More stories

  • in

    Irradiation-induced sterility in an egg parasitoid and possible implications for the use of biological control in insect eradication

    1.DeBach, P. & Rosen, D. Biological Control by Natural Enemies (Cambridge University Press, 1991).
    Google Scholar 
    2.Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    3.Walker, J. T. S., Suckling, D. M. & Wearing, C. H. Past, present, and future of integrated control of apple pests: The New Zealand experience. Annu. Rev. Entomol. 62, 231–248 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.van Lenteren, J. C., Bale, J., Bigler, F., Hokkanen, H. M. T. & Loomans, A. J. M. Assessing risks of releasing exotic biological control agents of arthropod pests. Annu. Rev. Entomol. 51, 609–634 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Bale, J. S., van Lenteren, J. C. & Bigler, F. Biological control and sustainable food production. Phil. Trans. R. Soc. Lond. B 363, 761–776 (2008).Article 
    CAS 

    Google Scholar 
    6.Sheppard, A. W. et al. A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: A crisis in the making?. Biocontrol News Inf. 24, 91N-108N (2003).
    Google Scholar 
    7.Barratt, B. I. P., Blossey, B. & Hokkanen, H. M. Post-release evaluation of non-target effects of biological control agents. In Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment (eds Bigler, F. et al.) 166–186 (CABI Publishing, 2006).Chapter 

    Google Scholar 
    8.Barratt, B. I. P., Moeed, A. & Malone, L. A. Biosafety assessment protocols for new organisms in New Zealand: Can they apply internationally to emerging technologies?. Environ. Impact Assess. Rev. 26, 339–358 (2006).Article 

    Google Scholar 
    9.Klassen, W. & Curtis, C. F. History of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 3–38 (Springer, 2021).
    Google Scholar 
    10.Hendrichs, J., Kenmore, P., Robinson, A. S. & Vreyson, M. J. B. Area-wide integrated pest management (AW-IPM): principles, practice and prospects. In Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 3–34 (Springer, 2007).
    Google Scholar 
    11.Knipling, E. F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–462 (1955).Article 

    Google Scholar 
    12.Brockerhoff, E. G., Liebhold, A. M., Richardson, B. & Suckling, D. M. Eradication of invasive forest insects: Concepts, methods, costs and benefits. NZ J. For. Sci. 40, S117–S135 (2010).
    Google Scholar 
    13.Suckling, D. M., Tobin, P. C., McCullough, D. G. & Herms, D. A. Combining tactics to exploit Allee effects for eradication of alien insect populations. J. Econ. Entomol. 105, 1–13 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hendrichs, J., Enkerlin, W. R. & Pereira, R. Invasive insect pests: challenges and the role of the sterile insect technique in their prevention, containment, and eradication. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management 885–922 (Springer, 2021).Chapter 

    Google Scholar 
    15.Nagel, P. & Peveling, R. Environment and the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 499–519 (Springer, 2021).
    Google Scholar 
    16.Knipling, E. F. The Basic Principles of Insect Population Suppression and Management (U.S. Department of Agriculture, 1979).
    Google Scholar 
    17.Barclay, H. J. Models for pest control: Complementary effects of periodic releases of sterile pests and parasitoids. Theor. Popul. Biol. 32, 76–89 (1987).Article 

    Google Scholar 
    18.Soller, M. & Lanzrein, B. Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induce developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae). J. Insect Physiol. 42, 471–481 (1996).Article 
    CAS 

    Google Scholar 
    19.Tillinger, N. A., Hoch, G. & Schopf, A. Effects of parasitoid associated factors of the endoparasitoid Glyptapanteles liparidis (Hymenoptera: Braconidae). Eur. J. Entomol. 101, 243–249 (2004).Article 

    Google Scholar 
    20.Tunçbilek, A. S., Canpolat, U. & Ayvaz, A. Effects of gamma radiation on suitability of stored cereal pest eggs and the reproductive capability of the egg parasitoid Trichogramma evanescens (Trichogrammatidae: Hymenoptera). Biocontrol Sci. Techn. 19, 179–191 (2009).Article 

    Google Scholar 
    21.Lynch, L. D. et al. Insect biological control and non-target effects: a European perspective. In Evaluating Indirect Ecological Effects of Biological Control (eds Wajnberg, E. et al.) 99–126 (Springer, 2001).
    Google Scholar 
    22.van Lenteren, J. C. V. et al. Environmental risk assessment of exotic natural enemies used in inundative biological control. Biocontrol 48, 3–38 (2003).Article 

    Google Scholar 
    23.Horrocks, K. J., Avila, G. A., Holwell, G. I. & Suckling, D. M. Integrating sterile insect technique with the release of sterile classical biocontrol agents for eradication: Is the Kamikaze Wasp Technique feasible?. Biocontrol 65, 257–271 (2020).Article 

    Google Scholar 
    24.Welsh, T. J., Stringer, L. D., Caldwell, R., Carpenter, J. E. & Suckling, D. M. Irradiation biology of male brown marmorated stink bugs: Is there scope for the sterile insect technique?. Int. J. Radiat. Biol. 93, 1357–1363 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    25.Suckling, D. M. et al. The competitive mating of irradiated brown marmorated stink bugs, Halyomorpha halys, for the sterile insect technique. Insects 10, 411 (2019).PubMed Central 
    Article 

    Google Scholar 
    26.Larivière, M.-C. Fauna of New Zealand (Manaaki Whenua Press, 1995).
    Google Scholar 
    27.Martin, N. A. Green vegetable bug – Nezara viridula. Interesting insects and other invertebrates. New Zealand arthropod factsheet number 47 https://nzacfactsheets.landcareresearch.co.nz/factsheet/InterestingInsects/Green-vegetable-bug—Nezara-viridula.html (2018). Accessed 16 Sept 2020.28.Powell, J. E. & Shepard, M. Biology of Australian and United States strains of Trissolcus basalis, a parasitoid of the green vegetable bug Nezara viridula. Austr. Ecol. 7, 181–186 (1982).Article 

    Google Scholar 
    29.Cantón-Ramos, J. M. & Callejón-Ferre, Á. J. Raising Trissolcus basalis for the biological control of Nezara viridula in greenhouses of Almería (Spain). Afr. J. Agric. Res. 5, 3207–3212 (2010).
    Google Scholar 
    30.Loch, A. D. & Walter, G. H. Mating behavior of Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae): Potential for outbreeding in a predominantly inbreeding species. J. Insect Behav. 11, 2 (2002).
    Google Scholar 
    31.Johns, H. F. & Cunningham, J. R. The interaction of single beams of x and gamma rays with a scattering medium. In The Physics of Radiology 349–350 (Charles C Thomas, 1983).
    Google Scholar 
    32.Bin, F., Vinson, S. B., Strand, M. R., Colazza, S. & Jones, W. A. Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula. Physiol. Entomol. 18, 7–15 (1993).Article 

    Google Scholar 
    33.Mahmoud, A. M. A. & Lim, U. T. Evaluation of cold-stored eggs of Dolycoris baccarum (Hemiptera: Pentatomidae) for parasitization by Trissolcus nigripedius (Hymenoptera: Scelionidae). Biol. Control 43, 287–293 (2007).Article 

    Google Scholar 
    34.Haye, T. et al. Fundamental host range of Trissolcus japonicus in Europe. J. Pest Sci. 93, 171–182 (2020).Article 

    Google Scholar 
    35.Cusumano, A. et al. First extensive characterization of the venom gland from an egg parasitoid: Structure, transcriptome and functional role. J. Insect Physiol. 107, 68–80 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    36.Bundy, C. S. & McPherson, R. M. Morphological examination of stink bug (Heteroptera: Pentatomidae) eggs on cotton and soybeans, with a key to genera. Ann. Entomol. Soc. Am. 93, 616–624 (2000).Article 

    Google Scholar 
    37.Favetti, B. M., Butnariu, A. R. & Doetzer, A. K. Storage of Euschistus heros eggs (Fabricius) (Hemiptera: Pentatomidae) in liquid nitrogen for parasitization by Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Neotrop. Entomol. 43, 291–293 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76, 412–425 (1995).Article 

    Google Scholar 
    39.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    40.Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    41.Chapman, T., Miyatake, T., Smith, H. K. & Partridge, L. Interactions of mating, egg production and death rates in females of the Mediterranean fruit fly, Ceratitis capitata. Proc. R. Soc. Lond. B 265, 1879–1894 (1998).Article 
    CAS 

    Google Scholar 
    42.Grosch, D. S. & Sullivan, R. L. The quantitative aspects of permanent and temporary sterility induced in female Habrobracon by x-rays and β radiation. Radiat. Res. 1, 294–320 (1954).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    43.Colazza, S. & Wajnberg, E. Effects of host egg mass size on sex ratio and oviposition sequence of Trissolcus basalis (Hymenoptera: Scelionidae). Environ. Entomol. 27, 329–336 (1998).Article 

    Google Scholar 
    44.Rosi, M. C., Isidoro, N., Colazza, S. & Bin, F. Source of the host marking pheromone in the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). J. Insect Physiol. 47, 989–995 (2001).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).Article 

    Google Scholar 
    46.Kuske, S. et al. Dispersal and persistence of mass released Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in non-target habitats. Biol. Control 27, 181–193 (2003).Article 

    Google Scholar 
    47.Draz, K. A., Tabikha, R. M., El-Aw, M. A. & Darwish, H. F. Impact of gamma radiation doses on sperm competitiveness, fecundity and morphometric characters of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephiritidae). J. Radiat. Res. Appl. Sci. 9, 352–362 (2016).Article 
    CAS 

    Google Scholar 
    48.Ali, A., Rashid, M. A., Huang, Q. Y. & Lei, C.-L. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 23, 17002–17007 (2016).Article 
    CAS 

    Google Scholar 
    49.Liebhold, A. M. et al. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Tobin, P. C. et al. Determinants of successful arthropod eradication programs. Biol. Invasions 16, 401–414 (2014).Article 

    Google Scholar 
    51.Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against alien species?. PLoS ONE 7, e48157 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Colunga-Garcia, M., Magarey, R. A., Haack, R. A., Gage, S. H. & Qi, J. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework. Ecol. Appl. 20, 303–310 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Myers, J. H., Savoie, A. & van Randen, E. Eradication and pest management. Annu. Rev. Entomol. 43, 471–491 (1998).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Lance, D. R. & McInnis, D. O. Biological basis of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 69–94 (Springer, 2021).
    Google Scholar 
    55.Godfray, H. C. J. Oviposition behaviour. In Parasitoids: Behavioural and Evolutionary Ecology Vol. 67 83–150 (Princeton University Press, 1994).Chapter 

    Google Scholar 
    56.Ravuiwasa, K. T., Lu, K.-H., Shen, T.-C. & Hwang, S.-Y. Effects of irradiation on Planococcus minor (Hemiptera: Pseudococcidae). J. Econ. Entomol. 102, 1774–1780 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Bloem, S., Bloem, K. A. & Knight, A. L. Oviposition by sterile codling moths, Cydia pomonella (Lepidoptera: Tortricidae) and control of wild populations with combined releases of sterile moths and egg parasitoids. J. Entomol. Soc. 95, 99–109 (1998).
    Google Scholar 
    58.Hasaballah, A. I. Impact of gamma irradiation on the development and reproduction of Culex pipiens (Diptera; Culicidae). Int. J. Radiat. Biol. 94, 844–849 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Bertin, A., Pavinato, V. A. C. & Parra, J. R. P. Effects of intraspecific hybridization on the fitness of the egg parasitoid Trichogramma galloi. Biocontrol 63, 555–563 (2018).Article 

    Google Scholar 
    61.Bloem, S., Bloem, K. A., Carpenter, J. E. & Calkins, C. O. Inherited sterility in codling moth (Lepidoptera: Tortricidae): Effect of substerilizing doses of radiation on insect fecundity, fertility, and control. Ann. Entomol. Soc. Am. 92, 222–229 (1999).Article 

