More stories

  • in

    Tracking the invasive hornet Vespa velutina in complex environments by means of a harmonic radar

    Study areasThe technique of harmonic radar tracking has been applied in nine different localities of Liguria (Italy), in the framework of the control activities developed to contain the spread of V. velutina in this region19,21,30. Four of these study areas (Ameglia, Arcola, Riccò del Golfo in La Spezia district and Finale Ligure in Savona district) were new invasive outbreaks characterised by a low nest density of V. velutina and low predation pressure on honey bee colonies. The other five study areas of Imperia district (Camporosso, Dolceacqua, Ospedaletti, and the two villages of Calvo and Latte in the municipality of Ventimiglia) were located inside the colonised range of the species21, and were characterised by a high nest density and an intensive predation pressure on honey bee colonies (Supplementary Table S1).Harmonic radar trackingThe harmonic radar and the tags that have been used for tracking the flight of V. velutina were designed and developed ad-hoc for following insects in complex environments; their technical and innovative characteristics have been previously described by the authors18. At the beginning of a new tracking session, worker hornets are trapped, usually in apiaries while preying on honey bees, and the transponders are attached on their thorax using an orthodontic glue, without anesthetising the insects. Subsequently, hornets are released from the tagging location and are immediately able to resume their activity, such as flying and preying on honey bees (Fig. 6). The whole tagging procedure requires less than one minute per hornet. Tag weight (15 mg) is approximately 4–7% of the weight of V. velutina workers (mean worker’s weight changes over the season between 189 and 386 mg)26. Moreover, the tag is 3–4 times lighter than the weight of prey’s pellet generally transported to the nest by this species. This information, together with multiple observations of tagged hornets in apiaries and the results achieved by other authors with a radio-tracking experiment (in which it was found that hornets equipped with a tag of weight lesser than 80% of their body weight are considered good flyers)22, suggest that the tags used in this study do not affect the behaviour and the flying abilities of V. velutina.Figure 6Tagged hornets performing their usual predatory behaviour. Tagged individuals of V. velutina hovering in front of honey bee colonies for preying on forager bees (a,b). A tagged hornet that is disjointing a honey bee for gathering the thorax (most energetic part of its prey), that will be brought back to the nest for feeding the brood (c). Two tagged hornets in proximity of the entrance hole of the nest (d).Full size imageThe harmonic radar records independently all the tracks of flying hornets that are inside its detection range. The real-time analysis of the recorded tracks allows understanding the main flying directions. If the nest of V. velutina is located outside of the maximum detection range of the radar (about 500 m in flat terrain)18 or behind physical obstacles, the harmonic radar is moved according to the flying directions of the hornets. The presence of a diffused road network, as in many of our study areas, facilitated the movement of the radar from one position to another. This operation is repeated until the position of the nest is determined. The area where the nest is located is generally highlighted by the presence of several tracks that converge or begin from the same site. The visual inspection of the area permits the exact detection of the position of the nest. In several cases, tagged hornets were visually observed on the surface of the nests (Fig. 6d).The total number of tagged hornets was recorded for each tracking session, together with the radar operation time, the number of radar movements per session, the number of detected nests per session and the minimum distance between the nests and the apiaries where hornets were hunting honey bees (Supplementary Table S2). Hornets were trapped with standard entomological procedures for trapping insects, and experiments were conducted ethically since no hornets were killed, injured, or kept captive after being tagged.Tracking lengths and environmental characteristicsThe main parameter selected for estimating the performance of the harmonic radar in tracking V. velutina in different natural and complex environments is the length of the tracks of tagged insects. To obtain this parameter, fixes (hornets detected by the harmonic radar at each radar’s rotation) were extracted for each tracking session and uploaded on a GIS software32. Afterwards, consecutive fixes of the same track were connected with the shortest line, so to obtain hornet tracks and calculate their length. The advanced radar analyses used for processing the received signals18 allow discriminating the true fixes (position of the hornet) from clutter (reflected signals received from objects in the landscape). However, the presence of obstacles may generate gaps in the received signals (e.g. when a hornet is temporarily flying behind an obstacle such as a house), but these gaps were rare and never occurred for long periods of time. In these cases, if fixes were not clearly recognizable to a track of the same hornet, these were excluded from the analysis. The exclusion of the tracks was performed also in the rare cases during which the presence of multiple tagged hornets did not allow a clear identification of the tracks.The length of the tracks in each fix position (n = 2580) was modelled with a GLMM (see “Data analysis”) to evaluate the effect of environmental features (land cover, elevation above sea level, slope gradient, road density). The land cover layer was obtained through a photo interpretation of satellite images (in a buffer area of 100 m around the minimum convex polygon that encompass all the tracks in each locality) and classification in three macro-levels: open terrains (landscapes predominantly characterised by open areas, such as fields), urban areas (matrices formed by buildings/roads) and woodlands (matrices formed by forests). Elevation above sea level and slope degree were obtained by a digital elevation model (resolution of 20 m).Visual tracking of flying hornetsThe length of the tracks recorded by the harmonic radar was compared with the length of the tracks recorded when adopting a customary technique for tracking insects, such as the visual tracking and triangulation of flying directions20,25. In six of the nine localities where the harmonic radar tracking has been applied (Fig. 4), an operator was waiting near a honey bee colony till one V. velutina worker caught a honey bee. Subsequently, after the hornet disjoined the most energetic parts of its prey (the thorax)33, the operator visually tracked the flight of the hornet when flying back to its nest, using a binocular and by recording with a GPS the position where the hornet disappeared from view. In some cases (n = 4), common flying routes were identified, and we were able to resume the visual tracking with other hornets from the previous disappearance position. Finally, GPS positions were uploaded on a GIS software to calculate the length of the tracks with this technique.In this study, the visual tracking technique has not been implemented systematically for nest detection, therefore the two approaches are compared only by evaluating the recorded length of the tracks. The effectiveness in locating nests, the required time and the associated costs are discussed in the framework of previous studies for tracking V. velutina, taking into account advantages and limits of the different techniques20,22,25.Estimation of V. velutina ground flying speedHarmonic radar tracking allows estimating the ground flying speed of V. velutina, by analysing the distance between each recorded position at consecutive radar rotations. Giving that the time of each radar rotation is fixed (3 s), it is possible to estimate the hornet’s speed between each detection8.The ground flying speed of V. velutina has been estimated in the three localities of La Spezia district, due to the availability of a subsample of clear tracks with consecutive detections per each rotation of the radar and good weather conditions. Furthermore, based on their direction, tracks were classified in homing tracks (H), which belong to hornets flying from the apiary to the nest, and foraging tracks (F), which belong to hornets flying towards the apiary for hunting honey bees. Data on wind speed and direction were obtained from weather stations close to the study areas.Data analysisData analyses were performed with the software R34. Environmental characteristics of the localities were analysed with a Principal Component Analysis (PCA; package factoextra), to understand affinities between study areas and correlations between the considered variables. The length of the tracks between localities recorded with the harmonic radar was compared with the Kruskal–Wallis and the Dunn tests with Bonferroni correction, while the flying speed between foraging and homing hornets was compared with the Wilcoxon rank-sum test (two-tailed).Generalized linear mixed models (GLMM; package lme4) with gamma distribution and log link function were used to assess (1) the influence of environmental variables on the length of the tracks and (2) compare tracking methods between study areas. In the first case, a random slope model has been implemented, by defining the locality and the slope degree as random effects (uncorrelated). In the second case, a standard random intercept model has been implemented, by selecting the locality as random effect. In both cases, continuous variables were standardized, and multi-collinearity of environmental variables was taken into account by calculating the Variance Inflation Factor (VIF). This was 1.5 for elevation and slope degree, and 1.0 for road density. More

  • in

    Trophic niches of native and nonnative fishes along a river-reservoir continuum

    1.Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).Article 
    PubMed 

    Google Scholar 
    2.Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–359. https://doi.org/10.1899/08-171.1 (2010).Article 

    Google Scholar 
    3.Reid, A. J. et al. Emerging threats and persistent challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).Article 
    PubMed 

    Google Scholar 
    4.Cucherousset, J. & Olden, J. D. Ecological impacts of nonnative freshwater fishes. Fisheries 36, 215–230. https://doi.org/10.1080/03632415.2011.574578 (2011).Article 

    Google Scholar 
    5.Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467. https://doi.org/10.1038/46762 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Britton, J. R., Davies, G. D. & Harrod, C. Trophic interactions and consequent impacts of the invasive fish Psuedorasbora parva in a native aquatic food web: a field investigation in the UK. Biol. Invasions 12, 1533–1542. https://doi.org/10.1007/s10530-009-9566-5 (2010).Article 

    Google Scholar 
    7.Cox, J. G. & Lima, S. L. Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680. https://doi.org/10.1016/j.tree.2006.07.011 (2006).Article 
    PubMed 

    Google Scholar 
    8.Marks, J. C., Haden, G. A., O’Neil, M. & Pace, C. Effects of flow restoration and exotic species removal on recovery of native fish: Lessons from a dam decommissioning. Restor. Ecol. 18, 934–943. https://doi.org/10.1111/j.1526-100X.2009.00574.x (2010).Article 

    Google Scholar 
    9.Walsworth, T. E., Budy, P. & Thiede, G. P. Longer food chains and crowded niche space: effects of multiple invaders on desert stream food web structure. Ecol. Freshw. Fish 22, 439–452. https://doi.org/10.1111/eff.12038 (2013).Article 

    Google Scholar 
    10.Rogosch, J. S. & Olden, J. D. Invaders induce coordinated isotopic niche shifts in native fish species. Can. J. Fish. Aquat. Sci. 77, 1348–1358. https://doi.org/10.1139/cjfas-2019-0346 (2020).Article 

    Google Scholar 
    11.Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723. https://doi.org/10.2307/1933500 (1961).Article 

    Google Scholar 
    12.Zaret, T. M. & Rand, A. S. Competition in tropical stream fishes: Support for the competitive exclusion principle. Ecology 52, 336–342. https://doi.org/10.2307/1934593 (1971).Article 

    Google Scholar 
    13.Britton, J. R., Ruiz-Navarro, A., Verreycken, H. & Amat-Trigo, F. Trophic consequences of introduced species: comparative impacts of increased interspecific versus intraspecific competitive interactions. Funct. Ecol. 32, 486–495. https://doi.org/10.1111/1365-2435.12978 (2018).Article 
    PubMed 

    Google Scholar 
    14.Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–696. https://doi.org/10.1086/284165 (1983).Article 

    Google Scholar 
    15.David, P. et al. Impacts of invasive species on food webs: a review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).Article 

    Google Scholar 
    16.Vannote, R. L., Wayne Minshall, G., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137. https://doi.org/10.1139/f80-017 (1980).Article 

    Google Scholar 
    17.Ibañez, C. et al. Convergence of temperate and tropical stream fish assemblages. Ecography 32, 658–670. https://doi.org/10.1111/j.1600-0587.2008.05591.x (2009).Article 

    Google Scholar 
    18.Winemiller, K. O. et al. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Res. Appl. 27, 791–803. https://doi.org/10.1002/rra.1396 (2011).Article 

