More stories

  • in

    Scenario simulation of land use and land cover change in mining area

    Data source and preprocessingConsidering factors such as amount of cloud and time intervals of image, four remote sensing images with a spatial resolution of 30 m, including Landsat 5 Thematic Mapper (TM) images for 08-21-2000, 09-04-2005 and 09-18-2010, and Landsat 8 Operational Land Imager (OLI) for 09-02-2016,were obtained from the Geospatial Data Cloud Platform (http://www.gscloud.cn). LULC information was extracted from these remote sensing images. In addition, the digital elevation model (DEM) with a spatial resolution of 30 m was obtained from the website. Elevation and slope information were derived from DEM data and used as terrain driving factors for scenario simulation. Other supporting data, such as Weishan County land use data, mine distribution data, general land use planing (2006–2020) and mineral resources planning (2008–2015), Jining City coal mining subsidence land rearrangement planning (2016–2030), were obtained from Weishan Natural Resources and Planning Bureau. These data were used for better data analysis.Considering severe ground subsidence and seeper in the study area, and referring to national standards: Current Land Use Classification (GB/T 21010-2017), remote sensing images were interpreted into six LULC types: farmland, other agricultural land, urban and rural construction land, subsided seeper area, water area, and tidal wetland.In the process of image interpretation, firstly, the remote sensing image was divided into two regions: one region were the lake and the surrounding tidal wetland, and the other region included farmland, other agricultural land, urban and rural construction land, subsided seeper area, etc.In region 1, decision tree classification, combined with the Modified Normalized Difference Water Index (MNDWI), was used to extract lakes. Then we masked them in region 1. The Normalized Difference Vegetation Index (NDVI) was calculated for the remaining image of region 1. Tidal wetland was mainly distributed along rivers and lakes, and NDVI value was higher than that of farmland and other vegetation. By analyzing its geographical distribution and NDVI value, and referring to Weishan County land use data, the appropriate threshold was selected to extract tidal wetland.The spectral signature of rivers, ditches and aquaculture ponds in other agricultural land in region 2 could be easily distinguished from other surface features. They could be extracted step by step by manual visual interpretation and empirical knowledge, referring to Weishan County land use data and water system data. Then we masked them separately in region 2. After extracting rivers, ditches, aquaculture ponds with high water content, the remaining LULC type with high water content in region 2 was subsided seeper area. According to the relationship of spectral signature of different LULC types, it was concluded that among the remaining LULC types in region 2, only TM3 band value of subsided seeper area was higher than TM5 band value. Using this characteristic, subsided seeper area could be distinguished from other LULC types. After extracting subsided seeper area, the remaining LULC types in region 2 were farmland and urban and rural construction land. The spectral characteristics of them were very different. Therefore, they could be distinguished using support vector machine (SVM) classification method, and their respective binary images were generated using decision tree method.The extracted six LULC types were shown in single layer and binary form respectively. Six LULC types were coded and synthesized into one image. We obtained 2000, 2005, 2010, 2016 LULC type maps (Fig. 2). Finally classification post-processing and accuracy evaluation were operated.Figure 2The LULC types maps of 2000, 2005, 2010 and 2016. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageThe accuracy of the interpretation results was verified by confusion matrix and kappa coefficient. The kappa coefficients of the four interpretation maps were 0.84, 0.85, 0.82 and 0.86, respectively (Table 1). The accuracy could meet the needs of further research.Table 1 Accuracy evaluation of the interpretation results (%).Full size tableBy reading previous research results37,38,39,40,41, based on the entropy theory, in the same study area, high spatial resolution data contains more entropy than low spatial resolution data, and reflecting more detailed information, but it will increase the uncertainty of prediction results and reduce the prediction accuracy. Although the prediction accuracy of low spatial resolution data increases, it will lose lots of detailed information. In order to ensure the accuracy of the simulation, considering the area of the study area and data requirement of the CLUE-S model, the interpreted LULC maps with a resolution of 30 m exceed the upper limit of the CLUE-S model data requirement, so the LULC maps were resampled to multiple scales including 60 m, 90 m, 120 m, and 150 m to facilitate logistic regression analysis of LULC types and driving factors.Selection and processing of driving factorsTo interpret the relationship between the LULC and its driving factors in the mining area, we not only need to identify the driving factors that have greater explanatory power for LULC change, but also need to quantitatively describe the relationship between driving factors and LULC types.Considering the accessibility, usability of the data and the actual conditions in the study area, seven driving factors were selected based on the land use map of Weishan County in 2005 and the DEM data5,10,11,13,26,28,29,30. The driving factors included: (1) terrain factors, including elevation and slope factors; (2) five accessibility factors, including the nearest distance between each grid pixel and the main roads, the major rivers, the residential area, the major mines, and the ditches. The 30 m grid data of each driving factor were resampled to 60 m, 90 m, 120 m and 150 m respectively.In this study, BLRM was used to explore the relationship between LULC change and the related 7 driving factors. BLRM is sensitive to multicollinearity. In order to eliminate the influence of collinearity on the regression results, the multicollinearity between independent variables was diagnosed before the regression model was established.The receiver operating characteristic (ROC) curve was used to evaluate the accuracy of regression analysis results at different scales. The results showed that using 60 m resolution provided more accurate regression analysis results and suffered less loss of LULC and driving factor information during resampling. Therefore, we used 60 m × 60 m grid cell data to driving forces analysis.Raster maps of each driving factor at a resolution scale of 60 m are shown in Fig. 3.Figure 3Raster maps of driving factors at a resolution scale of 60 m. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageLogistic regression analysis of LULC types and driving factorsBLRM is often used for regression analysis of explanatory binary variables. The presence and absence of a certain type of LULC in a specific area is set as 1 and 0, respectively, which is characteristic for binary variable. Therefore, we used BLRM to calculate the probability (P) of various LULC types in a specific spatial location, and its mathematical expression is:$$begin{aligned} ln left( frac{P}{1-P}right) = beta _0 + beta _1 X end{aligned}$$
    (1)
    where (frac{P}{1-P}) is the ’odds ratio’ of an event, abbreviated as ( Omega ), which represents the odds that an outcome will occur given a particular condition compared to the odds of the outcome occurring in the absence of that condition; (beta _0) is a constant; (beta _1) is the correlation coefficient of an explaining variable and an explained variable. Making mathematical transformation of the above expression, we get: (Omega = (frac{P}{1-P}) = e^{beta _0 + beta _1 X}).Regression analysis using BLRM, we divided the study area into many grid cells. Taking each LULC type as the explained variable, and the driving factor causing LULC change as the explanatory variable, we calculated the odds ratio of each LULC type in a specific spatial location, and analyzed the relationship between each LULC type and the driving factors. The calculating equation is:$$begin{aligned} mathrm{Logit} P = ln left( frac{P_i}{1-P_i}right) = beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i} end{aligned}$$
    (2)
    Making mathematical transformation of the above equation, we get:$$begin{aligned} P_i = frac{e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}}{1+e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}} end{aligned}$$
    (3)
    where: (P_i) is the probability of a certain LULC type i in a grid cell, (X_{1,i}sim X_{n,i}) are the driving factors of LULC type i, (beta _0) is the constant, (beta _1sim beta _n) are the correlation coefficients of each driving factor and LULC type i.The receiver operating characteristic (ROC) was used to evaluate the accuracy of regression analysis results. The accuracy can be measured by calculating the area under the ROC curve. The area value is between 0.5 and 1. The closer the value is to 1, the higher the accuracy is. In general, the area under the ROC curve is greater than 0.7, which indicates that the selected factor has good explanatory power27,42.CLUE-S simulation and accuracy validationBefore using the CLUE-S model for futural LULC scenario simulation in mining area, the prediction accuracy needs to be verified. Based on the data of LULC in 2005, the spatial distribution pattern of LULC in 2016 was predicted firstly.The modeling accuracy was evaluated based on the Kappa index by comparing the actual LULC map in 2016 with the simulated in 201627,43,44. Equation (4) gives one of the most popular Kappa index equations: i.e.,$$begin{aligned} mathrm{Kappa}=frac{P_o-P_c}{P_p-P_c} end{aligned}$$
    (4)
    where (P_o) is the observed proportion correct, (P_c) is the expected proportion correct due to chance, (P_c) =1/n, n is the number of LULC types, and (P_p) is the proportion correct when classification is perfect.In order to further verify the accuracy of the model simulation, we also calculated kappa for quantity (Kquantity).Scenario setting of futural LULC simulationDue to the continuous population growth and mineral exploitation in the study area, the land resources, especially farmland resources, have become increasingly scarce and the environment has been deteriorating. Based on the simulation and validated results during 2005-2016, we defined three scenarios—namely natural development scenario, ecological protection scenario, and farmland protection scenario—to predict LULC spatial patterns for 2025.Natural development scenarioIn this scenario, the land use demand of the study area was basically not restricted by policies in near future. We assumed that the change rate of each LULC type in near future was consistent with the change trend from 2005 to 2016. So it is defined as natural development scenario. Using Markov model to obtain the area transition probability matrix of each year from 2017 to 2025, and taking the proportion of each LULC type area in the total study area in 2005 as the initial state matrix, the area of each LULC type in 2025 under the natural development scenario was predicted.Based on the characteristics and trend of the LULC change from 2005 to 2016, after appropriately adjusting the transition probability matrix of different LULC types, we predicted the demands of each LULC type in 2025 under ecological protection scenario and farmland protection scenario using Markov model45,46.Ecological protection scenarioThis scenario emphasizes protecting the ecological environment, restricting the conversion of the LULC types that have more regulatory effects on the ecosystem, such as tidal wetland and water area, to other land use types. Garden land, woodland, grassland, and aquaculture land, belong to other agricultural land, which have regulatory effects on the local ecosystem, so their conversion to other LULC types should be restricted as well.Farmland protection scenarioAccording to the guidelines of “the general land use planning in Weishan County (2006-2020)”, we should maximize the potential use of current construction land, implement intensive and economical utilization of construction land, and use less or not use farmland to economical construction. So in order to ensure the dynamic balance of total farmland amount and the regional food supply security, in the farmland protection scenario, the conversion from farmland to other land use types should be restricted. The projected land use demands for 2025 under the three different scenarios are shown in Table 2.Table 2 Areas of LULC types in 2025 under different scenarios (ha).Full size table More

