1.Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS
CAS
Article
PubMed
Google Scholar
2.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).ADS
CAS
Article
PubMed
Google Scholar
3.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).ADS
CAS
Article
Google Scholar
4.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995. https://doi.org/10.1073/pnas.1208909109 (2012).ADS
Article
PubMed
Google Scholar
5.Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS
Article
PubMed
Google Scholar
6.Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x (2003).Article
Google Scholar
7.Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime?. Science 307, 1725–1726. https://doi.org/10.1126/science.1104258 (2005).CAS
Article
PubMed
Google Scholar
8.Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637. https://doi.org/10.1126/science.1059199 (2001).CAS
Article
PubMed
Google Scholar
9.Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).Article
PubMed
PubMed Central
Google Scholar
10.Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833. https://doi.org/10.1038/ncomms11833 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
11.Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013. https://doi.org/10.1002/lno.10481 (2017).ADS
Article
Google Scholar
12.Jokiel, P. L. & York, R. H. Solar Ultraviolet Photobiology of the Reef Coral Pocillopora Damicornis and Symbiotic Zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
Google Scholar
13.Jokiel, P. L., Lesser, M. P. & Ondrusek, M. E. UV-absorbing compounds in the coral Pocillopora damicornis: Interactive effects of UV radiation, photosynthetically active radiation, and water flow. Limnol. Oceanogr. 42, 1468–1473. https://doi.org/10.4319/lo.1997.42.6.1468 (1997).ADS
CAS
Article
Google Scholar
14.McKenzie, R. L. et al. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182–198. https://doi.org/10.1039/C0PP90034F (2011).CAS
Article
PubMed
Google Scholar
15.Ferrier-Pagès, C. et al. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol. Bull. 213, 76–87. https://doi.org/10.2307/25066620 (2007).Article
PubMed
Google Scholar
16.Ailsa, P. K. & Ross, J. J. Effects of hypo-osmosis on the coral Stylophora pistillata: nature and cause of low-salinity bleaching. Mar. Ecol. Prog. Ser. 253, 145–154 (2003).Article
Google Scholar
17.Bessell-Browne, P. et al. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments. Mar. Pollut. Bull. 117, 161–170. https://doi.org/10.1016/j.marpolbul.2017.01.050 (2017).CAS
Article
PubMed
Google Scholar
18.Piniak, G. A. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals. Mar. Environ. Res. 64, 456–468. https://doi.org/10.1016/j.marenvres.2007.04.001 (2007).CAS
Article
PubMed
Google Scholar
19.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).ADS
CAS
Article
PubMed
Google Scholar
20.Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208. https://doi.org/10.1007/bf00402312 (1977).Article
Google Scholar
21.Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8, 155–162 (1990).ADS
Article
Google Scholar
22.Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).ADS
Article
Google Scholar
23.Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989. https://doi.org/10.1007/s002270100634 (2001).Article
Google Scholar
24.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS
CAS
Article
PubMed
Google Scholar
25.Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239. https://doi.org/10.1007/s003380170003 (2001).Article
Google Scholar
26.Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000 2, 1123–1128 (2002).27.Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).ADS
Article
Google Scholar
28.Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).Article
PubMed
Google Scholar
29.Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).ADS
Article
Google Scholar
30.Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article
Google Scholar
31.Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185. https://doi.org/10.1007/s00227-007-0765-2 (2007).Article
Google Scholar
32.Cumbo, V. R., Fan, T. Y. & Edmunds, P. J. Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. J. Exp. Mar. Biol. Ecol. 439, 100–107. https://doi.org/10.1016/j.jembe.2012.10.019 (2013).Article
Google Scholar
33.Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763. https://doi.org/10.1007/s00338-007-0258-2 (2007).ADS
Article
Google Scholar
34.Lager, C. V. A., Hagedorn, M. S., Rodgers, K. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).Article
PubMed
PubMed Central
Google Scholar
35.Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).Article
PubMed
Google Scholar
36.Cox, E. F. Continuation of sexual reproduction in Montipora capitata following bleaching. Coral Reefs 26, 721–724. https://doi.org/10.1007/s00338-007-0251-9 (2007).ADS
MathSciNet
Article
Google Scholar