    Google Scholar 
    62.Bloem, S., Carpenter, J. E. & Hofmeyr, J. H. Radiation biology and inherited sterility in false codling moth (Lepidoptera:Tortricidae). J. Econ. Entomol. 96, 1724–1731 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.El-Kholy, E. M. S. Biological and biochemical effects of vitamin ‘c’ on the normal and irradiated mediterranean fruit fly, Ceratitis capitata (wied). J. Radiat. Res. Appl. Sci. 2, 197–212 (2009).
    Google Scholar 
    64.Rempoulakis, P., Castro, R., Nemny-Lavy, E. & Nestel, D. Effects of radiation on the fertility of the Ethiopian fruit fly, Dacus ciliatus. Entomol. Exp. Appl. 155, 117–122 (2015).Article 

    Google Scholar 
    65.Würgler, F. E. & Lütolf, H.-U. Radiosensitivity of oocytes of Drosophila I. sensitivity of class-a oocytes of triploid and diploid females. Int. J. Radiat. Biol. 21, 455–463 (1972).
    Google Scholar 
    66.Field, S. A. Patch exploitation, patch-leaving and pre-emptive patch defence in the parasitoid wasp Trissolcus basalis (Insecta: Scelionidae). Ethology 104, 323–338 (1998).Article 

    Google Scholar 
    67.Sked, S. L. & Calvin, D. D. Temporal synchrony between Macrocentrus cingulum (Hymenoptera: Braconidae) with its preferred host, Ostrinia nubilalis (Lepidoptera: Crambidae). Environ. Entomol. 34, 344–352 (2005).Article 

    Google Scholar 
    68.Jiang, N., Zhou, G., Overholt, W. A., Muchugu, E. & Schulthess, F. The temporal correlation and spatial synchrony in the stemborer and parasitoid system of Coast Kenya with climate effects. Ann. Soc. Entomol. Fr. 42, 381–387 (2006).Article 

    Google Scholar 
    69.Whitten, M. & Mahon, R. Misconceptions and constraints. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 601–626 (Springer, 2021).
    Google Scholar 
    70.Lee, Y. J. & Ducoff, H. S. Radiation-enhanced resistance to oxygen: A possible relationship to radiation-enhanced longevity. Mech. Ageing Dev. 27, 101–109 (1984).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Suckling, D. M., Wee, S. L. & Pedley, R. Assessing competitive fitness of irradiated painted apple moth Teia anartoides (Lepidoptera: Lymantriidae). N.Z. Plant Prot. 57, 171–176 (2004).
    Google Scholar 
    72.Wee, S. L. et al. Effects of substerilizing doses of gamma radiation on adult longevity and level of inherited sterility in Teia anartoides (Lepidoptera: Lymantriidae). J. Econ. Entomol. 98, 732–738 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    73.Vilca Mallqui, K. S., Vieira, J. L., Guedes, R. N. C. & Gontijo, L. M. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). J. Econ. Entomol. 107, 860–866 (2014).Article 

    Google Scholar 
    74.Monroy Kuhn, J. M. & Korb, J. Editorial overview: Social insects: Aging and the re-shaping of the fecundity/longevity trade-off with sociality. Curr. Opin. Insect Sci. 16, 7–10 (2016).
    Google Scholar 
    75.Blacher, P., Huggins, T. J. & Bourke, A. F. G. Evolution of ageing, costs of reproduction and the fecundity–longevity trade-off in eusocial insects. Proc. R. Soc. B-Biol. Sci. 284, 20170380 (2017).Article 

    Google Scholar 
    76.Flatt, T. Survival costs of reproduction in Drosophila. Exp. Gerontol. 46, 369–375 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Vogt, E. & Nechols, J. R. The influence of host deprivation and host source on the reproductive biology and longevity of the squash bug egg parasitoid Gryon penssylvanicum (Ashmead) (Hymenoptera: Scelionidae). Biol. Control 3, 148–154 (1993).Article 

    Google Scholar 
    78.Ramesh, B. & Manickavasagam, S. Tradeoff between longevity and fecundity in relation to host availability in a thelytokous oophagous parasitoid, Trichogramma brasiliensis Ashmead (Trichogrammatidae: Hymenoptera). Int. J. Trop. Insect Sci. 23, 207–210 (2003).Article 

    Google Scholar 
    79.Gurr, G. M. & Kvedaras, O. L. Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol. Control 52, 198–207 (2010).Article 

    Google Scholar 
    80.Knipling, E. F. Principles of Insect Parasitism Analyzed from New Perspectives: Practical Implications for Regulating Insect Populations by Biological Means (United States Department of Agriculture, 1992).
    Google Scholar 
    81.Orozco, D., Domínguez, J., Reyes, J., Villaseñor, A. & Gutiérrez, J. M. SIT and biological control of Anastrepha fruit flies in Mexico. in Proceedings of the 6th International Fruit Fly Symposium 245–249 (Isteg Scientific Publications, 2002).82.Wong, T. T. Y., Ramadan, M. M., Herr, J. C. & McInnis, D. O. Suppression of a Mediterranean fruit fly (Diptera: Tephritidae) population with concurrent parasitoid and sterile fly releases in Kula, Maui, Hawaii. J. Econ. Entomol. 85, 1671–1681 (1992).Article 

    Google Scholar 
    83.Cossentine, J. E. & Jensen, L. B. M. Releases of Trichogramma platneri (Hymenoptera: Trichogrammatidae) in apple orchards under a sterile codling moth release program. Biol. Control 18, 179–186 (2000).Article 

    Google Scholar 
    84.Carpenter, J. E., Bloem, S. & Hofmeyr, J. H. Acceptability and suitability of eggs of false codling moth (Lepidoptera: Tortricidae) from irradiated parents to parasitism by Trichogrammatoidea cryptophlebiae (Hymenoptera: Trichogrammatidae). Biol. Control 30, 351–359 (2004).Article 

    Google Scholar 
    85.Carpenter, J. E., Bloem, S. & Hofmeyr, J. H. Area-wide control tactics for the false codling moth Thaumatotibia leucotreta in South Africa: a potential invasive species. In Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 351–359 (Springer, 2007).
    Google Scholar 
    86.Faúndez, E. I. & Rider, D. A. The brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera: Pentatomidae) in Chile. Arquivos Entomol. 17, 305–307 (2017).
    Google Scholar 
    87.Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 90, 1033–1043 (2017).Article 

    Google Scholar 
    88.Kiwifruit Vine Health. KVH information sheet: BMSB risk update January 2019 (Kiwifruit Vine Health, 2019).89.Vandervoet, T. F., Bellamy, D. E., Anderson, D. & MacLellan, R. Trapping for early detection of the brown marmorated stink bug, Halyomorpha halys New Zealand. N.Z. Plant Prot. 72, 36–43 (2019).
    Google Scholar 
    90.Laing, K., Belton, D. & Taylor, J. Decision on releasing Trissolcus japonicus from containment. (Environmental Protection Authority, 2018).91.Charles, J. G. et al. Experimental assessment of the biosafety of Trissolcus japonicus in New Zealand, prior to the anticipated arrival of the invasive pest Halyomorpha halys. Biocontrol 64, 367–379 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Population structure and genetic diversity of non-native aoudad populations

    1.Blackburn, T. M. & Duncan, R. P. Establishment patterns of exotic birds are constrained by non-random patterns in introduction. J. Biogeogr. 28, 927–939 (2001).Article 

    Google Scholar 
    2.Long, J. L. Introduced Mammals of the World: Their History, Distribution and Abundance (CABI Publishing, 2003).Book 

    Google Scholar 
    3.Stuwe, M. & Scribner, K. T. Low genetic variability in reintroduced alpine ibex (Capra ibex ibex) populations. J. Mammal. 70, 370–373 (1989).Article 

    Google Scholar 
    4.Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).Article 

    Google Scholar 
    5.Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).Article 

    Google Scholar 
    6.Michael Reed, J. et al. Emerging issues in population viability analysis. Conserv. Biol. 16, 7–19 (2002).Article 

    Google Scholar 
    7.Carpio, A. J. et al. Hunting as a source of alien species: A European review. Biol. Invasions 19, 1197–1211 (2017).Article 

    Google Scholar 
    8.Linnell, J. D. C. & Zachos, F. E. Status and distribution patterns of European ungulates: genetics, population history and conservation. In Ungulate Management in Europe: Problems and Practices (eds Putman, R. et al.) 12–53 (Cambridge University Press, 2011).Chapter 

    Google Scholar 
    9.Šprem, N., Gančević, P., Safner, T., Jerina, K. & Cassinello, J. Barbary sheep (Ammotragus lervia, Pallas 1777). In Handbook of the Mammals of Europe (eds Hackländer, K. & Zachos, F. E.) (Springer, 2021).
    Google Scholar 
    10.Cassinello, J. Ammotragus lervia: A review on systematics, biology, ecology and distribution. Ann. Zool. Fennici 35, 149–162 (1998).
    Google Scholar 
    11.Cassinello, J. Ammotragus lervia (aoudad). Invasive species compendium. http://www.cabi.org/isc (2015).12.Bounaceur, F., Benamor, N., Bissaad, F. Z., Abdi, A. & Aulagnier, S. Is there a future for the last populations of aoudad (Ammotragus lervia) in northern Algeria?. Pak. J. Zool. 48, 1727–1731 (2016).
    Google Scholar 
    13.Cassinello, J. et al. Ammotragus lervia. The IUCN Red List of Threatened Species. www.iucnredlist.org (2008).14.Lazarus, M. et al. Barbary sheep tissues as bioindicators of radionuclide and stabile element contamination in Croatia: Exposure assessment for consumers. Environ. Sci. Pollut. Res. 26, 14521–14533 (2019).CAS 
    Article 

    Google Scholar 
    15.Mori, E., Mazza, G., Saggiomo, L., Sommese, A. & Esattore, B. Strangers coming from the Sahara: An update of the worldwide distribution, potential impacts and conservation opportunities of alien aoudad. Ann. Zool. Fennici 54, 373–386 (2017).Article 

    Google Scholar 
    16.Gančević, P., Šprem, N. & Jerina, K. Space use and activity patterns of introduced Barbary sheep (Ammotragus lervia) in Southern Dinarides, Croatia in Abstract book of 6th World Congress on Mountain Ungulates and 5th International Symposium on Mouflon (ed. Hadjisterkotis, E.) 41 (2016).17.Bartoš, L., Kotrba, R. & Pintíř, J. Ungulates and their management in the Czech Republic. In European Ungulates and their Management in the 21st Century (eds Apollonio, M. et al.) 243–261 (Cambridge University Press, 2010).
    Google Scholar 
    18.Cassinello, J., Serrano, E., Calabuig, G. & Pérez, J. M. Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: Ecological and conservation concerns. Biodivers. Conserv. 13, 851–866 (2004).Article 

    Google Scholar 
    19.Anadón, J. D., Pérez-García, J. M., Pérez, I., Royo, J. & Sánchez-Zapata, J. A. Disentangling the effects of habitat, connectivity and interspecific competition in the range expansion of exotic and native ungulates. Landsc. Ecol. 33, 597–608 (2018).Article 

    Google Scholar 
    20.Cassinello, J. Misconception and mismanagement of invasive species: The paradoxical case of an alien ungulate in Spain. Conserv. Lett. 11, e12440. https://doi.org/10.1111/conl.12440 (2018).Article 

    Google Scholar 
    21.Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Derouiche, L. et al. Deep mitochondrial DNA phylogeographic divergence in the threatened aoudad Ammotragus lervia (Bovidae, Caprini). Gene 739, 144510. https://doi.org/10.1016/j.gene.2020.144510 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Fernando, P., Vidya, T. N. C., Rajapakse, C., Dangolla, A. & Melnick, D. J. Reliable noninvasive genotyping: Fantasy or reality?. J. Hered. 94, 115–123 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Cassinello, J. Ammotragus free-ranging population in the south-east of Spain: A necessary first account. Biodivers. Conserv. 9, 887–900 (2000).Article 