    Google Scholar 
    19.Ward, J. V. & Stanford, J. A. The serial discontinuity concept: extending the model to floodplain rivers. River Res. Appl. 10, 159–168. https://doi.org/10.1002/rrr.3450100211 (1983).Article 

    Google Scholar 
    20.Sabo, J. L. et al. Pulsed flows, tributary inputs and food-web structure in a highly regulated river. J. Appl. Ecol. 55, 1884–1895. https://doi.org/10.1111/1365-2664.13109 (2018).Article 

    Google Scholar 
    21.Sabater, S. Alterations of the global water cycle and their effects on river structure, function and services. Freshw. Rev. 1, 75–89. https://doi.org/10.1608/FRH-1.1.5 (2008).Article 

    Google Scholar 
    22.Arrantes, C. C., Fitzgerald, D. B., Hoeinghaus, D. J. & Winemiller, K. O. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Curr. Opin. Environ. Sustain. 37, 28–40. https://doi.org/10.1016/j.cosust.2019.04.009 (2019).Article 

    Google Scholar 
    23.Cross, W. F. et al. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecol. Appl. 21, 2016–2033. https://doi.org/10.1890/10-1719.1 (2011).Article 
    PubMed 

    Google Scholar 
    24.Cross, W. F. et al. Food web dynamics in a large river discontinuum. Ecol. Monogr. 83, 311–337. https://doi.org/10.1890/12-1727.1 (2013).Article 

    Google Scholar 
    25.Wellard Kelley, H. A. et al. Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam. Freshw. Sci. 32, 397–410. https://doi.org/10.1899/12-088.1 (2013).Article 

    Google Scholar 
    26.Thornton, K. W., Kimmel, B. L. & Payne, F. E. Reservoir Limnology: Ecological Perspectives (John Wiley and Sons, 1990).
    Google Scholar 
    27.Havel, J. E., Lee, C. E. & Vander Zanden, J. M. Do reservoirs facilitate invasions into landscapes?. Bioscience 55, 518–525. https://doi.org/10.1641/0006-3568(2005)055[0518:DRFIIL]2.0.CO;2 (2005).Article 

    Google Scholar 
    28.Southwood, T. R. E. Habitat, the templet for ecological strategies?. J. Anim. Ecol. 46, 337–365. https://doi.org/10.2307/3817 (1977).Article 

    Google Scholar 
    29.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460. https://doi.org/10.1016/j.tree.2008.03.011 (2008).Article 
    PubMed 

    Google Scholar 
    30.Mercado-Silva, N., Helmus, M. R. & Vander Zanden, M. J. The effects of impoundment and non-native species on a river food web in Mexico’s central plateau. River Res. Appl. 25, 1090–1108. https://doi.org/10.1002/rra.1205 (2009).Article 

    Google Scholar 
    31.Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T. & Brosse, S. Homogenization patterns of the world’s freshwater fish faunas. Proc. Natl. Acad. Sci. U. S. A. 108, 18003–18008. https://doi.org/10.1073/pnas.1107614108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Delong, M. D., Thorp, J. H., Thoms, M. C. & McIntosh, L. M. Trophic niche dimensions of fish communities as a function of historical hydrological conditions in a Plains river. River Syst. 19, 177–187. https://doi.org/10.1127/1868-5749/2011/019-0036 (2011).Article 

    Google Scholar 
    33.Pilger, T. J., Gido, K. B. & Propst, D. L. Diet and trophic niche overlap of native and nonnative fishes in the Gila River, USA: implications for native fish conservation. Ecol. Freshw. Fish 19, 300–321. https://doi.org/10.1111/j.1600-0633.2010.00415.x (2010).Article 

    Google Scholar 
    34.Mor, J. R. et al. Dam regulation and riverine food-web structure in a Mediterranean river. Sci. Total Environ. 625, 301–310. https://doi.org/10.1016/j.scitotenv.2017.12.296 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Tyus, H. M. & Saunders, J. F. III. Nonnative fish control and endangered fish recovery: lessons from the Colorado River. Fisheries 25, 17–24. https://doi.org/10.1577/1548-8446(2000)025%3c0017:NFCAEF%3e2.0.CO;2 (2000).Article 

    Google Scholar 
    36.Strayer, D. L. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174. https://doi.org/10.1111/j.1365-2427.2009.02380.x (2010).Article 

    Google Scholar 
    37.Marks, J. C., Williamson, C. & Hendrickson, D. A. Coupling stable isotope studies with food web manipulations to predict the effects of exotic fish: lessons from Cuatro Ciénegas, Mexico. Aquat. Conserv. 21, 317–323. https://doi.org/10.1002/aqc.1199 (2011).Article 

    Google Scholar 
    38.Cooke, S. J., Paukert, C. & Hogan, Z. Endangered river fish: factors hindering conservation and restoration. Endanger. Species Res. 17, 179–191. https://doi.org/10.3354/esr00426 (2012).Article 

    Google Scholar 
    39.Pennock, C. A., Farrington, M. A. & Gido, K. B. Feeding ecology of early life stage Razorback Sucker relative to other sucker species in the San Juan River. Trans. Am. Fish. Soc. 148, 938–951. https://doi.org/10.1002/tafs.10188 (2019).Article 

    Google Scholar 
    40.Cucherousset, J., Bouletreau, S., Martino, A., Roussel, J. M. & Santoul, F. Using stable isotope analyses to determine the ecological effects of non-native fishes. Fish. Mgmt. Ecol. 19, 111–119. https://doi.org/10.1111/j.1365-2400.2011.00824.x (2012).Article 

    Google Scholar 
    41.Finlay, J. C. Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs. Ecology 82, 1052–1064. https://doi.org/10.1890/0012-9658(2001)082[1052:SCIROR]2.0.CO;2 (2001).Article 

    Google Scholar 
    42.France, R. L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40, 1310–1313. https://doi.org/10.4319/lo.1995.40.7.1310 (1995).ADS 
    Article 

    Google Scholar 
    43.Fry, B. Stable Isotope Ecology (Springer-Verlag, 2006).Book 

    Google Scholar 
    44.Vander Zanden, M. J., Cabana, G. & Rasmussen, J. B. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54, 1142–1158. https://doi.org/10.1139/f97-016 (1997).Article 

    Google Scholar 
    45.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    46.Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48. https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 (2007).Article 
    PubMed 

    Google Scholar 
    47.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER: stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    48.Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324. https://doi.org/10.1890/14-0235.1 (2015).Article 
    PubMed 

    Google Scholar 
    49.Minckley, W. L. & Deacon, J. E. Battle Against Extinction: Native Fish Management in the American West (The University of Arizona Press, 1991).
    Google Scholar 
    50.Albrecht, B. A. et al. Use of inflow areas in two Colorado River basin reservoirs by the endangered Razorback Sucker (Xyrauchen texanus). West. N. Am. Nat. 77, 500–514. https://doi.org/10.3398/064.077.0410 (2018).Article 

    Google Scholar 
    51.Pennock, C. A. et al. Reservoir fish assemblage structure across an aquatic ecotone: Can river-reservoir interfaces provide conservation and management opportunities?. Fish. Manag. Ecol. 28, 1–13. https://doi.org/10.1111/fme.12444 (2021).Article 

    Google Scholar 
    52.Gido, K. B. & Propst, D. L. Habitat use and association of native and nonnative fishes in the San Juan River, New Mexico and Utah. Copeia 1999, 321–332. https://doi.org/10.2307/1447478 (1999).Article 

    Google Scholar 
    53.Gido, K. B., Franssen, N. R. & Propst, D. L. Spatial variation in δ15N and δ13C isotopes in the San Juan River, New Mexico and Utah: implications for the conservation of native fishes. Environ. Biol. Fish. 75, 197–207. https://doi.org/10.1007/s10641-006-0009-1 (2006).Article 

    Google Scholar 
    54.Ryden, D. W. & Ahlm, L. A. Observations on the distribution and movements of Colorado Squawfish, Ptychocheilus lucius, in the San Juan River, New Mexico, Colorado, and Utah. Southwest. Nat. 41, 161–168 (1996).
    Google Scholar 
    55.Cathcart, C. N. et al. Waterfall formation at a desert river-reservoir delta isolates endangered fishes. River Res. Appl. 34, 948–956. https://doi.org/10.1002/rra.3341 (2018).Article 

    Google Scholar 
    56.Thomsen, M. S. et al. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar. Ecol. Prog. Ser. 495, 39–47. https://doi.org/10.3354/meps10566 (2014).ADS 
    Article 

    Google Scholar 
    57.McIntyre, P. B. & Flecker, A. S. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 148, 12–21. https://doi.org/10.1007/s00442-005-0354-3 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    58.Franssen, N. R., Gilbert, E. I., James, A. P. & Davis, J. E. Isotopic tissue turnover and discrimination factors following a laboratory diet switch in Colorado Pikeminnow (Ptychocheilus lucius). Can. J. Fish. Aq. Sci. 74, 265–272. https://doi.org/10.1139/cjfas-2015-0531 (2017).CAS 
    Article 

    Google Scholar 
    59.Busst, G. M. A. & Britton, J. R. Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia 805, 49–60. https://doi.org/10.1007/s10750-017-3276-2 (2018).CAS 
    Article 

    Google Scholar 
    60.Arrington, D. A. & Winemiller, K. O. Preservation effects on stable isotope analysis of fish muscle. Trans. Am. Fish. Soc. 131, 337–342. https://doi.org/10.1577/1548-8659(2002)131%3c0337:PEOSIA%3e2.0.CO;2 (2002).CAS 
    Article 

    Google Scholar 
    61.Hubert, W. A., Pope, K. L. & Dettmers, J. M. Passive capture techniques. In Fisheries Techniques 3rd edn (eds Zale, A. V. et al.) 223–265 (American Fisheries Society, 2012).
    Google Scholar 
    62.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    63.Fox, J., & Weisberg, S. An {R} Companion to Applied Regression, 2nd edn. (Sage 2011). http://socserv.socci.mcmaster.ca/jfox/Books/Companion64.Lefcheck, S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evo. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).Article 

    Google Scholar 
    65.Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Lysy, M., Stasko, A. D., Swanson, H. K. nicheROVER: (Niche) (R)egion and Niche (Over)lap metrics for multidimensional ecological niches. R package version 1.0 (2014). https://CRAN.R-project.org/package=nicheROVER67.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2019). Available: https://www.R-project.org/68.Franssen, N. R., Davis, J. E., Ryden, D. W. & Gido, K. B. Fish community responses to mechanical removal of nonnative fishes in a large southwestern river. Fisheries 8, 352–363. https://doi.org/10.1080/03632415.2014.924409 (2014).Article 

    Google Scholar 
    69.Kelly, D. J. & Jellyman, D. J. Changes in trophic linkages to shortfin eels (Anguilla australis) since the collapse of submerged macrophytes in Lake Ellesmere, New Zealand. Hydrobiologia 579, 161–173. https://doi.org/10.1007/s10750-006-0400-0 (2007).Article 

    Google Scholar 
    70.Zambrano, L., Valiente, E. & Vander Zanden, M. J. food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. Biol. Invasions 12, 3061–3069. https://doi.org/10.1007/s10530-010-9697-8 (2010).Article 

