More stories

  • in

    Impact of test, vaccinate or remove protocol on home ranges and nightly movements of badgers a medium density population

    DEFRA. Strategy for Achieving Officially Bovine Tuberculosis Free Status for England: The ‘edge area’ strategy. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/300447/pb14088-bovine-tb-strategy-140328.pdf (2014).Campbell, E. L. et al. Interspecific visitation of cattle and badgers to fomites: A transmission risk for bovine tuberculosis?. Ecol. Evol. 9(15), 8479–8489 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, T., O’Connor, C., Nuñez-Garcia, J., De La Rua-Domenech, R. & Smith, N. H. Unusual cluster of Mycobacterium bovis infection in cats. Vet. Rec. 174(13), 326–326 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phipps, E. et al. Bovine tuberculosis in working foxhounds: Lessons learned from a complex public health investigation. Epidemiol. Infect. 147, 1–6 (2019).Article 

    Google Scholar 
    Delahay, R. J., De Leeuw, A. N. S., Barlow, A. M., Clifton-Hadley, R. S. & Cheeseman, C. L. The status of Mycobacterium bovis infection in UK wild mammals: A review. Vet. J. 164(2), 90–105 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fitzgerald, S. D. & Kaneene, J. B. Wildlife reservoirs of bovine tuberculosis worldwide: Hosts, pathology, surveillance, and control. Vet. Pathol. 50(3), 488–499 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Skuce, R. A., Allen, A. R. & McDowell, S. W. J. Herd-level risk factors for bovine tuberculosis: A literature review. Vet Med Int 2012, 621210 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayele, W. Y., Neill, S. D., Zinsstag, J., Weiss, M. G. & Pavlik, I. Bovine tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8(8), 924–937 (2004).CAS 
    PubMed 

    Google Scholar 
    Gallagher, J. & Clifton-Hadley, R. S. Tuberculosis in badgers; a review of the disease and its significance for other animals. Res. Vet. 69(3), 203–217 (2000).Article 
    CAS 

    Google Scholar 
    Allen, A. et al. Genome epidemiology of Mycobacterium bovis infection in contemporaneous, sympatric badger and cattle populations in Northern Ireland. Access Microbiol. 1(1A), 385 (2019).Article 

    Google Scholar 
    APHA. Bovine Tuberculosis in England in 2020—Epidemiological analysis of the 2020 data and historical trends. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1027591/tb-epidemiological-report-2020.pdf (2021).DAERA. Tuberculosis disease statistics in Northern Ireland 2022. https://www.daera-ni.gov.uk/publications/tuberculosis-disease-statistics-northern-ireland-2022 (2022).Woodroffe, R. et al. Effects of culling on badger Meles meles spatial organization: Implications for the control of bovine tuberculosis. J. Appl. Ecol. 43(1), 1–10 (2006).Article 

    Google Scholar 
    Byrne, A. W., Paddy Sleeman, D., O’Keeffe, J. & Davenport, J. The ecology of the European badger (Meles meles) in Ireland: A review. Biol. Environ. 112, 105–132 (2012).Article 

    Google Scholar 
    McDonald, J., Robertson, A. & Silk, M. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112 (2017).Article 
    PubMed 

    Google Scholar 
    Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildlife conservation on farmland 2, 65–95 (2015).
    Google Scholar 
    Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8 (2017).Article 
    CAS 

    Google Scholar 
    Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549 (1999).Article 

    Google Scholar 
    Reid, N., Etherington, T. R., Wilson, G. J., Montgomery, W. I. & McDonald, R. A. Monitoring and population estimation of the European badger Meles meles in Northern Ireland. Wildlife Biol. 18(1), 46–57 (2012).Article 

    Google Scholar 
    DAERA. Farm animal populations: Cattle populations in Northern Ireland from 1981 to 2019. https://www.daera-ni.gov.uk/publications/farm-animal-population-data (2019).DEFRA. Livestock numbers in the UK (data to December 2019). https://www.gov.uk/government/statistical-data-sets/structure-of-the-livestock-industry-in-england-at-december.39 (2020).DEFRA. Setting the minimum and maximum numbers in badger cull areas in 2021—Advice to Natural England. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1015421/tb-min-max-numbers-2021.pdf (2021).Griffin, J. M. et al. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev. Vet. Med. 67(4), 237–266 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ham, C., Donnelly, C. A., Astley, K. L., Jackson, S. Y. B. & Woodroffe, R. Effect of culling on individual badger Meles meles behaviour: Potential implications for bovine tuberculosis transmission. J. Appl. Ecol. 56(11), 2390–2399 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olea-Popelka, F. J. et al. Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. Prev. Vet. Med. 88(3), 178–184 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Donnelly, C. A. et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439(7078), 843–846 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Byrne, A. W., White, P. W., McGrath, G., O’Keeffe, J. & Martin, S. W. Risk of tuberculosis cattle herd breakdowns in Ireland: Effects of badger culling effort, density and historic large-scale interventions. Vet. Res. 45(1), 1–10 (2014).Article 