    Google Scholar 
    26.Moravčíková, N. et al. Identification of genetic families based on mitochondrial D-loop sequence in population of the Tatra chamois (Rupicapra rupicapra tatrica). Biologia 75, 121–128 (2019).Article 
    CAS 

    Google Scholar 
    27.Cassinello, J. Ammotragus lervia Aoudad (Barbary Sheep, Arui). In Mammals of Africa. Volume VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids (eds Kingdon, J. & Hoffmann, M.) 595–599 (Bloomsbury Publishing, 2013).
    Google Scholar 
    28.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Šprem, N. & Buzan, E. The genetic impact of chamois management in the dinarides. J. Wildl. Manag. 80, 783–793 (2016).Article 

    Google Scholar 
    30.Pascual-Rico, R. et al. Ecological niche overlap between co-occurring native and exotic ungulates: Insights for a conservation conflict. Biol. Invasions 22, 2497–2508 (2020).Article 

    Google Scholar 
    31.Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Beja-Pereira, A. et al. Twenty polymorphic microsatellites in two of North Africa’s most threatened ungulates: Gazella dorcas and Ammotragus lervia (Bovidae; Artiodactyla). Mol. Ecol. Notes 4, 452–455 (2004).CAS 
    Article 

    Google Scholar 
    33.Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mereu, P., Palici di Suni, M., Manca, L. & Masala, B. Complete nucleotide mtDNA sequence of Barbary sheep (Ammotragus lervia). DNA Seq. 19, 241–245 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Bandelt, H.-J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    Article 

    Google Scholar 
    38.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    39.van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICROCHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    40.Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–22 (1977).MathSciNet 
    MATH 

    Google Scholar 
    41.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Belkhir K, Borsa P, Goudet, J., Chikhi, L. & Bonhomme, F. Genetix 4.05, logiciel sous Windows TM pour la genetique des populations. Available at: http://www.genetix.univ-montp2.fr/genetix/genetix.htm (2004)44.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 

    Google Scholar 
    45.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Kalinowski, S. T. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv. Genet. 5, 539–543 (2004).CAS 
    Article 

    Google Scholar 
    47.Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).Article 

    Google Scholar 
    48.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    52.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).Article 

    Google Scholar  More

  • in

    Redefining the oceanic distribution of Atlantic salmon

    Our study extends the known geographic area used by salmon during their migration in the North Atlantic Ocean and Barents Sea as reported by earlier studies based on conventional tagging and sampling surveys15,16,20. An extended use of the North Atlantic Ocean and Barents Sea was also suggested in recent studies using archival tags12,23,24,25,26,28, but these studies have concentrated on single populations or been restricted by low sample sizes. The present study indicated that multiple individuals from the Norwegian and Danish populations survived to migrate northward from their home river and reached latitudes as high as 80° N. This is to our knowledge the furthest north any Atlantic salmon has ever been recorded, extending previously assumed northern limits8,30. These results confirm that the foraging areas of Atlantic salmon currently extend to more northerly latitudes than previously thought. For populations in Denmark and Norway, the marine distribution is probably limited by the northern boundary of Atlantic currents. In contrast, the populations from Iceland, Ireland and Spain did not travel as far north, but instead crossed the main North Atlantic current and migrated towards southern Greenland, indicating a difference in ocean distribution for these populations. The less directed migration displayed by most of the North American salmon tagged at Greenland was likely due to these fish already being present at their assumed main ocean feeding grounds at the west coast of Greenland15 when tagged.Despite the fact that salmon from different areas used different migration routes and ocean areas, they consistently migrated to and aggregated in assumed highly productive areas at the boundaries between large-scale frontal water masses where branches of the North Atlantic current lie adjacent to cold polar waters31. In these areas, previous analyses demonstrated frequent diving activity by tagged individuals28. The duration and diving profile of these dives suggested foraging behaviour, rather than predator escape, because the dives were U-shaped, typically lasted a few hours, and diving depths were related to the depth of the mixed layer during the different seasons28. Thus, the increased diving frequency is most likely an indication of increased feeding activity, emphasizing the importance of these productive regions as feeding areas for Atlantic salmon. In contrast to Atlantic salmon from the other areas, the two northernmost populations displayed a high diving frequency close to the shore immediately after sea entrance, as also shown by Hedger et al.28. These rivers are located closer to the frontal water masses, and these fish may have started extensive feeding earlier in their sea migration. This assumption is further supported by a study of Norwegian post-smolts, where the northernmost populations were feeding more extensively just after leaving their rivers than fish from southern populations32. Thus, the northern populations may benefit from a shorter migration route to the main feeding areas for salmon. However, given that many kelts are in poor condition when they enter the sea, it is likely that tagged fish from all populations were feeding pelagically in the first weeks at sea during the transit away from the coast when prey were available.Migration from the rivers to the assumed foraging areas (i.e., the most distant areas they migrated to) was fast and direct for individuals from southern populations, while salmon from the northern Norway did not display similar direct migration routes. Our results are similar to those reported by an earlier study26 on the same North-Western Norwegian population as in the present study, and are likely related to the greater proximity to ocean frontal areas and rich food resources.The results in the present study may have been influenced by the relatively large size of the tag compared to the size of the fish. Hedger et al.33 assessed tagging effects of PSATs on post-spawned Atlantic salmon by comparing their behaviour with salmon tagged with much smaller archival tags. They found that the overall depth distribution, ocean migration routes based on temperature recordings and return rates did not differ between salmon tagged with PSATs and smaller archival tags and concluded that PSATs are suitable for use in researching large-scale migratory behaviour of adult salmon at sea. However, salmon with PSATs dived less frequently and to slightly shallower depths33. Based on this, we believe the conclusions of the present study are valid despite potential tagging effects, but the diving depths and frequencies might be underestimated compared to non-tagged fish.Diet data from adult salmon in the ocean are limited but show that salmon feed on a variety of prey taxa. Typically, herring (Clupea harengus), sand eels (Ammodytes spp.), capelin (Mallotus villosus) and myctophids dominate as fish prey, while euphausiids and amphipods often dominate as crustacean prey34,35,36. Although there exist some data of adult herring and capelin during parts of the year, there is limited information on the spatial and temporal distribution of crustaceans in these ocean areas, and it is therefore difficult to relate the salmon diving behaviour to availability of all their main prey items. However, salmon appeared to be able to forage on prey far below the surface, indicated by the frequent dives, and salmon at sea have also previously been shown to feed on the mesopelagic community37,38. Hedger et al.28 found that the diving depth increased with the depth of the mixed layer and hypothesised that stratification affected the aggregation of prey and thereby the salmon diving behaviour. They also showed that when the stratification disappeared during the dark winter months, the salmon dived less but their dives were deeper. Nevertheless, the possibilities to feed at different depths28, expand the foraging niche of salmon compared to feeding merely near the surface.Dadswell et al.11 published the “merry-go-round hypothesis”, which implies that both first-time migrants and previous spawners from all salmon populations enter the North Atlantic Subpolar Gyres and move counter clockwise within these gyres until returning to their natal rivers. Although the full migration from river outrun to return was not followed in the present study (most tags popped off half-way into the migration), and some individuals indicated a counter clockwise migration pattern, most of the populations and individuals in this study clearly did not follow the North Atlantic Subpolar Gyres during the first months at sea. Therefore, most of our data did not support the merry-go-round hypothesis. However, some individuals from northern Norway seemed to follow the currents to a larger extent than individuals from other populations during the first months at sea. Previous studies on Atlantic salmon from Canada also documented that adults migrated either independently or against prevailing currents while at sea, indicating that the horizontal movement of adults are primarily governed by other factors12,24.Due to the size limit of the pop-up-tags, we primarily tracked large post-spawned individuals that are more mobile than smaller first-time migrants. Although some studies have shown that first-time migrants can be found in the same areas as post-spawners from the same populations8,30 is not known to which extent the migration pattern and distribution of post-spawners represent the same migration pattern of first-time migrants. Due to a larger body size, it is possible that the migration of post-spawners depends to a lesser degree on ocean currents and gyres than do the movements of first-time migrants, especially in the first part of the migration. For example, we observed that the Irish and Spanish post-spawned individuals all crossed the main North Atlantic current towards Greenlandic waters. However, Irish and other southern European post-smolts have frequently been captured in the Norwegian Sea20, indicating that some of these individuals migrate and follow the main ocean current in a northward direction. It is possible that many of these post-smolts later migrate southwest towards Greenland and feed in these waters as maiden salmon before they return to rivers. This corresponds to the observation that it is mostly large (two sea-winter) southern European salmon (including Irish individuals) that are found in the southern Greenland feeding areas20. Therefore, it might be that the post-spawned salmon from these populations return to their primary feeding areas where they were feeding as maiden salmon from their first sea migration, and not necessarily to the same area as they started their feeding migration as post-smolts.Populations differed in their ocean distribution, but the distribution also overlapped to some degree between or among populations, with more overlap between geographically proximate than distant populations. Some populations never overlapped in geographical distribution during the study. The populations from Ireland and Spain did not overlap with the Norwegian and Danish salmon, but there was a small spatial overlap between the Irish salmon and the North American salmon tagged at Greenland, although area use by these populations did not overlap in time. It is known that populations from North America and Europe largely use different parts of the North Atlantic, with more North American salmon in the western part and more European salmon in the eastern part of the ocean although they have been shown to mix at the feeding grounds at the Faroes and at Greenland12,15,16,18,20. For the Spanish population, it should be noted that tagged individuals were followed for a relatively short period, and a larger sample size over a longer period might have shown some overlap with the northern European populations, based on the initial northward direction of two individuals. At the same time as populations differed in their ocean distribution, there were also relatively large within-population differences in migration routes and geographic distribution. Individual differences in migration routes and ocean distribution of salmon from the same population, even within the same year, were also shown by Strøm et al.12,26. Collectively, these results imply that salmon from different populations will experience highly different ecological conditions, potentially contributing to between-and within-population variation in growth and survival. Since our data are limited by a varying number of individuals among the studied populations, and restricted mainly to post-spawned salmon, our results represent a minimum overlap among the populations so the actual overlap may be larger. Nevertheless, this strongly indicates a varying degree of geographical separation in ocean feeding areas. Thus, geographically close populations will to a larger extent be influenced by similar conditions in the ocean than more distant populations.The study was carried out over several years, with not all sites having tagging undertaken in the same years. There is a possibility that geographic area use and overlap among populations may vary among years, according to variation in environmental conditions among years29. However, data from multiple years for some populations suggest consistent population specific migration routes and area use among years, indicating that the principal patterns are stable over time for particular salmon populations.The differing distributions of salmon from particular populations in different oceanic regions might simply be a function of distance to appropriate feeding grounds from the different home rivers, with individuals from the different rivers mainly adapted to seek the closest feeding areas. The route selection during the migration might in addition be a result of each individuals’ opportunistic behaviour and which food resources and environmental conditions they encounter along the journey. As discussed above, the experience and learning during the first ocean migration might also impact individuals’ route choice and area use. Salmon from southern populations used more southern ocean areas, and hence stayed in warmer water, than salmon from the northern populations. We cannot rule out that salmon from different populations have different temperature preferences due to different thermal selection regimes in their home rivers, but similar to a previous study29, we suggest that the differences in thermal habitat among populations utilising different areas at sea are mainly driven by availability of prey fields. There is generally little support for the hypothesis that variation in salmonid growth rates reflects thermal adaptations to their home stream39.Despite the variation in migration patterns among and within populations, most individuals seemed to migrate to distant ocean frontal areas. This suggests that climate change may have greater impact on populations originating further south, because the distances and time required to travel to feeding areas will increase if the boundary between Atlantic and Arctic waters move northward because of ocean warming. Our study has shown that several populations are able to migrate over large distances, but the capacity for populations to adapt to an increased migration distance is unknown. Given increased migration time, especially for southern populations, the time available for accumulating important energy reserves will likely be reduced. In addition, increased water temperatures in the North Atlantic may also increase the energy expenditure that the individual fish spend per unit of distance when migrating from their home rivers towards the feeding areas. This may affect all populations to some degree, and may contribute to an additional burden for Atlantic salmon populations that are already in a poor state. This will also add to the hypothesized negative effect of climate change in freshwater for the southern populations, where temperatures will have a greater likelihood of reaching to growth inhibiting levels compared to more northern populations39.Taking advantage of the development of electronic tags, we have shown an extended use of the North Atlantic Ocean by Atlantic salmon, including the Barents Sea, which contrasts to the earlier strong focus on feeding areas at the Faroes, West Greenland and in the Norwegian Sea in previous studies. These results expand the knowledge on the marine foraging and habitat niche of Atlantic salmon, in terms of geography, migration behaviour and thermal niche. The existence of feeding areas at the boundaries between Atlantic and Arctic surface currents suggests that salmon have a strong link to Arctic oceanic frontal systems. We have further shown that salmon from different populations may migrate to different ocean frontal areas in the North Atlantic Ocean and Barents Sea and therefore be impacted by different ecological conditions that may contribute to within-population variation in growth and survival. We also conclude that climate induced changes in oceanographic conditions, which will likely alter the location of and distance to polar frontal feeding areas, may have region-specific influences on the length and cost of the Atlantic feeding migrations, particularly affecting the southern populations most. As the polar oceans get warmer and current patterns shift, changes in the location and productivity of high latitude fronts will become evident. As migration distances become longer, or more variable, and the time accumulating energy is reduced, the variation in the marine survival and productivity of different populations are likely to become more marked. Combined, our results help to shed light on important ecological process that shape Atlantic salmon population dynamics within most of its distribution area. More