    Google Scholar 
    71.Córdova-Tapia, F., Contreras, M. & Zambrano, L. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746, 291–301. https://doi.org/10.1007/s10750-014-1944-z (2015).Article 

    Google Scholar 
    72.Portz, D. E. & Tyus, H. M. Fish humps in two Colorado River fishes: a morphological response to cyprinid predation?. Environ. Biol. Fishes 71, 233–245. https://doi.org/10.1007/s10641-004-0300-y (2004).Article 

    Google Scholar 
    73.Pennock, C. A. et al. Predicted and observed responses of a nonnative Channel Catfish population following managed removal to aid the recovery of endangered fishes. N. Am. J. Fish. Mgmt. 38, 565–578. https://doi.org/10.1002/nafm.10056 (2018).Article 

    Google Scholar 
    74.Hedden, S. C. et al. Quantifying consumption of native fishes by nonnative Channel Catfish in a desert river. N. Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10514 (2020).Article 

    Google Scholar 
    75.Nogueira, M. G., Oliveira, P. C. R. & Britto, Y. T. Zooplankton assemblages (Copepoda and Cladocera) in a cascade of reservoirs of a large tropical river (SE Brazil). Limnetica 27, 151–170 (2008).
    Google Scholar 
    76.Slaveska-Stamenković, V. et al. Factors affecting distribution pattern of dominant macroinvertebrates in Mantovo Reservoir (Republic of Macedonia). Biologia 67, 1129–1142. https://doi.org/10.2478/s11756-012-0102-1 (2012).Article 

    Google Scholar 
    77.Behn, K. E. & Baxter, C. V. The trophic ecology of a desert river fish assemblage: influence of season and hydrologic variability. Ecosphere 10, e02583. https://doi.org/10.1002/ecs2.2583 (2019).Article 

    Google Scholar 
    78.Glenn, E. P., Lee, C., Felger, R. & Zengel, S. Effects of water management on the wetlands of the Colorado River Delta, Mexico. Conserv. Biol. 10, 1175–1186. https://doi.org/10.1046/j.1523-1739.1996.10041175.x (1996).Article 

    Google Scholar 
    79.Sykes, G. The Colorado River Delta. Publication no. 460. (Carnegie Institution of Washington, D.C. 1937).80.Dalrymple, G. B. & Hamblin, W. K. K-Ar of Pleistocene lava dams in the Grand Canyon in Arizona. Proc. Natl. Acad. Sci. U.S.A. 95, 9744–9749. https://doi.org/10.1073/pnas.95.17.9744 (1998).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Minckley, W. L. Status of the razorback sucker, Xyrauchen texanus (Abbott), in the Lower Colorado River Basin. Southwest. Nat. 28, 165–187. https://doi.org/10.2307/3671385 (1983).Article 

    Google Scholar 
    82.Doi, H. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Popul. Ecol. 51, 57–64. https://doi.org/10.1007/s10144-008-0127-z (2009).Article 

    Google Scholar 
    83.Thorp, J. H. & Delong, M. D. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550. https://doi.org/10.1034/j.1600-0706.2002.960315.x (2002).Article 

    Google Scholar 
    84.Rennie, M. D., Sprules, W. G. & Johnson, T. B. Resource switching in fish following a major food web disruption. Oecologia 159, 789–802. https://doi.org/10.1007/s00442-008-1271-z (2009).ADS 
    Article 
    PubMed 

    Google Scholar 
    85.Cummings, B. M. & Schindler, D. E. Depth variation in isotopic composition of benthic resources and assessment of sculpin feeding patterns in an oligotrophic Alaskan lake. Aquat. Ecol. 47, 403–414. https://doi.org/10.1007/s10452-013-9453-0 (2013).CAS 
    Article 

    Google Scholar 
    86.Fera, S. A., Rennie, M. D. & Dunlop, E. S. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels. Ecology 98, 1681–1692. https://doi.org/10.1002/ecy.1836 (2017).Article 
    PubMed 

    Google Scholar 
    87.Pennock, C. A., McKinstry, M. C. & Gido, K. B. Razorback Sucker movement strategies across a river-reservoir habitat complex. Trans. Am. Fish. Soc. 149, 620–634. https://doi.org/10.1002/tafs.10262 (2020).Article 

    Google Scholar 
    88.Vatland, S. & Budy, P. Predicting the invasion success of an introduced omnivore in a large heterogeneous reservoir. Can. J. Fish. Aquat. Sci. 64, 1329–1345. https://doi.org/10.1139/f07-100 (2007).Article 

    Google Scholar 
    89.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240. https://doi.org/10.1111/j.1466-8238.2010.00579.x (2011).Article 

    Google Scholar 
    90.Franssen, N. R., Gilbert, E. I., Gido, K. B. & Propst, D. L. Hatchery-reared endangered Colorado pikeminnow (Ptychocheilus lucius) undergo a gradual transition to piscivory after introduction to the wild. Aquat. Conserv. 29, 24–38. https://doi.org/10.1002/aqc.2995 (2019).Article 

    Google Scholar 
    91.Hoeinghaus, D. J., Winemiller, K. O. & Agostinho, A. A. Hydrogeomorphology and river impoundment affect food-chain length of divers Neotropical food webs. Oikos 117, 984–995. https://doi.org/10.1111/j.2008.0030-1299.16458.x (2008).Article 

    Google Scholar 
    92.Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221. https://doi.org/10.1038/s41586-019-1111-9 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    93.Pennock, C. A. & Gido, K. B. Spatial and temporal dynamics of fish assemblages in a desert reservoir over 38 years. Hyrdobiologia 848, 1231–1248. https://doi.org/10.1007/s10750-021-04514-z (2021).Article 

    Google Scholar 
    94.Oliveira, E. F., Minte-Vera, C. V. & Goulart, E. Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border). Environ. Biol. Fish. 72, 283–304. https://doi.org/10.1007/s10641-004-2582-5 (2005).Article 

    Google Scholar 
    95.Buckmeier, D. L., Smith, N. G., Fleming, B. P. & Bodine, K. A. Intra-annual variation in river-reservoir interface fish assemblages: implications for fish conservation and management in regulated rivers. River Res. Appl. 30, 780–790. https://doi.org/10.1002/rra.2667 (2014).Article 

    Google Scholar 
    96.Albrecht, B. A., Holden, P. B., Kegerries, R. B. & Golden, M. E. Razorback sucker recruitment in Lake Mead, Nevada-Arizona, why here?. Lake Reserv. Manage. 26, 336–344. https://doi.org/10.1080/07438141.2010.511966 (2010).Article 

    Google Scholar  More

  • in

    Reproductive plasticity of Hawaiian Montipora corals following thermal stress

    1.Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    4.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995. https://doi.org/10.1073/pnas.1208909109 (2012).ADS 
    Article 
    PubMed 

    Google Scholar 
    5.Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x (2003).Article 

    Google Scholar 
    7.Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime?. Science 307, 1725–1726. https://doi.org/10.1126/science.1104258 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637. https://doi.org/10.1126/science.1059199 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833. https://doi.org/10.1038/ncomms11833 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013. https://doi.org/10.1002/lno.10481 (2017).ADS 
    Article 

    Google Scholar 
    12.Jokiel, P. L. & York, R. H. Solar Ultraviolet Photobiology of the Reef Coral Pocillopora Damicornis and Symbiotic Zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
    Google Scholar 
    13.Jokiel, P. L., Lesser, M. P. & Ondrusek, M. E. UV-absorbing compounds in the coral Pocillopora damicornis: Interactive effects of UV radiation, photosynthetically active radiation, and water flow. Limnol. Oceanogr. 42, 1468–1473. https://doi.org/10.4319/lo.1997.42.6.1468 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    14.McKenzie, R. L. et al. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182–198. https://doi.org/10.1039/C0PP90034F (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Ferrier-Pagès, C. et al. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol. Bull. 213, 76–87. https://doi.org/10.2307/25066620 (2007).Article 
    PubMed 

    Google Scholar 
    16.Ailsa, P. K. & Ross, J. J. Effects of hypo-osmosis on the coral Stylophora pistillata: nature and cause of low-salinity bleaching. Mar. Ecol. Prog. Ser. 253, 145–154 (2003).Article 

    Google Scholar 
    17.Bessell-Browne, P. et al. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments. Mar. Pollut. Bull. 117, 161–170. https://doi.org/10.1016/j.marpolbul.2017.01.050 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Piniak, G. A. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals. Mar. Environ. Res. 64, 456–468. https://doi.org/10.1016/j.marenvres.2007.04.001 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208. https://doi.org/10.1007/bf00402312 (1977).Article 

    Google Scholar 
    21.Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8, 155–162 (1990).ADS 
    Article 

    Google Scholar 
    22.Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    23.Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989. https://doi.org/10.1007/s002270100634 (2001).Article 

    Google Scholar 
    24.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239. https://doi.org/10.1007/s003380170003 (2001).Article 

    Google Scholar 
    26.Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000 2, 1123–1128 (2002).27.Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).ADS 
    Article 

    Google Scholar 
    28.Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).Article 
    PubMed 

    Google Scholar 
    29.Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).ADS 
    Article 

    Google Scholar 
    30.Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article 

    Google Scholar 
    31.Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185. https://doi.org/10.1007/s00227-007-0765-2 (2007).Article 

    Google Scholar 
    32.Cumbo, V. R., Fan, T. Y. & Edmunds, P. J. Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. J. Exp. Mar. Biol. Ecol. 439, 100–107. https://doi.org/10.1016/j.jembe.2012.10.019 (2013).Article 

    Google Scholar 
    33.Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763. https://doi.org/10.1007/s00338-007-0258-2 (2007).ADS 
    Article 

    Google Scholar 
    34.Lager, C. V. A., Hagedorn, M. S., Rodgers, K. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).Article 
    PubMed 

    Google Scholar 
    36.Cox, E. F. Continuation of sexual reproduction in Montipora capitata following bleaching. Coral Reefs 26, 721–724. https://doi.org/10.1007/s00338-007-0251-9 (2007).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    37.Armoza-Zvuloni, R., Segal, R., Kramarsky-Winter, E. & Loya, Y. Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar. Ecol. Prog. Ser. 426, 149–159 (2011).ADS 
    Article 

    Google Scholar 
    38.Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).ADS 
    Article 

    Google Scholar 
    39.Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).ADS 
    Article 

    Google Scholar 
    40.Edge, S. E., Shearer, T. L., Morgan, M. B. & Snell, T. W. Sub-lethal coral stress: Detecting molecular responses of coral populations to environmental conditions over space and time. Aquat. Toxicol. 128–129, 135–146. https://doi.org/10.1016/j.aquatox.2012.11.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Downs, C. A. et al. The use of cellular diagnostics for identifying sub-lethal stress in reef corals. Ecotoxicology 21, 768–782. https://doi.org/10.1007/s10646-011-0837-4 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Olsen, K., Ritson-Williams, R., Ochrietor, J. D., Paul, V. J. & Ross, C. Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar. Biol. 160, 2609–2618. https://doi.org/10.1007/s00227-013-2255-z (2013).CAS 
    Article 

