Irradiation-induced sterility in an egg parasitoid and possible implications for the use of biological control in insect eradication
1.DeBach, P. & Rosen, D. Biological Control by Natural Enemies (Cambridge University Press, 1991).
Google Scholar
2.Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
3.Walker, J. T. S., Suckling, D. M. & Wearing, C. H. Past, present, and future of integrated control of apple pests: The New Zealand experience. Annu. Rev. Entomol. 62, 231–248 (2017).PubMed
Article
CAS
PubMed Central
Google Scholar
4.van Lenteren, J. C., Bale, J., Bigler, F., Hokkanen, H. M. T. & Loomans, A. J. M. Assessing risks of releasing exotic biological control agents of arthropod pests. Annu. Rev. Entomol. 51, 609–634 (2006).PubMed
Article
CAS
PubMed Central
Google Scholar
5.Bale, J. S., van Lenteren, J. C. & Bigler, F. Biological control and sustainable food production. Phil. Trans. R. Soc. Lond. B 363, 761–776 (2008).Article
CAS
Google Scholar
6.Sheppard, A. W. et al. A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: A crisis in the making?. Biocontrol News Inf. 24, 91N-108N (2003).
Google Scholar
7.Barratt, B. I. P., Blossey, B. & Hokkanen, H. M. Post-release evaluation of non-target effects of biological control agents. In Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment (eds Bigler, F. et al.) 166–186 (CABI Publishing, 2006).Chapter
Google Scholar
8.Barratt, B. I. P., Moeed, A. & Malone, L. A. Biosafety assessment protocols for new organisms in New Zealand: Can they apply internationally to emerging technologies?. Environ. Impact Assess. Rev. 26, 339–358 (2006).Article
Google Scholar
9.Klassen, W. & Curtis, C. F. History of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 3–38 (Springer, 2021).
Google Scholar
10.Hendrichs, J., Kenmore, P., Robinson, A. S. & Vreyson, M. J. B. Area-wide integrated pest management (AW-IPM): principles, practice and prospects. In Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 3–34 (Springer, 2007).
Google Scholar
11.Knipling, E. F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–462 (1955).Article
Google Scholar
12.Brockerhoff, E. G., Liebhold, A. M., Richardson, B. & Suckling, D. M. Eradication of invasive forest insects: Concepts, methods, costs and benefits. NZ J. For. Sci. 40, S117–S135 (2010).
Google Scholar
13.Suckling, D. M., Tobin, P. C., McCullough, D. G. & Herms, D. A. Combining tactics to exploit Allee effects for eradication of alien insect populations. J. Econ. Entomol. 105, 1–13 (2012).PubMed
Article
PubMed Central
Google Scholar
14.Hendrichs, J., Enkerlin, W. R. & Pereira, R. Invasive insect pests: challenges and the role of the sterile insect technique in their prevention, containment, and eradication. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management 885–922 (Springer, 2021).Chapter
Google Scholar
15.Nagel, P. & Peveling, R. Environment and the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 499–519 (Springer, 2021).
Google Scholar
16.Knipling, E. F. The Basic Principles of Insect Population Suppression and Management (U.S. Department of Agriculture, 1979).
Google Scholar
17.Barclay, H. J. Models for pest control: Complementary effects of periodic releases of sterile pests and parasitoids. Theor. Popul. Biol. 32, 76–89 (1987).Article
Google Scholar
18.Soller, M. & Lanzrein, B. Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induce developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae). J. Insect Physiol. 42, 471–481 (1996).Article
CAS
Google Scholar
19.Tillinger, N. A., Hoch, G. & Schopf, A. Effects of parasitoid associated factors of the endoparasitoid Glyptapanteles liparidis (Hymenoptera: Braconidae). Eur. J. Entomol. 101, 243–249 (2004).Article
Google Scholar
20.Tunçbilek, A. S., Canpolat, U. & Ayvaz, A. Effects of gamma radiation on suitability of stored cereal pest eggs and the reproductive capability of the egg parasitoid Trichogramma evanescens (Trichogrammatidae: Hymenoptera). Biocontrol Sci. Techn. 19, 179–191 (2009).Article
Google Scholar
21.Lynch, L. D. et al. Insect biological control and non-target effects: a European perspective. In Evaluating Indirect Ecological Effects of Biological Control (eds Wajnberg, E. et al.) 99–126 (Springer, 2001).