    Google Scholar 
    Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5, 1–11 (2015).Article 

    Google Scholar 
    Jenkins, H. E., Woodroffe, R. & Donnelly, C. A. The duration of the effects of repeated widespread badger culling on cattle tuberculosis following the cessation of culling. PLoS ONE 5(2), e9090 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuyttens, F. A. M. et al. Spatial perturbation caused by a badger (Meles meles) culling operation: Implications for the function of territoriality and the control of bovine tuberculosis (Mycobacterium bovis). J. Anim. Ecol. 69(5), 815–828 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carter, S. P. et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: An analysis of a critical problem in applied ecology. Proc. R. Soc. B. 274(1626), 2769–2777 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donnelly, C. A. et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426(6968), 834–837 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vicente, J., Delahay, R. J., Walker, N. J. & Cheeseman, C. L. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J Anim Ecol. 76(2), 348–360 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Riordan, P., Delahay, R. J., Cheeseman, C., Johnson, P. J. & Macdonald, D. W. Culling-induced changes in badger (Meles meles) behaviour, social organisation and the epidemiology of bovine tuberculosis. PLoS ONE 6(12), e28904 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowalczyk, R., Jȩdrzejewska, B. & Zalewski, A. Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other palaearctic populations. J. Biogeogr. 30(3), 463–472 (2003).Article 

    Google Scholar 
    Smith, G. C., Delahay, R. J., McDonald, R. A. & Budgey, R. Model of selective and non-selective management of badgers (Meles meles) to control bovine tuberculosis in badgers and cattle. PLoS ONE 11(11), e0167206 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garnett, B. T., Delahay, R. J. & Roper, T. J. Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection. Appl. Anim. Behav. Sci. 94(3–4), 331–340 (2005).Article 

    Google Scholar 
    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. 23(20), 915–916 (2013).Article 

    Google Scholar 
    Ellwood, S. A. et al. An active-radio-frequency-identification system capable of identifying co-locations and social-structure: Validation with a wild free-ranging animal. Methods Ecol. Evol. 8(12), 1822–1831 (2017).Article 

    Google Scholar 
    Noonan, M. et al. A new Magneto-Inductive tracking technique to uncover subterranean activity: what do animals do underground?. Methods Ecol. Evol. 6(5), 510–520 (2015).Article 

    Google Scholar 
    Schütz, K. et al. Behavioral and physiological responses of trap-induced stress in European badgers. J. Wildl. Manag. 70(3), 884–891 (2006).Article 

    Google Scholar 
    Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27(6), 1826–1832 (2016).
    Google Scholar 
    Bidder, O. R. et al. Step by step: Reconstruction of terrestrial animal movement paths by dead-reckoning. Mov. Ecol. https://doi.org/10.1186/s40462-015-0055-4 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunner, R. M. et al. Dead-reckoning animal movements in R: a reappraisal using Gundog. Tracks. Anim. Biotelem. 9(1), 1–37 (2021).
    Google Scholar 
    McClune, D. W., Marks, N. J., Delahay, R. J., Montgomery, W. I. & Scantlebury, D. M. Behaviour-time budget and functional habitat use of a free-ranging European badger (Meles meles). Anim. Biotelem. 3(7), 1–7 (2015).
    Google Scholar 
    McClune, D. et al. Tri-axial accelerometers quantify behaviour in the Eurasian badger (Meles meles): towards an automated interpretation of field data. Anim. Biotelem. 2(1), 1–6 (2014).Article 

    Google Scholar 
    Gaughran, A. et al. Dispersal patterns in a medium-density Irish badger population: Implications for understanding the dynamics of tuberculosis transmission. Ecol. Evol. 9(23), 13142–13152 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelly, D. J. et al. Extra Territorial Excursions by European badgers are not limited by age, sex or season. Sci. Rep. 10(1), 1–2 (2020).Article 

    Google Scholar 
    Macdonald, D. W., Newman, C., Buesching, C. D. & Johnson, P. J. Male-biased movement in a high-density population of the Eurasian badger (Meles meles). J. Mammal. 89(5), 1077–1086 (2008).Article 

