications for forest management. For. Ecol. Manag. 402, 157–165 (2017).Article 

    Google Scholar 
    77.Nielsen, S. E., McDermid, G., Stenhouse, G. B. & Boyce, M. S. Dynamic wildlife habitat models: Seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. Biol. Conserv. 143, 1623–1634 (2010).Article 

    Google Scholar 
    78.Bielli, P. & Calabrese, L. Cellular and molecular life sciences structure to function relationships in ceruloplasmin: A ‘moonlighting’ protein. Cell. Mol. Life Sci. 59, 1413–1427 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Pagano, A. M. et al. Energetic costs of locomotion in bears: Is plantigrade locomotion energetically economical?. J. Exp. Biol. 221, jeb175372 (2018).PubMed 
    Article 

    Google Scholar 
    80.Kurki, S., Nikula, A., Helle, P. & Linden, H. Landscape fragmentation and forest composition effects on grouse breeding success in boreal forests. Ecology 81, 1985–1997 (2000).
    Google Scholar 
    81.Graham, K., Boulanger, J., Duval, J. & Stenhouse, G. Spatial and temporal use of roads by grizzly bears in west-central Alberta. Ursus 21, 43–56 (2010).Article 

    Google Scholar 
    82.McLellan, B. N. & Shackleton, D. M. Grizzly bears and resource-extraction industries: Effects of roads on behaviour, habitat use and demography. J. Appl. Ecol. 25, 451–460 (1988).Article 

    Google Scholar 
    83.Massey, A. J. et al. Relationship between hair and salivary cortisol and pregnancy in women undergoing IVF. Psychoneuroendocrinology 74, 397–405 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Benn, B. & Herrero, S. Grizzly bear mortality and human access in Banff and Yoho National Parks, 1971–98. Ursus 13, 213–221 (2002).
    Google Scholar 
    85.Nielsen, S. E. et al. Modelling the spatial distribution of human-caused grizzly bear mortalities in the Central Rockies ecosystem of Canada. Biol. Conserv. 120, 101–113 (2004).Article 

    Google Scholar 
    86.Pagano, A. M., Peacock, E. & Mckinney, M. A. Remote biopsy darting and marking of polar bears. Mar. Mammal Sci. 30, 169–183 (2014).Article 

    Google Scholar 
    87.Berland, A., Nelson, T., Stenhouse, G., Graham, K. & Cranston, J. The impact of landscape disturbance on grizzly bear habitat use in the Foothills Model Forest, Alberta, Canada. For. Ecol. Manag. 256, 1875–1883 (2008).Article 

    Google Scholar 
    88.Stenhouse, G. et al. Grizzly bear associations along the eastern slopes of Alberta. Ursus 16, 31–40 (2005).Article 

    Google Scholar 
    89.Nielsen, S. E., Munro, R. H. M., Bainbridge, E. L., Stenhouse, G. B. & Boyce, M. S. Grizzly bears and forestry: II. Distribution of grizzly bear foods in clearcuts of west-central Alberta, Canada. For. Ecol. Manag. 199, 67–82 (2004).Article 

    Google Scholar 
    90.Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: Implications for wildlife welfare and research. J. Mammal. 89, 973–990 (2008).Article 

    Google Scholar 
    91.McDermid, G. J. Remote Sensing for Large-Area, Multi-Jurisdictional Habitat Mapping. PhD Thesis. University of Waterloo: Canada. 258p (2005).92.Smulders, M. et al. Quantifying spatial-temporal patterns in wildlife ranges using STAMP: A grizzly bear example. Appl. Geogr. 35, 124–131 (2012).Article 

    Google Scholar 
    93.Sorensen, A. A., Stenhouse, G. B., Bourbonnais, M. L. & Nelson, T. A. Effects of habitat quality and anthropogenic disturbance on grizzly bear (Ursus arctos horribilis) home-range fidelity. Can. J. Zool. 93, 857–865 (2015).Article 

    Google Scholar 
    94.Franklin, S. E., Peddle, D. R., Dechka, J. A. & Stenhouse, G. B. Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bar habitat mapping. Int. J. Remote Sens. 23, 4633–4652 (2002).ADS 
    Article 

    Google Scholar 
    95.Gessler, P. E., Moore, I. D., McKenzie, N. J. & Ryan, P. J. Soil-landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).Article 

    Google Scholar 
    96.Wilson, J. P. & Gallant, J. C. Terrain Analysis: Principles and Applications (Wiley, 2000).
    Google Scholar 
    97.Riley, S. J., DeGloria, S. D. & Elliot, R. A Terrain ruggedness index that quantifies topographic heterogeneity. Int. J. Sci. 5, 23–27 (1999).
    Google Scholar 
    98.Stoneberg, R. P. & Jonkel, C. J. Age determination of black bears by cementum layers. J. Wildl. Manag. 30, 411–414 (1966).Article 

    Google Scholar 
    99.Matson, G. M., Van Daele, L., Goodwin, E., Aumiller, A., Reynolds, H.V. & Hristienko, H. A Laboratory Manual for Cementum Age Determination of Alaskan Brown Bear First Premolar Teeth. 1–52 (Matson’s Laboratory, Milltown, MT, 1993).100.Nielsen, S. E. et al. Environmental, biological and anthropogenic effects on grizzly bear body size: Temporal and spatial considerations. BMC Ecol. 13, 1 (2013).CAS 
    Article 

    Google Scholar 
    101.Bourbonnais, M. L. et al. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear. Conserv. Physiol. 2, 1–14 (2014).Article 
    CAS 

    Google Scholar 
    102.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    103.Cattet, M. et al. The quantification of reproductive hormones in the hair of captive adult brown bears and their application as indicators of sex and reproductive state. Conserv. Physiol. 5, 1–21 (2017).Article 
    CAS 

    Google Scholar 
    104.Cattet, M. et al. Can concentrations of steroid hormones in brown bear hair reveal age class?. Conserv. Physiol. 6, 1–20 (2018).Article 
    CAS 

    Google Scholar 
    105.Carlson, R. et al. Development and application of an antibody-based protein microarray to assess stress in grizzly bears (Ursus arctos). Conserv. Physiol. 4, 1–17 (2016).Article 
    CAS 

    Google Scholar 
    106.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    107.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9, 378–400 (2017).Article 

    Google Scholar 
    109.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    1.Hoekstra H. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity. 2006;97:222–234.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.McNamara ME, Rossi V, Slater TS, Rogers CS, Ducrest AL, Dubey S, et al. Decoding the evolution of melanin in vertebrates. Trends Ecol Evol. 2021; https://doi.org/10.1016/j.tree.2020.12.012.3.Roulin A. Melanin-based colour polymorphism responding to climate change. Glob Chang Biol. 2014;20:3344–3350.PubMed 
    Article 

    Google Scholar 
    4.Laurent S, Pfeifer SP, Settles ML, Hunter SS, Hardwick KM, Ormond L, et al. The population genomics of rapid adaptation: disentangling signatures of selection and demography in white sands lizards. Mol Ecol. 2016;25:306–323.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–1476.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Cordero RJ, Casadevall A. Functions of fungal melanin beyond virulence. Fungal Biol Rev. 2017;31:99–112.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–262.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Kejžar A, Gobec S, Plemenitaš A, Lenassi M. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Fungal Biol. 2013;117:368–379.PubMed 
    Article 
    CAS 

    Google Scholar 
    9.Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Ito S, Nevo E. Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “Evolution Canyon”, Mount Carmel, Israel. PLoS ONE. 2008;3:e2993.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, et al. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biol. 2018;16:78.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Pereira D, Croll D, Brunner PC, McDonald BA. Natural selection drives population divergence for local adaptation in a wheat pathogen. Fungal Genet Biol. 2020;141:103398.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Desjardins CA, Giamberardino C, Sykes SM, Yu CH, Tenor JL, Chen Y, et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 2017;27:1207–1219.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Robertson KL, Mostaghim A, Cuomo CA, Soto CM, Lebedev N, Bailey RF, et al. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PLoS ONE. 2012;7:e48674.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Knapp DG, Németh JB, Barry K, Hainaut M, Henrissat B, Johnson J, et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep. 2018;8:6321.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Fernandez CW, Koide RT. The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecol. 2013;6:479–486.Article 