Google Scholar
22.van Lenteren, J. C. V. et al. Environmental risk assessment of exotic natural enemies used in inundative biological control. Biocontrol 48, 3–38 (2003).Article
Google Scholar
23.Horrocks, K. J., Avila, G. A., Holwell, G. I. & Suckling, D. M. Integrating sterile insect technique with the release of sterile classical biocontrol agents for eradication: Is the Kamikaze Wasp Technique feasible?. Biocontrol 65, 257–271 (2020).Article
Google Scholar
24.Welsh, T. J., Stringer, L. D., Caldwell, R., Carpenter, J. E. & Suckling, D. M. Irradiation biology of male brown marmorated stink bugs: Is there scope for the sterile insect technique?. Int. J. Radiat. Biol. 93, 1357–1363 (2017).PubMed
Article
CAS
PubMed Central
Google Scholar
25.Suckling, D. M. et al. The competitive mating of irradiated brown marmorated stink bugs, Halyomorpha halys, for the sterile insect technique. Insects 10, 411 (2019).PubMed Central
Article
Google Scholar
26.Larivière, M.-C. Fauna of New Zealand (Manaaki Whenua Press, 1995).
Google Scholar
27.Martin, N. A. Green vegetable bug – Nezara viridula. Interesting insects and other invertebrates. New Zealand arthropod factsheet number 47 https://nzacfactsheets.landcareresearch.co.nz/factsheet/InterestingInsects/Green-vegetable-bug—Nezara-viridula.html (2018). Accessed 16 Sept 2020.28.Powell, J. E. & Shepard, M. Biology of Australian and United States strains of Trissolcus basalis, a parasitoid of the green vegetable bug Nezara viridula. Austr. Ecol. 7, 181–186 (1982).Article
Google Scholar
29.Cantón-Ramos, J. M. & Callejón-Ferre, Á. J. Raising Trissolcus basalis for the biological control of Nezara viridula in greenhouses of Almería (Spain). Afr. J. Agric. Res. 5, 3207–3212 (2010).
Google Scholar
30.Loch, A. D. & Walter, G. H. Mating behavior of Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae): Potential for outbreeding in a predominantly inbreeding species. J. Insect Behav. 11, 2 (2002).
Google Scholar
31.Johns, H. F. & Cunningham, J. R. The interaction of single beams of x and gamma rays with a scattering medium. In The Physics of Radiology 349–350 (Charles C Thomas, 1983).
Google Scholar
32.Bin, F., Vinson, S. B., Strand, M. R., Colazza, S. & Jones, W. A. Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula. Physiol. Entomol. 18, 7–15 (1993).Article
Google Scholar
33.Mahmoud, A. M. A. & Lim, U. T. Evaluation of cold-stored eggs of Dolycoris baccarum (Hemiptera: Pentatomidae) for parasitization by Trissolcus nigripedius (Hymenoptera: Scelionidae). Biol. Control 43, 287–293 (2007).Article
Google Scholar
34.Haye, T. et al. Fundamental host range of Trissolcus japonicus in Europe. J. Pest Sci. 93, 171–182 (2020).Article
Google Scholar
35.Cusumano, A. et al. First extensive characterization of the venom gland from an egg parasitoid: Structure, transcriptome and functional role. J. Insect Physiol. 107, 68–80 (2018).PubMed
Article
CAS
Google Scholar
36.Bundy, C. S. & McPherson, R. M. Morphological examination of stink bug (Heteroptera: Pentatomidae) eggs on cotton and soybeans, with a key to genera. Ann. Entomol. Soc. Am. 93, 616–624 (2000).Article
Google Scholar
37.Favetti, B. M., Butnariu, A. R. & Doetzer, A. K. Storage of Euschistus heros eggs (Fabricius) (Hemiptera: Pentatomidae) in liquid nitrogen for parasitization by Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Neotrop. Entomol. 43, 291–293 (2014).PubMed
Article
CAS
Google Scholar