    Google Scholar 
    44.Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: Energetics and reproduction of a reef coral with heat tolerant Symbiodinium Type-D. J. Mar. Sci. 2011, 185890. https://doi.org/10.1155/2011/185890 (2011).Article 

    Google Scholar 
    45.Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719. https://doi.org/10.7717/peerj.3719 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawai‘i. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of Three Bleaching Events on the Reef Resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398 (2017).Article 

    Google Scholar 
    48.Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu. Doctoral Dissertation, University of Hawaiʻi at Mānoa, (2019).49.Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).Article 

    Google Scholar 
    50.Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. Biol. Sci. 286, 20190614. https://doi.org/10.1098/rspb.2019.0614 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Rodgers, K. U. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).Article 

    Google Scholar 
    52.Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: Two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).
    Google Scholar 
    53.Heyward, A. J. Sexual reproduction in five species of the coral Montipora. In: Coral Reef Population Biology. Hawaii Institute of Marine Biology Technical Report 37, 170–178 (1985).54.Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway. (Mutual Publishing Company, 2005).55.Veron, J. E. N. Corals of the world. Volume 1. (Australia Institute of Marine Science, 2000).56.Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS One 5, e15021. https://doi.org/10.1371/journal.pone.0015021 (2010).57.Cunha, R. L. et al. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol. Biol. 19, 153. https://doi.org/10.1186/s12862-019-1476-2 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Padilla-Gamiño, J. L., Weatherby, T. M., Waller, R. G. & Gates, R. D. Formation and structural organization of the egg–sperm bundle of the scleractinian coral Montipora capitata. Coral Reefs 30, 371–380. https://doi.org/10.1007/s00338-010-0700-8 (2011).ADS 
    Article 

    Google Scholar 
    59.Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18 (2014).Article 

    Google Scholar 
    60.Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).ADS 
    Article 

    Google Scholar 
    61.Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).Article 

    Google Scholar 
    62.Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Hunter, C. L. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata . In Proceedings of the 6th International Coral Reef Symposium Vol. 2 727–732 (1988).64.Binet, M. T., Doyle, C. J., Williamson, J. E. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100. https://doi.org/10.1016/j.jembe.2013.12.008 (2014).CAS 
    Article 

    Google Scholar 
    65.Chen, L. B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181. https://doi.org/10.1146/annurev.cb.04.110188.001103 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084. https://doi.org/10.1242/jeb.114900 (2015).Article 
    PubMed 

    Google Scholar 
    67.Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882. https://doi.org/10.4319/lo.2007.52.5.1874 (2007).ADS 
    Article 

    Google Scholar 
    68.Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Hayward, A. & Gillooly, J. F. The cost of sex: Quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).ADS 
    Article 

    Google Scholar 
    71.Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).Article 

    Google Scholar 
    72.Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706. https://doi.org/10.4319/lo.2001.46.3.0704 (2001).ADS 
    Article 

    Google Scholar 
    73.Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Benzie, J. A. H. & Dixon, P. The effects of sperm concentration, sperm: Egg ratio, and gamete age on fertilization success in Crown-of-Thorns Starfish (Acanthaster planci) in the Laboratory. Biol. Bull. 186, 139–152. https://doi.org/10.2307/1542048 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Brazeau, D. A. & Lasker, H. R. Reproductive success in the Caribbean octocoral Briareum asbestinum. Mar. Biol. 114, 157–163. https://doi.org/10.1007/BF00350865 (1992).Article 

    Google Scholar 
    77.Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: Sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).CAS 
    Article 

    Google Scholar 
    80.Levitan, D. R., Sewell, M. A. & Chia, F.-S. How distribution and abundance influence fertilization success in the Sea Urchin Strongylocentotus franciscanus. Ecology 73, 248–254. https://doi.org/10.2307/1938736 (1992).Article 

    Google Scholar 
    81.Jamieson, G. S. Marine invertebrate conservation: Evaluation of fisheries over-exploitation Concerns1. Am. Zool. 33, 551–567. https://doi.org/10.1093/icb/33.6.551 (1993).Article 

    Google Scholar 
    82.Fitt, K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article 

    Google Scholar 
    83.Coles, S. L. & Jokiel, P. L. Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar. Biol. 49, 187–195. https://doi.org/10.1007/BF00391130 (1978).Article 

    Google Scholar 
    84.Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).Article 

    Google Scholar 
    85.Grunwald, D. J. & Streisinger, G. Induction of mutations in the zebrafish with ultraviolet light. Genet. Res. 59, 93–101. https://doi.org/10.1017/S0016672300030305 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Lamare, M., Burritt, D. & Lister, K. Chapter Four – Ultraviolet Radiation and Echinoderms: Past, Present and Future Perspectives. Adv. Mar. Biol. 59, 145–187 (Academic Press, 2011).87.Jokiel, P. L. Solar ultraviolet radiation and coral reef Epifauna. Science 207, 1069–1071 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Banaszak, A. T., Barba Santos, M. G., LaJeunesse, T. C. & Lesser, M. P. The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J. Exp. Mar. Biol. Ecol. 337, 131–146. https://doi.org/10.1016/j.jembe.2006.06.014 (2006).CAS 
    Article 

    Google Scholar 
    89.Leutenegger, A. et al. It’s cheap to be colorful. FEBS J. 274, 2496–2505. https://doi.org/10.1111/j.1742-4658.2007.05785.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Rosic, N. N. & Dove, S. Mycosporine-like amino acids from coral dinoflagellates. Appl. Environ. Microbiol. 77, 8478. https://doi.org/10.1128/AEM.05870-11 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Smith, E. G., D’Angelo, C., Salih, A. & Wiedenmann, J. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32, 463–474. https://doi.org/10.1007/s00338-012-0994-9 (2013).ADS 
    Article 

    Google Scholar 
    92.Dove, S. Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar. Ecol. Prog. Ser. 272, 99–116 (2004).ADS 
    Article 

    Google Scholar 
    93.Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Change Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).ADS 
    Article 

    Google Scholar 
    94.Pennington, J. T. The ecology of fertilization of Echinoid eggs: The consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).Article 
    PubMed 

    Google Scholar 
    95.Levitan, D. R. & Young, C. M. Reproductive success in large populations: empirical measures and theoretical predictions of fertilization in the sea biscuit Clypeaster rosaceus. J. Exp. Mar. Biol. Ecol. 190, 221–241. https://doi.org/10.1016/0022-0981(95)00039-T (1995).Article 

    Google Scholar 
    96.Hagedorn, M. et al. Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success. PLoS ONE 10, e0118364. https://doi.org/10.1371/journal.pone.0118364 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61. https://doi.org/10.1038/s41598-020-79732-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kolinski, S. P. Sexual reproduction and the early life history of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Doctoral Dissertation, University of Hawai’i at Mānoa, (2004).99.Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437. https://doi.org/10.1890/04-0298 (2004).Article 

    Google Scholar 
    100.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, Vienna, Austria, 2019). More

  • in

    Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes

    1.Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus civ stor nat Trieste 52, 5–135 (2006).
    Google Scholar 
    2.Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci Rep 8, 10575, https://doi.org/10.1038/s41598-018-28796-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: environmental variation or shift of habitat selection? PeerJ 3, e1122, https://doi.org/10.7717/peerj.1122 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 1–11, https://doi.org/10.1111/ecog.04798 (2020).Article 

    Google Scholar 
    5.Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats 2nd edn (Oxford University Press, 2019).6.Bradley, J. G. & Eason, P. K. Predation risk and microhabitat selection by cave salamanders, Eurycea lucifuga (Rafinesque, 1822). Behaviour 155, 841–859, https://doi.org/10.1163/1568539X-00003505 (2019).Article 

    Google Scholar 
    7.Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. The Science of Nature 104, 20, https://doi.org/10.1007/s00114-017-1443-y (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: how do responses vary in amphibians adapted to cave living? Behavioral Ecology and Sociobiology 74, 126, https://doi.org/10.1007/s00265-020-02909-x (2020).Article 

    Google Scholar 
    9.Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci Data 5, 180083, https://doi.org/10.1038/sdata.2018.83 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lunghi, E. & Bruni, G. Long-term reliability of Visual Implant Elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).
    Google Scholar 
    11.Mace, G. M. & Lande, R. Assessing extinction threats: towards a reevaluation of IUCN threatened species categories. Conservation Biology 5, 148–157 (1991).Article 

    Google Scholar 
    12.Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transaction of the Royal Society B 367, 1665–1679, https://doi.org/10.1098/rstb.2012.0005 (2012).Article 

    Google Scholar 
    13.Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani. (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).14.European Community. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union L 206/7, 1–44 (1992).
    Google Scholar 
    15.Régnier, C. et al. Mass extinction in poorly known taxa. Proc Natl Acad Sci USA 112, 7761–7766, https://doi.org/10.1073/pnas.1502350112 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786, https://doi.org/10.1126/science.1103538 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol Lett 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Connette, G. M., Crawford, J. A. & Peterman, A. E. Climate change and shrinking salamanders: alternative mechanisms for changes in plethodontid salamander body size. Global Change Biology 21, 2834–2843, https://doi.org/10.1111/gcb.12883 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    19.Heinrichs, J. A., Bender, D. J. & Schumaker, N. H. Habitat degradation and loss as key drivers of regional population extinction. Ecological Modelling 335, 64–73, https://doi.org/10.1016/j.ecolmodel.2016.05.009 (2016).Article 

    Google Scholar 
    20.Walters, R. J., Blanckenhorn, W. U. & Berger, D. Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology 26, 1324–1338, https://doi.org/10.1111/j.1365-2435.2012.02045.x (2012).Article 

    Google Scholar 
    21.Zhang, Z. et al. Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biology 65, 971–980, https://doi.org/10.1111/fwb.13483 (2020).Article 

    Google Scholar 
    22.Bland, L. M. Global correlates of extinction risk in freshwater crayfish. Animal Conservation 20, 532–542, https://doi.org/10.1111/acv.12350 (2017).Article 

    Google Scholar 
    23.Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci Data 7, 171, https://doi.org/10.1038/s41597-020-0513-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers Data J 7, e38492, https://doi.org/10.3897/BDJ.7.e38492 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.MacNeil, R. R. & Brcic, J. Coping with the subterranean environment: a thematic content analysis of the narratives of cave explorers. J Hum Perform Environ 13, Article 6, https://doi.org/10.7771/2327-2937.1089 (2017).Article 

    Google Scholar 
    26.Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers Conserv 19, 3035–3048, https://doi.org/10.1007/s10531-010-9873-2 (2010).Article 

    Google Scholar 
    27.Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecology and Evolution, https://doi.org/10.1002/ece3.7556 (2021).28.Brown, A. W., Kaiser, K. A. & Allison, D. B. Issues with data and analyses: errors, underlying themes, and potential solutions. Proc Natl Acad Sci USA 115, 2563–2570, https://doi.org/10.1073/pnas.1708279115 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildlife Research 39, 266–270, https://doi.org/10.1071/WR11103 (2012).Article 