  • in

    Exploring physicochemical and cytogenomic diversity of African cowpea and common bean

    1.Lewis, G. P. Legumes of the World (Royal Botanic Gardens, 2005).
    Google Scholar 
    2.The Legume Phylogeny Working Group (LPWG). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77 (2017).Article 

    Google Scholar 
    3.Yahara, T. et al. Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon 62, 249–266 (2013).Article 

    Google Scholar 
    4.Odendo, M., Bationo, A. & Kimani, S. Socio-economic contribution of legumes to livelihoods in Sub-Saharan Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management (eds Bationo, A. et al.) 27–46 (Springer, 2011).Chapter 

    Google Scholar 
    5.Dakora, F. D. & Keya, S. O. Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol. Biochem. 29, 809–817 (1997).CAS 
    Article 

    Google Scholar 
    6.Ajeigde, H. A., Singh, B. B. & Osenj, T. O. Cowpea-cereal intercrop productivity in the Sudan savanna zone of Nigeria as affected by planting pattern, crop variety and pest management. Afr. Crop Sci. J. 13, 269–279 (2005).
    Google Scholar 
    7.Rahmanian, M., Batello, C. & Calles, T. Pulse Crops for Sustainable Farms in Sub-Saharan Africa (FAO, 2018).
    Google Scholar 
    8.Rawal, V. & Navarro, D. K. The Global Economy of Pulses (FAO, 2017).
    Google Scholar 
    9.Plants of the World Online. http://powo.science.kew.org (2020).10.Broughton, W. J. et al. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 252, 55–128 (2003).CAS 
    Article 

    Google Scholar 
    11.Delgado-Salinas, A., Bibler, R. & Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 31, 779–791 (2006).Article 

    Google Scholar 
    12.Greenway, P. J. Origins of some East African food plants: Part V. East Afr. Agric. J. 11, 56–63 (1945).
    Google Scholar 
    13.Wortmann, C. S. & Allen, D. J. African Bean Production Environments: Their Definition, Characteristics and Constraints. Occasional Publication Series 11 (CIAT, 1994).
    Google Scholar 
    14.Maxted, N. et al. African Vigna: Systematic and Ecogeographic Studies (International Plant Genetic Resource Institute, 2004).
    Google Scholar 
    15.Singh, B. B. Cowpea: The Food Legume of the 21st Century (Crop Science Society of America Inc., 2014).Book 

    Google Scholar 
    16.Catarino, S. et al. Conservation priorities for African Vigna species: Unveiling Angola’s diversity hotspots. Glob. Ecol. Conserv. 25, e01415. https://doi.org/10.1016/j.gecco.2020.e01415 (2021).Article 

    Google Scholar 
    17.Vidigal, P., Romeiras, M. M. & Monteiro, F. Crops diversification and the role of orphan legumes to improve the Sub-Saharan Africa farming systems. In Sustainable Crop Production (ed. Hasanuzzaman, M.) (IntechOpen, 2019).
    Google Scholar 
    18.Maréchal, R. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28, 1–273 (1978).
    Google Scholar 
    19.Peksen, E., Peksen, A. & Gulumser, A. Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. Int. J. Curr. Microbiol. Appl. Sci. 3, 626–634 (2014).CAS 

    Google Scholar 
    20.Iqbal, A., Khalil, I. A., Ateeq, N. & Khan, M. S. Nutritional quality of important food legumes. Food Chem. 97, 331–335 (2006).CAS 
    Article 

    Google Scholar 
    21.African Orphan Crops Consortium. http://africanorphancrops.org/meet-the-crops/ (2021)22.Boukar, O. et al. Cowpea. In Grain Legumes (ed. de Ron, A. M.) 219–250 (Springer, 2015).Chapter 

    Google Scholar 
    23.Animasaun, D. A., Oyedeji, S., Azeez, Y. K., Mustapha, O. T. & Azeez, M. A. Genetic variability study among ten cultivars of cowpea (Vigna unguiculata L. Walp) using morpho-agronomic traits and nutritional composition. J. Agric. Sci. 10, 119–130 (2015).
    Google Scholar 
    24.Timko, M. P. & Singh, B. B. Cowpea, a multifunctional legume. In Plant Genetics and Genomics: Crops and Models Vol. 1 (eds Moore, P. H. & Ming, R.) 227–258 (Springer, 2008).
    Google Scholar 
    25.Wortmann, S. C., Kirkby, A. R., Eledu, A. C. & Allen, J. D. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa (International Centre for Tropical Agriculture, 2004).
    Google Scholar 
    26.Guignard, M. S. et al. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytol. 210, 1195–1206 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Sheidai, M. et al. Genetic diversity and genome size variability in Linum austriacum (Lineaceae) populations. Biochem. Syst. Ecol. 57, 20–26 (2014).CAS 
    Article 

    Google Scholar 
    28.Kron, P., Suda, J. & Husband, B. C. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 38, 847–876 (2007).Article 

    Google Scholar 
    29.Wu, Y. Q. et al. Genetic analyses of Chinese Cynodon accessions by flow cytometry and AFLP markers. Crop Sci. 46, 917–926 (2016).Article 

    Google Scholar 
    30.Parida, A., Raina, S. N. & Narayan, R. K. J. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82, 125–133 (1990).CAS 
    Article 

    Google Scholar 
    31.Nagl, W. & Treviranus, A. A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Bot. Acta 108, 403–406 (1995).CAS 
    Article 

    Google Scholar 
    32.Barow, M. & Meister, A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ. 26, 571–584 (2003).Article 

    Google Scholar 
    33.Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98, 767–782 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org/ (2020).35.Genesys. Plant Genetic Resources Accession. https://www.genesys-pgr.org/ (2021).36.Pope, G. V. & Polhill, R. M. Flora Zambesiaca, part 5 Vol. 3 (Royal Botanic Gardens, 2001).
    Google Scholar 
    37.Tomooka, N., Vaughan, D. A., Moss, H. & Maxted, N. The Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    38.Debouck, D. G. Primary diversification of Phaseolus in the Americas: Three centers. Plant Genet. Resour. Newsl. 67, 2–8 (1986).
    Google Scholar 
    39.Plant Resources of Tropical Africa. https://www.prota4u.org/database/ (2021).40.Linder, H. P. The evolution of African plant diversity. Front. Ecol. Evol. 2, 38. https://doi.org/10.3389/fevo.2014.00038 (2014).Article 
    ADS 