38.Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76, 412–425 (1995).Article
Google Scholar
39.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH
Book
Google Scholar
40.Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
41.Chapman, T., Miyatake, T., Smith, H. K. & Partridge, L. Interactions of mating, egg production and death rates in females of the Mediterranean fruit fly, Ceratitis capitata. Proc. R. Soc. Lond. B 265, 1879–1894 (1998).Article
CAS
Google Scholar
42.Grosch, D. S. & Sullivan, R. L. The quantitative aspects of permanent and temporary sterility induced in female Habrobracon by x-rays and β radiation. Radiat. Res. 1, 294–320 (1954).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
43.Colazza, S. & Wajnberg, E. Effects of host egg mass size on sex ratio and oviposition sequence of Trissolcus basalis (Hymenoptera: Scelionidae). Environ. Entomol. 27, 329–336 (1998).Article
Google Scholar
44.Rosi, M. C., Isidoro, N., Colazza, S. & Bin, F. Source of the host marking pheromone in the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). J. Insect Physiol. 47, 989–995 (2001).PubMed
Article
CAS
PubMed Central
Google Scholar
45.Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).Article
Google Scholar
46.Kuske, S. et al. Dispersal and persistence of mass released Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in non-target habitats. Biol. Control 27, 181–193 (2003).Article
Google Scholar
47.Draz, K. A., Tabikha, R. M., El-Aw, M. A. & Darwish, H. F. Impact of gamma radiation doses on sperm competitiveness, fecundity and morphometric characters of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephiritidae). J. Radiat. Res. Appl. Sci. 9, 352–362 (2016).Article
CAS
Google Scholar
48.Ali, A., Rashid, M. A., Huang, Q. Y. & Lei, C.-L. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 23, 17002–17007 (2016).Article
CAS
Google Scholar
49.Liebhold, A. M. et al. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).PubMed
Article
CAS
PubMed Central
Google Scholar
50.Tobin, P. C. et al. Determinants of successful arthropod eradication programs. Biol. Invasions 16, 401–414 (2014).Article
Google Scholar
51.Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against alien species?. PLoS ONE 7, e48157 (2012).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
52.Colunga-Garcia, M., Magarey, R. A., Haack, R. A., Gage, S. H. & Qi, J. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework. Ecol. Appl. 20, 303–310 (2010).PubMed
Article
PubMed Central
Google Scholar
53.Myers, J. H., Savoie, A. & van Randen, E. Eradication and pest management. Annu. Rev. Entomol. 43, 471–491 (1998).PubMed
Article
CAS
PubMed Central
Google Scholar
54.Lance, D. R. & McInnis, D. O. Biological basis of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 69–94 (Springer, 2021).
Google Scholar
55.Godfray, H. C. J. Oviposition behaviour. In Parasitoids: Behavioural and Evolutionary Ecology Vol. 67 83–150 (Princeton University Press, 1994).Chapter
Google Scholar
56.Ravuiwasa, K. T., Lu, K.-H., Shen, T.-C. & Hwang, S.-Y. Effects of irradiation on Planococcus minor (Hemiptera: Pseudococcidae). J. Econ. Entomol. 102, 1774–1780 (2009).PubMed
Article
PubMed Central
Google Scholar
57.Bloem, S., Bloem, K. A. & Knight, A. L. Oviposition by sterile codling moths, Cydia pomonella (Lepidoptera: Tortricidae) and control of wild populations with combined releases of sterile moths and egg parasitoids. J. Entomol. Soc. 95, 99–109 (1998).