    Google Scholar 
    30.Lunghi, E. & Veith, M. Are Visual Implant Alpha tags adequate for individually marking European cave salamanders (genus Hydromantes)? Salamandra 53, 541–544 (2017).
    Google Scholar 
    31.Swanson, J. E., Bailey, L. L., Muths, E. & Funk, W. C. Factors influencing survival and mark retention in postmetamorphic Boreal chorus frogs. Copeia 2013, 670–675, https://doi.org/10.1643/CH-12-129 (2013).Article 

    Google Scholar 
    32.Sacchi, R. et al. Photographic identification in reptiles: a matter of scales. Amphibia-Reptilia 31, 489–502 (2010).Article 

    Google Scholar 
    33.Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253, https://doi.org/10.3897/herpetozoa.32.e39030 (2019).Article 

    Google Scholar 
    34.Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 13, e0205672, https://doi.org/10.1371/journal.pone.0205672 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Lunghi, E. et al. The post hoc measurement as a safe and reliable method to age and size plethodontid salamanders. Ecology and Evolution 10, 11111–11116, https://doi.org/10.1002/ece3.6748 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Hedrick, B. P. et al. Digitization and the future of natural history collections. BioScience 70, 243–251, https://doi.org/10.1093/biosci/biz163 (2020).Article 

    Google Scholar 
    37.Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philosophical Transactions of the Royal Society B 374, 20170391, https://doi.org/10.1098/rstb.2017.0391 (2019).Article 

    Google Scholar 
    38.Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: do environmental factors have a role? Ecology 101, e03088, https://doi.org/10.1002/ecy.3088 (2020).Article 
    PubMed 

    Google Scholar 
    39.Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol 43, 42–50 (2012).ADS 
    Article 

    Google Scholar 
    40.Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16, https://doi.org/10.1007/s00442-014-3201-6 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    41.Lunghi, E. et al. Same diet, different strategies: variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180, https://doi.org/10.3390/d12050180 (2020).Article 

    Google Scholar 
    42.Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol 55, 29–35, https://doi.org/10.1016/j.actao.2013.11.003 (2014).ADS 
    Article 

    Google Scholar 
    43.Lunghi, E. et al. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers Data J 8, e48623, https://doi.org/10.3897/BDJ.8.e48623 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Carvalho-Rocha, V., Cortês, L. B. & Neckel-Oliveira, S. Interindividual patterns of resource use in three subtropical Atlantic Forest frogs. Austral Ecology 43, 150–158, https://doi.org/10.1111/aec.12552 (2018).Article 

    Google Scholar 
    45.Lunghi, E. et al. Photos and stomach contents of two mainland Italian Speleomantes salamanders: data from summer 2020. figshare https://doi.org/10.6084/m9.figshare.c.5398368 (2021).46.Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA 110, 15325–15329, https://doi.org/10.1073/pnas.1307356110 (2012).ADS 
    Article 

    Google Scholar 
    47.Treilibs, C. E., Pavey, C. R., Hutchinson, M. N. & Bull, C. M. Photographic identification of individuals of a free-ranging, small terrestrial vertebrate. Ecology and Evolution 6, 800–809, https://doi.org/10.1002/ece3.1883 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Town, C., Marshall, A. & Sethasathien, N. Manta Matcher: automated photographic identification of manta rays using keypoint features. Ecology and Evolution 3, 1902–1914, https://doi.org/10.1002/ece3.587 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.MacCoun, R. & Perlmutter, S. Hide results to seek the truth. Nature 526, 187–189, https://doi.org/10.1038/526187a (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J Therm Biol 60, 79–85, https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).Article 
    PubMed 

    Google Scholar 
    51.Weller, H. I. & Westneat, M. W. Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ 7, e6398, https://doi.org/10.7717/peerj.6398 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Adams, D., Collyer, M. & Kaliontzopoulou, A. geomorph. Geometric Morphometric Analyses of 2D/3D Landmark Data. R package version 3.2.1, https://github.com/geomorphR/geomorph (2020).53.Bendik, N. F., Morrison, T. A., Gluesenkamp, A. G., Sanders, M. S. & O’Donnell, L. J. Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae. PLoS ONE 8, e59424, https://doi.org/10.1371/journal.pone.0059424 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Renet, J., Leprêtre, L., Champagnon, J. & Lambret, P. Monitoring amphibian species with complex chromatophore patterns: a non-invasive approach with an evaluation of software effectiveness and reliability. Herpetological Journal 29, 13–22, https://doi.org/10.33256/hj29.1.1322 (2019).Article 

    Google Scholar 
    55.Allen-Blevins, C. R., You, X., Hinde, K. & Sela, D. A. Handling stress may confound murine gut microbiota studies. PeerJ 5, e2876, https://doi.org/10.7717/peerj.2876 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Samimi, A. S., Tajik, J., Jarakani, S. & Shojaeepour, S. Evaluation of a five-minute resting period following handling stress on electrocardiogram parameters and cardiac rhythm in sheep. Veterinary Science Development 6, 6481, https://doi.org/10.4081/vsd.2016.6481 (2016).Article 

    Google Scholar 
    57.Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630, https://doi.org/10.1126/science.1258268 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat Ecol Evol 3, 319, https://doi.org/10.1038/s41559-019-0803-8 (2019).Article 
    PubMed 

    Google Scholar  More

  • in

    Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration

    1.Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Atashgahi, S., Haggblom, M. M. & Smidt, H. Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environ. Microbiol. 20, 934–948 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Gribble G. W. Naturally Occurring Organohalogen Compounds—A Comprehensive Update: (Wien/New York: Springer, 2010).4.Stringer, R. & Johnston, P. Chlorine and the environment: an overview of the chlorine industry. Environ. Sci. Pollut. Res. 8, 146–159 (2001).Article 

    Google Scholar 
    5.Falandysz, J., Rose, M. & Fernandes, A. R. Mixed poly-brominated/chlorinated biphenyls (pxbs): widespread food and environmental contaminants. Environ. Int. 44, 118–127 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Zhang, Z. et al. Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the jiulong river estuary, south china. Environ. Res. 171, 145–152 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Kunze, C. et al. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer. Nat. Commun. 8, 15858 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Wang, S. et al. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnol. Adv. 36, 1194–1206 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    9.Atashgahi S., Lu Y., Smidt H. Overview of known organohalide-respiring bacteria—phylogenetic diversity and environmental distribution. In Adrian L., Löffler F. E., editors. Organohalide-Respiring Bacteria. (Springer, Berlin, 2016).10.Fincker, M. & Spormann, A. M. Biochemistry of catabolic reductive dehalogenation. Annu. Rev. Biochem. 86, 357–386 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Rouzeau-Szynalski, K., Maillard, J. & Holliger, C. Frequent concomitant presence of desulfitobacterium spp. and “dehalococcoides” spp. in chloroethene-dechlorinating microbial communities. Appl. Microbiol. Biotechnol. 90, 361–368 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wang, S. & He, J. Dechlorination of commercial pcbs and other multiple halogenated compounds by a sediment-free culture containing dehalococcoides and dehalobacter. Environ. Sci. Technol. 47, 10526–10534 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Wang, S. et al. Genomic characterization of three unique dehalococcoides that respire on persistent polychlorinated biphenyls. Proc. Natl. Acad. Sci. U.S.A. 111, 12103–12108 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Bachmann, H. et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc. Natl. Acad. Sci. U.S.A. 110, 14302–14307 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Yan, J., Ritalahti, K. M., Wagner, D. D. & Loffler, F. E. Unexpected specificity of interspecies cobamide transfer from geobacter spp. To organohalide-respiring dehalococcoides mccartyi strains. Appl. Environ. Microbiol. 78, 6630–6636 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Wang, S., Chen, C., Zhao, S. & He, J. Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls. Sci. Total. Environ. 666, 368–376 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Men, Y. et al. Sustainable syntrophic growth of dehalococcoides ethenogenes strain 195 with desulfovibrio vulgaris hildenborough and methanobacterium congolense: Global transcriptomic and proteomic analyses. ISME J. 6, 410–421 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Lu, Q. et al. Dehalococcoides as a potential biomarker evidence for uncharacterized organohalides in environmental samples. Front. Microbiol. 8, 1677 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Xu, G., Lu, Q., Yu, L. & Wang, S. Tetrachloroethene primes reductive dechlorination of polychlorinated biphenyls in a river sediment microcosm. Water Res. 152, 87–95 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Royer, D. L., Osborne, C. P. & Beerling, D. J. Carbon loss by deciduous trees in a co2-rich ancient polar environment. Nature. 424, 60–62 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Wang, S. & He, J. Phylogenetically distinct bacteria involve extensive dechlorination of aroclor 1260 in sediment-free cultures. PLoS One 8, e59178 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Wang, S. et al. Development of an alkaline/acid pre-treatment and anaerobic digestion (apad) process for methane generation from waste activated sludge. Sci. Total Environ. 708, 134564 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lu, Q. et al. Inhibitory effects of metal ions on reductive dechlorination of polychlorinated biphenyls and perchloroethene in distinct organohalide-respiring bacteria. Environ. Int. 135, 105373 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evolut. 33, 1870–1874 (2016).CAS 
    Article 

    Google Scholar 
    26.Cummings, D. E. et al. Diversity of geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb. Ecol. 46, 257–269 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Holmes, V. F., He, J., Lee, P. K. & Alvarez-Cohen, L. Discrimination of multiple dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl. Environ. Microbiol. 72, 5877–5883 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Joshi N. A., Fass J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle. (2011).29.Bankevich, A. et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods. 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Li, H. et al. The sequence alignment/map format and samtools. Bioinformatics. 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Chen, L. X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30, 2068–2069 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. Kaas: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Loffler, F. E. et al. Dehalococcoides mccartyi gen. Nov., sp. Nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, dehalococcoidia classis nov., order dehalococcoidales ord. Nov. And family dehalococcoidaceae fam. Nov., within the phylum chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625–635 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Garcia C.A. Subsurface occurrence and potential source areas of chlorinated Ethenes Identified using concentrations and concentration ratios, Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas. U.S. Geological Survey, (2006).38.Nichols H. Use of electrical resistive heating for the remediation of CVOC and petroleum impacts in soil and groundwater, NEWMOA Conference. New York City (2012).39.Maymó-Gatell, X., Chien, Y., Gossett, J. M. & Zinder, S. H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 276, 1568–1571 (1997).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Sung, Y. et al. Geobacter lovleyi sp. Nov. Strain sz, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl. Environ. Microbiol. 72, 2775–2782 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Amos, B. K., Suchomel, E. J., Pennell, K. D. & Löffler, F. E. Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution. Environ. Sci. Technol. 43, 1977–1985 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Lai, Y. & Becker, J. G. Compounded effects of chlorinated ethene inhibition on ecological interactions and population abundance in a Dehalococcoides–Dehalobacter coculture. Environ. Sci. Technol. 47, 1518–1525 (2013).CAS 
    PubMed 

    Google Scholar 
    43.Lovley, D. R. et al. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv. Microb. Physiol. 59, 1–100 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Reguera, G. & Kashefi, K. The electrifying physiology of geobacter bacteria, 30 years on. Adv. Microb. Physiol. 74, 1–96 (2019).PubMed 
    Article 