    Google Scholar 
    16.Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. Thermotolerance generated by plant/fungal symbiosis. Science. 2002;298:1581.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol. 2016;14:434–447.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Rodriguez RJ, White JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. N Phytol. 2009;182:314–330.CAS 
    Article 

    Google Scholar 
    19.Yuan ZL, Su ZZ, Zhang CL. Understanding the biodiversity and functions of root fungal endophytes: the ascomycete Harpophora oryzae as a model case. In: Irina S Druzhinina IS, Kubicek CP editors). The mycota Vol. IV: environmental and microbial relationships. 3rd ed. Springer; 2016, pp 205–214.20.Berthelot C, Leyval C, Foulon J, Chalot M, Blaudez D. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol Ecol. 2016;92:fiw144.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    21.Hill PW, Broughton R, Bougoure J, Havelange W, Newsham KK, Grant H, et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol Lett. 2019;22:2111–2119.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Mateu M, Baldwin A, Maul J, Yarwood S. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME J. 2020;14:1943–1954.Article 
    CAS 

    Google Scholar 
    23.Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO. Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol. 2008;74:2805–2813.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Qin Y, Pan XY, Kubicek CP, Druzhinina IS, Chenthamara K, Labbé J, et al. Diverse plant-associated pleosporalean fungi from saline areas: ecological tolerance and nitrogen-status dependent effects on plant growth. Front Microbiol. 2017;8:158.PubMed 
    PubMed Central 

    Google Scholar 
    25.Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N. Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol. 2010;71:2–11.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Yuan ZL, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, et al. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep. 2016;6:32467.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Yuan ZL, Druzhinina IS, Wang X, Zhang X, Peng L, Labbé J. Insight into a highly polymorphic endophyte isolated from the roots of the halophytic seepweed suaeda salsa: Laburnicola rhizohalophila sp. nov. (Didymosphaeriaceae, Pleosporales). Fungal Biol. 2020;124:327–337.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, et al. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci USA. 2011;108:2831–2836.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010;26:589–595.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinform. 2013;43:11.10.1–11.10.33.Article 

    Google Scholar 
    32.Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–267.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Wilken M, Steenkamp E, Wingfield M, De Beer ZW, Wingfield B. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered. Fungal Biol Rev. 2017;31:199–211.Article 

    Google Scholar 
    37.Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Wright S. The genetical structure of populations. Ann Eugen. 1951;15:323–354.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Nei M (ed). Molecular evolutionary genetics. Columbia University Press; 1987.40.Carlson CS, Thomas DJ, Eberle MA, Swanson JE, Livingston RJ, Rieder MJ, et al. Genomic regions exhibiting positive selection identified from dense genotype data. Genome Res. 2005;15:1553–1565.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Pembleton LW, Cogan NOI, Forster JW. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour. 2013;13:946–952.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Axelsson E, Ratnakumar A, Arendt ML, Maqbool K, Webster MT, Perloski M, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360–364.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–287.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Zhao S, Gibbons JG. A population genomic characterization of copy number variation in the opportunistic fungal pathogen Aspergillus fumigatus. PLoS ONE. 2018;13:e0201611.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U, et al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res. 2012;40:e69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76:5269–5273.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hutter S, Vilella AJ, Rozas J. Genome-wide DNA polymorphism analyses using VariScan. BMC Bioinform. 2006;7:409.Article 
    CAS 

    Google Scholar 
    49.Wagner DN, Baris TZ, Dayan DI, Du X, Oleksiak MF, Crawford DL. Fine-scale genetic structure due to adaptive divergence among microhabitats. Heredity. 2017;118:594–604.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rech GE, Sanz-Martín JM, Anisimova M, Sukno SA, Thon MR. Natural selection on coding and noncoding DNA sequences is associated with virulence genes in a plant pathogenic fungus. Genome Biol Evol. 2014;6:2368–2379.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Sterken R, Kiekens R, Coppens E, Vercauteren I, Zabeau M, Inzé D, et al. A population genomics study of the Arabidopsis core cell cycle genes shows the signature of natural selection. Plant Cell. 2009;21:2987–2998.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Yu F, Keinan A, Chen H, Ferland RJ, Hill RS, Mignault AA, et al. Detecting natural selection by empirical comparison to random regions of the genome. Hum Mol Genet. 2009;18:4853–4867.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective sweeps using SNP data. Genome Res. 2005;15:1566–1575.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Pavlidis P, Živkovic D, Stamatakis A, Alachiotis N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol. 2013;30:2224–2234.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Zhan F, He Y, Zu Y, Li T, Zhao Z. Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World J Microbiol Biotechnol. 2011;27:2483–2489.CAS 
    Article 

    Google Scholar 
    57.Taylor JW, Hann-Soden C, Branco S, Sylvain I, Ellison CE. Clonal reproduction in fungi. Proc Natl Acad Sci USA. 2015;112:8901–8908.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.McGuire IC, Davis JE, Double ML, MacDonald WL, Rauscher JT, McCawley S, et al. Heterokaryon formation and parasexual recombination between vegetatively incompatible lineages in a population of the chestnut blight fungus, Cryphonectria parasitica. Mol Ecol. 2005;14:3657–3669.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Szulkin M, Gagnaire PA, Bierne N, Charmantier A. Population genomic footprints of fine-scale differentiation between habitats in Mediterranean blue tits. Mol Ecol. 2016;25:542–558.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hamilton JA, De la Torre AR, Aitken SN. Fine-scale environmental variation contributes to introgression in a three-species spruce hybrid complex. Tree Genet Genomes. 2015;11:817.Article 

    Google Scholar 
    61.Yeaman S. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc Natl Acad Sci USA. 2013;110:E1743–E1751.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA. 2003;100:15670–15675.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Woo PCY, Tam EW, Chong KT, Cai JJ, Tung ET, Ngan AH, et al. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J. 2010;277:3750–3758.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Kameyama K, Montague PM, Hearing VJ. Expression of melanocyte stimulating hormone receptors correlates with mammalian pigmentation, and can be modulated by interferons. J Cell Physiol. 1988;137:35–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Upadhyay S, Xu X, Lowry D, Jackson JC, Roberson RW, Lin X. Subcellular compartmentalization and trafficking of the biosynthetic machinery for fungal melanin. Cell Rep. 2016;14:2511–2518.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Coleman JJ, Mylonakis E. Efflux in fungi: la pièce de résistance. PLoS Pathog. 2009;5:e1000486.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Cosgrove DJ. Microbial expansins. Annu Rev Microbiol. 2017;71:479–497.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Tracking the invasive hornet Vespa velutina in complex environments by means of a harmonic radar