  • in

    Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia

    1.Hotez, P. J. et al. An unfolding tragedy of chagas disease in North America. PLoS Negl. Trop. Dis. 7(10), e2300. https://doi.org/10.1371/journal.pntd.0002300 (2013) (PMID: 24205411).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Hotez, P. J., Bottazzi, M. E., Franco-Paredes, C., Ault, S. K. & Periago, M. R. The neglected tropical diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis. 2(9), e300. https://doi.org/10.1371/journal.pntd.0000300 (2008) (PMID: 18820747).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lee, B. Y., Bacon, K. M., Bottazzi, M. E. & Hotez, P. J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 13(4), 342–348. https://doi.org/10.1016/S1473-3099(13)70002-1 (2013) (PMID: 23395248).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.WHO. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 90(6), 33–43 (2015) (PMID: 25671846).
    Google Scholar 
    5.Pena-Garcia, V. H., Gomez-Palacio, A. M., Triana-Chavez, O. & Mejia-Jaramillo, A. M. Eco-epidemiology of Chagas disease in an endemic area of Colombia: Risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am. J. Trop. Med. Hyg. 91(6), 1116–1124. https://doi.org/10.4269/ajtmh.14-0112 (2014) (PMID: 25331808).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Mejia-Jaramillo, A. M. et al. Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease. Parasit. Vectors. 7, 108. https://doi.org/10.1186/1756-3305-7-108 (2014) (PMID: 24656115).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Dib, J. C., Agudelo, L. A. & Velez, I. D. Prevalencia de patologías tropicales y factores de riesgo en la comunidad indígena de Bunkwimake, Sierra Nevada de Santa Marta. DUAZARY. 3(1), 38–44 (2006).
    Google Scholar 
    8.Parra-Henao, G. et al. In search of congenital Chagas disease in the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 101(3), 482–483. https://doi.org/10.4269/ajtmh.19-0110 (2019) (PMID: 31264558).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Guhl, F., Aguilera, G., Pinto, N. & Vergara, D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomedica. 27(Suppl 1), 143–162 (2007) (PMID: 18154255).Article 

    Google Scholar 
    10.Parra-Henao, G., Suarez-Escudero, L. C. & Gonzalez-Caro, S. Potential distribution of Chagas disease vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, based on Ecological Niche Modeling. J. Trop. Med. 2016, 1439090. https://doi.org/10.1155/2016/1439090 (2016) (PMID: 28115946).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Rodriguez-Mongui, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E. & Cucunuba, Z. M. Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis. Parasit. Vectors. 12(1), 308. https://doi.org/10.1186/s13071-019-3541-5 (2019) (PMID: 31221188).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Dib, J., Barnabe, C., Tibayrenc, M. & Triana, O. Incrimination of Eratyrus cuspidatus (Stal) in the transmission of Chagas’ disease by molecular epidemiology analysis of Trypanosoma cruzi isolates from a geographically restricted area in the north of Colombia. Acta Trop. 111(3), 237–242. https://doi.org/10.1016/j.actatropica.2009.05.004 (2009) (PMID: 19442641).Article 
    PubMed 

    Google Scholar 
    13.Parra Henao, G., Angulo, V., Jaramillo, N. & Restrepo, M. Triatominos (Hemiptera: Reduviidae) de ka Sierra Nevada de Santa Marta, Colombia. Aspectos epidemiológicos, entomológicos y de distribución. Rev. CES Med. 23(1), 17–26 (2009).
    Google Scholar 
    14.Hernandez, C. et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: Parasite infection, feeding sources and discrete typing units. Parasit. Vectors. 9(1), 620. https://doi.org/10.1186/s13071-016-1907-5 (2016) (PMID: 27903288).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Cantillo-Barraza, O., Chaverra, D., Marcet, P., Arboleda-Sanchez, S. & Triana-Chavez, O. Trypanosoma cruzi transmission in a Colombian Caribbean region suggests that secondary vectors play an important epidemiological role. Parasit. Vectors. 7, 381. https://doi.org/10.1186/1756-3305-7-381 (2014) (PMID: 25141852).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Weiss, B. & Aksoy, S. Microbiome influences on insect host vector competence. Trends Parasitol. 27(11), 514–522. https://doi.org/10.1016/j.pt.2011.05.001 (2011) (PMID: 21697014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Azambuja, P., Garcia, E. S. & Ratcliffe, N. A. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 21(12), 568–572 (2005) (PMID: 16226491).Article 

    Google Scholar 
    18.Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol. 29(19), 3747–3761 (2020).Article 

    Google Scholar 
    19.Zingales, B. et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz. 104(7), 1051–1054 (2009) (PMID: 20027478).CAS 
    Article 

    Google Scholar 
    20.Zingales, B. et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009 (2012) (PMID: 22226704).Article 
    PubMed 

    Google Scholar 
    21.Tibayrenc, M. & Ayala, F. J. The population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop. 151, 156–165. https://doi.org/10.1016/j.actatropica.2015.05.006 (2015) (PMID: 26188332).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Majeau, A., Murphy, L., Herrera, C. & Dumonteil, E. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: Implications for disease epidemiology and diagnostics. Pathogens. 10, 212. https://doi.org/10.3390/pathogens10020212 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Flores-Ferrer, A., Marcou, O., Waleckx, E., Dumonteil, E. & Gourbière, S. Evolutionary ecology of Chagas disease; what do we know and what do we need?. Evol. Appl. 11(4), 470–487. https://doi.org/10.1111/eva.12582 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Tibayrenc, M., Kjellberg, F. & Ayala, F. J. A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl. Acad. Sci. USA 87, 2414–2418 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Berry, A. S. F. et al. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl. Trop. Dis. 13(5), e0007392. https://doi.org/10.1371/journal.pntd.0007392 (2019) (PMID: 31107905).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Schwabl, P. et al. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat. Commun. 10(1), 3972. https://doi.org/10.1038/s41467-019-11771-z (2019) (PMID: 31481692).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Falla, A. et al. Haplotype identification within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Trop. 110(1), 15–21 (2009) (PMID: 19135020).CAS 
    Article 

    Google Scholar 
    28.Cura, C. I. et al. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int. J. Parasitol. 40(14), 1599–1607. https://doi.org/10.1016/j.ijpara.2010.06.006 (2010) (PMID: 20670628).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Rodriguez, I. B. et al. Transmission dynamics of Trypanosoma cruzi determined by low-stringency single primer polymerase chain reaction and southern blot analyses in four indigenous communities of the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 81(3), 396–403 (2009) (PMID: 19706903).CAS 
    Article 

    Google Scholar 
    30.Waleckx, E., Gourbière, S. & Dumonteil, E. Intrusive triatomines and the challenge of adapting vector control practices. Mem. Inst. Oswaldo Cruz. 110(3), 324–338 (2015).CAS 
    Article 

    Google Scholar 
    31.Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10.1038/s41598-018-22455-x (2018) (PMID: 29515202).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol. Ecol. https://doi.org/10.1111/mec.15582 (2020) (PMID: 32749727).Article 
    PubMed 

    Google Scholar 
    33.O’Connor, O., Bosseno, M. F., Barnabe, C., Douzery, E. J. & Breniere, S. F. Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. Infect. Genet. Evol. 7(5), 587–593. https://doi.org/10.1016/j.meegid.2007.05.003 (2007) (PMID: 17553755).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Villanueva-Lizama, L., Teh-Poot, C., Majeau, A., Herrera, C. & Dumonteil, E. Molecular genotyping of Trypanosoma cruzi by next-generation sequencing of the mini-exon gene reveals infections with multiple parasite DTUs in Chagasic patients from Yucatan, Mexico. J. Inf. Dis. 219(12), 1980–1988 (2019).CAS 
    Article 

    Google Scholar 
    35.Parra-Henao, G., Angulo, V. M., Osorio, L. & Jaramillo, O. N. Geographic distribution and ecology of Triatoma dimidiata (Hemiptera: Reduviidae) in Colombia. J. Med. Entomol. 53(1), 122–129. https://doi.org/10.1093/jme/tjv163 (2016) (PMID: 26487247).Article 
    PubMed 

    Google Scholar 
    36.Angulo, V. M., Esteban, L. & Luna, K. P. Attalea butyracea proximas a las viviendas como posible fuente de infestacion domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomedica. 32(2), 277–285. https://doi.org/10.1590/S0120-41572012000300016 (2012) (PMID: 23242302).Article 
    PubMed 

    Google Scholar 
    37.Feliciangeli, M. D., Sanchez-Martin, M., Marrero, R., Davies, C. & Dujardin, J. P. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Trop. 101(2), 169–177. https://doi.org/10.1016/j.actatropica.2006.12.010 (2007) (PMID: 17306204).Article 
    PubMed 

    Google Scholar 
    38.Fitzpatrick, S., Feliciangeli, M. D., Sanchez-Martin, M. J., Monteiro, F. A. & Miles, M. A. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl. Trop. Dis. 2(4), e210. https://doi.org/10.1371/journal.pntd.0000210 (2008) (PMID: 18382605).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Lopez, G. & Moreno, J. Genetic variability and differentiation between populations of Rhodnius prolixus and R. pallescens, vectors of Chagas’ disease in Colombia. Mem. Inst. Oswaldo Cruz. 90, 353–357 (1995).CAS 
    Article 

    Google Scholar 
    40.Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding based on next-generation sequencing: linking triatomine behavioral ecology and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10.1038/s41598-018-22455-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Hernández-Andrade, A., Moo-Millan, J., Cigarroa-Toledo, N., Ramos-Ligonio, A., Herrera, C., Bucheton, B., et al. Metabarcoding: A powerful yet still underestimated approach for the comprehensive study of vector-borne pathogen transmission cycles and their dynamics. in Vector-Borne Diseases: Recent Developments in Epidemiology and Control (ed. Claborn, D.) 1–6. (Intechopen, 2020). https://doi.org/10.5772/intechopen.8311042.Flores-Ferrer, A., Waleckx, E., Rascalou, G., Dumonteil, E. & Gourbière, S. Trypanosoma cruzi transmission dynamics in a synanthropic and domesticated host community. PLoS Negl. Trop. Dis. 13(12), e0007902. https://doi.org/10.1371/journal.pntd.0007902 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Llewellyn, M. S. et al. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog. 5(5), e1000410. https://doi.org/10.1371/journal.ppat.1000410 (2009) (PMID: 19412340).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Herrera, C. et al. Genetic variability and phylogenetic relationships within Trypanosoma cruzi I isolated in Colombia based on Miniexon Gene Sequences. J. Parasitol. Res. https://doi.org/10.1155/2009/897364 (2009) (PMID: 20798881).Article 
    PubMed 