    Google Scholar 
    45.Kruse, S., Goris, T., Westermann, M., Adrian, L. & Diekert, G. Hydrogen production by sulfurospirillum species enables syntrophic interactions of epsilonproteobacteria. Nat. Commun. 9, 4872 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Sanford, R. A., Cole, J. R. & Tiedje, J. M. Characterization and description of anaeromyxobacter dehalogenans gen. Nov., sp. Nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68, 893–900 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Sung, Y. et al. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as desulfuromonas michiganensis sp. Nov. Appl. Environ. Microbiol. 69, 2964–2974 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Peng, P. et al. Organohalide-respiring desulfoluna species isolated from marine environments. ISME J. 14, 815–827 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Goris, T. et al. Insights into organohalide respiration and the versatile catabolism of sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ. Microbiol. 16, 3562–3580 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Goris, T. et al. Proteomics of the organohalide-respiring epsilonproteobacterium sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Sci. Rep. 5, 13794 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Lewis, W. H. & Ettema, T. J. G. Culturing the uncultured. Nat. Biotechnol. 37, 1278–1279 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Koch, H., van Kessel, M. & Lucker, S. Complete nitrification: insights into the ecophysiology of comammox nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl. Acad. Sci. U.S.A. 104, 11889–11894 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 292, 504–507 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Roller, B. R. & Schmidt, T. M. The physiology and ecological implications of efficient growth. ISME J. 9, 1481–1487 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Lawson, C. E. & Lucker, S. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158–165 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 549, 269–272 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Impact of the female and hermaphrodite forms of Opuntia robusta on the plant defence hypothesis

    Study areaWe performed this study in San Nicolas Tecoaco village (20° 2′ 38.2ʺ N, 98° 35′ 16ʺ W), Hidalgo State, central Mexico, from March 2014 to October 2014. This location has an annual average temperature of 16 °C and an average altitude of 2600 m above sea level. The type of vegetation occurring in this area is classified as a xerophilous shrubland42.Study speciesOpuntia robusta (Cactaceae) is an endemic plant found in Meridional Altiplano, México43, which exists in the following three sexual forms: hermaphrodite, dioecious (male and female), and trioecious44. In a parallel study, Sandoval-Molina45 found that the most common herbivores of this plant were leaf-footed bugs, Chelinidea sp., Narnia sp. (Hemiptera: Coreidae), the cactus long-horned beetle, Moneilema sp. (Coleoptera: Cerambycidae), and mining insects. Before 2017, this population was considered to be gynodioecious; thus, we did not collect samples from male individuals in this study. In 2018, fewer than 15 male individuals were reportedly present in a population of more than 800, and most of these were hermaphrodites (Supplementary Information).Determination of plant sexWhite empty anthers, short style, and well-developed lobular stigma characterised female flowers, while a relatively longer style compared to that of the female and functional anthers characterised hermaphrodite individuals44.Comparison of tissue cost between female and hermaphrodite individualsIn March 2017, we undertook a census in San Nicolas Tecoaco, to identify the number of female and hermaphrodite plants with cladode and flower sprouts from the set of plants studied in the previous years. We selected 1–2 m tall plants, located 5–10 m apart for sampling. Finally, we randomly selected 19 plants (eleven female and eight hermaphrodite individuals) bearing flower buds and young cladodes on different branches for analysis and tagged the cladodes and flower sprouts using a permanent marker. We marked the flower sprouts on the adjacent side of their parental cladode surface.Between March 2017 and June 2017, we obtained sufficient data to estimate the relative growth rates of the species, in order to explore possible differences in the energy costs of cladodes and flower buds between the two sexual forms of O. robusta. We measured the length, width, and thickness of each cladode and flower bud twice during the study, once at the beginning, and once at the end of the study. Additionally, we also measured the lengths of the flowers from the base to the beginning of the sepals. Since the flower buds were spherical, we considered the thickness to be equal to the width. Subsequently, we calculated the flower volume immediately after the emergence of cladodes and flower buds, and the final volume after anthesis. We estimated the initial and final volumes (Vx) of the cladodes using the formula Vx = ((a/2))/((b/2)π)c, and those of the flowers using the formula Vx = 4/3πa2b. Here, x represents the time of measurement (initial or final), a and b represent the major and minor axes of the ellipsis, while c represents the cladode thickness. We measured all estimators to the nearest 1.0 mm and represented values in centimetres. We estimated the relative growth rate (RGR) using the formula proposed by Hunt46: RGR = (lnVf – lnVi)/(t2 – t1). Here, Vf represents the final volume [cm3], Vi represents the initial volume [cm3], t1 represents the initial time [day], and t2 represents the final time [day].We compared relative growth rate data using a generalized linear model (GLM) with gamma error distribution in the R software, using the log link function47. The explanatory variables included sex, type of structure, and their interactions. We performed partial regression using the ggeffects package in R48.We obtained meteorological variables, including total precipitation [mm], maximum temperature [°C], minimum temperature [°C], mean temperature [°C], global radiation [W(m2)−1], relative humidity [%], reference evapotranspiration [mm], and potential evapotranspiration [mm] for the Singuilucan municipality from March–October 2014, from the official Mexican Government weather station database of the Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias49. We summed up the data for the per-day total precipitation, and that for the reference and potential evapotranspiration, from the beginning of each month through the sampling day. In the months (March, April, and May) or days when values from the meteorological database were underestimated, we averaged the values for the closest preceding and following days. If we lacked the data for more than one day and the data for such days could not be acquired, we considered a repetition of the averaged value for the days for which we lacked data, between the existing days. For July, we considered the values for the previous day (11/07/14), since we lacked the data for the days on which sampling was performed and the subsequent days. For the additive variables (total precipitation, reference, and potential evapotranspiration), we summed up data for 30 days, excluding data for one day, for the 31-day period.To determine the effects of the environmental variables on the concentration and presence/absence of secondary metabolites, we used R to formulate a structural equation model (SEM) in piecewiseSEM47,50. For concentrations, we fitted linear mixed-effects models using the nlme package51 and used the plant ID as a random factor. To evaluate the presence or absence of substances, we fitted generalized linear models with binomial error distributions and logits as the link functions. The concentration and presence/absence of 4-HBA, CGA, and QUE were dependent variables, and total precipitation, average temperature, global radiation, relative humidity, and potential evapotranspiration were explanatory variables. We analysed the sexes separately, and the substance concentration variables were log + 1 transformed. We assessed the goodness-of-fit using the Fisher function in the piecewiseSEM package50, where a larger p-value implies better data adjustment to the model. We conducted a visualisation of the SEM models using Biorender52, flaticon53, and CorelDRAW54.We estimated fruit traits (biomass [g], volume [cm3], and tissue density [g × cm−3]) and the number of fruits eaten by fructivores and compared them between the sexual forms using data reported by Janczur et al.18. The former comparison enabled the assessment of the possible differences in reproduction per fruit biomass between the sexual forms. The latter comparison enabled the assessment of the differences in preference for fruits eaten by animals in relation to the different sexual forms, and thus, the mechanisms by which this may increase the probability of seed dispersal. Higher zoochory of one sexual form may occur not only because of differences in fruit biomass density [g × cm−3], but also because of differences in the volatile substance content between the sexual forms.To test the effects of sexual form on fruit traits, we used generalized linear models in R. To analyse the number of fruits eaten, we used the negative binomial error distribution and log link function, and the Gaussian error distribution and identity link function for the other fruit traits47,55,56. We performed all post-hoc contrasts for fruit traits using the emmeans package47,57, and generated plots using the ggplot R package47,58. We compared the average number of fruits produced by the two sexual forms using the Kruskal–Wallis test.Comparison of secondary metabolite occurrence/concentration between female and hermaphrodite individualsWe obtained plant samples for secondary metabolite analysis using 100 m long Canfield lines, which were parallel to the contours of the hill and located 60 m from each other, and selected plants that were located near the lines and were 10 m apart for analysis. We randomly assigned each plant to one of the eight groups established herein, with three female plants and twelve hermaphrodite plants. The uneven number of individuals of each sex was attributable to the low proportion of females in the population. We tagged examined cladodes on their surface using a permanent marker.We used a stainless-steel punch (Ø = 0.5 cm) to remove two samples of vegetative tissue from cladodes belonging to the same order of each plant. We perforated the mid-section of the arc delimited by the border of the upper quarters of the cladodes, approximately 1 cm away from the edge. We placed samples in labelled Ziploc bags, stored them in a cooler containing ice, and then transported them to the laboratory in a portable refrigerator at − 20 °C. The samples were stored in the laboratory at − 40 °C until extraction.We performed homogenisation of approximately 1 g of the sample containing the cuticle in 35 mL of 100% methanol in an ultrasonic 6 L bath for 30 min at room temperature (21 °C). We filtered the methanol extracts, placed them in amber bottles, and stored the bottles at − 20 °C until further analysis59. We determined the types and concentrations of secondary metabolites in these tissues using high-performance liquid chromatography (HPLC), in accordance with the procedure described by Janczur and González Camarena59, using the following: Waters 717 liquid chromatograph with autosampler, Waters 2487 HPLC Absorbance UV–Vis Detector, Waters 1525 Binary HPLC Pump, Waters control module with SAT/IN Bus (Waters, Milford, MA, USA), Symmetry HPLC C18 column (particle size 5 µm, length 250 mm, internal Ø = 4.6 cm; Waters, Milford, MA, USA). We filtered the extracts using a 0.45 µm pore size nylon-membrane filter. The mobile phase consisted of 0.1% v/v acetic acid (A) together with 100% acetonitrile (B). For the mobile phase A, we dissolved 1 mL of glacial acetic acid with HPLC water, until the volume was 1 L. For the mobile phase B, we used 100% acetonitrile. We filtered both mobile phases using a 0.45 µm nylon membrane. We degasified them with an ultrasonic bath for 30 min. We set the column temperature at 25 °C, used the 254 nm UV detector, and established the flow of the mobile phase, injection volume, and run time as 0.2–0.8 mL/min, at 8 µL, and 35 min, respectively. To wash the piston seals, we used MeOH : H2O (60 : 50). To generate the calibration curves, we used standards for salicylic acid (SA), 4-hydroxybenzoic acid (4-HBA), chlorogenic acid (CGA), and quercetin (QUE) (Sigma-Aldrich). We generated the following calibration curves: yi = 1109.4xi + 481.67, yi = 296.01xi + 133.74, yi = 551.41xi + 263.64, and yi = 919.96xi + 201.64; here, yi represents the area below the absorbance curve, xi represents the concentration of the secondary metabolite, and i = 1, 2, 3, and 4 for 4-HBA, CGA, QUE, and SA, respectively. SA was not present in any of the samples tested (Table S1 online31).We used a logistic regression model to test the effect of the sexual form, month of study, cladode age category, cladode size, the number of cladodes above a given cladode, and the cladode order above the soil level, on the probability of detecting secondary metabolites in the cladodes. Since the latter data were ordinal, the sexual form and month were considered as discrete variables and treated the other traits as continuous variables60. We applied the generalized linear mixed model (GLMM) with a logit link function [ln(P/(1-P)], where P indicated the probability of detecting a given metabolite, binomial response distribution, maximum likelihood estimation technique, Newton–Raphson optimisation algorithm, and Person Chi-Square/df fit criterion. We used the GLIMMIX procedure in SAS statistical software61 (Methods S1).We used generalized linear models (GLMs) in R47 to determine the relationship between cladode length, width, thickness, months, age, cladode order from the soil, and cladodes above a given cladode, and the concentrations of the different secondary metabolites. Since many concentrations were null, we analysed only the positive concentrations (Methods S1).Comparison of damage between female and hermaphrodite individualsWe used the same plants as those used for relative growth rate analysis. We analysed the extent of damage caused by herbivorous insects on both sexes of O. robusta from March–June 2017. We selected two branches, one with flowers and the other with cladodes, from each plant. We estimated two types of damage caused by herbivores using image analysis, to determine the total percentage of tissue removed and other types of damage, such as scars or necrosis. We acquired photographs of one randomly selected face of each structure, using a Nikon D3200 with an AF-S DX NIKKOR 18–55 mm f/3.5–5.6G VR lens (Nikon Corporation, Tokyo, Japan) mounted on a tripod, using a 1-cm piece of millimetre paper as a reference for size. We analysed all images using ImageJ62 to estimate the total proportion of damaged areas.We analysed data on herbivore damage and other damages using a GLM procedure with the Gaussian error distribution and identity link function47 in R. The response variables were the logit transformed proportion of damage (ln[P/(1-P)]), where P represents the proportion of tissue damaged. In our statistical models, the transformation improved the distribution of residuals. The explanatory variables were sex, type of structure, and their interactions. We performed partial regressions using the ggeffects package in R48.Comparison of the occurrence/concentrations of secondary metabolites between younger and older vegetative tissuesWe named the oldest cladodes (closest to the soil) as ‘first-order cladodes,’ those growing on the oldest cladodes as ‘second-order cladodes’ etc. We selected each plant branch with the largest number of cladodes. We measured the length, width, and thickness of each cladode. We sampled vegetative tissues from plants belonging to each of the eight groups; the first group on the 10th March, the second group on the 12th April and so on, through the 10th May, 14th June, 12th July, 10th August, 13th September, and 11th October 2014. We measured the length and width of each cladode to the nearest 0.5 cm, using a measuring tape, and their thickness to the nearest 0.01 mm, using a calliper. We conducted the latter measurement in the apical part of the cladodes in the case of apical cladodes, or at the point of ramification of the daughter cladode when it grew on its apex.During eight years of observations prior to the commencement of this study, we observed that the age of the cladodes in the studied zone could be estimated by examining the following colour patterns of their spines: 1—yellowish, 2—yellow, white base, 3—white-yellowish, 4—white, 5—greyish, 6—black, with ‘1’ being the youngest, and ‘6’ being the oldest. We assigned each cladode to one of the classes. We used the HPLC procedure described by Janczur and González Camarena59 to determine the concentrations of different secondary metabolites in the plant tissues.To test whether different estimators of cladode age were parallel (to test whether younger cladodes were mostly apical, and thus bore fewer cladodes above), we examined the relationship between the cladode order from the soil or cladode number above a given cladode and cladode age, using ordinary least squares regression (OLS). We used a numerical algorithm applied to the SMATR software for R63. We included a test for the determination of the effects of cladode age estimators on the SMSs occurrence/concentration in the same GLM models, as described in the previous section.Trade-off between investments in defence, growth, and reproductionWe tested the relationship between cladode length and cladode order or cladode age to determine whether cladode size was parallel to cladode age. We performed OLS analysis and slope comparison between sexual forms using the Wald test (WT—test statistic) and tested the significance of differences between the intercepts. We used a numerical algorithm applied in the SMATR software63. To estimate the relative investment in growth and reproduction, we counted the number of flower and cladode buds on parental cladodes of the same plants used in the study performed by Sandoval and Janczur (Dataset online29). We used generalized linear models in R, with a negative binomial error distribution and log link function47,55,56, to test the effects of sexual form on the average number of flower and cladode buds. Significant differences between the number of flowers and cladodes for certain sexual forms implies a higher relative reproductive investment.We used the same method of quantification for the standardized major axis and GLM models for intersexual comparisons, as described in the previous Sect. 59. For example, larger relative allocations for reproduction and secondary metabolites together with lower allocation to growth in one sexual form, compared to lower allocations for reproduction and secondary metabolites, and higher allocations for growth in the other sexual form imply that the production of secondary metabolites does not compete with either growth or reproduction; rather, growth competes with reproduction, and allocation to the production of secondary metabolites is an outcome of the gain in terms of fitness from such an allocation.Effects of the existence of trade-offs between different secondary metabolites on the predictions of the plant defence hypothesisWe used ordinary least squares regression (OLS), coefficient of determination, and t-tests to determine the existence of possible trade-offs in the proportion of cladodes harbouring different secondary metabolites. We performed the t-test to determine the significance of correlation between cladode order and cladode age64.Ethics statementThis research did not involve any human or animal measurements. We obtained permission from the head of the Singuilucan municipality, State of Hidalgo, Mexico, to conduct research activities at the selected sites of the municipality. The owners of the lands permitted us to conduct the study and were informed of the permission granted by the municipality. MKJ obtained a permit (09,448/14) from the Ministry of Environment and Natural Resources of the United States of Mexico (SEMARNAT), which stated that no permission is necessary to conduct field studies on plants belonging to the genus Opuntia. The study site was not considered to be a protected area65, and O. robusta was not considered to be an endangered species66. During this study, we did not affect or involve any endangered species. As we did not sample all plants, we did not deposit specimens in a public herbarium. No plant was killed or severely damaged as a result of our research activity; the plant material used for this study was sampled at a limited scale, and therefore, the sampling presented with negligible effects on the functions of the broader ecosystem. All the methods were carried out in accordance to relevant guidelines and regulations. More