    Study areasThe technique of harmonic radar tracking has been applied in nine different localities of Liguria (Italy), in the framework of the control activities developed to contain the spread of V. velutina in this region19,21,30. Four of these study areas (Ameglia, Arcola, Riccò del Golfo in La Spezia district and Finale Ligure in Savona district) were new invasive outbreaks characterised by a low nest density of V. velutina and low predation pressure on honey bee colonies. The other five study areas of Imperia district (Camporosso, Dolceacqua, Ospedaletti, and the two villages of Calvo and Latte in the municipality of Ventimiglia) were located inside the colonised range of the species21, and were characterised by a high nest density and an intensive predation pressure on honey bee colonies (Supplementary Table S1).Harmonic radar trackingThe harmonic radar and the tags that have been used for tracking the flight of V. velutina were designed and developed ad-hoc for following insects in complex environments; their technical and innovative characteristics have been previously described by the authors18. At the beginning of a new tracking session, worker hornets are trapped, usually in apiaries while preying on honey bees, and the transponders are attached on their thorax using an orthodontic glue, without anesthetising the insects. Subsequently, hornets are released from the tagging location and are immediately able to resume their activity, such as flying and preying on honey bees (Fig. 6). The whole tagging procedure requires less than one minute per hornet. Tag weight (15 mg) is approximately 4–7% of the weight of V. velutina workers (mean worker’s weight changes over the season between 189 and 386 mg)26. Moreover, the tag is 3–4 times lighter than the weight of prey’s pellet generally transported to the nest by this species. This information, together with multiple observations of tagged hornets in apiaries and the results achieved by other authors with a radio-tracking experiment (in which it was found that hornets equipped with a tag of weight lesser than 80% of their body weight are considered good flyers)22, suggest that the tags used in this study do not affect the behaviour and the flying abilities of V. velutina.Figure 6Tagged hornets performing their usual predatory behaviour. Tagged individuals of V. velutina hovering in front of honey bee colonies for preying on forager bees (a,b). A tagged hornet that is disjointing a honey bee for gathering the thorax (most energetic part of its prey), that will be brought back to the nest for feeding the brood (c). Two tagged hornets in proximity of the entrance hole of the nest (d).Full size imageThe harmonic radar records independently all the tracks of flying hornets that are inside its detection range. The real-time analysis of the recorded tracks allows understanding the main flying directions. If the nest of V. velutina is located outside of the maximum detection range of the radar (about 500 m in flat terrain)18 or behind physical obstacles, the harmonic radar is moved according to the flying directions of the hornets. The presence of a diffused road network, as in many of our study areas, facilitated the movement of the radar from one position to another. This operation is repeated until the position of the nest is determined. The area where the nest is located is generally highlighted by the presence of several tracks that converge or begin from the same site. The visual inspection of the area permits the exact detection of the position of the nest. In several cases, tagged hornets were visually observed on the surface of the nests (Fig. 6d).The total number of tagged hornets was recorded for each tracking session, together with the radar operation time, the number of radar movements per session, the number of detected nests per session and the minimum distance between the nests and the apiaries where hornets were hunting honey bees (Supplementary Table S2). Hornets were trapped with standard entomological procedures for trapping insects, and experiments were conducted ethically since no hornets were killed, injured, or kept captive after being tagged.Tracking lengths and environmental characteristicsThe main parameter selected for estimating the performance of the harmonic radar in tracking V. velutina in different natural and complex environments is the length of the tracks of tagged insects. To obtain this parameter, fixes (hornets detected by the harmonic radar at each radar’s rotation) were extracted for each tracking session and uploaded on a GIS software32. Afterwards, consecutive fixes of the same track were connected with the shortest line, so to obtain hornet tracks and calculate their length. The advanced radar analyses used for processing the received signals18 allow discriminating the true fixes (position of the hornet) from clutter (reflected signals received from objects in the landscape). However, the presence of obstacles may generate gaps in the received signals (e.g. when a hornet is temporarily flying behind an obstacle such as a house), but these gaps were rare and never occurred for long periods of time. In these cases, if fixes were not clearly recognizable to a track of the same hornet, these were excluded from the analysis. The exclusion of the tracks was performed also in the rare cases during which the presence of multiple tagged hornets did not allow a clear identification of the tracks.The length of the tracks in each fix position (n = 2580) was modelled with a GLMM (see “Data analysis”) to evaluate the effect of environmental features (land cover, elevation above sea level, slope gradient, road density). The land cover layer was obtained through a photo interpretation of satellite images (in a buffer area of 100 m around the minimum convex polygon that encompass all the tracks in each locality) and classification in three macro-levels: open terrains (landscapes predominantly characterised by open areas, such as fields), urban areas (matrices formed by buildings/roads) and woodlands (matrices formed by forests). Elevation above sea level and slope degree were obtained by a digital elevation model (resolution of 20 m).Visual tracking of flying hornetsThe length of the tracks recorded by the harmonic radar was compared with the length of the tracks recorded when adopting a customary technique for tracking insects, such as the visual tracking and triangulation of flying directions20,25. In six of the nine localities where the harmonic radar tracking has been applied (Fig. 4), an operator was waiting near a honey bee colony till one V. velutina worker caught a honey bee. Subsequently, after the hornet disjoined the most energetic parts of its prey (the thorax)33, the operator visually tracked the flight of the hornet when flying back to its nest, using a binocular and by recording with a GPS the position where the hornet disappeared from view. In some cases (n = 4), common flying routes were identified, and we were able to resume the visual tracking with other hornets from the previous disappearance position. Finally, GPS positions were uploaded on a GIS software to calculate the length of the tracks with this technique.In this study, the visual tracking technique has not been implemented systematically for nest detection, therefore the two approaches are compared only by evaluating the recorded length of the tracks. The effectiveness in locating nests, the required time and the associated costs are discussed in the framework of previous studies for tracking V. velutina, taking into account advantages and limits of the different techniques20,22,25.Estimation of V. velutina ground flying speedHarmonic radar tracking allows estimating the ground flying speed of V. velutina, by analysing the distance between each recorded position at consecutive radar rotations. Giving that the time of each radar rotation is fixed (3 s), it is possible to estimate the hornet’s speed between each detection8.The ground flying speed of V. velutina has been estimated in the three localities of La Spezia district, due to the availability of a subsample of clear tracks with consecutive detections per each rotation of the radar and good weather conditions. Furthermore, based on their direction, tracks were classified in homing tracks (H), which belong to hornets flying from the apiary to the nest, and foraging tracks (F), which belong to hornets flying towards the apiary for hunting honey bees. Data on wind speed and direction were obtained from weather stations close to the study areas.Data analysisData analyses were performed with the software R34. Environmental characteristics of the localities were analysed with a Principal Component Analysis (PCA; package factoextra), to understand affinities between study areas and correlations between the considered variables. The length of the tracks between localities recorded with the harmonic radar was compared with the Kruskal–Wallis and the Dunn tests with Bonferroni correction, while the flying speed between foraging and homing hornets was compared with the Wilcoxon rank-sum test (two-tailed).Generalized linear mixed models (GLMM; package lme4) with gamma distribution and log link function were used to assess (1) the influence of environmental variables on the length of the tracks and (2) compare tracking methods between study areas. In the first case, a random slope model has been implemented, by defining the locality and the slope degree as random effects (uncorrelated). In the second case, a standard random intercept model has been implemented, by selecting the locality as random effect. In both cases, continuous variables were standardized, and multi-collinearity of environmental variables was taken into account by calculating the Variance Inflation Factor (VIF). This was 1.5 for elevation and slope degree, and 1.0 for road density. More

  • in

    Trophic niches of native and nonnative fishes along a river-reservoir continuum

    1.Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).Article 
    PubMed 

    Google Scholar 
    2.Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–359. https://doi.org/10.1899/08-171.1 (2010).Article 

    Google Scholar 
    3.Reid, A. J. et al. Emerging threats and persistent challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).Article 
    PubMed 

    Google Scholar 
    4.Cucherousset, J. & Olden, J. D. Ecological impacts of nonnative freshwater fishes. Fisheries 36, 215–230. https://doi.org/10.1080/03632415.2011.574578 (2011).Article 

    Google Scholar 
    5.Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467. https://doi.org/10.1038/46762 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Britton, J. R., Davies, G. D. & Harrod, C. Trophic interactions and consequent impacts of the invasive fish Psuedorasbora parva in a native aquatic food web: a field investigation in the UK. Biol. Invasions 12, 1533–1542. https://doi.org/10.1007/s10530-009-9566-5 (2010).Article 

    Google Scholar 
    7.Cox, J. G. & Lima, S. L. Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680. https://doi.org/10.1016/j.tree.2006.07.011 (2006).Article 
    PubMed 

    Google Scholar 
    8.Marks, J. C., Haden, G. A., O’Neil, M. & Pace, C. Effects of flow restoration and exotic species removal on recovery of native fish: Lessons from a dam decommissioning. Restor. Ecol. 18, 934–943. https://doi.org/10.1111/j.1526-100X.2009.00574.x (2010).Article 

    Google Scholar 
    9.Walsworth, T. E., Budy, P. & Thiede, G. P. Longer food chains and crowded niche space: effects of multiple invaders on desert stream food web structure. Ecol. Freshw. Fish 22, 439–452. https://doi.org/10.1111/eff.12038 (2013).Article 