    Google Scholar 
    45.Zumaya-Estrada, F. A. et al. North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasit. Vectors. 5, 226. https://doi.org/10.1186/1756-3305-5-226 (2012) (PMID: 23050833).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Montoya-Porras, L. M., Omar, T. C., Alzate, J. F., Moreno-Herrera, C. X. & Cadavid-Restrepo, G. E. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 178, 327–332. https://doi.org/10.1016/j.actatropica.2017.11.004 (2018) (PMID: 29154947).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Kieran, T. J. et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit. Vectors. 12(1), 504. https://doi.org/10.1186/s13071-019-3761-8 (2019) (PMID: 31665056).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Rodriguez-Ruano, S. M. et al. Microbiomes of North American Triatominae: The grounds for Chagas Disease epidemiology. Front. Microbiol. 9, 1167. https://doi.org/10.3389/fmicb.2018.01167 (2018) (PMID: 29951039).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Eichler, S. & Schaub, G. A. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp. Parasitol. 100(1), 17–27 (2002).CAS 
    Article 

    Google Scholar 
    50.Waltmann, A. et al. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl. Trop. Dis. 13(5), e0007383. https://doi.org/10.1371/journal.pntd.0007383 (2019) (PMID: 31059501).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Herren, J. K. et al. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat. Commun. 11(1), 2187. https://doi.org/10.1038/s41467-020-16121-y (2020) (PMID: 32366903).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7), 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042 (2009) (PMID: 20064373).Article 
    PubMed 

    Google Scholar 
    53.Angulo, V. M. & Esteban, L. Nueva trampa para la captura de triatominos en habitats silvestres y peridomesticos. Biomedica. 31(2), 264–268. https://doi.org/10.1590/S0120-41572011000200015 (2011) (PMID: 22159544).Article 
    PubMed 

    Google Scholar 
    54.Lent, H. & Wygodzinsky, P. Revision of Triatominae (Hemiptera: Reduviidae), and their significance as vectors of Chagas’ disease. Bull. Am. Mus. Nat. His. 163, 123–520 (1979).
    Google Scholar 
    55.Monteiro, F. A. et al. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol. Ecol. 12(4), 997–1006. https://doi.org/10.1046/j.1365-294x.2003.01802.x (2003) (PMID: 12753218).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Baker, G. C., Smith, J. J. & Cowan, D. A. Review and reanalysis of domain-specific 16s primers. J. Microbiol. Meth. 55, 541–555 (2003).CAS 
    Article 

    Google Scholar 
    57.Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63(8), 3233–3241 (1997).CAS 
    Article 

    Google Scholar 
    58.Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A. & Zingales, B. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 83(2), 141–152 (1996) (PMID: 9027747).CAS 
    Article 

    Google Scholar 
    59.Majeau, A., Herrera, C. & Dumonteil, E. An improved approach to Trypanosoma cruzi molecular genotyping by next-generation sequencing of the mini-exon gene. Methods Mol. Biol. 1955, 47–60 (2019).CAS 
    Article 

    Google Scholar 
    60.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011) (PMID: 21700674).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. (arXiv:1207.3907 [q-bio.GN]), 1–9. https://arxiv.org/abs/1207.3907v2 (2012).62.Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45(W1), W180–W188. https://doi.org/10.1093/nar/gkx295 (2017) (PMID: 28449106).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490 (2010) (PMID: 20224823).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019) (PMID: 30958812).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Torres-Silva, C. F. et al. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol. 41(2), 466–474. https://doi.org/10.1590/1678-4685-GMB-2017-0281 (2018) (PMID: 30088612).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).
    Google Scholar 
    67.Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(Database issue), D633–D642. https://doi.org/10.1093/nar/gkt1244 (2014) (PMID: 24288368).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific

    Mapping kelp persistenceThe study area for this analysis encompasses the region where Macrocystis pyrifera is the dominant canopy kelp species in the Northeast Pacific Ocean. The region extends from Año Nuevo Island in the north (latitude ~37.1°), California, USA, to Punta Prieta in the south (latitude ~27°), Baja California Sur, Mexico. We mapped the distribution of giant kelp canopy and characterized persistence using a 30-m resolution satellite-based time series covering our entire study area27. These data provide quarterly estimates of kelp canopy area across the study region from 1984 to 2018. We estimated giant kelp canopy from three Landsat sensors: Landsat 5 Thematic Mapper (1984–2011), Landsat 7 Enhanced Thematic Mapper+ (1999–present), and Landsat 8 Operational Land Imager (2013–present). We downloaded all imagery as atmospherically corrected Landsat Collection 1 Level-2 products. Each Landsat sensor has a pixel resolution of 30 × 30 m and a repeat time of 16 days (8 days when two Landsat sensors were operational). Since Landsat imagery can be obscured by cloud cover, we obtained a clear estimate of kelp areas ~16 times per year from 1984 to 2018 (mean = 16.2, std = 4.1). The repeated observations across the time series avoid missing kelp canopy due to physical processes such as tides and currents. Multiple Landsat passes over seasonal timescales are successful at mitigating the effect of tide and tidal currents on Landsat kelp canopy detection27.While the pixel resolution of Landsat sensors is 30 × 30 m, we were able to observe the presence and density of kelp canopy on subpixel scales using a fully automation procedure. We first masked all land areas using a global 30 m resolution digital elevation model (asterweb.jpl.nasa. gov/gdem.asp) and classified the remaining pixels as seawater, cloud, or kelp canopy using a binary decision tree classifier trained on a diverse array of pixels within the study region27. We then used Multiple Endmember Spectral Mixture Analysis39 to model each pixel as the linear combination of seawater and kelp canopy. This method can accurately obtain kelp canopy presence as long as kelp canopy covers ~13% of a 30 m pixel. These methods were validated using 15 years of monthly kelp canopy surveys by the Santa Barbara Coastal Long Term Ecological Research project at two sites in Southern California. We filtered errors of commission (such as free-floating kelp paddies) by removing any pixels classified as kelp canopy in More

  • in

    Trophic niches of native and nonnative fishes along a river-reservoir continuum

    1.Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).Article 
    PubMed 

    Google Scholar 
    2.Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–359. https://doi.org/10.1899/08-171.1 (2010).Article 

    Google Scholar 
    3.Reid, A. J. et al. Emerging threats and persistent challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).Article 
    PubMed 

    Google Scholar 
    4.Cucherousset, J. & Olden, J. D. Ecological impacts of nonnative freshwater fishes. Fisheries 36, 215–230. https://doi.org/10.1080/03632415.2011.574578 (2011).Article 

    Google Scholar 
    5.Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467. https://doi.org/10.1038/46762 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Britton, J. R., Davies, G. D. & Harrod, C. Trophic interactions and consequent impacts of the invasive fish Psuedorasbora parva in a native aquatic food web: a field investigation in the UK. Biol. Invasions 12, 1533–1542. https://doi.org/10.1007/s10530-009-9566-5 (2010).Article 

    Google Scholar 
    7.Cox, J. G. & Lima, S. L. Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680. https://doi.org/10.1016/j.tree.2006.07.011 (2006).Article 
    PubMed 

    Google Scholar 
    8.Marks, J. C., Haden, G. A., O’Neil, M. & Pace, C. Effects of flow restoration and exotic species removal on recovery of native fish: Lessons from a dam decommissioning. Restor. Ecol. 18, 934–943. https://doi.org/10.1111/j.1526-100X.2009.00574.x (2010).Article 

    Google Scholar 
    9.Walsworth, T. E., Budy, P. & Thiede, G. P. Longer food chains and crowded niche space: effects of multiple invaders on desert stream food web structure. Ecol. Freshw. Fish 22, 439–452. https://doi.org/10.1111/eff.12038 (2013).Article 

    Google Scholar 
    10.Rogosch, J. S. & Olden, J. D. Invaders induce coordinated isotopic niche shifts in native fish species. Can. J. Fish. Aquat. Sci. 77, 1348–1358. https://doi.org/10.1139/cjfas-2019-0346 (2020).Article 

    Google Scholar 
    11.Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723. https://doi.org/10.2307/1933500 (1961).Article 

    Google Scholar 
    12.Zaret, T. M. & Rand, A. S. Competition in tropical stream fishes: Support for the competitive exclusion principle. Ecology 52, 336–342. https://doi.org/10.2307/1934593 (1971).Article 

    Google Scholar 
    13.Britton, J. R., Ruiz-Navarro, A., Verreycken, H. & Amat-Trigo, F. Trophic consequences of introduced species: comparative impacts of increased interspecific versus intraspecific competitive interactions. Funct. Ecol. 32, 486–495. https://doi.org/10.1111/1365-2435.12978 (2018).Article 
    PubMed 

    Google Scholar 
    14.Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–696. https://doi.org/10.1086/284165 (1983).Article 

    Google Scholar 
    15.David, P. et al. Impacts of invasive species on food webs: a review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).Article 

    Google Scholar 
    16.Vannote, R. L., Wayne Minshall, G., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137. https://doi.org/10.1139/f80-017 (1980).Article 

    Google Scholar 
    17.Ibañez, C. et al. Convergence of temperate and tropical stream fish assemblages. Ecography 32, 658–670. https://doi.org/10.1111/j.1600-0587.2008.05591.x (2009).Article 

    Google Scholar 
    18.Winemiller, K. O. et al. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Res. Appl. 27, 791–803. https://doi.org/10.1002/rra.1396 (2011).Article 

    Google Scholar 
    19.Ward, J. V. & Stanford, J. A. The serial discontinuity concept: extending the model to floodplain rivers. River Res. Appl. 10, 159–168. https://doi.org/10.1002/rrr.3450100211 (1983).Article 

    Google Scholar 
    20.Sabo, J. L. et al. Pulsed flows, tributary inputs and food-web structure in a highly regulated river. J. Appl. Ecol. 55, 1884–1895. https://doi.org/10.1111/1365-2664.13109 (2018).Article 

    Google Scholar 
    21.Sabater, S. Alterations of the global water cycle and their effects on river structure, function and services. Freshw. Rev. 1, 75–89. https://doi.org/10.1608/FRH-1.1.5 (2008).Article 

    Google Scholar 
    22.Arrantes, C. C., Fitzgerald, D. B., Hoeinghaus, D. J. & Winemiller, K. O. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Curr. Opin. Environ. Sustain. 37, 28–40. https://doi.org/10.1016/j.cosust.2019.04.009 (2019).Article 

    Google Scholar 
    23.Cross, W. F. et al. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecol. Appl. 21, 2016–2033. https://doi.org/10.1890/10-1719.1 (2011).Article 
    PubMed 

    Google Scholar 
    24.Cross, W. F. et al. Food web dynamics in a large river discontinuum. Ecol. Monogr. 83, 311–337. https://doi.org/10.1890/12-1727.1 (2013).Article 

    Google Scholar 
    25.Wellard Kelley, H. A. et al. Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam. Freshw. Sci. 32, 397–410. https://doi.org/10.1899/12-088.1 (2013).Article 

    Google Scholar 
    26.Thornton, K. W., Kimmel, B. L. & Payne, F. E. Reservoir Limnology: Ecological Perspectives (John Wiley and Sons, 1990).
    Google Scholar 
    27.Havel, J. E., Lee, C. E. & Vander Zanden, J. M. Do reservoirs facilitate invasions into landscapes?. Bioscience 55, 518–525. https://doi.org/10.1641/0006-3568(2005)055[0518:DRFIIL]2.0.CO;2 (2005).Article 

    Google Scholar 
    28.Southwood, T. R. E. Habitat, the templet for ecological strategies?. J. Anim. Ecol. 46, 337–365. https://doi.org/10.2307/3817 (1977).Article 

    Google Scholar 
    29.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460. https://doi.org/10.1016/j.tree.2008.03.011 (2008).Article 
    PubMed 