  • in

    Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil

    1.Sun, Y., Hu, K. L., Zhang, K. F., Jiang, L. H. & Xu, Y. Simulation of nitrogen fate for greenhouse cucumber grown under different water and fertilizer management using the EU-Rotate_N model. Agric. Water Manage. 112, 21–32 (2012).Article 

    Google Scholar 
    2.Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Boyce, A. N. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 21(5), 573. https://doi.org/10.3390/molecules21050573 (2016).3.Ferreira, C. M. H., Soares, H. & Soares, E. V. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Sci. Total Environ. 682, 779–799. https://doi.org/10.1016/j.scitotenv.2019.04.225 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Sammauria, R., Kumawat, S., Kumawat, P., Singh, J. & Jatwa, T. K. Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch. Microbiol. 202(4), 677–693 https://doi.org/10.1007/s00203-019-01795-w (2020).5.Singh, M. et al. PGPR Amelioration in Sustainable Agriculture 41–66 (Woodhead Publishing, 2019).Book 

    Google Scholar 
    6.Berg, G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009).CAS 
    Article 

    Google Scholar 
    7.Olanrewaju, O. S., Glick, B. R. & Babalola, O. O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33(11), 197. https://doi.org/10.1007/s11274-017-2364-9 (2017).8.Ambrosini, A., de Souza, R. & Passaglia, L. M. P. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400, 193–207. https://doi.org/10.1007/s11104-015-2727-7 (2016).CAS 
    Article 

    Google Scholar 
    9.O’Callaghan, M. Microbial inoculation of seed for improved crop performance: Issues and opportunities. Appl. Microbiol. Biotechnol. 100, 5729–5746 (2016).CAS 
    Article 

    Google Scholar 
    10.Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L. & Bell, T. H. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37, 140–151 (2019).CAS 
    Article 

    Google Scholar 
    11.Chen, X. H. et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014 (2007).CAS 
    Article 

    Google Scholar 
    12.Chowdhury, S. P., Hartmann, A., Gao, X. W. & Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—A review. Front. Microbiol. 6, 780. https://doi.org/10.3389/fmicb.2015.00780 (2015).13.Han, L. et al. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Appl. Soil Ecol. 136, 55–66 (2019).Article 

    Google Scholar 
    14.Wu, B. et al. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl. Soil Ecol. 103, 1–12 (2016).ADS 
    Article 

    Google Scholar 
    15.Krober, M. et al. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole rnetagenome sequencing. Front. Microbiol. 5, 252. https://doi.org/10.3389/fmicb.2014.00252 (2014).16.Shen, Z. Z. et al. Effect of the combination of bio-organic fertiliser with Bacillus amyloliquefaciens NJN-6 on the control of banana Fusarium wilt disease, crop production and banana rhizosphere culturable microflora. Biocontrol Sci. Technol. 25, 716–731 (2015).Article 

    Google Scholar 
    17.Shen, Z. Z. et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertility Soils 51, 553–562 (2015).CAS 
    Article 

    Google Scholar 
    18.Li, Q. et al. Rhizosphere microbiome mediated growth-promoting mechanisms of Bacillus amyloliquefaciens FH-1 on rice. Acta Microbiol. Sin. 59, 1–17 (2019).ADS 
    CAS 

    Google Scholar 
    19.Qin, Y. X., Shang, Q. M., Zhang, Y., Li, P. L. & Chai, Y. R. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front. Microbiol. 8, 2620. https://doi.org/10.3389/fmicb.2017.02620 (2017).20.Idris, E. E., Iglesias, D. J., Talon, M. & Borriss, R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20, 619–626. https://doi.org/10.1094/Mpmi-20-6-0619 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9, 980–989. https://doi.org/10.1038/ismej.2014.196 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270 (2020).ADS 
    Article 

    Google Scholar 
    24.Rodriguez, P. A. et al. Systems biology of plant–microbiome interactions. Mol. Plant 12, 804–821. https://doi.org/10.1016/j.molp.2019.05.006 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Trabelsi, D. & Mhamdi, R. Microbial inoculants and their impact on soil microbial communities: A review. Biomed. Res. Int. 2013, 863240. https://doi.org/10.1155/2013/863240 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Gu, Y. et al. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant Soil 452, 105–117. https://doi.org/10.1007/s11104-020-04545-w (2020).CAS 
    Article 

    Google Scholar 
    27.Ke, X. B. et al. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst. Appl. Microbiol. 42, 248–260 (2019).CAS 
    Article 

    Google Scholar 
    28.Barberan, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351. https://doi.org/10.1038/ismej.2011.119 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Kong, Z. Y. et al. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils. Ecotoxicol. Environ. Saf. 183, 109504. https://doi.org/10.1016/j.ecoenv.2019.109504 (2019).30.Newman, M. E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582. https://doi.org/10.1073/pnas.0601602103 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Mendes, R. & Raaijmakers, J. M. Cross-kingdom similarities in microbiome functions. ISME J. 9, 1905–1907. https://doi.org/10.1038/ismej.2015.7 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617. https://doi.org/10.1016/j.tim.2015.07.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).Article 

    Google Scholar 
    34.Chowdhury, S. P. et al. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. Plos One 8(7), e68818. https://doi.org/10.1371/journal.pone.0068818 (2013).35.Correa, O. S. et al. Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl. Soil Ecol. 41, 185–194 (2009).Article 

    Google Scholar 
    36.Wan, T. T., Zhao, H. H. & Wang, W. Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition. Biol. Control 112, 1–9 (2017).Article 