    Google Scholar 
    41.Romeiras, M. M., Figueira, R., Duarte, M. C., Beja, P. & Darbyshire, I. Documenting biogeographical patterns of African timber species using herbarium records: A conservation perspective based on native trees from Angola. PLoS ONE 9, e103403. https://doi.org/10.1371/journal.pone.0103403 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    42.Catarino, S. et al. Spatial and temporal trends of burnt area in angola: Implications for natural vegetation and protected area management. Diversity 12, 307. https://doi.org/10.3390/d12080307 (2020).Article 

    Google Scholar 
    43.Catarino, S., Duarte, M. C., Costa, E., Carrero, P. G. & Romeiras, M. M. Conservation and sustainable use of the medicinal Leguminosae plants from Angola. PeerJ 7, e6736. https://doi.org/10.7717/peerj.6736 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Romeiras, M. M. et al. IUCN Red List assessment of the Cape Verde endemic flora: Towards a global strategy for plant conservation in Macaronesia. Bot. J. Linn. Soc. 180, 413–425 (2016).Article 

    Google Scholar 
    45.Gomes, A. M. et al. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060 (2020).CAS 
    Article 

    Google Scholar 
    46.The International Institute of Tropical Agriculture (IITA). https://www.iita.org/ (2021)47.Fatokun, C. et al. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 8, 16035. https://doi.org/10.1038/s41598-018-34555-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Rocha, V., Duarte, M. C., Catarino, S., Duarte, I. & Romeiras, M. M. Cabo Verde’s Poaceae flora: A reservoir of crop wild relatives diversity for crop improvement. Front. Plant Sci. 12, 630217. https://doi.org/10.3389/fpls.2021.630217 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Brilhante, M. et al. Tackling food insecurity in Cabo Verde Islands: The nutritional, agricultural and environmental values of the legume species. Foods 10, 206. https://doi.org/10.3390/foods10020206 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pasquet, R. S. Wild cowpea (Vigna unguiculata) evolution. In Advances in Legume Systematics 8: Legumes of Economic Importance (eds Pickersgill, B. & Lock, J. M.) 95–100 (Royal Botanic Gardens, 1996).
    Google Scholar 
    51.Di Bella, G. et al. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 67, 239–248 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Gelin, J. R., Forster, S., Grafton, K. F., McClean, P. E. & Rojas-Cifuentes, G. A. Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci. 47, 1361–1366 (2007).CAS 
    Article 

    Google Scholar 
    53.Dakora, F. D. & Belane, A. K. Evaluation of protein and micronutrient levels in edible cowpea (Vigna unguiculata L. Walp) leaves and seeds. Front. Sustain. Food Syst. 3, 70. https://doi.org/10.3389/fsufs.2019.00070 (2019).Article 

    Google Scholar 
    54.Yeken, M. Z., Akpolat, H., Karaköy, T. & Çiftçi, V. Assessment of mineral content variations for biofortification of the bean seed. Int. J. Agric. Sci. 4, 261–269 (2018).
    Google Scholar 
    55.Gondwe, T. M., Alamu, E. O., Mdziniso, P. & Maziya-Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 9, 15991. https://doi.org/10.1038/s41598-019-52360-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.Sperotto, R. A., Ricachenevsky, F. K., Williams, L. E., Vasconcelos, M. W. & Menguer, P. K. From soil to seed: Micronutrient movement into and within the plant. Front. Plant Sci. 5, 438. https://doi.org/10.3389/fpls.2014.00438 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Maziya-Dixon, B., Kling, J. G., Menkir, A. & Dixon, A. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull. 21, 419–422 (2000).Article 

    Google Scholar 
    58.Shewfelt, R. L. Sources of variation in the nutrient content of agricultural commodities from the farm to the consumer. J. Food Qual. 13, 37–54 (1990).Article 

    Google Scholar 
    59.World Health Organization. The World Health Report 2006: Working Together for Health. https://www.who.int/whr/2006/whr06_en.pdf?ua=1 (2006).60.Gödecke, T., Stein, A. J. & Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Sec. 17, 21–29 (2018).Article 

    Google Scholar 
    61.Shankar, A. H. Mineral deficiencies. In Hunter’s Tropical Medicine and Emerging Infectious Diseases (eds Ryan, E. T. et al.) 1048–1054 (Elsevier, 2020).Chapter 

    Google Scholar 
    62.Muthayya, S. et al. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 8, e67860. https://doi.org/10.1371/journal.pone.0067860 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.Joy, E. J. et al. Dietary mineral supplies in Africa. Physiol. Plant. 151, 208–229 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.World Health Organization. World health statistics 2015. https://apps.who.int/iris/bitstream/handle/10665/170250/9789240694439_eng.pdf;jsessionid=9CFCB446F9217B60415DD216E70F6A49?sequence=1 (2015).65.Muriuki, J. M. et al. Estimating the burden of iron deficiency among African children. BMC Med. 18, 31. https://doi.org/10.1186/s12916-020-1502-7 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Official Journal of the European Union. Regulation (Eu) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=EN (2011).67.Nowicka, A. et al. Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry. Sci. Hortic. 209, 132–138 (2016).CAS 
    Article 

    Google Scholar 
    68.Guilengue, N., Alves, S., Talhinhas, P. & Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 10, 21. https://doi.org/10.3390/agronomy10010021 (2020).Article 

    Google Scholar 
    69.Chable, V. et al. Embedding cultivated diversity in society for agro-ecological transition. Sustainability 12, 784. https://doi.org/10.3390/su12030784 (2020).Article 

    Google Scholar 
    70.Knight, C. A., Molinari, N. A. & Petrov, D. A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95, 177–190 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Pati, K., Zhang, F. & Batley, J. First report of genome size and ploidy of the underutilized leguminous tuber crop Yam Bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant Genet. Resour. 17, 456–459 (2019).CAS 
    Article 

    Google Scholar 
    72.Sliwinska, E. Flow cytometry—A modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic. 30, 103–128 (2018).Article 

    Google Scholar 
    73.Veselý, P., Bureš, P. & Šmarda, P. Nutrient reserves may allow for genome size increase: Evidence from comparison of geophytes and their sister non-geophytic relatives. Ann. Bot. 112, 1193–1200 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.African Plant Database. http://www.ville-ge.ch/musinfo/bd/cjb/africa/index. (2021).75.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Botswana. https://www.botswanaflora.com (2021).76.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Malawi. http://www.malawiflora.com (2021).77.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Mozambique. http://www.mozambiqueflora.com (2021)78.Bingham, M. G., Willemen, A., Wursten, B. T., Ballings, P. & Hyde, M. A. Flora of Zambia http://www.zambiaflora.com (2021).79.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Zimbabwe. http://www.zimbabweflora.co.zw (2021).80.International Legume Database & Information Service. https://ildis.org/LegumeWeb (2020).81.Exell, A.W. & Fernandes, A. Conspectus florae angolensis. Vol. 3, No. 2. Leguminosae (Papilionoideae: Hedysareae-Sophoreae) (Junta de Investigações do Ultramar, 1966)82.Pasquet, R. S. Notes on the genus Vigna (Leguminosae-Papilionoideae). Kew Bull 56, 223–227 (2001).Article 

    Google Scholar 
    83.van Zonneveld, M. et al. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 10, 2111. https://doi.org/10.1038/s41598-020-58646-8 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    84.Global Biodiversity Information Facility. https://www.gbif.org/ (2021).85.GBIF Occurrence Download—Vigna. https://doi.org/10.15468/dl.bsjsk5 (2021).86.GBIF Occurrence Download—Phaseolus. https://doi.org/10.15468/dl.kjw72 (2021).87.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021).88.Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85, 625–631 (1992).Article 