    Google Scholar 
    30.Mercado-Silva, N., Helmus, M. R. & Vander Zanden, M. J. The effects of impoundment and non-native species on a river food web in Mexico’s central plateau. River Res. Appl. 25, 1090–1108. https://doi.org/10.1002/rra.1205 (2009).Article 

    Google Scholar 
    31.Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T. & Brosse, S. Homogenization patterns of the world’s freshwater fish faunas. Proc. Natl. Acad. Sci. U. S. A. 108, 18003–18008. https://doi.org/10.1073/pnas.1107614108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Delong, M. D., Thorp, J. H., Thoms, M. C. & McIntosh, L. M. Trophic niche dimensions of fish communities as a function of historical hydrological conditions in a Plains river. River Syst. 19, 177–187. https://doi.org/10.1127/1868-5749/2011/019-0036 (2011).Article 

    Google Scholar 
    33.Pilger, T. J., Gido, K. B. & Propst, D. L. Diet and trophic niche overlap of native and nonnative fishes in the Gila River, USA: implications for native fish conservation. Ecol. Freshw. Fish 19, 300–321. https://doi.org/10.1111/j.1600-0633.2010.00415.x (2010).Article 

    Google Scholar 
    34.Mor, J. R. et al. Dam regulation and riverine food-web structure in a Mediterranean river. Sci. Total Environ. 625, 301–310. https://doi.org/10.1016/j.scitotenv.2017.12.296 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Tyus, H. M. & Saunders, J. F. III. Nonnative fish control and endangered fish recovery: lessons from the Colorado River. Fisheries 25, 17–24. https://doi.org/10.1577/1548-8446(2000)025%3c0017:NFCAEF%3e2.0.CO;2 (2000).Article 

    Google Scholar 
    36.Strayer, D. L. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174. https://doi.org/10.1111/j.1365-2427.2009.02380.x (2010).Article 

    Google Scholar 
    37.Marks, J. C., Williamson, C. & Hendrickson, D. A. Coupling stable isotope studies with food web manipulations to predict the effects of exotic fish: lessons from Cuatro Ciénegas, Mexico. Aquat. Conserv. 21, 317–323. https://doi.org/10.1002/aqc.1199 (2011).Article 

    Google Scholar 
    38.Cooke, S. J., Paukert, C. & Hogan, Z. Endangered river fish: factors hindering conservation and restoration. Endanger. Species Res. 17, 179–191. https://doi.org/10.3354/esr00426 (2012).Article 

    Google Scholar 
    39.Pennock, C. A., Farrington, M. A. & Gido, K. B. Feeding ecology of early life stage Razorback Sucker relative to other sucker species in the San Juan River. Trans. Am. Fish. Soc. 148, 938–951. https://doi.org/10.1002/tafs.10188 (2019).Article 

    Google Scholar 
    40.Cucherousset, J., Bouletreau, S., Martino, A., Roussel, J. M. & Santoul, F. Using stable isotope analyses to determine the ecological effects of non-native fishes. Fish. Mgmt. Ecol. 19, 111–119. https://doi.org/10.1111/j.1365-2400.2011.00824.x (2012).Article 

    Google Scholar 
    41.Finlay, J. C. Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs. Ecology 82, 1052–1064. https://doi.org/10.1890/0012-9658(2001)082[1052:SCIROR]2.0.CO;2 (2001).Article 

    Google Scholar 
    42.France, R. L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40, 1310–1313. https://doi.org/10.4319/lo.1995.40.7.1310 (1995).ADS 
    Article 

    Google Scholar 
    43.Fry, B. Stable Isotope Ecology (Springer-Verlag, 2006).Book 

    Google Scholar 
    44.Vander Zanden, M. J., Cabana, G. & Rasmussen, J. B. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54, 1142–1158. https://doi.org/10.1139/f97-016 (1997).Article 

    Google Scholar 
    45.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    46.Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48. https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 (2007).Article 
    PubMed 

    Google Scholar 
    47.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER: stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    48.Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324. https://doi.org/10.1890/14-0235.1 (2015).Article 
    PubMed 

    Google Scholar 
    49.Minckley, W. L. & Deacon, J. E. Battle Against Extinction: Native Fish Management in the American West (The University of Arizona Press, 1991).
    Google Scholar 
    50.Albrecht, B. A. et al. Use of inflow areas in two Colorado River basin reservoirs by the endangered Razorback Sucker (Xyrauchen texanus). West. N. Am. Nat. 77, 500–514. https://doi.org/10.3398/064.077.0410 (2018).Article 

    Google Scholar 
    51.Pennock, C. A. et al. Reservoir fish assemblage structure across an aquatic ecotone: Can river-reservoir interfaces provide conservation and management opportunities?. Fish. Manag. Ecol. 28, 1–13. https://doi.org/10.1111/fme.12444 (2021).Article 

    Google Scholar 
    52.Gido, K. B. & Propst, D. L. Habitat use and association of native and nonnative fishes in the San Juan River, New Mexico and Utah. Copeia 1999, 321–332. https://doi.org/10.2307/1447478 (1999).Article 

    Google Scholar 
    53.Gido, K. B., Franssen, N. R. & Propst, D. L. Spatial variation in δ15N and δ13C isotopes in the San Juan River, New Mexico and Utah: implications for the conservation of native fishes. Environ. Biol. Fish. 75, 197–207. https://doi.org/10.1007/s10641-006-0009-1 (2006).Article 

    Google Scholar 
    54.Ryden, D. W. & Ahlm, L. A. Observations on the distribution and movements of Colorado Squawfish, Ptychocheilus lucius, in the San Juan River, New Mexico, Colorado, and Utah. Southwest. Nat. 41, 161–168 (1996).
    Google Scholar 
    55.Cathcart, C. N. et al. Waterfall formation at a desert river-reservoir delta isolates endangered fishes. River Res. Appl. 34, 948–956. https://doi.org/10.1002/rra.3341 (2018).Article 

    Google Scholar 
    56.Thomsen, M. S. et al. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar. Ecol. Prog. Ser. 495, 39–47. https://doi.org/10.3354/meps10566 (2014).ADS 
    Article 

    Google Scholar 
    57.McIntyre, P. B. & Flecker, A. S. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 148, 12–21. https://doi.org/10.1007/s00442-005-0354-3 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    58.Franssen, N. R., Gilbert, E. I., James, A. P. & Davis, J. E. Isotopic tissue turnover and discrimination factors following a laboratory diet switch in Colorado Pikeminnow (Ptychocheilus lucius). Can. J. Fish. Aq. Sci. 74, 265–272. https://doi.org/10.1139/cjfas-2015-0531 (2017).CAS 
    Article 

    Google Scholar 
    59.Busst, G. M. A. & Britton, J. R. Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia 805, 49–60. https://doi.org/10.1007/s10750-017-3276-2 (2018).CAS 
    Article 

    Google Scholar 
    60.Arrington, D. A. & Winemiller, K. O. Preservation effects on stable isotope analysis of fish muscle. Trans. Am. Fish. Soc. 131, 337–342. https://doi.org/10.1577/1548-8659(2002)131%3c0337:PEOSIA%3e2.0.CO;2 (2002).CAS 
    Article 

    Google Scholar 
    61.Hubert, W. A., Pope, K. L. & Dettmers, J. M. Passive capture techniques. In Fisheries Techniques 3rd edn (eds Zale, A. V. et al.) 223–265 (American Fisheries Society, 2012).
    Google Scholar 
    62.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    63.Fox, J., & Weisberg, S. An {R} Companion to Applied Regression, 2nd edn. (Sage 2011). http://socserv.socci.mcmaster.ca/jfox/Books/Companion64.Lefcheck, S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evo. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).Article 

    Google Scholar 
    65.Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Lysy, M., Stasko, A. D., Swanson, H. K. nicheROVER: (Niche) (R)egion and Niche (Over)lap metrics for multidimensional ecological niches. R package version 1.0 (2014). https://CRAN.R-project.org/package=nicheROVER67.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2019). Available: https://www.R-project.org/68.Franssen, N. R., Davis, J. E., Ryden, D. W. & Gido, K. B. Fish community responses to mechanical removal of nonnative fishes in a large southwestern river. Fisheries 8, 352–363. https://doi.org/10.1080/03632415.2014.924409 (2014).Article 

    Google Scholar 
    69.Kelly, D. J. & Jellyman, D. J. Changes in trophic linkages to shortfin eels (Anguilla australis) since the collapse of submerged macrophytes in Lake Ellesmere, New Zealand. Hydrobiologia 579, 161–173. https://doi.org/10.1007/s10750-006-0400-0 (2007).Article 

    Google Scholar 
    70.Zambrano, L., Valiente, E. & Vander Zanden, M. J. food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. Biol. Invasions 12, 3061–3069. https://doi.org/10.1007/s10530-010-9697-8 (2010).Article 

    Google Scholar 
    71.Córdova-Tapia, F., Contreras, M. & Zambrano, L. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746, 291–301. https://doi.org/10.1007/s10750-014-1944-z (2015).Article 

    Google Scholar 
    72.Portz, D. E. & Tyus, H. M. Fish humps in two Colorado River fishes: a morphological response to cyprinid predation?. Environ. Biol. Fishes 71, 233–245. https://doi.org/10.1007/s10641-004-0300-y (2004).Article 

    Google Scholar 
    73.Pennock, C. A. et al. Predicted and observed responses of a nonnative Channel Catfish population following managed removal to aid the recovery of endangered fishes. N. Am. J. Fish. Mgmt. 38, 565–578. https://doi.org/10.1002/nafm.10056 (2018).Article 

    Google Scholar 
    74.Hedden, S. C. et al. Quantifying consumption of native fishes by nonnative Channel Catfish in a desert river. N. Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10514 (2020).Article 

    Google Scholar 
    75.Nogueira, M. G., Oliveira, P. C. R. & Britto, Y. T. Zooplankton assemblages (Copepoda and Cladocera) in a cascade of reservoirs of a large tropical river (SE Brazil). Limnetica 27, 151–170 (2008).
    Google Scholar 
    76.Slaveska-Stamenković, V. et al. Factors affecting distribution pattern of dominant macroinvertebrates in Mantovo Reservoir (Republic of Macedonia). Biologia 67, 1129–1142. https://doi.org/10.2478/s11756-012-0102-1 (2012).Article 

    Google Scholar 
    77.Behn, K. E. & Baxter, C. V. The trophic ecology of a desert river fish assemblage: influence of season and hydrologic variability. Ecosphere 10, e02583. https://doi.org/10.1002/ecs2.2583 (2019).Article 

    Google Scholar 
    78.Glenn, E. P., Lee, C., Felger, R. & Zengel, S. Effects of water management on the wetlands of the Colorado River Delta, Mexico. Conserv. Biol. 10, 1175–1186. https://doi.org/10.1046/j.1523-1739.1996.10041175.x (1996).Article 

    Google Scholar 
    79.Sykes, G. The Colorado River Delta. Publication no. 460. (Carnegie Institution of Washington, D.C. 1937).80.Dalrymple, G. B. & Hamblin, W. K. K-Ar of Pleistocene lava dams in the Grand Canyon in Arizona. Proc. Natl. Acad. Sci. U.S.A. 95, 9744–9749. https://doi.org/10.1073/pnas.95.17.9744 (1998).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Minckley, W. L. Status of the razorback sucker, Xyrauchen texanus (Abbott), in the Lower Colorado River Basin. Southwest. Nat. 28, 165–187. https://doi.org/10.2307/3671385 (1983).Article 

    Google Scholar 
    82.Doi, H. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Popul. Ecol. 51, 57–64. https://doi.org/10.1007/s10144-008-0127-z (2009).Article 

    Google Scholar 
    83.Thorp, J. H. & Delong, M. D. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550. https://doi.org/10.1034/j.1600-0706.2002.960315.x (2002).Article 

    Google Scholar 
    84.Rennie, M. D., Sprules, W. G. & Johnson, T. B. Resource switching in fish following a major food web disruption. Oecologia 159, 789–802. https://doi.org/10.1007/s00442-008-1271-z (2009).ADS 
    Article 
    PubMed 