Google Scholar
58.Hasaballah, A. I. Impact of gamma irradiation on the development and reproduction of Culex pipiens (Diptera; Culicidae). Int. J. Radiat. Biol. 94, 844–849 (2018).PubMed
Article
CAS
PubMed Central
Google Scholar
59.Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).PubMed
Article
CAS
PubMed Central
Google Scholar
60.Bertin, A., Pavinato, V. A. C. & Parra, J. R. P. Effects of intraspecific hybridization on the fitness of the egg parasitoid Trichogramma galloi. Biocontrol 63, 555–563 (2018).Article
Google Scholar
61.Bloem, S., Bloem, K. A., Carpenter, J. E. & Calkins, C. O. Inherited sterility in codling moth (Lepidoptera: Tortricidae): Effect of substerilizing doses of radiation on insect fecundity, fertility, and control. Ann. Entomol. Soc. Am. 92, 222–229 (1999).Article
Google Scholar
62.Bloem, S., Carpenter, J. E. & Hofmeyr, J. H. Radiation biology and inherited sterility in false codling moth (Lepidoptera:Tortricidae). J. Econ. Entomol. 96, 1724–1731 (2003).PubMed
Article
PubMed Central
Google Scholar
63.El-Kholy, E. M. S. Biological and biochemical effects of vitamin ‘c’ on the normal and irradiated mediterranean fruit fly, Ceratitis capitata (wied). J. Radiat. Res. Appl. Sci. 2, 197–212 (2009).
Google Scholar
64.Rempoulakis, P., Castro, R., Nemny-Lavy, E. & Nestel, D. Effects of radiation on the fertility of the Ethiopian fruit fly, Dacus ciliatus. Entomol. Exp. Appl. 155, 117–122 (2015).Article
Google Scholar
65.Würgler, F. E. & Lütolf, H.-U. Radiosensitivity of oocytes of Drosophila I. sensitivity of class-a oocytes of triploid and diploid females. Int. J. Radiat. Biol. 21, 455–463 (1972).
Google Scholar
66.Field, S. A. Patch exploitation, patch-leaving and pre-emptive patch defence in the parasitoid wasp Trissolcus basalis (Insecta: Scelionidae). Ethology 104, 323–338 (1998).Article
Google Scholar
67.Sked, S. L. & Calvin, D. D. Temporal synchrony between Macrocentrus cingulum (Hymenoptera: Braconidae) with its preferred host, Ostrinia nubilalis (Lepidoptera: Crambidae). Environ. Entomol. 34, 344–352 (2005).Article
Google Scholar
68.Jiang, N., Zhou, G., Overholt, W. A., Muchugu, E. & Schulthess, F. The temporal correlation and spatial synchrony in the stemborer and parasitoid system of Coast Kenya with climate effects. Ann. Soc. Entomol. Fr. 42, 381–387 (2006).Article
Google Scholar
69.Whitten, M. & Mahon, R. Misconceptions and constraints. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 601–626 (Springer, 2021).
Google Scholar
70.Lee, Y. J. & Ducoff, H. S. Radiation-enhanced resistance to oxygen: A possible relationship to radiation-enhanced longevity. Mech. Ageing Dev. 27, 101–109 (1984).PubMed
Article
CAS
PubMed Central
Google Scholar
71.Suckling, D. M., Wee, S. L. & Pedley, R. Assessing competitive fitness of irradiated painted apple moth Teia anartoides (Lepidoptera: Lymantriidae). N.Z. Plant Prot. 57, 171–176 (2004).
Google Scholar
72.Wee, S. L. et al. Effects of substerilizing doses of gamma radiation on adult longevity and level of inherited sterility in Teia anartoides (Lepidoptera: Lymantriidae). J. Econ. Entomol. 98, 732–738 (2005).PubMed
Article
CAS
PubMed Central
Google Scholar
73.Vilca Mallqui, K. S., Vieira, J. L., Guedes, R. N. C. & Gontijo, L. M. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). J. Econ. Entomol. 107, 860–866 (2014).Article
Google Scholar
74.Monroy Kuhn, J. M. & Korb, J. Editorial overview: Social insects: Aging and the re-shaping of the fecundity/longevity trade-off with sociality. Curr. Opin. Insect Sci. 16, 7–10 (2016).