    Google Scholar 
    89.Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. 100, 875–888 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Doležel, J. & Bartoš, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Jelihovschi, E. G., Faria, J. C. & Allaman, I. B. ScottKnott: A package for performing the Scott-Knott clustering algorithm in R. TEMA 15, 3–17 (2014).MathSciNet 
    Article 

    Google Scholar 
    93.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    94.R Core Team. R: A language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020). More

  • in

    Oil palm cultivation can be expanded while sparing biodiversity in India

    1.Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS One 11, pe0159668 (2016).Article 

    Google Scholar 
    2.Rulli, M. C. et al. Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renew. Sustain. Energy Rev. 105, 499–512 (2019).Article 

    Google Scholar 
    3.Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Strona, G. et al. Small room for compromise between oil palm cultivation and primate conservation in Africa. Proc. Natl Acad. Sci. USA 115, 8811–8816 (2018).CAS 
    Article 

    Google Scholar 
    5.United States Department of Agriculture, Foreign Agricultural Service. Data retrieved from: https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery (2020).6.Sagar, H. S. et al. India in the oil palm era: describing India’s dependence on palm oil, recommendations for sustainable production, and opportunities to become an influential consumer. Trop. Conserv. Sci. 12, 1940082919838918 (2019).Article 

    Google Scholar 
    7.Jadhav, R. Exclusive: India urges boycott of Malaysian palm oil after diplomatic row—sources. Reuters (13 January 2020).8.Srinivasan, U. Oil palm should not be expanded in Arunachal Pradesh. Arunachal Times (October 2016).9.Ministry of Agriculture and Farmers’ Welfare. National Mission on Oilseeds and Oil Palm; https://nmoop.gov.in (Government of India, 2020).10.Bose, P. Oil palm plantations vs shifting cultivation for indigenous peoples: analyzing Mizoram’s New Land Use Policy. Land Use Policy 81, 115–123 (2019).Article 

    Google Scholar 
    11.Dhar, A. Enter oil palm in northeast India: centre, Patanjali, Godrej bet big. The Citizen (16 September 2020).12.Raman, T. R. S. R. Is oil palm expansion good for Mizoram? The Frontier Despatch 3, 6–7 (2016).
    Google Scholar 
    13.Khandekar, N. Expanding oil palm plantations in the northeast could extract a long-term cost. The Wire (4 August 2020).14.Mandal, J. & Raman, T. R. S. R. Shifting agriculture supports more tropical forest birds than oil palm or teak plantations in Mizoram, northeast India. The Condor 118, 345–359 (2016).Article 

    Google Scholar 
    15.Nandi, J. Oil palm push on the northeast may impact biodiversity, water table, say experts. Hindustan Times 10, 51 (2020).
    Google Scholar 
    16.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Global Agro-Ecological Zones, GAEZ v.3.0 (Food and Agriculture Organization, 2016); https://gaez.fao.org/pages/data-viewer18.Corley, R. H. V. How much palm oil do we need? Environ. Sci. Policy 12, 134–139 (2009).CAS 
    Article 

    Google Scholar 
    19.Meijaard, E. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020).Article 

    Google Scholar 
    20.West, P. C. et al. Leverage points for improving global food security and the environment. Science 18, 325–328 (2014).ADS 
    Article 

    Google Scholar 
    21.Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).22.Shaktivadivel, R. The Agricultural Groundwater Revolution: Opportunities and Threats to Development (CAB International, 2007).
    Google Scholar 
    23.Lee, J. S. H., Miteva, D. A., Carlson, K. M., Heilmayr, R. & Saif, O. Does oil palm certification create trade-offs between environment and development in Indonesia? Env. Res. Lett. 15, 124064 (2020).Article 

    Google Scholar 
    24.Sankar, K. N. M. Oil palm finds favour with East Godavari farmers. The Hindu (25 January 2017).25.Curry, G. N. & Koczberski, G. Finding common ground: relational concepts of land tenure and economy in the oil palm frontier of Papua New Guinea. Geogr. J. 175, 98–111 (2009).Article 

    Google Scholar 
    26.DeVos, R., Kohne, M. & Roth, D. We’ll turn your water in Coca Cola: the atomising practices of oil palm development in Indonesia. J. Agrar. Change 1, 385–405 (2018).Article 

    Google Scholar 
    27.IPCC. Climate Change: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).28.IPCC. IPCC Special Reports on Emissions Scenarios: Summary for Policymakers (IPCC, 2000).29.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8. 5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 18, 19656–19657 (2020).ADS 
    Article 

    Google Scholar 
    30.Copernicus Land Monitoring Service (European Environment Agency, 2020).31.Hoffman, M., Koenig, K., Bunting, G., Cosntanza, J. & Willams, K. J. Biodiversity Hotspots v.2016.1 (2016); https://doi.org/10.5281/zenodo.326180632.IUCN World Database on Protected Areas, online April 2017 (UNEP-WCMC, 2016); www.protectedplanet.net33.QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation, 2021); http://qgis.osgeo.org34.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Observed increasing water constraint on vegetation growth over the last three decades

    1.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    2.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    3.Porporato, A., D’odorico, P., Laio, F., Ridolfi, L. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25, 1335–1348 (2002).Article 
    ADS 

    Google Scholar 
    4.Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evolution 2, 1897 (2018).Article 

    Google Scholar 
    5.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).Article 
    ADS 

    Google Scholar 
    6.Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    8.Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    9.Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    10.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. change 6, 791–795 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).Article 
    ADS 

    Google Scholar 
    12.Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. change 9, 73 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    13.Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    15.Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    16.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    17.Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    19.Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    20.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    21.Jiao, W., Wang, L. & McCabe, M. F. Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ. 256, 112313 (2021).Article 
    ADS 

    Google Scholar 
    22.Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    23.Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612–612 (2007).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    24.Chen, T., Werf, G., Jeu, R., Wang, G. & Dolman, A. A global analysis of the impact of drought on net primary productivity. Hydrol. Earth Syst. Sci. 17, 3885 (2013).Article 
    ADS 

    Google Scholar 
    25.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    26.Kreuzwieser, J. & Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant, Cell Environ. 37, 2245–2259 (2014).CAS 

    Google Scholar 
    27.Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    28.Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    29.Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    30.Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2012).31.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52 (2013).Article 
    ADS 

    Google Scholar 
    32.Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17 (2013).Article 
    ADS 

    Google Scholar 
    33.Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    34.Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).Article 
    ADS 

    Google Scholar 
    35.Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    36.Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    37.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evolution 1, 1438–1445 (2017).Article 

    Google Scholar 
    38.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    39.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 
    ADS 

    Google Scholar 
    40.Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    41.Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202 (2017).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    42.Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    43.Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    44.Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth-Sci. Rev. 196, 102870 (2019).CAS 
    Article 

    Google Scholar 
    45.Cronk, J. K. & Fennessy, M. S. Wetland Plants: Biology and Ecology. (CRC press, 2016).46.Zohaib, M. & Choi, M. Satellite-based global-scale irrigation water use and its contemporary trends. Sci. Total Environ. 714, 136719 (2020).47.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    48.Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2020).49.Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    50.Oliveira, P. J., Davin, E. L., Levis, S. & Seneviratne, S. I. Vegetation‐mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Glob. Change Biol. 17, 3453–3467 (2011).Article 
    ADS 

    Google Scholar 
    51.Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    52.Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Article 
    ADS 

    Google Scholar 
    53.Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).Article 
    ADS 

    Google Scholar 
    54.Palmer, W. C. Meteorological Drought. Vol. 30 (Citeseer, 1965).55.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009).57.Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    58.Gruber, A., Scanlon, T., Schalie, R. V. D., Wagner, W. & Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739 (2019).Article 
    ADS 

    Google Scholar 
    59.Dorigo, W. et al. ESA CCI Soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 
    ADS 

    Google Scholar 
    60.Wagner, W. et al. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals) 7, 315–321 (2012).61.Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    62.Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article 
    ADS 

    Google Scholar 
    63.Tian, F. et al. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).Article 
    ADS 

    Google Scholar 
    64.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    65.Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article 
    ADS 

    Google Scholar 
    66.Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    67.Wu, D. et al. Time‐lag effects of global vegetation responses to climate change. Glob. Change Biol. 21, 3520–3531 (2015).Article 
    ADS 