    Google Scholar 
    10.Rogosch, J. S. & Olden, J. D. Invaders induce coordinated isotopic niche shifts in native fish species. Can. J. Fish. Aquat. Sci. 77, 1348–1358. https://doi.org/10.1139/cjfas-2019-0346 (2020).Article 

    Google Scholar 
    11.Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723. https://doi.org/10.2307/1933500 (1961).Article 

    Google Scholar 
    12.Zaret, T. M. & Rand, A. S. Competition in tropical stream fishes: Support for the competitive exclusion principle. Ecology 52, 336–342. https://doi.org/10.2307/1934593 (1971).Article 

    Google Scholar 
    13.Britton, J. R., Ruiz-Navarro, A., Verreycken, H. & Amat-Trigo, F. Trophic consequences of introduced species: comparative impacts of increased interspecific versus intraspecific competitive interactions. Funct. Ecol. 32, 486–495. https://doi.org/10.1111/1365-2435.12978 (2018).Article 
    PubMed 

    Google Scholar 
    14.Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–696. https://doi.org/10.1086/284165 (1983).Article 

    Google Scholar 
    15.David, P. et al. Impacts of invasive species on food webs: a review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).Article 

    Google Scholar 
    16.Vannote, R. L., Wayne Minshall, G., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137. https://doi.org/10.1139/f80-017 (1980).Article 

    Google Scholar 
    17.Ibañez, C. et al. Convergence of temperate and tropical stream fish assemblages. Ecography 32, 658–670. https://doi.org/10.1111/j.1600-0587.2008.05591.x (2009).Article 

    Google Scholar 
    18.Winemiller, K. O. et al. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Res. Appl. 27, 791–803. https://doi.org/10.1002/rra.1396 (2011).Article 

    Google Scholar 
    19.Ward, J. V. & Stanford, J. A. The serial discontinuity concept: extending the model to floodplain rivers. River Res. Appl. 10, 159–168. https://doi.org/10.1002/rrr.3450100211 (1983).Article 

    Google Scholar 
    20.Sabo, J. L. et al. Pulsed flows, tributary inputs and food-web structure in a highly regulated river. J. Appl. Ecol. 55, 1884–1895. https://doi.org/10.1111/1365-2664.13109 (2018).Article 

    Google Scholar 
    21.Sabater, S. Alterations of the global water cycle and their effects on river structure, function and services. Freshw. Rev. 1, 75–89. https://doi.org/10.1608/FRH-1.1.5 (2008).Article 

    Google Scholar 
    22.Arrantes, C. C., Fitzgerald, D. B., Hoeinghaus, D. J. & Winemiller, K. O. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Curr. Opin. Environ. Sustain. 37, 28–40. https://doi.org/10.1016/j.cosust.2019.04.009 (2019).Article 

    Google Scholar 
    23.Cross, W. F. et al. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecol. Appl. 21, 2016–2033. https://doi.org/10.1890/10-1719.1 (2011).Article 
    PubMed 

    Google Scholar 
    24.Cross, W. F. et al. Food web dynamics in a large river discontinuum. Ecol. Monogr. 83, 311–337. https://doi.org/10.1890/12-1727.1 (2013).Article 

    Google Scholar 
    25.Wellard Kelley, H. A. et al. Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam. Freshw. Sci. 32, 397–410. https://doi.org/10.1899/12-088.1 (2013).Article 

    Google Scholar 
    26.Thornton, K. W., Kimmel, B. L. & Payne, F. E. Reservoir Limnology: Ecological Perspectives (John Wiley and Sons, 1990).
    Google Scholar 
    27.Havel, J. E., Lee, C. E. & Vander Zanden, J. M. Do reservoirs facilitate invasions into landscapes?. Bioscience 55, 518–525. https://doi.org/10.1641/0006-3568(2005)055[0518:DRFIIL]2.0.CO;2 (2005).Article 

    Google Scholar 
    28.Southwood, T. R. E. Habitat, the templet for ecological strategies?. J. Anim. Ecol. 46, 337–365. https://doi.org/10.2307/3817 (1977).Article 

    Google Scholar 
    29.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460. https://doi.org/10.1016/j.tree.2008.03.011 (2008).Article 
    PubMed 

    Google Scholar 
    30.Mercado-Silva, N., Helmus, M. R. & Vander Zanden, M. J. The effects of impoundment and non-native species on a river food web in Mexico’s central plateau. River Res. Appl. 25, 1090–1108. https://doi.org/10.1002/rra.1205 (2009).Article 

    Google Scholar 
    31.Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T. & Brosse, S. Homogenization patterns of the world’s freshwater fish faunas. Proc. Natl. Acad. Sci. U. S. A. 108, 18003–18008. https://doi.org/10.1073/pnas.1107614108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Delong, M. D., Thorp, J. H., Thoms, M. C. & McIntosh, L. M. Trophic niche dimensions of fish communities as a function of historical hydrological conditions in a Plains river. River Syst. 19, 177–187. https://doi.org/10.1127/1868-5749/2011/019-0036 (2011).Article 

    Google Scholar 
    33.Pilger, T. J., Gido, K. B. & Propst, D. L. Diet and trophic niche overlap of native and nonnative fishes in the Gila River, USA: implications for native fish conservation. Ecol. Freshw. Fish 19, 300–321. https://doi.org/10.1111/j.1600-0633.2010.00415.x (2010).Article 

    Google Scholar 
    34.Mor, J. R. et al. Dam regulation and riverine food-web structure in a Mediterranean river. Sci. Total Environ. 625, 301–310. https://doi.org/10.1016/j.scitotenv.2017.12.296 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Tyus, H. M. & Saunders, J. F. III. Nonnative fish control and endangered fish recovery: lessons from the Colorado River. Fisheries 25, 17–24. https://doi.org/10.1577/1548-8446(2000)025%3c0017:NFCAEF%3e2.0.CO;2 (2000).Article 

    Google Scholar 
    36.Strayer, D. L. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174. https://doi.org/10.1111/j.1365-2427.2009.02380.x (2010).Article 

    Google Scholar 
    37.Marks, J. C., Williamson, C. & Hendrickson, D. A. Coupling stable isotope studies with food web manipulations to predict the effects of exotic fish: lessons from Cuatro Ciénegas, Mexico. Aquat. Conserv. 21, 317–323. https://doi.org/10.1002/aqc.1199 (2011).Article 

    Google Scholar 
    38.Cooke, S. J., Paukert, C. & Hogan, Z. Endangered river fish: factors hindering conservation and restoration. Endanger. Species Res. 17, 179–191. https://doi.org/10.3354/esr00426 (2012).Article 

    Google Scholar 
    39.Pennock, C. A., Farrington, M. A. & Gido, K. B. Feeding ecology of early life stage Razorback Sucker relative to other sucker species in the San Juan River. Trans. Am. Fish. Soc. 148, 938–951. https://doi.org/10.1002/tafs.10188 (2019).Article 

    Google Scholar 
    40.Cucherousset, J., Bouletreau, S., Martino, A., Roussel, J. M. & Santoul, F. Using stable isotope analyses to determine the ecological effects of non-native fishes. Fish. Mgmt. Ecol. 19, 111–119. https://doi.org/10.1111/j.1365-2400.2011.00824.x (2012).Article 

    Google Scholar 
    41.Finlay, J. C. Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs. Ecology 82, 1052–1064. https://doi.org/10.1890/0012-9658(2001)082[1052:SCIROR]2.0.CO;2 (2001).Article 

    Google Scholar 
    42.France, R. L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40, 1310–1313. https://doi.org/10.4319/lo.1995.40.7.1310 (1995).ADS 
    Article 

    Google Scholar 
    43.Fry, B. Stable Isotope Ecology (Springer-Verlag, 2006).Book 

    Google Scholar 
    44.Vander Zanden, M. J., Cabana, G. & Rasmussen, J. B. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54, 1142–1158. https://doi.org/10.1139/f97-016 (1997).Article 

    Google Scholar 
    45.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    46.Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48. https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 (2007).Article 
    PubMed 

    Google Scholar 
    47.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER: stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    48.Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324. https://doi.org/10.1890/14-0235.1 (2015).Article 
    PubMed 