37.Armoza-Zvuloni, R., Segal, R., Kramarsky-Winter, E. & Loya, Y. Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar. Ecol. Prog. Ser. 426, 149–159 (2011).ADS
Article
Google Scholar
38.Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).ADS
Article
Google Scholar
39.Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).ADS
Article
Google Scholar
40.Edge, S. E., Shearer, T. L., Morgan, M. B. & Snell, T. W. Sub-lethal coral stress: Detecting molecular responses of coral populations to environmental conditions over space and time. Aquat. Toxicol. 128–129, 135–146. https://doi.org/10.1016/j.aquatox.2012.11.014 (2013).CAS
Article
PubMed
Google Scholar
41.Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).ADS
CAS
Article
PubMed
Google Scholar
42.Downs, C. A. et al. The use of cellular diagnostics for identifying sub-lethal stress in reef corals. Ecotoxicology 21, 768–782. https://doi.org/10.1007/s10646-011-0837-4 (2012).CAS
Article
PubMed
Google Scholar
43.Olsen, K., Ritson-Williams, R., Ochrietor, J. D., Paul, V. J. & Ross, C. Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar. Biol. 160, 2609–2618. https://doi.org/10.1007/s00227-013-2255-z (2013).CAS
Article
Google Scholar
44.Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: Energetics and reproduction of a reef coral with heat tolerant Symbiodinium Type-D. J. Mar. Sci. 2011, 185890. https://doi.org/10.1155/2011/185890 (2011).Article
Google Scholar
45.Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719. https://doi.org/10.7717/peerj.3719 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
46.Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawai‘i. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).Article
PubMed
PubMed Central
Google Scholar
47.Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of Three Bleaching Events on the Reef Resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398 (2017).Article
Google Scholar
48.Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu. Doctoral Dissertation, University of Hawaiʻi at Mānoa, (2019).49.Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).Article
Google Scholar
50.Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. Biol. Sci. 286, 20190614. https://doi.org/10.1098/rspb.2019.0614 (2019).Article
PubMed
PubMed Central
Google Scholar
51.Rodgers, K. U. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).Article
Google Scholar
52.Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: Two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).
Google Scholar
53.Heyward, A. J. Sexual reproduction in five species of the coral Montipora. In: Coral Reef Population Biology. Hawaii Institute of Marine Biology Technical Report 37, 170–178 (1985).54.Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway. (Mutual Publishing Company, 2005).55.Veron, J. E. N. Corals of the world. Volume 1. (Australia Institute of Marine Science, 2000).56.Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS One 5, e15021. https://doi.org/10.1371/journal.pone.0015021 (2010).57.Cunha, R. L. et al. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol. Biol. 19, 153. https://doi.org/10.1186/s12862-019-1476-2 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
58.Padilla-Gamiño, J. L., Weatherby, T. M., Waller, R. G. & Gates, R. D. Formation and structural organization of the egg–sperm bundle of the scleractinian coral Montipora capitata. Coral Reefs 30, 371–380. https://doi.org/10.1007/s00338-010-0700-8 (2011).ADS
Article
Google Scholar
59.Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18 (2014).Article
Google Scholar
60.Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).ADS
Article
Google Scholar
61.Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).Article
Google Scholar
62.Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).ADS
CAS
Article
PubMed
Google Scholar
63.Hunter, C. L. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata . In Proceedings of the 6th International Coral Reef Symposium Vol. 2 727–732 (1988).64.Binet, M. T., Doyle, C. J., Williamson, J. E. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100. https://doi.org/10.1016/j.jembe.2013.12.008 (2014).CAS
Article
Google Scholar
65.Chen, L. B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181. https://doi.org/10.1146/annurev.cb.04.110188.001103 (1988).CAS
Article
PubMed
Google Scholar
66.Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084. https://doi.org/10.1242/jeb.114900 (2015).Article
PubMed
Google Scholar
67.Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882. https://doi.org/10.4319/lo.2007.52.5.1874 (2007).ADS
Article
Google Scholar
68.Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).CAS
Article
PubMed
Google Scholar
69.Hayward, A. & Gillooly, J. F. The cost of sex: Quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
70.Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).ADS