    Google Scholar 
    68.Tei, S. & Sugimoto, A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob. Change Biol. 24, 4225–4237 (2018).Article 
    ADS 

    Google Scholar 
    69.Wen, Y. et al. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res.: Biogeosciences 124, 789–806 (2019).Article 
    ADS 

    Google Scholar 
    70.McKee, T. B., Doesken, N. J. & Kleist, J. in Proceedings of the 8th Conference on Applied Climatology. 179-183 (American Meteorological Society Boston, MA).71.Jiao, W., Tian, C., Chang, Q., Novick, K. A. & Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 268, 74–85 (2019).Article 
    ADS 

    Google Scholar  More

  • in

    Evidence for competition and cannibalism in wormlions

    1.Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285 (1983).Article 

    Google Scholar 
    2.Keddy, P. A. Competition 2nd edn. (Kluwer, 2001).Book 

    Google Scholar 
    3.Kotler, B. P. & Brown, J. S. Environmental heterogeneity and the coexistence of desert rodents. Annu. Rev. Ecol. Syst. 19, 281–307 (1988).Article 

    Google Scholar 
    4.Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    5.Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–696 (1983).Article 

    Google Scholar 
    6.Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Morris, D. W. Toward an ecological synthesis: a case for habitat selection. Oecologia 136, 1–13 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Barkae, E. D., Abramsky, Z. & Ovadia, O. Can models of density-dependent habitat selection be applied for trap-building predators?. Popul. Ecol. 56, 175–184 (2014).Article 

    Google Scholar 
    9.Halliday, W. D. & Blouin-Demers, G. Red flour beetles balance thermoregulation and food acquisition via density-dependent habitat selection. J. Zool. 294, 198–205 (2014).Article 

    Google Scholar 
    10.Tregenza, T. Building on the ideal free distribution. Adv. Ecol. Res. 26, 253–307 (1995).Article 

    Google Scholar 
    11.Kingsolver, J. G. & Pfennig, D. W. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58, 1608–1612 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Alatalo, R. V. & Moreno, J. Body size, interspecific interactions, and use of foraging sites in tits (Paridae). Ecology 68, 1773–1777 (1987).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).Article 

    Google Scholar 
    14.Sokolovska, N., Rowe, L. & Johansson, F. Fitness and body size in mature odonates. Ecol. Entomol. 25, 239–248 (2000).Article 

    Google Scholar 
    15.Werner, E. E. & Anholt, B. R. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am. Nat. 142, 242–272 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Blanckenhorn, W. U. The evolution of body size: What keeps organisms small?. Q. Rev. Biol. 75, 385–407 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Gotthard, K. Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J. Anim. Ecol. 69, 896–902 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Van Buskirk, J. Competition, cannibalism, and size class dominance in a dragonfly. Oikos 65, 455–464 (1992).Article 

    Google Scholar 
    19.Fincke, O. M. Larval behaviour of a giant damselfly: Territoriality or size-dependent dominance?. Anim. Behav. 51, 77–87 (1996).Article 

    Google Scholar 
    20.Hopper, K. R., Crowley, P. H. & Kielman, D. Density dependence, hatching synchrony, and within-cohort cannibalism in young dragonfly larvae. Ecology 77, 191–200 (1996).Article 

    Google Scholar 
    21.Eitam, A., Blaustein, L. & Mangel, M. Density and intercohort priority effects on larval Salamandra salamandra in temporary pools. Oecologia 146, 36–42 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Barkae, E. D., Scharf, I. & Ovadia, O. A stranger is tastier than a neighbor: cannibalism in Mediterranean and desert antlion populations. Behav. Ecol. 28, 69–76 (2017).Article 

    Google Scholar 
    23.Alford, R. A. & Wilbur, H. M. Priority effects in experimental pond communities: competition between Bufo and Rana. Ecology 66, 1097–1105 (1985).Article 

    Google Scholar 
    24.Dayton, G. H. & Fitzgerald, L. A. Priority effects and desert anuran communities. Can. J. Zool. 83, 1112–1116 (2005).Article 

    Google Scholar 
    25.Louette, G. & De Meester, L. Predation and priority effects in experimental zooplankton communities. Oikos 116, 419–426 (2007).Article 

    Google Scholar 
    26.Geange, S. W. & Stier, A. C. Order of arrival affects competition in two reef fishes. Ecology 90, 2868–2878 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).Article 

    Google Scholar 
    28.Shine, R. & Li-Xin, S. Arboreal ambush site selection by pit-vipers Gloydius shedaoensis. Anim. Behav. 63, 565–576 (2002).Article 

    Google Scholar 
    29.Clark, R. W. Feeding experience modifies the assessment of ambush sites by the timber rattlesnake, a sit-and-wait predator. Ethology 110, 471–483 (2004).Article 

    Google Scholar 
    30.Tsairi, H. & Bouskila, A. Ambush site selection of a desert snake (Echis coloratus) at an oasis. Herpetologica 60, 13–23 (2004).Article 

    Google Scholar 
    31.Scharf, I., Lubin, Y. & Ovadia, O. Foraging decisions and behavioural flexibility in trap-building predators: a review. Biol. Rev. 86, 626–639 (2011).PubMed 
    Article 

    Google Scholar 
    32.Blamires, S. J. Biomechanical costs and benefits of sit-and-wait foraging traps. Isr. J. Ecol. Evol. 66, 5–14 (2020).Article 

    Google Scholar 
    33.Simberloff, D. et al. Holes in the doughnut theory: the dispersion of ant-lions. Brenesia 14, 13–46 (1978).
    Google Scholar 
    34.Farji-Brener, A. G., Carvajal, D., Gei, M. G., Olano, J. & Sanchez, J. D. Direct and indirect effect of soil structure on the density of an antlion larva in a tropical dry forest. Ecol. Entomol. 33, 183–188 (2008).Article 

    Google Scholar 
    35.Lucas, J. R. Metabolic rates and pit-construction costs of two antlion species. J. Anim. Ecol. 54, 295–309 (1985).Article 

    Google Scholar 
    36.Tanaka, K. Energetic cost of web construction and its effect on web relocation in the web-building spider Agelena limbata. Oecologia 81, 459–464 (1989).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Lubin, Y., Ellner, S. & Kotzman, M. Web relocation and habitat selection in desert widow spider. Ecology 74, 1915–1928 (1993).Article 

    Google Scholar 
    38.Loria, R., Scharf, I., Subach, A. & Ovadia, O. The interplay between foraging mode, habitat structure, and predator presence in antlions. Behav. Ecol. Sociobiol. 62, 1185–1192 (2008).Article 

    Google Scholar 
    39.Griffiths, D. Interference competition in ant-lion (Macroleon quinquemaculatus) larvae. Ecol. Entomol. 17, 219–226 (1992).Article 

    Google Scholar 
    40.Heiling, A. M. & Herberstein, M. E. The importance of being larger: intraspecific competition for prime web sites in orb-web spiders (Araneae, Araneidae). Behaviour 136, 669–677 (1999).Article 

    Google Scholar 
    41.Rayor, L. S. & Uetz, G. W. Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behav. Ecol. Sociobiol. 27, 77–85 (1990).Article 

    Google Scholar 
    42.Wilson, D. S. Prey capture and competition in the ant lion. Biotropica 6, 187–193 (1974).Article 

    Google Scholar 
    43.Rao, D. Experimental evidence for the amelioration of shadow competition in an orb-web spider through the ‘ricochet’ effect. Ethology 115, 691–697 (2009).Article 

    Google Scholar 
    44.Scharf, I. Factors that can affect the spatial positioning of large and small individuals in clusters of sit-and-wait predators. Am. Nat. 195, 649–663 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Matsura, T. & Takano, H. Pit-relocation of antlion larvae in relation to their density. Res. Popul. Ecol. 31, 225–234 (1989).Article 

    Google Scholar 
    46.Griffiths, D. Intraspecific competition in larvae of the ant-lion Morter sp. and interspecific interactions with Macroleon quinquemaculatus. Ecol. Entomol. 16, 193–201 (1991).Article 