    Google Scholar 
    85.Cummings, B. M. & Schindler, D. E. Depth variation in isotopic composition of benthic resources and assessment of sculpin feeding patterns in an oligotrophic Alaskan lake. Aquat. Ecol. 47, 403–414. https://doi.org/10.1007/s10452-013-9453-0 (2013).CAS 
    Article 

    Google Scholar 
    86.Fera, S. A., Rennie, M. D. & Dunlop, E. S. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels. Ecology 98, 1681–1692. https://doi.org/10.1002/ecy.1836 (2017).Article 
    PubMed 

    Google Scholar 
    87.Pennock, C. A., McKinstry, M. C. & Gido, K. B. Razorback Sucker movement strategies across a river-reservoir habitat complex. Trans. Am. Fish. Soc. 149, 620–634. https://doi.org/10.1002/tafs.10262 (2020).Article 

    Google Scholar 
    88.Vatland, S. & Budy, P. Predicting the invasion success of an introduced omnivore in a large heterogeneous reservoir. Can. J. Fish. Aquat. Sci. 64, 1329–1345. https://doi.org/10.1139/f07-100 (2007).Article 

    Google Scholar 
    89.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240. https://doi.org/10.1111/j.1466-8238.2010.00579.x (2011).Article 

    Google Scholar 
    90.Franssen, N. R., Gilbert, E. I., Gido, K. B. & Propst, D. L. Hatchery-reared endangered Colorado pikeminnow (Ptychocheilus lucius) undergo a gradual transition to piscivory after introduction to the wild. Aquat. Conserv. 29, 24–38. https://doi.org/10.1002/aqc.2995 (2019).Article 

    Google Scholar 
    91.Hoeinghaus, D. J., Winemiller, K. O. & Agostinho, A. A. Hydrogeomorphology and river impoundment affect food-chain length of divers Neotropical food webs. Oikos 117, 984–995. https://doi.org/10.1111/j.2008.0030-1299.16458.x (2008).Article 

    Google Scholar 
    92.Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221. https://doi.org/10.1038/s41586-019-1111-9 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    93.Pennock, C. A. & Gido, K. B. Spatial and temporal dynamics of fish assemblages in a desert reservoir over 38 years. Hyrdobiologia 848, 1231–1248. https://doi.org/10.1007/s10750-021-04514-z (2021).Article 

    Google Scholar 
    94.Oliveira, E. F., Minte-Vera, C. V. & Goulart, E. Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border). Environ. Biol. Fish. 72, 283–304. https://doi.org/10.1007/s10641-004-2582-5 (2005).Article 

    Google Scholar 
    95.Buckmeier, D. L., Smith, N. G., Fleming, B. P. & Bodine, K. A. Intra-annual variation in river-reservoir interface fish assemblages: implications for fish conservation and management in regulated rivers. River Res. Appl. 30, 780–790. https://doi.org/10.1002/rra.2667 (2014).Article 

    Google Scholar 
    96.Albrecht, B. A., Holden, P. B., Kegerries, R. B. & Golden, M. E. Razorback sucker recruitment in Lake Mead, Nevada-Arizona, why here?. Lake Reserv. Manage. 26, 336–344. https://doi.org/10.1080/07438141.2010.511966 (2010).Article 

    Google Scholar  More

  • in

    Reproductive plasticity of Hawaiian Montipora corals following thermal stress

    1.Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    4.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995. https://doi.org/10.1073/pnas.1208909109 (2012).ADS 
    Article 
    PubMed 

    Google Scholar 
    5.Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x (2003).Article 

    Google Scholar 
    7.Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime?. Science 307, 1725–1726. https://doi.org/10.1126/science.1104258 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637. https://doi.org/10.1126/science.1059199 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833. https://doi.org/10.1038/ncomms11833 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013. https://doi.org/10.1002/lno.10481 (2017).ADS 
    Article 

    Google Scholar 
    12.Jokiel, P. L. & York, R. H. Solar Ultraviolet Photobiology of the Reef Coral Pocillopora Damicornis and Symbiotic Zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
    Google Scholar 
    13.Jokiel, P. L., Lesser, M. P. & Ondrusek, M. E. UV-absorbing compounds in the coral Pocillopora damicornis: Interactive effects of UV radiation, photosynthetically active radiation, and water flow. Limnol. Oceanogr. 42, 1468–1473. https://doi.org/10.4319/lo.1997.42.6.1468 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    14.McKenzie, R. L. et al. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182–198. https://doi.org/10.1039/C0PP90034F (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Ferrier-Pagès, C. et al. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species. Biol. Bull. 213, 76–87. https://doi.org/10.2307/25066620 (2007).Article 
    PubMed 

    Google Scholar 
    16.Ailsa, P. K. & Ross, J. J. Effects of hypo-osmosis on the coral Stylophora pistillata: nature and cause of low-salinity bleaching. Mar. Ecol. Prog. Ser. 253, 145–154 (2003).Article 

    Google Scholar 
    17.Bessell-Browne, P. et al. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments. Mar. Pollut. Bull. 117, 161–170. https://doi.org/10.1016/j.marpolbul.2017.01.050 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Piniak, G. A. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals. Mar. Environ. Res. 64, 456–468. https://doi.org/10.1016/j.marenvres.2007.04.001 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208. https://doi.org/10.1007/bf00402312 (1977).Article 

    Google Scholar 
    21.Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8, 155–162 (1990).ADS 
    Article 

    Google Scholar 
    22.Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    23.Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989. https://doi.org/10.1007/s002270100634 (2001).Article 

    Google Scholar 
    24.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239. https://doi.org/10.1007/s003380170003 (2001).Article 

    Google Scholar 
    26.Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000 2, 1123–1128 (2002).27.Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).ADS 
    Article 

    Google Scholar 
    28.Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).Article 
    PubMed 

    Google Scholar 
    29.Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).ADS 
    Article 

    Google Scholar 
    30.Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article 

    Google Scholar 
    31.Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185. https://doi.org/10.1007/s00227-007-0765-2 (2007).Article 

    Google Scholar 
    32.Cumbo, V. R., Fan, T. Y. & Edmunds, P. J. Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. J. Exp. Mar. Biol. Ecol. 439, 100–107. https://doi.org/10.1016/j.jembe.2012.10.019 (2013).Article 

    Google Scholar 
    33.Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763. https://doi.org/10.1007/s00338-007-0258-2 (2007).ADS 
    Article 

    Google Scholar 
    34.Lager, C. V. A., Hagedorn, M. S., Rodgers, K. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).Article 
    PubMed 

    Google Scholar 
    36.Cox, E. F. Continuation of sexual reproduction in Montipora capitata following bleaching. Coral Reefs 26, 721–724. https://doi.org/10.1007/s00338-007-0251-9 (2007).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    37.Armoza-Zvuloni, R., Segal, R., Kramarsky-Winter, E. & Loya, Y. Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar. Ecol. Prog. Ser. 426, 149–159 (2011).ADS 
    Article 

    Google Scholar 
    38.Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).ADS 
    Article 

    Google Scholar 
    39.Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).ADS 
    Article 

    Google Scholar 
    40.Edge, S. E., Shearer, T. L., Morgan, M. B. & Snell, T. W. Sub-lethal coral stress: Detecting molecular responses of coral populations to environmental conditions over space and time. Aquat. Toxicol. 128–129, 135–146. https://doi.org/10.1016/j.aquatox.2012.11.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Downs, C. A. et al. The use of cellular diagnostics for identifying sub-lethal stress in reef corals. Ecotoxicology 21, 768–782. https://doi.org/10.1007/s10646-011-0837-4 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Olsen, K., Ritson-Williams, R., Ochrietor, J. D., Paul, V. J. & Ross, C. Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat-shock protein transcriptional expression. Mar. Biol. 160, 2609–2618. https://doi.org/10.1007/s00227-013-2255-z (2013).CAS 
    Article 

    Google Scholar 
    44.Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: Energetics and reproduction of a reef coral with heat tolerant Symbiodinium Type-D. J. Mar. Sci. 2011, 185890. https://doi.org/10.1155/2011/185890 (2011).Article 

    Google Scholar 
    45.Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719. https://doi.org/10.7717/peerj.3719 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawai‘i. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of Three Bleaching Events on the Reef Resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398 (2017).Article 

    Google Scholar 
    48.Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu. Doctoral Dissertation, University of Hawaiʻi at Mānoa, (2019).49.Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).Article 

    Google Scholar 
    50.Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. Biol. Sci. 286, 20190614. https://doi.org/10.1098/rspb.2019.0614 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Rodgers, K. U. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).Article 

    Google Scholar 
    52.Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: Two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).
    Google Scholar 
    53.Heyward, A. J. Sexual reproduction in five species of the coral Montipora. In: Coral Reef Population Biology. Hawaii Institute of Marine Biology Technical Report 37, 170–178 (1985).54.Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway. (Mutual Publishing Company, 2005).55.Veron, J. E. N. Corals of the world. Volume 1. (Australia Institute of Marine Science, 2000).56.Forsman, Z. H. et al. Ecomorph or endangered coral? DNA and microstructure reveal hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS One 5, e15021. https://doi.org/10.1371/journal.pone.0015021 (2010).57.Cunha, R. L. et al. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol. Biol. 19, 153. https://doi.org/10.1186/s12862-019-1476-2 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Padilla-Gamiño, J. L., Weatherby, T. M., Waller, R. G. & Gates, R. D. Formation and structural organization of the egg–sperm bundle of the scleractinian coral Montipora capitata. Coral Reefs 30, 371–380. https://doi.org/10.1007/s00338-010-0700-8 (2011).ADS 
    Article 

    Google Scholar 
    59.Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18 (2014).Article 

    Google Scholar 
    60.Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).ADS 
    Article 

    Google Scholar 
    61.Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).Article 

    Google Scholar 
    62.Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Hunter, C. L. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata . In Proceedings of the 6th International Coral Reef Symposium Vol. 2 727–732 (1988).64.Binet, M. T., Doyle, C. J., Williamson, J. E. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100. https://doi.org/10.1016/j.jembe.2013.12.008 (2014).CAS 
    Article 

    Google Scholar 
    65.Chen, L. B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181. https://doi.org/10.1146/annurev.cb.04.110188.001103 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084. https://doi.org/10.1242/jeb.114900 (2015).Article 
    PubMed 

    Google Scholar 
    67.Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882. https://doi.org/10.4319/lo.2007.52.5.1874 (2007).ADS 
    Article 

    Google Scholar 
    68.Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Hayward, A. & Gillooly, J. F. The cost of sex: Quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).ADS 
    Article 

    Google Scholar 
    71.Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).Article 

    Google Scholar 
    72.Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706. https://doi.org/10.4319/lo.2001.46.3.0704 (2001).ADS 
    Article 

    Google Scholar 
    73.Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Benzie, J. A. H. & Dixon, P. The effects of sperm concentration, sperm: Egg ratio, and gamete age on fertilization success in Crown-of-Thorns Starfish (Acanthaster planci) in the Laboratory. Biol. Bull. 186, 139–152. https://doi.org/10.2307/1542048 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Brazeau, D. A. & Lasker, H. R. Reproductive success in the Caribbean octocoral Briareum asbestinum. Mar. Biol. 114, 157–163. https://doi.org/10.1007/BF00350865 (1992).Article 

    Google Scholar 
    77.Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: Sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).CAS 
    Article 

    Google Scholar 
    80.Levitan, D. R., Sewell, M. A. & Chia, F.-S. How distribution and abundance influence fertilization success in the Sea Urchin Strongylocentotus franciscanus. Ecology 73, 248–254. https://doi.org/10.2307/1938736 (1992).Article 

    Google Scholar 
    81.Jamieson, G. S. Marine invertebrate conservation: Evaluation of fisheries over-exploitation Concerns1. Am. Zool. 33, 551–567. https://doi.org/10.1093/icb/33.6.551 (1993).Article 

    Google Scholar 
    82.Fitt, K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).Article 

    Google Scholar 
    83.Coles, S. L. & Jokiel, P. L. Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar. Biol. 49, 187–195. https://doi.org/10.1007/BF00391130 (1978).Article 

    Google Scholar 
    84.Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).Article 