Article
Google Scholar
71.Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).Article
Google Scholar
72.Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706. https://doi.org/10.4319/lo.2001.46.3.0704 (2001).ADS
Article
Google Scholar
73.Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).CAS
Article
PubMed
Google Scholar
74.Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).CAS
Article
PubMed
Google Scholar
75.Benzie, J. A. H. & Dixon, P. The effects of sperm concentration, sperm: Egg ratio, and gamete age on fertilization success in Crown-of-Thorns Starfish (Acanthaster planci) in the Laboratory. Biol. Bull. 186, 139–152. https://doi.org/10.2307/1542048 (1994).CAS
Article
PubMed
Google Scholar
76.Brazeau, D. A. & Lasker, H. R. Reproductive success in the Caribbean octocoral Briareum asbestinum. Mar. Biol. 114, 157–163. https://doi.org/10.1007/BF00350865 (1992).Article
Google Scholar
77.Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).CAS
Article
PubMed
Google Scholar
78.Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).CAS
Article
PubMed
Google Scholar
79.Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: Sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).CAS
Article
Google Scholar
80.Levitan, D. R., Sewell, M. A. & Chia, F.-S. How distribution and abundance influence fertilization success in the Sea Urchin Strongylocentotus franciscanus. Ecology 73, 248–254. https://doi.org/10.2307/1938736 (1992).Article
Google Scholar
81.Jamieson, G. S. Marine invertebrate conservation: Evaluation of fisheries over-exploitation Concerns1. Am. Zool. 33, 551–567. https://doi.org/10.1093/icb/33.6.551 (1993).Article
Google Scholar
82.Fitt, K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article
Google Scholar
83.Coles, S. L. & Jokiel, P. L. Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar. Biol. 49, 187–195. https://doi.org/10.1007/BF00391130 (1978).Article
Google Scholar
84.Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).Article
Google Scholar
85.Grunwald, D. J. & Streisinger, G. Induction of mutations in the zebrafish with ultraviolet light. Genet. Res. 59, 93–101. https://doi.org/10.1017/S0016672300030305 (1992).CAS
Article
PubMed
Google Scholar
86.Lamare, M., Burritt, D. & Lister, K. Chapter Four – Ultraviolet Radiation and Echinoderms: Past, Present and Future Perspectives. Adv. Mar. Biol. 59, 145–187 (Academic Press, 2011).87.Jokiel, P. L. Solar ultraviolet radiation and coral reef Epifauna. Science 207, 1069–1071 (1980).ADS
CAS
Article
Google Scholar
88.Banaszak, A. T., Barba Santos, M. G., LaJeunesse, T. C. & Lesser, M. P. The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J. Exp. Mar. Biol. Ecol. 337, 131–146. https://doi.org/10.1016/j.jembe.2006.06.014 (2006).CAS
Article
Google Scholar
89.Leutenegger, A. et al. It’s cheap to be colorful. FEBS J. 274, 2496–2505. https://doi.org/10.1111/j.1742-4658.2007.05785.x (2007).CAS
Article
PubMed
Google Scholar
90.Rosic, N. N. & Dove, S. Mycosporine-like amino acids from coral dinoflagellates. Appl. Environ. Microbiol. 77, 8478. https://doi.org/10.1128/AEM.05870-11 (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
91.Smith, E. G., D’Angelo, C., Salih, A. & Wiedenmann, J. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32, 463–474. https://doi.org/10.1007/s00338-012-0994-9 (2013).ADS
Article
Google Scholar
92.Dove, S. Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar. Ecol. Prog. Ser. 272, 99–116 (2004).ADS
Article
Google Scholar
93.Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Change Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).ADS
Article
Google Scholar
94.Pennington, J. T. The ecology of fertilization of Echinoid eggs: The consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).Article
PubMed
Google Scholar
95.Levitan, D. R. & Young, C. M. Reproductive success in large populations: empirical measures and theoretical predictions of fertilization in the sea biscuit Clypeaster rosaceus. J. Exp. Mar. Biol. Ecol. 190, 221–241. https://doi.org/10.1016/0022-0981(95)00039-T (1995).Article
Google Scholar
96.Hagedorn, M. et al. Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success. PLoS ONE 10, e0118364. https://doi.org/10.1371/journal.pone.0118364 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
97.Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61. https://doi.org/10.1038/s41598-020-79732-x (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
98.Kolinski, S. P. Sexual reproduction and the early life history of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Doctoral Dissertation, University of Hawai’i at Mānoa, (2004).99.Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437. https://doi.org/10.1890/04-0298 (2004).Article
Google Scholar
100.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, Vienna, Austria, 2019). More