    Google Scholar 
    47.Wise, D. H. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu. Rev. Entomol. 51, 441–465 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Klokočovnik, V., Veler, E. & Devetak, D. Antlions in interaction: confrontation of two competitors in limited space. Isr. J. Ecol. Evol. 66, 73–81 (2020).Article 

    Google Scholar 
    49.Buddle, C. M., Walker, S. E. & Rypstra, A. L. Cannibalism and density-dependent mortality in the wolf spider Pardosa milvina (Araneae: Lycosidae). Can. J. Zool. 81, 1293–1297 (2003).Article 

    Google Scholar 
    50.Ovadia, O., Scharf, I., Barkae, E. D., Levi, T. & Alcalay, Y. Asymmetrical intra-guild predation and niche differentiation in two pit-building antlions. Isr. J. Ecol. Evol. 66, 82–90 (2020).Article 

    Google Scholar 
    51.Devetak, D. Wormlion Vermileo vermileo (L.) (Diptera: Vermileonidae) in Slovenia and Croatia. Ann. Ser. Hist. Nat. 18, 283–286 (2008).
    Google Scholar 
    52.Dor, R., Rosenstein, S. & Scharf, I. Foraging behaviour of a neglected pit-building predator: the wormlion. Anim. Behav. 93, 69–76 (2014).Article 

    Google Scholar 
    53.Miler, K., Yahya, B. E. & Czarnoleski, M. Substrate moisture, particle size and temperature preferences of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecol. Entomol. 44, 488–493 (2019).Article 

    Google Scholar 
    54.Miler, K., Yahya, B. E. & Czarnoleski, M. Different predation efficiencies of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecol. Entomol. 43, 255–262 (2018).Article 

    Google Scholar 
    55.Franks, N. R., Worley, A., Falkenberg, M., Sendova-Franks, A. B. & Christensen, K. Digging the optimum pit: antlions, spirals and spontaneous stratification. Proc. R. Soc. B 286, 20190365 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Scharf, I., Daniel, A., MacMillan, H. A. & Katz, N. The effect of fasting and body reserves on cold tolerance in 2 pit-building insect predators. Curr. Zool. 63, 287–294 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    57.Devetak, D. Substrate particle size-preference of wormlion Vermileo vermileo (Diptera: Vermileonidae) larvae and their interaction with antlions. Eur. J. Entomol. 105, 631–635 (2008).Article 

    Google Scholar 
    58.Adar, S., Dor, R. & Scharf, I. Habitat choice and complex decision making in a trap-building predator. Behav. Ecol. 27, 1491–1498 (2016).Article 

    Google Scholar 
    59.Scharf, I. et al. The contribution of shelter from rain to the success of pit-building predators in urban habitats. Anim. Behav. 142, 139–145 (2018).Article 

    Google Scholar 
    60.Katz, N., Pruitt, J. N. & Scharf, I. The complex effect of illumination, temperature, and thermal acclimation on habitat choice and foraging behavior of a pit-building wormlion. Behav. Ecol. Sociobiol. 71, 137 (2017).Article 

    Google Scholar 
    61.Bar-Ziv, M. A., Bega, D., Subach, A. & Scharf, I. Wormlions prefer both fine and deep sand but only deep sand leads to better performance. Curr. Zool. 65, 393–400 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).
    Google Scholar 
    63.Ovadia, O. & Abramsky, Z. Density-dependent habitat selection: evaluation of the isodar method. Oikos 73, 86–94 (1995).Article 

    Google Scholar 
    64.Jensen, W. E. & Cully, J. F. Density-dependent habitat selection by brown-headed cowbirds (Molothrus ater) in tallgrass prairie. Oecologia 142, 136–149 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Whitham, T. G. The theory of habitat selection: examined and extended using Pemphigus aphids. Am. Nat. 115, 449–466 (1980).Article 

    Google Scholar 
    66.van Beest, F. M. et al. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. J. Anim. Ecol. 83, 147–156 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Mathis, A. Territoriality in a terrestrial salamander: the influence of resource quality and body size. Behaviour 112, 162–175 (1990).Article 

    Google Scholar 
    68.Croy, M. I. & Hughes, R. N. Effects of food supply, hunger, danger and competition on choice of foraging location by the fifteen-spined stickleback, Spinachia spinachia L. Anim. Behav. 42, 131–139 (1991).Article 

    Google Scholar 
    69.Davey, A. J. H., Hawkins, S. J., Turner, G. F. & Doncaster, C. P. Size-dependent microhabitat use and intraspecific competition in Cottus gobio. J. Fish Biol. 67, 428–443 (2005).Article 

    Google Scholar 
    70.Abrahams, M. V. Patch choice under perceptual constraints: a cause for departures from an ideal free distribution. Behav. Ecol. Sociobiol. 19, 409–415 (1986).Article 

    Google Scholar 
    71.Sutherland, W. J., Townsend, C. R. & Patmore, J. M. A test of the ideal free distribution with unequal competitors. Behav. Ecol. Sociobiol. 23, 51–53 (1988).Article 

    Google Scholar 
    72.McClure, M. S. Spatial distribution of pit-making ant lion larvae (Neuroptera: Myrmeleontidae): density effects. Biotropica 8, 179–183 (1976).Article 

    Google Scholar 
    73.Rayor, L. S. & Uetz, G. W. Age-related sequential web building in the colonial spider Metepeira incrassata (Araneidae): an adaptive spacing strategy. Anim. Behav. 59, 1251–1259 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Yip, E. C., Levy, T. & Lubin, Y. Bad neighbors: hunger and dominance drive spacing and position in an orb-weaving spider colony. Behav. Ecol. Sociobiol. 71, 128 (2017).Article 

    Google Scholar 
    75.Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Minias, P., Janiszewski, T. & Lesner, B. Center-periphery gradients of chick survival in the colonies of Whiskered Terns Chlidonias hybrida may be explained by the variation in the maternal effects of egg size. Acta Ornithol. 48, 179–186 (2013).Article 

    Google Scholar 
    77.Geange, S. W. & Stier, A. C. Priority effects and habitat complexity affect the strength of competition. Oecologia 163, 111–118 (2010).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Hallander, H. Prey, cannibalism and microhabitat selection in the wolf spiders Pardosa chelata OF Müller and P. pullata Clerck. Oikos 21, 337–340 (1970).Article 

    Google Scholar 
    79.Skevington, J. H. & Dang, P. T. Exploring the diversity of flies (Diptera). Biodiversity 3, 3–27 (2002).Article 

    Google Scholar 
    80.Scharf, I., Silberklang, A., Avidov, B. & Subach, A. Do pit-building predators prefer or avoid barriers? Wormlions’ preference for walls depends on light conditions. Sci. Rep. 10, 10928 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Russian forest sequesters substantially more carbon than previously reported