Google Scholar
75.Blacher, P., Huggins, T. J. & Bourke, A. F. G. Evolution of ageing, costs of reproduction and the fecundity–longevity trade-off in eusocial insects. Proc. R. Soc. B-Biol. Sci. 284, 20170380 (2017).Article
Google Scholar
76.Flatt, T. Survival costs of reproduction in Drosophila. Exp. Gerontol. 46, 369–375 (2011).PubMed
Article
PubMed Central
Google Scholar
77.Vogt, E. & Nechols, J. R. The influence of host deprivation and host source on the reproductive biology and longevity of the squash bug egg parasitoid Gryon penssylvanicum (Ashmead) (Hymenoptera: Scelionidae). Biol. Control 3, 148–154 (1993).Article
Google Scholar
78.Ramesh, B. & Manickavasagam, S. Tradeoff between longevity and fecundity in relation to host availability in a thelytokous oophagous parasitoid, Trichogramma brasiliensis Ashmead (Trichogrammatidae: Hymenoptera). Int. J. Trop. Insect Sci. 23, 207–210 (2003).Article
Google Scholar
79.Gurr, G. M. & Kvedaras, O. L. Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol. Control 52, 198–207 (2010).Article
Google Scholar
80.Knipling, E. F. Principles of Insect Parasitism Analyzed from New Perspectives: Practical Implications for Regulating Insect Populations by Biological Means (United States Department of Agriculture, 1992).
Google Scholar
81.Orozco, D., Domínguez, J., Reyes, J., Villaseñor, A. & Gutiérrez, J. M. SIT and biological control of Anastrepha fruit flies in Mexico. in Proceedings of the 6th International Fruit Fly Symposium 245–249 (Isteg Scientific Publications, 2002).82.Wong, T. T. Y., Ramadan, M. M., Herr, J. C. & McInnis, D. O. Suppression of a Mediterranean fruit fly (Diptera: Tephritidae) population with concurrent parasitoid and sterile fly releases in Kula, Maui, Hawaii. J. Econ. Entomol. 85, 1671–1681 (1992).Article
Google Scholar
83.Cossentine, J. E. & Jensen, L. B. M. Releases of Trichogramma platneri (Hymenoptera: Trichogrammatidae) in apple orchards under a sterile codling moth release program. Biol. Control 18, 179–186 (2000).Article
Google Scholar
84.Carpenter, J. E., Bloem, S. & Hofmeyr, J. H. Acceptability and suitability of eggs of false codling moth (Lepidoptera: Tortricidae) from irradiated parents to parasitism by Trichogrammatoidea cryptophlebiae (Hymenoptera: Trichogrammatidae). Biol. Control 30, 351–359 (2004).Article
Google Scholar
85.Carpenter, J. E., Bloem, S. & Hofmeyr, J. H. Area-wide control tactics for the false codling moth Thaumatotibia leucotreta in South Africa: a potential invasive species. In Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 351–359 (Springer, 2007).
Google Scholar
86.Faúndez, E. I. & Rider, D. A. The brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera: Pentatomidae) in Chile. Arquivos Entomol. 17, 305–307 (2017).
Google Scholar
87.Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 90, 1033–1043 (2017).Article
Google Scholar
88.Kiwifruit Vine Health. KVH information sheet: BMSB risk update January 2019 (Kiwifruit Vine Health, 2019).89.Vandervoet, T. F., Bellamy, D. E., Anderson, D. & MacLellan, R. Trapping for early detection of the brown marmorated stink bug, Halyomorpha halys New Zealand. N.Z. Plant Prot. 72, 36–43 (2019).
Google Scholar
90.Laing, K., Belton, D. & Taylor, J. Decision on releasing Trissolcus japonicus from containment. (Environmental Protection Authority, 2018).91.Charles, J. G. et al. Experimental assessment of the biosafety of Trissolcus japonicus in New Zealand, prior to the anticipated arrival of the invasive pest Halyomorpha halys. Biocontrol 64, 367–379 (2019).Article
CAS
Google Scholar More