    Google Scholar 
    49.Minckley, W. L. & Deacon, J. E. Battle Against Extinction: Native Fish Management in the American West (The University of Arizona Press, 1991).
    Google Scholar 
    50.Albrecht, B. A. et al. Use of inflow areas in two Colorado River basin reservoirs by the endangered Razorback Sucker (Xyrauchen texanus). West. N. Am. Nat. 77, 500–514. https://doi.org/10.3398/064.077.0410 (2018).Article 

    Google Scholar 
    51.Pennock, C. A. et al. Reservoir fish assemblage structure across an aquatic ecotone: Can river-reservoir interfaces provide conservation and management opportunities?. Fish. Manag. Ecol. 28, 1–13. https://doi.org/10.1111/fme.12444 (2021).Article 

    Google Scholar 
    52.Gido, K. B. & Propst, D. L. Habitat use and association of native and nonnative fishes in the San Juan River, New Mexico and Utah. Copeia 1999, 321–332. https://doi.org/10.2307/1447478 (1999).Article 

    Google Scholar 
    53.Gido, K. B., Franssen, N. R. & Propst, D. L. Spatial variation in δ15N and δ13C isotopes in the San Juan River, New Mexico and Utah: implications for the conservation of native fishes. Environ. Biol. Fish. 75, 197–207. https://doi.org/10.1007/s10641-006-0009-1 (2006).Article 

    Google Scholar 
    54.Ryden, D. W. & Ahlm, L. A. Observations on the distribution and movements of Colorado Squawfish, Ptychocheilus lucius, in the San Juan River, New Mexico, Colorado, and Utah. Southwest. Nat. 41, 161–168 (1996).
    Google Scholar 
    55.Cathcart, C. N. et al. Waterfall formation at a desert river-reservoir delta isolates endangered fishes. River Res. Appl. 34, 948–956. https://doi.org/10.1002/rra.3341 (2018).Article 

    Google Scholar 
    56.Thomsen, M. S. et al. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar. Ecol. Prog. Ser. 495, 39–47. https://doi.org/10.3354/meps10566 (2014).ADS 
    Article 

    Google Scholar 
    57.McIntyre, P. B. & Flecker, A. S. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 148, 12–21. https://doi.org/10.1007/s00442-005-0354-3 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    58.Franssen, N. R., Gilbert, E. I., James, A. P. & Davis, J. E. Isotopic tissue turnover and discrimination factors following a laboratory diet switch in Colorado Pikeminnow (Ptychocheilus lucius). Can. J. Fish. Aq. Sci. 74, 265–272. https://doi.org/10.1139/cjfas-2015-0531 (2017).CAS 
    Article 

    Google Scholar 
    59.Busst, G. M. A. & Britton, J. R. Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia 805, 49–60. https://doi.org/10.1007/s10750-017-3276-2 (2018).CAS 
    Article 

    Google Scholar 
    60.Arrington, D. A. & Winemiller, K. O. Preservation effects on stable isotope analysis of fish muscle. Trans. Am. Fish. Soc. 131, 337–342. https://doi.org/10.1577/1548-8659(2002)131%3c0337:PEOSIA%3e2.0.CO;2 (2002).CAS 
    Article 

    Google Scholar 
    61.Hubert, W. A., Pope, K. L. & Dettmers, J. M. Passive capture techniques. In Fisheries Techniques 3rd edn (eds Zale, A. V. et al.) 223–265 (American Fisheries Society, 2012).
    Google Scholar 
    62.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    63.Fox, J., & Weisberg, S. An {R} Companion to Applied Regression, 2nd edn. (Sage 2011). http://socserv.socci.mcmaster.ca/jfox/Books/Companion64.Lefcheck, S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evo. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).Article 

    Google Scholar 
    65.Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Lysy, M., Stasko, A. D., Swanson, H. K. nicheROVER: (Niche) (R)egion and Niche (Over)lap metrics for multidimensional ecological niches. R package version 1.0 (2014). https://CRAN.R-project.org/package=nicheROVER67.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2019). Available: https://www.R-project.org/68.Franssen, N. R., Davis, J. E., Ryden, D. W. & Gido, K. B. Fish community responses to mechanical removal of nonnative fishes in a large southwestern river. Fisheries 8, 352–363. https://doi.org/10.1080/03632415.2014.924409 (2014).Article 

    Google Scholar 
    69.Kelly, D. J. & Jellyman, D. J. Changes in trophic linkages to shortfin eels (Anguilla australis) since the collapse of submerged macrophytes in Lake Ellesmere, New Zealand. Hydrobiologia 579, 161–173. https://doi.org/10.1007/s10750-006-0400-0 (2007).Article 

    Google Scholar 
    70.Zambrano, L., Valiente, E. & Vander Zanden, M. J. food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. Biol. Invasions 12, 3061–3069. https://doi.org/10.1007/s10530-010-9697-8 (2010).Article 

    Google Scholar 
    71.Córdova-Tapia, F., Contreras, M. & Zambrano, L. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746, 291–301. https://doi.org/10.1007/s10750-014-1944-z (2015).Article 

    Google Scholar 
    72.Portz, D. E. & Tyus, H. M. Fish humps in two Colorado River fishes: a morphological response to cyprinid predation?. Environ. Biol. Fishes 71, 233–245. https://doi.org/10.1007/s10641-004-0300-y (2004).Article 

    Google Scholar 
    73.Pennock, C. A. et al. Predicted and observed responses of a nonnative Channel Catfish population following managed removal to aid the recovery of endangered fishes. N. Am. J. Fish. Mgmt. 38, 565–578. https://doi.org/10.1002/nafm.10056 (2018).Article 

    Google Scholar 
    74.Hedden, S. C. et al. Quantifying consumption of native fishes by nonnative Channel Catfish in a desert river. N. Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10514 (2020).Article 

    Google Scholar 
    75.Nogueira, M. G., Oliveira, P. C. R. & Britto, Y. T. Zooplankton assemblages (Copepoda and Cladocera) in a cascade of reservoirs of a large tropical river (SE Brazil). Limnetica 27, 151–170 (2008).
    Google Scholar 
    76.Slaveska-Stamenković, V. et al. Factors affecting distribution pattern of dominant macroinvertebrates in Mantovo Reservoir (Republic of Macedonia). Biologia 67, 1129–1142. https://doi.org/10.2478/s11756-012-0102-1 (2012).Article 

    Google Scholar 
    77.Behn, K. E. & Baxter, C. V. The trophic ecology of a desert river fish assemblage: influence of season and hydrologic variability. Ecosphere 10, e02583. https://doi.org/10.1002/ecs2.2583 (2019).Article 

    Google Scholar 
    78.Glenn, E. P., Lee, C., Felger, R. & Zengel, S. Effects of water management on the wetlands of the Colorado River Delta, Mexico. Conserv. Biol. 10, 1175–1186. https://doi.org/10.1046/j.1523-1739.1996.10041175.x (1996).Article 

    Google Scholar 
    79.Sykes, G. The Colorado River Delta. Publication no. 460. (Carnegie Institution of Washington, D.C. 1937).80.Dalrymple, G. B. & Hamblin, W. K. K-Ar of Pleistocene lava dams in the Grand Canyon in Arizona. Proc. Natl. Acad. Sci. U.S.A. 95, 9744–9749. https://doi.org/10.1073/pnas.95.17.9744 (1998).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Minckley, W. L. Status of the razorback sucker, Xyrauchen texanus (Abbott), in the Lower Colorado River Basin. Southwest. Nat. 28, 165–187. https://doi.org/10.2307/3671385 (1983).Article 

    Google Scholar 
    82.Doi, H. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Popul. Ecol. 51, 57–64. https://doi.org/10.1007/s10144-008-0127-z (2009).Article 

    Google Scholar 
    83.Thorp, J. H. & Delong, M. D. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550. https://doi.org/10.1034/j.1600-0706.2002.960315.x (2002).Article 