    Russia has been reporting almost no changes in forested area, growing stock volume (GSV) and biomass to the United Nations Framework Convention on Climate Change (UNFCCC)1 and the Food and Agriculture Organization of the United Nations (FAO) Forest Resources Assessment (FRA)2 since the collapse of the USSR and the decline in the Soviet Forest Inventory and Planning (FIP) system. According to the State Forest Register (SFR)3, which is the main repository of forest information, and national reporting to the FAO FRA2, the GSV and the above ground biomass (AGB) increased by 1.1% and 0.6% (Table S1), respectively, during 1990–2015, yet studies using remote sensing (RS) indicate increased vegetation productivity4, tree cover (annual rate + 0.417% over 1982–2016)5, increased AGB (+ 329 Tg C yr−1 over 2000–20076), total biomass (annual rate + 0.44% or + 153 Tg C yr−1 over 1990–20077), and forest ecosystem carbon pools (ca + 470 Tg C yr−1 over 2001–20198). This inconsistency in estimates can be explained by an information gap that appeared when Russia decided to move from the FIP to another system for the collection of forest information at the national scale – the National Forest Inventory (NFI).The FIP involves revisiting every forest stand (on the ground for managed forests or using RS techniques for remote non-commercial forests) on a 10–15-year interval, with the measurement of forest parameters combined with the formulation of forest management directives. After the collapse of the USSR, the inventory within the FIP system slowed down substantially. For example, more than 50% of the forest area was surveyed by the FIP more than 25 years ago9. For these reasons, the reliability of information on forests in Russia has deteriorated since 1988, which is the year when FIP-based reporting10 involved the largest inventory efforts in recent decades. According to this report10, the total GSV of Russian forests was 81.7 × 109 m3 (without shrubland, bias corrected11). This value is used here as a reference to quantify biomass stock changes in Russia with respect to the current decade.In contrast, NFI is a state-of-the-art inventory system based on a statistical sampling method. It was initiated in 2007 and the first cycle was completed in 2020. The NFI data processing is ongoing, but the first official press release12 suggests that Russian forest accumulated 102 × 109 m3 over its lifespan until 2014. Once finalized, the NFI will be verified before adoption as the official source of information to the SFR and national reporting. The NFI has received some criticism13 because of the relatively sparse sampling employed and the stratification method used, which is partially based on outdated FIP data.In Russia, the long intervals between consecutive surveys and the difficulty in accessing very remote regions in a timely manner by an inventory system make satellite RS an essential tool for capturing forest dynamics and providing a comprehensive, wall-to-wall perspective on biomass distribution. However, observations from current RS sensors are not suited for producing accurate biomass estimates unless the estimation method is calibrated with a dense network of measurements from ground surveys14. Here we calibrated models relating two global RS biomass data products (GlobBiomass GSV15 and CCI Biomass GSV16) and additional RS data layers (forest cover mask9, the Copernicus Global Land Cover CGLS‐LC100 product17) with ca 10,000 ground plots (see Material and Methods) to reduce nuances in the individual input maps due to imperfections in the RS data and approximations in the retrieval procedure18,19. The combination of these two sources of information, i.e., ground measurements and RS, utilizes the advantages of both sources in terms of: (i) highly accurate ground measurements and (ii) the spatially comprehensive coverage of RS products and methods. The amount of ground plots currently available may be insufficient for providing an accurate estimate of GSV for the country when used alone, but they are the key to obtaining unbiased estimates when used to calibrate RS datasets20. The map merging procedure was preferred over a plot-aided direct estimation of GSV or AGB from the RS data because of the usually poor association between biomass measured at inventory plots and remote sensing observables21. In addition, models relating biomass and remote sensing observables that are trained with spatially inhomogeneous datasets (Figure S1) tend to be biased in regions not represented by the dataset of the reference biomass measurements.We estimate the total GSV of Russia for the year 2014 for the official forested area (713.1 × 106 ha) to be 111 ± 1.3 × 109 m3, which is 39% higher than the 79.9 × 109 m3 (excluding shrubland) figure reported in the SFR3 for the same year. An additional 7.1 × 109 m3 or 9% were found due to the larger forested area (+ 45.7 106 ha) recognized by RS9, following the expansion of forests to the north22, to higher elevations, in abandoned arable land23, as well as the inclusion of parks, gardens and other trees outside of forest, which were not counted as forest in the SFR. Based on cross-validation, our estimate at the regional level (81 regions of Russia – Table S2, Figure S2) is unbiased. The standard error varied from 0.6 to 17.6% depending on the region. The median error was 1.6%, while the area weighted error was 1.2%. The predicted GSV (Fig. 1) with associated uncertainties is available here (https://doi.org/10.5281/zenodo.3981198) as a GeoTiff at a spatial resolution of 3.2 arc sec. (ca 0.5 ha).Figure 1Predicted mean forest growing stock volume (m3 ha-1) for the year ca 2014 (Generated by Esri ArcGIS Desktop v.10.7, URL: https://desktop.arcgis.com/en/arcmap/).Full size imageHoughton et al.24 estimated forest biomass based on RS and FIP data in Russia for the year 2000. Average forest biomass density varied between 80.6 and 88.2 Mg ha-1 depending on which forest mask was used. Our estimate for the year 2014 of 107 Mg ha-1 (using the conversion factor of GSV to AGB from24 0.6859) is 21–33% higher than the one by Houghton et al., but this is consistent with expected biomass increases over time, i.e., 14 years after the Houghton et al. estimate.Assuming an unchanged total forest area (721.7 × 106 ha) in 1988 and 2014, we conclude that Russian forests have accumulated 1,163 × 106 m3 yr-1 or 407 Tg C yr-1 in live biomass of trees on average over 26 years. This gives an average GSV change rate of + 1.61 m3 ha-1 yr-1 or + 0.56 t C ha-1 yr-1. The sequestration rate obtained, however, should be treated with caution because different methods have been applied in 1988 and 2014 (see “Caveats and Limitations” section). To provide some context for the magnitude of these numbers, one can compare the Russian forest gain to the net GSV losses in tropical forests over the period 1990–2015 according to FAO FRA25 (-1,033 × 106 m3 yr-1 in the regions with a negative trend: South and Central America, South and Southeast Asia, and Africa). A similar divergence in the carbon sink between Tropical and Boreal forest was recognized by Tagesson et al.26.In terms of carbon stock change, our estimates are substantially higher than those reported by Pan et al.7 for 1990–2007 (+ 153 Tg C yr-1) based on FIP data. The biomass carbon estimates by Liu et al.6 are instead in line with our results. There is an increase in the annual rate of AGB in Russia of + 329 Tg C yr−1 (annual variation from 214 to 400 Tg C yr−1) over 2000–20076. Interestingly, another boreal country – Canada – has demonstrated neutral or negative trends (from 0 to -14 Tg C yr−1) for the same time span using the same estimation method6.We can observe different spatial patterns in the change in the GSV density between 1988 (FIP10, bias corrected11) and 2014 (our estimate), which can be explained by climate change, CO2 fertilisation and changes in disturbance regimes (Fig. 2). The average linear trend in the annual temperature increase during 1976–2014 in Russia is + 0.45 °C per 10 years27. The temperature increase is statistically significant in every region except for western Siberia (Fig. 2–3). Significantly increased temperature extremes and an increase in the number of days without precipitation is observed in the south of European Russia, Baikal, Kamchatka, and Chukotka27 (Fig. 2–1). Some regions in the south of the European part of Russia are colored in dark blue, but they, as a rule, have a small share of forested area, which is often linked to water bodies and, therefore, suffers less from increased drought (Fig. 2–1). Central and eastern Siberia suffer from an increase in disturbances, which offsets the climate stimulation effect (Fig. 2–4). The forested area in the Nenets region (Fig. 2–2) is 4 times larger in 2014 based on the RS forest mask compared to the SFR in 1988 (where forest was accounted for up until a certain latitude at that time), where the increase in area resulted in a decrease in the average GSV.Figure 2Change in growing stock volume (m3 ha-1) from 1988 to 2014 (average over administrative regions) (Generated by Esri ArcGIS Desktop v.10.7, URL: https://desktop.arcgis.com/en/arcmap/). These changes can be categorized into: 1—significant increase in air temperature and drought; 2—substantially increased forest area, which lowers the average GSV density; 3—least (not significant) temperature increase; 4—increase of disturbances: wildfire and harvest (southern part), which offsets the climate stimulation effect.Full size imageFocusing specifically on national reporting of managed forest to the UNFCCC, 72% of forested area in Russia is considered to be managed1. We multiplied the GSV density by the managed forest area for each administrative region (Table S3). The difference in GSV estimation (between ours and the one from the SFR report) is 23.6 × 109 m3 (Table S3) or 33% higher. From the GSV of managed forests in 2014 and based on the same area in 1988, we can estimate the sequestration rate of live biomass of managed forests as 354 Tg C yr-1 , which is considerably higher than the figure of 230 Tg C yr-1 in the current report1.This proof of concept demonstrates the relevance of complementing recent NFI data with remote sensing map products. Our study demonstrates that the already considerable value of forest inventory data can be further enhanced in a forest resources mapping scenario. In addition, we seek to promote greater access to these data by opening up their access to the larger scientific community. Through the integration of RS estimates of GSV and forest inventory data from Russia, we confirm that carbon stocks increased substantially during the last few decades in contrast to the figures provided in official national reporting. Russian forests play an even more important global role in carbon sequestration than previously thought, where the increase in growing stock is of the same magnitude as the net losses in tropical forests over the same time period. More

  • in

    Ecological factors influence balancing selection on leaf chemical profiles of a wildflower

    1.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).2.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 