    Google Scholar 
    85.Grunwald, D. J. & Streisinger, G. Induction of mutations in the zebrafish with ultraviolet light. Genet. Res. 59, 93–101. https://doi.org/10.1017/S0016672300030305 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Lamare, M., Burritt, D. & Lister, K. Chapter Four – Ultraviolet Radiation and Echinoderms: Past, Present and Future Perspectives. Adv. Mar. Biol. 59, 145–187 (Academic Press, 2011).87.Jokiel, P. L. Solar ultraviolet radiation and coral reef Epifauna. Science 207, 1069–1071 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Banaszak, A. T., Barba Santos, M. G., LaJeunesse, T. C. & Lesser, M. P. The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J. Exp. Mar. Biol. Ecol. 337, 131–146. https://doi.org/10.1016/j.jembe.2006.06.014 (2006).CAS 
    Article 

    Google Scholar 
    89.Leutenegger, A. et al. It’s cheap to be colorful. FEBS J. 274, 2496–2505. https://doi.org/10.1111/j.1742-4658.2007.05785.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Rosic, N. N. & Dove, S. Mycosporine-like amino acids from coral dinoflagellates. Appl. Environ. Microbiol. 77, 8478. https://doi.org/10.1128/AEM.05870-11 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Smith, E. G., D’Angelo, C., Salih, A. & Wiedenmann, J. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32, 463–474. https://doi.org/10.1007/s00338-012-0994-9 (2013).ADS 
    Article 

    Google Scholar 
    92.Dove, S. Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar. Ecol. Prog. Ser. 272, 99–116 (2004).ADS 
    Article 

    Google Scholar 
    93.Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Change Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).ADS 
    Article 

    Google Scholar 
    94.Pennington, J. T. The ecology of fertilization of Echinoid eggs: The consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).Article 
    PubMed 

    Google Scholar 
    95.Levitan, D. R. & Young, C. M. Reproductive success in large populations: empirical measures and theoretical predictions of fertilization in the sea biscuit Clypeaster rosaceus. J. Exp. Mar. Biol. Ecol. 190, 221–241. https://doi.org/10.1016/0022-0981(95)00039-T (1995).Article 

    Google Scholar 
    96.Hagedorn, M. et al. Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success. PLoS ONE 10, e0118364. https://doi.org/10.1371/journal.pone.0118364 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61. https://doi.org/10.1038/s41598-020-79732-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kolinski, S. P. Sexual reproduction and the early life history of Montipora capitata in Kāne’ohe Bay, O’ahu, Hawai’i. Doctoral Dissertation, University of Hawai’i at Mānoa, (2004).99.Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437. https://doi.org/10.1890/04-0298 (2004).Article 

    Google Scholar 
    100.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, Vienna, Austria, 2019). More

  • in

    Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes

    1.Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus civ stor nat Trieste 52, 5–135 (2006).
    Google Scholar 
    2.Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci Rep 8, 10575, https://doi.org/10.1038/s41598-018-28796-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: environmental variation or shift of habitat selection? PeerJ 3, e1122, https://doi.org/10.7717/peerj.1122 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 1–11, https://doi.org/10.1111/ecog.04798 (2020).Article 

    Google Scholar 
    5.Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats 2nd edn (Oxford University Press, 2019).6.Bradley, J. G. & Eason, P. K. Predation risk and microhabitat selection by cave salamanders, Eurycea lucifuga (Rafinesque, 1822). Behaviour 155, 841–859, https://doi.org/10.1163/1568539X-00003505 (2019).Article 

    Google Scholar 
    7.Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. The Science of Nature 104, 20, https://doi.org/10.1007/s00114-017-1443-y (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: how do responses vary in amphibians adapted to cave living? Behavioral Ecology and Sociobiology 74, 126, https://doi.org/10.1007/s00265-020-02909-x (2020).Article 

    Google Scholar 
    9.Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci Data 5, 180083, https://doi.org/10.1038/sdata.2018.83 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lunghi, E. & Bruni, G. Long-term reliability of Visual Implant Elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).
    Google Scholar 
    11.Mace, G. M. & Lande, R. Assessing extinction threats: towards a reevaluation of IUCN threatened species categories. Conservation Biology 5, 148–157 (1991).Article 

    Google Scholar 
    12.Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transaction of the Royal Society B 367, 1665–1679, https://doi.org/10.1098/rstb.2012.0005 (2012).Article 

    Google Scholar 
    13.Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani. (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).14.European Community. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union L 206/7, 1–44 (1992).
    Google Scholar 
    15.Régnier, C. et al. Mass extinction in poorly known taxa. Proc Natl Acad Sci USA 112, 7761–7766, https://doi.org/10.1073/pnas.1502350112 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786, https://doi.org/10.1126/science.1103538 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol Lett 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Connette, G. M., Crawford, J. A. & Peterman, A. E. Climate change and shrinking salamanders: alternative mechanisms for changes in plethodontid salamander body size. Global Change Biology 21, 2834–2843, https://doi.org/10.1111/gcb.12883 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    19.Heinrichs, J. A., Bender, D. J. & Schumaker, N. H. Habitat degradation and loss as key drivers of regional population extinction. Ecological Modelling 335, 64–73, https://doi.org/10.1016/j.ecolmodel.2016.05.009 (2016).Article 

    Google Scholar 
    20.Walters, R. J., Blanckenhorn, W. U. & Berger, D. Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology 26, 1324–1338, https://doi.org/10.1111/j.1365-2435.2012.02045.x (2012).Article 

    Google Scholar 
    21.Zhang, Z. et al. Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biology 65, 971–980, https://doi.org/10.1111/fwb.13483 (2020).Article 

    Google Scholar 
    22.Bland, L. M. Global correlates of extinction risk in freshwater crayfish. Animal Conservation 20, 532–542, https://doi.org/10.1111/acv.12350 (2017).Article 

    Google Scholar 
    23.Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci Data 7, 171, https://doi.org/10.1038/s41597-020-0513-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers Data J 7, e38492, https://doi.org/10.3897/BDJ.7.e38492 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.MacNeil, R. R. & Brcic, J. Coping with the subterranean environment: a thematic content analysis of the narratives of cave explorers. J Hum Perform Environ 13, Article 6, https://doi.org/10.7771/2327-2937.1089 (2017).Article 

    Google Scholar 
    26.Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers Conserv 19, 3035–3048, https://doi.org/10.1007/s10531-010-9873-2 (2010).Article 

    Google Scholar 
    27.Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecology and Evolution, https://doi.org/10.1002/ece3.7556 (2021).28.Brown, A. W., Kaiser, K. A. & Allison, D. B. Issues with data and analyses: errors, underlying themes, and potential solutions. Proc Natl Acad Sci USA 115, 2563–2570, https://doi.org/10.1073/pnas.1708279115 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildlife Research 39, 266–270, https://doi.org/10.1071/WR11103 (2012).Article 

    Google Scholar 
    30.Lunghi, E. & Veith, M. Are Visual Implant Alpha tags adequate for individually marking European cave salamanders (genus Hydromantes)? Salamandra 53, 541–544 (2017).
    Google Scholar 
    31.Swanson, J. E., Bailey, L. L., Muths, E. & Funk, W. C. Factors influencing survival and mark retention in postmetamorphic Boreal chorus frogs. Copeia 2013, 670–675, https://doi.org/10.1643/CH-12-129 (2013).Article 

    Google Scholar 
    32.Sacchi, R. et al. Photographic identification in reptiles: a matter of scales. Amphibia-Reptilia 31, 489–502 (2010).Article 

    Google Scholar 
    33.Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253, https://doi.org/10.3897/herpetozoa.32.e39030 (2019).Article 

    Google Scholar 
    34.Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 13, e0205672, https://doi.org/10.1371/journal.pone.0205672 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Lunghi, E. et al. The post hoc measurement as a safe and reliable method to age and size plethodontid salamanders. Ecology and Evolution 10, 11111–11116, https://doi.org/10.1002/ece3.6748 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Hedrick, B. P. et al. Digitization and the future of natural history collections. BioScience 70, 243–251, https://doi.org/10.1093/biosci/biz163 (2020).Article 

    Google Scholar 
    37.Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philosophical Transactions of the Royal Society B 374, 20170391, https://doi.org/10.1098/rstb.2017.0391 (2019).Article 

    Google Scholar 
    38.Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: do environmental factors have a role? Ecology 101, e03088, https://doi.org/10.1002/ecy.3088 (2020).Article 
    PubMed 

    Google Scholar 
    39.Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol 43, 42–50 (2012).ADS 
    Article 

    Google Scholar 
    40.Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16, https://doi.org/10.1007/s00442-014-3201-6 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    41.Lunghi, E. et al. Same diet, different strategies: variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180, https://doi.org/10.3390/d12050180 (2020).Article 

    Google Scholar 
    42.Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol 55, 29–35, https://doi.org/10.1016/j.actao.2013.11.003 (2014).ADS 
    Article 

    Google Scholar 
    43.Lunghi, E. et al. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers Data J 8, e48623, https://doi.org/10.3897/BDJ.8.e48623 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Carvalho-Rocha, V., Cortês, L. B. & Neckel-Oliveira, S. Interindividual patterns of resource use in three subtropical Atlantic Forest frogs. Austral Ecology 43, 150–158, https://doi.org/10.1111/aec.12552 (2018).Article 

    Google Scholar 
    45.Lunghi, E. et al. Photos and stomach contents of two mainland Italian Speleomantes salamanders: data from summer 2020. figshare https://doi.org/10.6084/m9.figshare.c.5398368 (2021).46.Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA 110, 15325–15329, https://doi.org/10.1073/pnas.1307356110 (2012).ADS 
    Article 

    Google Scholar 
    47.Treilibs, C. E., Pavey, C. R., Hutchinson, M. N. & Bull, C. M. Photographic identification of individuals of a free-ranging, small terrestrial vertebrate. Ecology and Evolution 6, 800–809, https://doi.org/10.1002/ece3.1883 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Town, C., Marshall, A. & Sethasathien, N. Manta Matcher: automated photographic identification of manta rays using keypoint features. Ecology and Evolution 3, 1902–1914, https://doi.org/10.1002/ece3.587 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.MacCoun, R. & Perlmutter, S. Hide results to seek the truth. Nature 526, 187–189, https://doi.org/10.1038/526187a (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J Therm Biol 60, 79–85, https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).Article 
    PubMed 

    Google Scholar 
    51.Weller, H. I. & Westneat, M. W. Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ 7, e6398, https://doi.org/10.7717/peerj.6398 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Adams, D., Collyer, M. & Kaliontzopoulou, A. geomorph. Geometric Morphometric Analyses of 2D/3D Landmark Data. R package version 3.2.1, https://github.com/geomorphR/geomorph (2020).53.Bendik, N. F., Morrison, T. A., Gluesenkamp, A. G., Sanders, M. S. & O’Donnell, L. J. Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae. PLoS ONE 8, e59424, https://doi.org/10.1371/journal.pone.0059424 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Renet, J., Leprêtre, L., Champagnon, J. & Lambret, P. Monitoring amphibian species with complex chromatophore patterns: a non-invasive approach with an evaluation of software effectiveness and reliability. Herpetological Journal 29, 13–22, https://doi.org/10.33256/hj29.1.1322 (2019).Article 

    Google Scholar 
    55.Allen-Blevins, C. R., You, X., Hinde, K. & Sela, D. A. Handling stress may confound murine gut microbiota studies. PeerJ 5, e2876, https://doi.org/10.7717/peerj.2876 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Samimi, A. S., Tajik, J., Jarakani, S. & Shojaeepour, S. Evaluation of a five-minute resting period following handling stress on electrocardiogram parameters and cardiac rhythm in sheep. Veterinary Science Development 6, 6481, https://doi.org/10.4081/vsd.2016.6481 (2016).Article 

    Google Scholar 
    57.Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630, https://doi.org/10.1126/science.1258268 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat Ecol Evol 3, 319, https://doi.org/10.1038/s41559-019-0803-8 (2019).Article 
    PubMed 

    Google Scholar  More