    Google Scholar 
    84.Rennie, M. D., Sprules, W. G. & Johnson, T. B. Resource switching in fish following a major food web disruption. Oecologia 159, 789–802. https://doi.org/10.1007/s00442-008-1271-z (2009).ADS 
    Article 
    PubMed 

    Google Scholar 
    85.Cummings, B. M. & Schindler, D. E. Depth variation in isotopic composition of benthic resources and assessment of sculpin feeding patterns in an oligotrophic Alaskan lake. Aquat. Ecol. 47, 403–414. https://doi.org/10.1007/s10452-013-9453-0 (2013).CAS 
    Article 

    Google Scholar 
    86.Fera, S. A., Rennie, M. D. & Dunlop, E. S. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels. Ecology 98, 1681–1692. https://doi.org/10.1002/ecy.1836 (2017).Article 
    PubMed 

    Google Scholar 
    87.Pennock, C. A., McKinstry, M. C. & Gido, K. B. Razorback Sucker movement strategies across a river-reservoir habitat complex. Trans. Am. Fish. Soc. 149, 620–634. https://doi.org/10.1002/tafs.10262 (2020).Article 

    Google Scholar 
    88.Vatland, S. & Budy, P. Predicting the invasion success of an introduced omnivore in a large heterogeneous reservoir. Can. J. Fish. Aquat. Sci. 64, 1329–1345. https://doi.org/10.1139/f07-100 (2007).Article 

    Google Scholar 
    89.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240. https://doi.org/10.1111/j.1466-8238.2010.00579.x (2011).Article 

    Google Scholar 
    90.Franssen, N. R., Gilbert, E. I., Gido, K. B. & Propst, D. L. Hatchery-reared endangered Colorado pikeminnow (Ptychocheilus lucius) undergo a gradual transition to piscivory after introduction to the wild. Aquat. Conserv. 29, 24–38. https://doi.org/10.1002/aqc.2995 (2019).Article 

    Google Scholar 
    91.Hoeinghaus, D. J., Winemiller, K. O. & Agostinho, A. A. Hydrogeomorphology and river impoundment affect food-chain length of divers Neotropical food webs. Oikos 117, 984–995. https://doi.org/10.1111/j.2008.0030-1299.16458.x (2008).Article 

    Google Scholar 
    92.Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221. https://doi.org/10.1038/s41586-019-1111-9 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    93.Pennock, C. A. & Gido, K. B. Spatial and temporal dynamics of fish assemblages in a desert reservoir over 38 years. Hyrdobiologia 848, 1231–1248. https://doi.org/10.1007/s10750-021-04514-z (2021).Article 

    Google Scholar 
    94.Oliveira, E. F., Minte-Vera, C. V. & Goulart, E. Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border). Environ. Biol. Fish. 72, 283–304. https://doi.org/10.1007/s10641-004-2582-5 (2005).Article 

    Google Scholar 
    95.Buckmeier, D. L., Smith, N. G., Fleming, B. P. & Bodine, K. A. Intra-annual variation in river-reservoir interface fish assemblages: implications for fish conservation and management in regulated rivers. River Res. Appl. 30, 780–790. https://doi.org/10.1002/rra.2667 (2014).Article 

    Google Scholar 
    96.Albrecht, B. A., Holden, P. B., Kegerries, R. B. & Golden, M. E. Razorback sucker recruitment in Lake Mead, Nevada-Arizona, why here?. Lake Reserv. Manage. 26, 336–344. https://doi.org/10.1080/07438141.2010.511966 (2010).Article 

    Google Scholar  More

  • in

    Reproductive plasticity of Hawaiian Montipora corals following thermal stress

    1.Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    4.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995. https://doi.org/10.1073/pnas.1208909109 (2012).ADS 
    Article 
    PubMed 

    Google Scholar 
    5.Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x (2003).Article 

    Google Scholar 
    7.Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime?. Science 307, 1725–1726. https://doi.org/10.1126/science.1104258 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637. https://doi.org/10.1126/science.1059199 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833. https://doi.org/10.1038/ncomms11833 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013. https://doi.org/10.1002/lno.10481 (2017).ADS 
    Article 

    Google Scholar 
    12.Jokiel, P. L. & York, R. H. Solar Ultraviolet Photobiology of the Reef Coral Pocillopora Damicornis and Symbiotic Zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
    Google Scholar 
    13.Jokiel, P. L., Lesser, M. P. & Ondrusek, M. E. UV-absorbing compounds in the coral Pocillopora damicornis: Interactive effects of UV radiation, photosynthetically active radiation, and water flow. Limnol. Oceanogr. 42, 1468–1473. https://doi.org/10.4319/lo.1997.42.6.1468 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    14.McKenzie, R. L. et al. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182–198. https://doi.org/10.1039/C0PP90034F (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Ferrier-Pagès, C. et al. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol. Bull. 213, 76–87. https://doi.org/10.2307/25066620 (2007).Article 
    PubMed 

    Google Scholar 
    16.Ailsa, P. K. & Ross, J. J. Effects of hypo-osmosis on the coral Stylophora pistillata: nature and cause of low-salinity bleaching. Mar. Ecol. Prog. Ser. 253, 145–154 (2003).Article 

    Google Scholar 
    17.Bessell-Browne, P. et al. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments. Mar. Pollut. Bull. 117, 161–170. https://doi.org/10.1016/j.marpolbul.2017.01.050 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Piniak, G. A. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals. Mar. Environ. Res. 64, 456–468. https://doi.org/10.1016/j.marenvres.2007.04.001 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208. https://doi.org/10.1007/bf00402312 (1977).Article 

    Google Scholar 
    21.Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8, 155–162 (1990).ADS 
    Article 

    Google Scholar 
    22.Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    23.Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989. https://doi.org/10.1007/s002270100634 (2001).Article 

    Google Scholar 
    24.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239. https://doi.org/10.1007/s003380170003 (2001).Article 

    Google Scholar 
    26.Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000 2, 1123–1128 (2002).27.Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).ADS 
    Article 

    Google Scholar 
    28.Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).Article 
    PubMed 

    Google Scholar 
    29.Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).ADS 
    Article 

    Google Scholar 
    30.Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article 

    Google Scholar 
    31.Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185. https://doi.org/10.1007/s00227-007-0765-2 (2007).Article 

    Google Scholar 
    32.Cumbo, V. R., Fan, T. Y. & Edmunds, P. J. Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. J. Exp. Mar. Biol. Ecol. 439, 100–107. https://doi.org/10.1016/j.jembe.2012.10.019 (2013).Article 

    Google Scholar 
    33.Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763. https://doi.org/10.1007/s00338-007-0258-2 (2007).ADS 
    Article 

    Google Scholar 
    34.Lager, C. V. A., Hagedorn, M. S., Rodgers, K. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).Article 
    PubMed 

    Google Scholar 
    36.Cox, E. F. Continuation of sexual reproduction in Montipora capitata following bleaching. Coral Reefs 26, 721–724. https://doi.org/10.1007/s00338-007-0251-9 (2007).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    37.Armoza-Zvuloni, R., Segal, R., Kramarsky-Winter, E. & Loya, Y. Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar. Ecol. Prog. Ser. 426, 149–159 (2011).ADS 
    Article 

    Google Scholar 
    38.Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).ADS 
    Article 

    Google Scholar 
    39.Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).ADS 
    Article 

    Google Scholar 
    40.Edge, S. E., Shearer, T. L., Morgan, M. B. & Snell, T. W. Sub-lethal coral stress: Detecting molecular responses of coral populations to environmental conditions over space and time. Aquat. Toxicol. 128–129, 135–146. https://doi.org/10.1016/j.aquatox.2012.11.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Downs, C. A. et al. The use of cellular diagnostics for identifying sub-lethal stress in reef corals. Ecotoxicology 21, 768–782. https://doi.org/10.1007/s10646-011-0837-4 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Olsen, K., Ritson-Williams, R., Ochrietor, J. D., Paul, V. J. & Ross, C. Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar. Biol. 160, 2609–2618. https://doi.org/10.1007/s00227-013-2255-z (2013).CAS 
    Article 

    Google Scholar 
    44.Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: Energetics and reproduction of a reef coral with heat tolerant Symbiodinium Type-D. J. Mar. Sci. 2011, 185890. https://doi.org/10.1155/2011/185890 (2011).Article 