    Google Scholar 
    3.Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26, 1101–1118 (2012).Article 

    Google Scholar 
    4.Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Kulbaba, M. W., Sheth, S. N., Pain, R. E., Eckhart, V. M. & Shaw, R. G. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 73, 1746–1758 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B 279, 3843–3852 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Steffen, W., Crutzen, P. J. & McNeil, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Zhang, X.-S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.McGuigan, K., Aguirre, J. D. & Blows, M. W. Simultaneous estimation of additive and mutational genetic variance in an outbred population of Drosophila serrata. Genetics 201, 1239–1251 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Huang, W. et al. Spontaneous mutations and the origin and maintenance of quantitative genetic variation. eLife 5, e14625 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8, 845–856 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Subramaniam, B. & Rausher, M. D. Balancing selection on a floral polymorphism. Evolution 54, 691–695 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Hedrick, P. W. & Thomson, G. Evidence for balancing selection at HLA. Genetics 104, 449–456 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Troth, A., Puzey, J. R., Kim, R. S., Willis, J. H. & Kelly, J. K. Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science 361, 475–478 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Delph, L. F. & Kelly, J. K. On the importance of balancing selection in plants. N. Phytol. 201, 45–56 (2014).Article 

    Google Scholar 
    20.Anderson, J. T., Wagner, M. R., Rushworth, C. A., Prasad, K. V. S. K. & Mitchell-Olds, T. The evolution of quantitative traits in complex environments. Heredity 112, 4–12 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Carmona, D., Lajeunesse, M. J. & Johnson, M. T. Plant traits that predict resistance to herbivores. Funct. Ecol. 25, 358–367 (2011).Article 

    Google Scholar 
    24.DeLucia, E. H., Nabity, P. D., Zavala, J. A. & Berenbaum, M. R. Climate change: resetting plant–insect interactions. Plant Physiol. 160, 1677–1685 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Prasad, K. V. S. K. et al. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337, 1081–1084 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Bergelson, J., Dwyer, G. & Emerson, J. J. Models and data on plant–enemy coevolution. Annu. Rev. Genet. 35, 469–499 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Hodgins, K. A. & Barrett, S. C. H. Female reproductive success and the evolution of mating-type frequencies in tristylous populations. N. Phytol. 171, 569–580 (2006).Article 

    Google Scholar 
    29.Trotter, M. V. & Spencer, H. G. Complex dynamics occur in a single-locus, multiallelic model of general frequency-dependent selection. Theor. Popul. Biol. 76, 292–298 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Tuinstra, M. R., Ejeta, G. & Goldsbrough, P. B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic loci that differ at quantitative traits. Theor. Appl. Genet. 95, 1005–1011 (1997).CAS 
    Article 

    Google Scholar 
    31.Salehin, M. et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat. Commun. 10, 4021 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Hossain, M. S. et al. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 77, 977–983 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Wang, B. et al. Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 126 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Bloom, T. C., Baskin, J. M. & Baskin, C. C. Ecological life history of the facultative woodland biennial Arabis laevigata variety laevigata (Brassicaceae): seed dispersal. J. Torrey Bot. Soc. 129, 21–28 (2002).Article 

    Google Scholar 
    36.Song, B.-H. et al. Multilocus patterns of nucleotide diversity, population structure, and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics 181, 1021–1033 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Mackay, T., Stone, E. & Ayroles, J. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Hedrick, P. W. Genetic polymorphism in heterogeneous environments: a decade later. Annu. Rev. Ecol. Syst. 17, 535–566 (1986).Article 

    Google Scholar 
    39.Hedrick, P. W. Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity 82, 126–133 (1999).Article 

    Google Scholar 
    40.Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Gillespie, J. H. & Langley, C. H. A general model to account for enzyme variation in natural populations. Genetics 76, 837–848 (1974).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Anderson, J. T., Willis, J. H. & Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 27, 258–266 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Oakley, C. G., Ågren, J., Atchison, R. A. & Schemske, D. W. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol. Ecol. 23, 4304–4315 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Price, N. et al. Combining population genomics and fitness QTLs to identify the genetics of local adaptation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 115, 5028–5033 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Abuelsoud, W., Hirschmann, F. & Papenbrock, J. in Drought Stress in Plants Vol. 1 (eds Hossain, M. A. et al.) 227–248 (Springer, 2016).48.Nguyen, D., Rieu, I., Mariani, C. & van Dam, N. M. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 91, 727–740 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Shani, E. M. et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr. Biol. 27, 437–444 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hopkins, R. J., van Dam, N. M. & van Loon, J. J. A. Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54, 57–83 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Burow, M., Müller, R., Gershenzon, J. & Wittstock, U. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol. 32, 2333–2349 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Wagner, M. R. & Mitchell-Olds, T. Plasticity of plant defense and its evolutionary implications in wild populations of Boechera stricta. Evolution 72, 1034–1049 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package version 2.56.0 (2020).55.Wang et al. Correction to: Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 16 (2019).Article 

    Google Scholar 
    56.Carley, L. et al. Data to accompany: Ecological factors influence balancing selection on leaf chemical profiles of a wildflower. Dryad Data https://doi.org/10.5061/dryad.7h44j0zsr (2021).57.Atkinson, N. J., Lilley, C. J. & Urwin, P. E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162, 2028–2041 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Sharma, A. et al. Comprehensive analysis of plant rapid alkalization factor (RALF) genes. Plant Physiol. Biochem. 106, 82–90 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Dutilleul, C., Jourdain, A., Bourguignon, J. & Hugouvieux, V. The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol. 147, 239–251 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Jiang, S.-C. et al. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 88, 369–385 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Wen, J., Vanek-Krebitz, M., Hoffmann-Sommergruber, K., Scheiner, O. & Breitender, H. The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol. Phylogenet. Evol. 8, 317–333 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Koo, A. J., Fulda, M., Browse, J. & Ohlrogge, J. B. Identification of a plastid acyl‐acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. Plant J. 44, 620–632 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Henrissat, B. et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl Acad. Sci. USA 92, 7090–7094 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Longevity and germination of Juniperus communis L. pollen after storage

    A uniform response of the pollen grains towards storage conditions was registered in all five shrubs investigated with a conspicuous decline in germination percentage and pollen tube length after storage. Pollen tube growth reacted more sensitively to storage than germination. The most profound reductions in pollen viability traits were observed in samples stored at + 4 °C. The germination percentage of freshly collected pollen of individual shrubs ranged between 67.3 and 88.6%, whereas that in stored pollen was between 18.0 and 39.6%. In relative terms, storage represented a 49.3–73.2% decline in germination (Fig. 1). The same tendency was also observed in pollen tube growth, when freshly collected pollen possessed 248.0–367.3 µm long pollen tubes, and pollen stored at + 4 °C was characterised by 93.9–218.5 µm long pollen tubes. The corresponding decline reached 32.5–68.7%.Figure 1Graphical illustrations of variation in pollen germination percentage (a) and pollen tube length (b) of individual shrubs revealed in fresh pollen and in pollen under storage. Different letters refer to the statistical significance of the differences between tested individuals and storage variants, resulting from Duncan’s pairwise tests.Full size imageContrary to storage at + 4 °C, pollen stored at − 20 °C had an increased germination by 0.3% in shrub no. 1 and 0.6% in shrub no. 5 as compared with fresh pollen. A more conspicuous increase in pollen germinability was registered in individual no. 4, exhibiting 70.0% germination in fresh pollen and 93.6% in pollen stored at − 20 °C. In the remaining two shrubs (no. 2, 3), only a negligible decline in pollen germination was recorded. The deviation from freshly collected pollen varied within 0.5–16.8%. In general, the germination characteristics of pollen stored at − 20 °C were comparable with those of the fresh pollen and varied between 67.6 and 93.6%. As a second viability trait, pollen tube growth deviated more profoundly from that of fresh pollen than germination. On average, the pollen tube length of pollen stored at − 20 °C ranged from 163.0 to 286.6 µm, which represents a 11.4–45.7% decline compared to fresh pollen (Figs. 1, S1). ANOVA and Duncan`s grouping confirmed the highly significant differences between tested shrubs in both pollen germination percentage (P  More