    Google Scholar 
    37.Wan, T. T., Zhao, H. H. & Wang, W. Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. J. Phytopathol. 166, 324–332 (2018).CAS 
    Article 

    Google Scholar 
    38.Nautiyal, C. S. et al. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 66, 1–9 (2013).CAS 
    Article 

    Google Scholar 
    39.Kumar, S., Suyal, D. C., Yadav, A., Shouche, Y. & Goel, R. Microbial diversity and soil physiochemical characteristic of higher altitude. Plos One 14(3), e0213844. https://doi.org/10.1371/journal.pone.0213844 (2019).40.Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744. https://doi.org/10.3389/fmicb.2016.00744 (2016).41.Ul-Hassan, A. & Wellington, E. M. Actinobacteria in Encyclopedia of Microbiology (Third Edition) (ed Schaechter, M.) 25–44 (Academic Press, 2009).42.Zhang, M., Powell, C. A., Guo, Y., Benyon, L. & Duan, Y. Characterization of the microbial community structure in Candidatus Liberibacter asiaticus-infected citrus plants treated with antibiotics in the field. BMC Microbiol. 13, 112. https://doi.org/10.1186/1471-2180-13-112 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Albuquerque, L., Johnson, M. M., Schumann, P., Rainey, F. A. & da Costa, M. S. Description of two new thermophilic species of the genus Rubrobacter, Rubrobacter calidifluminis sp. nov. and Rubrobacter naiadicus sp. Nov., and emended description of the genus Rubrobacter and the species Rubrobacter bracarensis. Syst. Appl. Microbiol. 37, 235–243. https://doi.org/10.1016/j.syapm.2014.03.001 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Egas, C. et al. Complete genome sequence of the radiation-resistant bacterium Rubrobacter radiotolerans RSPS-4. Stand. Genomic. Sci. 9(3), 1062–1075. https://doi.org/10.4056/sigs.5661021 (2014).45.Ge, S. M., Zhou, M. H., Dong, X. J., Lu, Y. & Ge, S. C. Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation. Appl. Microbiol. Biotechnol. 97, 2131–2137 (2013).CAS 
    Article 

    Google Scholar 
    46.Sturm, G., Jacobs, J., Sproer, C., Schumann, P. & Gescher, J. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int. J. Syst. Evol. Microbiol. 61, 956–960 (2011).CAS 
    Article 

    Google Scholar 
    47.Muir, R. E. & Tan, M. W. Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: Characterization of a novel host-pathogen interaction. Appl. Environ. Microbiol. 74, 4185–4198 (2008).CAS 
    Article 

    Google Scholar 
    48.Zhang, Y. et al. Abundance and diversity of candidate division JS1-and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea. Front. Earth Sci. Prc. 6, 373–382. https://doi.org/10.1007/s11707-012-0324-0 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Bennett, A. C., Murugapiran, S. K. & Hamilton, T. L. Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park. Environ. Microbiol. Rep. https://doi.org/10.1111/1758-2229.12863 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Devos, D. P. Gemmata obscuriglobus. Curr. Biol. 23, R705-707. https://doi.org/10.1016/j.cub.2013.07.013 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Dong, L. L. et al. Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chin. Med. UK 13, 41. https://doi.org/10.1186/s13020-018-0198-5 (2018).52.Ma, Q. et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour. Technol. 179, 436–443 (2015).CAS 
    Article 

    Google Scholar 
    53.Kepel, B. J. F., Gani, M. A. & Tallei, T. E. Comparison of bacterial community structure and diversity in traditional gold mining waste disposal site and rice field by using a metabarcoding approach. Int. J. Microbiol. 2020, 1858732. https://doi.org/10.1155/2020/1858732 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Chouari, R. et al. Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl. Environ. Microbiol. 69, 7354–7363. https://doi.org/10.1128/aem.69.12.7354-7363.2003 (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Zhao, Y. et al. Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. Plos One 12(10), e0185907. https://doi.org/10.1371/journal.pone.0185907 (2017).56.Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. https://doi.org/10.1038/s41396-019-0383-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    Article 

    Google Scholar 
    58.Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 104, 19891–19896 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Kang, Y., Shen, M., Wang, H. & Zhao, Q. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J. Gen. Appl. Microbiol. 59, 267–277 (2013).CAS 
    Article 

    Google Scholar 
    60.Wang, J. et al. Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial community. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01692 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020).62.Xiong, J. et al. Evidence of bacterioplankton community adaptation in response to long-term mariculture disturbance. Scientific Report 5, 15274. https://doi.org/10.1038/srep15274 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).64.Jiang, Y. J. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).CAS 
    Article 

    Google Scholar 
    65.Ju, F., Xia, Y., Guo, F., Wang, Z. P. & Zhang, T. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16, 2421–2432 (2014).CAS 
    Article 

    Google Scholar  More

  • in

    3D assessment of a coral reef at Lalo Atoll reveals varying responses of habitat metrics following a catastrophic hurricane

    1.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Woodley, J. D. et al. Hurricane Allen’s impact on Jamaican coral reefs. Science 214, 749–755 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Scoffin, T. P. The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. Coral Reefs 12, 203–221 (1993).ADS 
    Article 

    Google Scholar 
    4.Browning, T. N. et al. Widespread deposition in a Coastal Bay following three major 2017 Hurricanes (Irma, Jose, and Maria). Sci. Rep. 9, 7101. https://doi.org/10.1038/s41598-019-43062-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Rogers, C. S. Immediate effects of hurricanes on a diverse coral/mangrove ecosystem in the US Virgin Islands and the potential for recovery. Diversity 11, 130 (2019).Article 

    Google Scholar 
    6.Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).ADS 
    Article 

    Google Scholar 
    7.Newman, S. P. et al. Reef flattening effects on total richness and species responses in the Caribbean. J. Anim Ecol. 84, 1678–1689 (2015).Article 

    Google Scholar 
    8.Burns, J. H. et al. Assessing the impact of acute disturbances on the structure and composition of a coral community using innovative 3D reconstruction techniques. Methods Oceanogr. 15, 49–59 (2016).Article 

    Google Scholar 
    9.Massel, S. R. & Done, T. J. Effects of cyclone waves on massive coral assemblages on the Great Barrier Reef: Meteorology, hydrodynamics and demography. Coral Reefs 12(3–4), 153–166 (1993).ADS 
    Article 

    Google Scholar 
    10.Madin, J. S. & Connolly, S. R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444(7118), 477–480 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17(8), 1008–1015 (2014).Article 

    Google Scholar 
    12.Bellwood, D. R. & Hughes, T. P. Regional-scale assembly rules and biodiversity of coral reefs. Science 292, 1532–1535 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Friedlander, A. et al. The state of coral reef ecosystems of the Northwestern Hawaiian Islands. The state of coral reef ecosystems of the United States and Pacific Freely Associated States. PLoS ONE 73, 263–306 (2005).
    Google Scholar 
    14.Houston, S. & Birchard, T. Central Pacific Hurricane Center Tropical Cyclone Report, Hurricane Walaka. https://www.nhc.noaa.gov/data/tcr/CP012018_Walaka.pdf (2020).15.Nugert, A. D. et al. Fire and rain: The legacy of Hurricane Lane in Hawai ‘i. Bull. Am. Meteorol. Soc. 101, 954–967 (2020).Article 

    Google Scholar 
    16.Fukunaga, A., Burns, J. H. R., Pascoe, K. H. & Kosaki, R. K. Associations between benthic cover and habitat complexity metrics obtained from 3D reconstruction of coral reefs at different resolutions. Remote Sens. 12, 1011 (2020).ADS 
    Article 

    Google Scholar 
    17.Fukunaga, A. & Burns, J. H. R. Metrics of coral reef structural complexity extracted from 3D mesh models and digital elevation models. Remote Sens. 12, 2676 (2020).ADS 
    Article 

    Google Scholar 
    18.Meyer, C. G., Holland, K. N. & Papastamatiou, Y. P. Seasonal and diel movements of giant trevally Caranx ignobilis at remote Hawaiian atolls: Implications for the design of marine protected areas. Mar. Ecol. Prog. Ser. 12(333), 13–25 (2007).ADS 
    Article 

    Google Scholar 
    19.Fukunaga, A., Kosaki, R. K. & Hauk, B. B. Distribution and abundance of the introduced snapper Lutjanus kasmira (Forsskål, 1775) on shallow and mesophotic reefs of the Northwestern Hawaiian Islands. Bioinvasions Rec. 6, 259–268 (2017).Article 

    Google Scholar 
    20.Burns, J. H., Delparte, D., Gates, R. D. & Takabayashi, M. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ 3, e1077. https://doi.org/10.7717/peerj.1077 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.R Core Team. R: A Language and Environment for Statistical Computing, v. 3.5.3 (R Foundation for Statistical Computing, 2019). https://www.R-project.org (2019).22.Hijmans, R. J. raster: Geographic Data Analysis and Modeling, R package Version 2.9-5, https://CRAN.R-project.org/package=raster (2019)23.Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine—Open Source (GEOS), R package version 0.4-3. https://CRAN.R-project.org/package=rgeos (2019).24.Fukunaga, A., Burns, J. H. R., Craig, B. K. & Kosaki, R. K. Integrating three-dimensional benthic habitat characterization techniques into ecological monitoring of coral reefs. J. Mar. Sci. Eng. 7, 27 (2019).Article 

    Google Scholar 
    25.Risk, M. J. Fish diversity on a coral reef in the Virgin Islands. Atoll Res. Bull. 153, 1–4 (1972).Article 

    Google Scholar 
    26.Horn, B. K. P. Hill shading and the reflectance map. Proc. IEEE 69, 14–47 (1981).ADS 
    Article 

    Google Scholar 
    27.Walbridge, S., Slocum, N., Pobuda, M. & Wright, D. J. Unified geomorphological analysis workflows with Benthic Terrain Modeler. Geosciences 8, 94 (2018).Article 

    Google Scholar 
    28.Sappington, J. M., Longshore, K. M. & Thompson, D. B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert. J. Wildl. Manage. 71, 1419–1426 (2007).Article 

    Google Scholar 
    29.Zevenbergen, L. W. & Thorne, C. R. Quantitative analysis of land surface topography. Earth Surf. Process Landf. 12, 47–56 (1987).ADS 
    Article 

    Google Scholar 
    30.Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12(9), e0185121. https://doi.org/10.1371/journal.pone.0185121 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Magel, J. M. T., Burns, J. H., Gates, R. D. & Baum, J. K. Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance. Sci. Rep. 9, 2515. https://doi.org/10.1038/s41598-018-37713-1 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Luckhurst, B. E. & Luckhurst, K. Analysis of the influence of substrate variables on coral reef fish communities. Mar. Biol. 49(4), 317–323 (1978).Article 

    Google Scholar 
    33.Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl. Acad. Sci. USA 103, 8425–8429 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Mandelbrot, B. B. & Mandelbrot, B. B. The Fractal Geometry of Nature Vol. 1 (WH Freeman, 1982).MATH 

    Google Scholar 
    35.Young, G. C. et al. Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLoS ONE 12, e0175341. https://doi.org/10.1371/journal.pone.0175341 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More