    Google Scholar 
    45.Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719. https://doi.org/10.7717/peerj.3719 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawai‘i. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of Three Bleaching Events on the Reef Resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398 (2017).Article 

    Google Scholar 
    48.Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu. Doctoral Dissertation, University of Hawaiʻi at Mānoa, (2019).49.Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).Article 

    Google Scholar 
    50.Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. Biol. Sci. 286, 20190614. https://doi.org/10.1098/rspb.2019.0614 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Rodgers, K. U. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).Article 

    Google Scholar 
    52.Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: Two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).
    Google Scholar 
    53.Heyward, A. J. Sexual reproduction in five species of the coral Montipora. In: Coral Reef Population Biology. Hawaii Institute of Marine Biology Technical Report 37, 170–178 (1985).54.Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway. (Mutual Publishing Company, 2005).55.Veron, J. E. N. Corals of the world. Volume 1. (Australia Institute of Marine Science, 2000).56.Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS One 5, e15021. https://doi.org/10.1371/journal.pone.0015021 (2010).57.Cunha, R. L. et al. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol. Biol. 19, 153. https://doi.org/10.1186/s12862-019-1476-2 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Padilla-Gamiño, J. L., Weatherby, T. M., Waller, R. G. & Gates, R. D. Formation and structural organization of the egg–sperm bundle of the scleractinian coral Montipora capitata. Coral Reefs 30, 371–380. https://doi.org/10.1007/s00338-010-0700-8 (2011).ADS 
    Article 

    Google Scholar 
    59.Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18 (2014).Article 

    Google Scholar 
    60.Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).ADS 
    Article 

    Google Scholar 
    61.Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).Article 

    Google Scholar 
    62.Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Hunter, C. L. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata . In Proceedings of the 6th International Coral Reef Symposium Vol. 2 727–732 (1988).64.Binet, M. T., Doyle, C. J., Williamson, J. E. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100. https://doi.org/10.1016/j.jembe.2013.12.008 (2014).CAS 
    Article 

    Google Scholar 
    65.Chen, L. B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181. https://doi.org/10.1146/annurev.cb.04.110188.001103 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084. https://doi.org/10.1242/jeb.114900 (2015).Article 
    PubMed 

    Google Scholar 
    67.Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882. https://doi.org/10.4319/lo.2007.52.5.1874 (2007).ADS 
    Article 

    Google Scholar 
    68.Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Hayward, A. & Gillooly, J. F. The cost of sex: Quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).ADS 
    Article 

    Google Scholar 
    71.Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).Article 

    Google Scholar 
    72.Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706. https://doi.org/10.4319/lo.2001.46.3.0704 (2001).ADS 
    Article 

    Google Scholar 
    73.Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Benzie, J. A. H. & Dixon, P. The effects of sperm concentration, sperm: Egg ratio, and gamete age on fertilization success in Crown-of-Thorns Starfish (Acanthaster planci) in the Laboratory. Biol. Bull. 186, 139–152. https://doi.org/10.2307/1542048 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Brazeau, D. A. & Lasker, H. R. Reproductive success in the Caribbean octocoral Briareum asbestinum. Mar. Biol. 114, 157–163. https://doi.org/10.1007/BF00350865 (1992).Article 

    Google Scholar 
    77.Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: Sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).CAS 
    Article 

    Google Scholar 
    80.Levitan, D. R., Sewell, M. A. & Chia, F.-S. How distribution and abundance influence fertilization success in the Sea Urchin Strongylocentotus franciscanus. Ecology 73, 248–254. https://doi.org/10.2307/1938736 (1992).Article 

    Google Scholar 
    81.Jamieson, G. S. Marine invertebrate conservation: Evaluation of fisheries over-exploitation Concerns1. Am. Zool. 33, 551–567. https://doi.org/10.1093/icb/33.6.551 (1993).Article 

    Google Scholar 
    82.Fitt, K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article 

    Google Scholar 
    83.Coles, S. L. & Jokiel, P. L. Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar. Biol. 49, 187–195. https://doi.org/10.1007/BF00391130 (1978).Article 

    Google Scholar 
    84.Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).Article 

    Google Scholar 
    85.Grunwald, D. J. & Streisinger, G. Induction of mutations in the zebrafish with ultraviolet light. Genet. Res. 59, 93–101. https://doi.org/10.1017/S0016672300030305 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Lamare, M., Burritt, D. & Lister, K. Chapter Four – Ultraviolet Radiation and Echinoderms: Past, Present and Future Perspectives. Adv. Mar. Biol. 59, 145–187 (Academic Press, 2011).87.Jokiel, P. L. Solar ultraviolet radiation and coral reef Epifauna. Science 207, 1069–1071 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Banaszak, A. T., Barba Santos, M. G., LaJeunesse, T. C. & Lesser, M. P. The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J. Exp. Mar. Biol. Ecol. 337, 131–146. https://doi.org/10.1016/j.jembe.2006.06.014 (2006).CAS 
    Article 

    Google Scholar 
    89.Leutenegger, A. et al. It’s cheap to be colorful. FEBS J. 274, 2496–2505. https://doi.org/10.1111/j.1742-4658.2007.05785.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Rosic, N. N. & Dove, S. Mycosporine-like amino acids from coral dinoflagellates. Appl. Environ. Microbiol. 77, 8478. https://doi.org/10.1128/AEM.05870-11 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Smith, E. G., D’Angelo, C., Salih, A. & Wiedenmann, J. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32, 463–474. https://doi.org/10.1007/s00338-012-0994-9 (2013).ADS 
    Article 

    Google Scholar 
    92.Dove, S. Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar. Ecol. Prog. Ser. 272, 99–116 (2004).ADS 
    Article 

    Google Scholar 
    93.Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Change Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).ADS 
    Article 

    Google Scholar 
    94.Pennington, J. T. The ecology of fertilization of Echinoid eggs: The consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).Article 
    PubMed 

    Google Scholar 
    95.Levitan, D. R. & Young, C. M. Reproductive success in large populations: empirical measures and theoretical predictions of fertilization in the sea biscuit Clypeaster rosaceus. J. Exp. Mar. Biol. Ecol. 190, 221–241. https://doi.org/10.1016/0022-0981(95)00039-T (1995).Article 

    Google Scholar 
    96.Hagedorn, M. et al. Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success. PLoS ONE 10, e0118364. https://doi.org/10.1371/journal.pone.0118364 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61. https://doi.org/10.1038/s41598-020-79732-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kolinski, S. P. Sexual reproduction and the early life history of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Doctoral Dissertation, University of Hawai’i at Mānoa, (2004).99.Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437. https://doi.org/10.1890/04-0298 (2004).Article 

    Google Scholar 
    100.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, Vienna, Austria, 2019). More

  • in

    Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes

    1.Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus civ stor nat Trieste 52, 5–135 (2006).
    Google Scholar 
    2.Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci Rep 8, 10575, https://doi.org/10.1038/s41598-018-28796-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: environmental variation or shift of habitat selection? PeerJ 3, e1122, https://doi.org/10.7717/peerj.1122 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 1–11, https://doi.org/10.1111/ecog.04798 (2020).Article 

    Google Scholar 
    5.Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats 2nd edn (Oxford University Press, 2019).6.Bradley, J. G. & Eason, P. K. Predation risk and microhabitat selection by cave salamanders, Eurycea lucifuga (Rafinesque, 1822). Behaviour 155, 841–859, https://doi.org/10.1163/1568539X-00003505 (2019).Article 

    Google Scholar 
    7.Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. The Science of Nature 104, 20, https://doi.org/10.1007/s00114-017-1443-y (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: how do responses vary in amphibians adapted to cave living? Behavioral Ecology and Sociobiology 74, 126, https://doi.org/10.1007/s00265-020-02909-x (2020).Article 

    Google Scholar 
    9.Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci Data 5, 180083, https://doi.org/10.1038/sdata.2018.83 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lunghi, E. & Bruni, G. Long-term reliability of Visual Implant Elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).
    Google Scholar 
    11.Mace, G. M. & Lande, R. Assessing extinction threats: towards a reevaluation of IUCN threatened species categories. Conservation Biology 5, 148–157 (1991).Article 

    Google Scholar 
    12.Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transaction of the Royal Society B 367, 1665–1679, https://doi.org/10.1098/rstb.2012.0005 (2012).Article 

    Google Scholar 
    13.Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani. (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).14.European Community. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union L 206/7, 1–44 (1992).
    Google Scholar 
    15.Régnier, C. et al. Mass extinction in poorly known taxa. Proc Natl Acad Sci USA 112, 7761–7766, https://doi.org/10.1073/pnas.1502350112 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786, https://doi.org/10.1126/science.1103538 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol Lett 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Connette, G. M., Crawford, J. A. & Peterman, A. E. Climate change and shrinking salamanders: alternative mechanisms for changes in plethodontid salamander body size. Global Change Biology 21, 2834–2843, https://doi.org/10.1111/gcb.12883 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    19.Heinrichs, J. A., Bender, D. J. & Schumaker, N. H. Habitat degradation and loss as key drivers of regional population extinction. Ecological Modelling 335, 64–73, https://doi.org/10.1016/j.ecolmodel.2016.05.009 (2016).Article 

    Google Scholar 
    20.Walters, R. J., Blanckenhorn, W. U. & Berger, D. Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology 26, 1324–1338, https://doi.org/10.1111/j.1365-2435.2012.02045.x (2012).Article 

    Google Scholar 
    21.Zhang, Z. et al. Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biology 65, 971–980, https://doi.org/10.1111/fwb.13483 (2020).Article 

    Google Scholar 
    22.Bland, L. M. Global correlates of extinction risk in freshwater crayfish. Animal Conservation 20, 532–542, https://doi.org/10.1111/acv.12350 (2017).Article 

    Google Scholar 
    23.Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci Data 7, 171, https://doi.org/10.1038/s41597-020-0513-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers Data J 7, e38492, https://doi.org/10.3897/BDJ.7.e38492 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.MacNeil, R. R. & Brcic, J. Coping with the subterranean environment: a thematic content analysis of the narratives of cave explorers. J Hum Perform Environ 13, Article 6, https://doi.org/10.7771/2327-2937.1089 (2017).Article 

    Google Scholar 
    26.Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers Conserv 19, 3035–3048, https://doi.org/10.1007/s10531-010-9873-2 (2010).Article 

    Google Scholar 
    27.Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecology and Evolution, https://doi.org/10.1002/ece3.7556 (2021).28.Brown, A. W., Kaiser, K. A. & Allison, D. B. Issues with data and analyses: errors, underlying themes, and potential solutions. Proc Natl Acad Sci USA 115, 2563–2570, https://doi.org/10.1073/pnas.1708279115 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildlife Research 39, 266–270, https://doi.org/10.1071/WR11103 (2012).Article 

    Google Scholar 
    30.Lunghi, E. & Veith, M. Are Visual Implant Alpha tags adequate for individually marking European cave salamanders (genus Hydromantes)? Salamandra 53, 541–544 (2017).
    Google Scholar 
    31.Swanson, J. E., Bailey, L. L., Muths, E. & Funk, W. C. Factors influencing survival and mark retention in postmetamorphic Boreal chorus frogs. Copeia 2013, 670–675, https://doi.org/10.1643/CH-12-129 (2013).Article 

    Google Scholar 
    32.Sacchi, R. et al. Photographic identification in reptiles: a matter of scales. Amphibia-Reptilia 31, 489–502 (2010).Article 

    Google Scholar 
    33.Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253, https://doi.org/10.3897/herpetozoa.32.e39030 (2019).Article 

    Google Scholar 
    34.Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 13, e0205672, https://doi.org/10.1371/journal.pone.0205672 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Lunghi, E. et al. The post hoc measurement as a safe and reliable method to age and size plethodontid salamanders. Ecology and Evolution 10, 11111–11116, https://doi.org/10.1002/ece3.6748 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Hedrick, B. P. et al. Digitization and the future of natural history collections. BioScience 70, 243–251, https://doi.org/10.1093/biosci/biz163 (2020).Article 

    Google Scholar 
    37.Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philosophical Transactions of the Royal Society B 374, 20170391, https://doi.org/10.1098/rstb.2017.0391 (2019).Article 

    Google Scholar 
    38.Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: do environmental factors have a role? Ecology 101, e03088, https://doi.org/10.1002/ecy.3088 (2020).Article 
    PubMed 

    Google Scholar 
    39.Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol 43, 42–50 (2012).ADS 
    Article 

    Google Scholar 
    40.Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16, https://doi.org/10.1007/s00442-014-3201-6 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    41.Lunghi, E. et al. Same diet, different strategies: variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180, https://doi.org/10.3390/d12050180 (2020).Article 

    Google Scholar 
    42.Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol 55, 29–35, https://doi.org/10.1016/j.actao.2013.11.003 (2014).ADS 
    Article 

    Google Scholar 
    43.Lunghi, E. et al. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers Data J 8, e48623, https://doi.org/10.3897/BDJ.8.e48623 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Carvalho-Rocha, V., Cortês, L. B. & Neckel-Oliveira, S. Interindividual patterns of resource use in three subtropical Atlantic Forest frogs. Austral Ecology 43, 150–158, https://doi.org/10.1111/aec.12552 (2018).Article 

    Google Scholar 
    45.Lunghi, E. et al. Photos and stomach contents of two mainland Italian Speleomantes salamanders: data from summer 2020. figshare https://doi.org/10.6084/m9.figshare.c.5398368 (2021).46.Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA 110, 15325–15329, https://doi.org/10.1073/pnas.1307356110 (2012).ADS 
    Article 

    Google Scholar 
    47.Treilibs, C. E., Pavey, C. R., Hutchinson, M. N. & Bull, C. M. Photographic identification of individuals of a free-ranging, small terrestrial vertebrate. Ecology and Evolution 6, 800–809, https://doi.org/10.1002/ece3.1883 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Town, C., Marshall, A. & Sethasathien, N. Manta Matcher: automated photographic identification of manta rays using keypoint features. Ecology and Evolution 3, 1902–1914, https://doi.org/10.1002/ece3.587 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.MacCoun, R. & Perlmutter, S. Hide results to seek the truth. Nature 526, 187–189, https://doi.org/10.1038/526187a (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J Therm Biol 60, 79–85, https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).Article 
    PubMed 

    Google Scholar 
    51.Weller, H. I. & Westneat, M. W. Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ 7, e6398, https://doi.org/10.7717/peerj.6398 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Adams, D., Collyer, M. & Kaliontzopoulou, A. geomorph. Geometric Morphometric Analyses of 2D/3D Landmark Data. R package version 3.2.1, https://github.com/geomorphR/geomorph (2020).53.Bendik, N. F., Morrison, T. A., Gluesenkamp, A. G., Sanders, M. S. & O’Donnell, L. J. Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae. PLoS ONE 8, e59424, https://doi.org/10.1371/journal.pone.0059424 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Renet, J., Leprêtre, L., Champagnon, J. & Lambret, P. Monitoring amphibian species with complex chromatophore patterns: a non-invasive approach with an evaluation of software effectiveness and reliability. Herpetological Journal 29, 13–22, https://doi.org/10.33256/hj29.1.1322 (2019).Article 

    Google Scholar 
    55.Allen-Blevins, C. R., You, X., Hinde, K. & Sela, D. A. Handling stress may confound murine gut microbiota studies. PeerJ 5, e2876, https://doi.org/10.7717/peerj.2876 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Samimi, A. S., Tajik, J., Jarakani, S. & Shojaeepour, S. Evaluation of a five-minute resting period following handling stress on electrocardiogram parameters and cardiac rhythm in sheep. Veterinary Science Development 6, 6481, https://doi.org/10.4081/vsd.2016.6481 (2016).Article 

    Google Scholar 
    57.Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630, https://doi.org/10.1126/science.1258268 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat Ecol Evol 3, 319, https://doi.org/10.1038/s41559-019-0803-8 (2019).Article 
    PubMed 

    Google Scholar  More