    Google Scholar 
    Courcier, E. A. et al. Evaluating the application of the dual path platform VetTB test for badgers (Meles meles) in the test and vaccinate or remove (TVR) wildlife research intervention project in Northern Ireland. Res. Vet. Sci. 130, 170–178 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Menzies, F. D. et al. Test and vaccinate or remove: Methodology and preliminary results from a badger intervention research project. Vet. Rec. 189, e248 (2021).Article 
    PubMed 

    Google Scholar 
    O’Hagan, M. J. H. et al. Effect of selective removal of badgers (Meles meles) on ranging behaviour during a “test and Vaccinate or Remove” intervention in Northern Ireland. Epidemiol. Infect. 149(1), e125 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roper, T. J. The structure and function of badger setts. J. Zool. 227(4), 691–698 (1992).Article 

    Google Scholar 
    DAERA. The Test and Vaccinate or Remove (TVR) Wildlife Intervention Research Project. Year 1 Report—2014. https://www.daera-ni.gov.uk/sites/default/files/publications/dard/tvr-year-1-report.pdf (2014).Brown, E., Cooney, R. & Rogers, F. Veterinary guidance on the practical use of the BadgerBCG tuberculosis vaccine. In Pract. 35(3), 143–146 (2013).Article 

    Google Scholar 
    Magowan, E. A. et al. Dead-reckoning elucidates fine-scale habitat use by European badgers Meles meles. Anim. Biotelem. 10(1), 1–11 (2022).Article 

    Google Scholar 
    McGill, K. et al. Seroconversion against antigen MPB83 in badgers (Meles meles) vaccinated with multiple doses of BCG strain Sofia. Res. Vet. Sci. 149, 119–124. https://doi.org/10.1016/j.rvsc.2022.06.011 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gaughran, A. et al. Super-ranging. A new ranging strategy in European badgers. PLoS ONE 13(2), e0191818 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, H. J. et al. Identification of animal movement patterns using tri-axial magnetometry. Mov. Ecol. 5(1), 6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brendel C, Helder R, Chevallier D, Zaytoon J, Georges JY, and Handrich Y. Testing a global positioning system on free ranging badgers Meles meles. Mammal Notes, The Mammal Society, Southampton. https://www.mammal.org.uk/wp-content/uploads/2016/04/Note–Brendel-MN-2012-1.pdf (2012).Börger, L. et al. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75(6), 1393–1405 (2006).Article 
    PubMed 

    Google Scholar 
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197(3–4), 516–519 (2006).Article 

    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7(9), 1124–1132 (2016).Article 

    Google Scholar 
    QGIS.org. QGIS Geographic Information System. QGIS Association. https://qgis.org/en/site/ (2021).Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96(5), 1182–1188 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fleming, C. H. et al. Estimating where and how animals travel: An optimal framework for path reconstruction from autocorrelated tracking data. Ecology 97(3), 576–582 (2016).CAS 
    PubMed 

    Google Scholar 
    Fleming, C. H. et al. Correcting for missing and irregular data in home-range estimation. Ecol. Appl. 28(4), 1003–1010 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gula, R. & Theuerkauf, J. The need for standardization in wildlife science: Home range estimators as an example. Eur. J. Wildl. Res. 59, 713–718 (2013).Article 

    Google Scholar 
    Schuler, K. L., Schroeder, G. M., Jenks, J. A. & Kie, J. G. Ad hoc smoothing parameter performance in kernel estimates of GPS-derived home ranges. Wildl. Biol. 20(5), 259–266 (2014).Article 

    Google Scholar 
    Huck, M., Davison, J. & Roper, T. J. Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles. Wildl. Biol. 14(4), 467–477 (2008).Article 

    Google Scholar 
    Scull, P., Palmer, M., Frey, F. & Kraly, E. A comparison of two home range modeling methods using Ugandan mountain gorilla data. Int. J. Geogr. Inf. Sci. 26(11), 2111–2121 (2012).Article 

    Google Scholar 
    Woodroffe, R. et al. Ranging behaviour of badgers Meles meles vaccinated with Bacillus Calmette Guerin. J. Appl. Ecol. 54(3), 718–725 (2017).Article 

    Google Scholar 
    Signer, J. & Fieberg, J. R. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodroffe, R. et al. Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control. Ecology 19(10), 1201–1208 (2016).
    Google Scholar 
    Hijmans RJ. Introduction to the geosphere package (version 1 .5–10). Cran (2019).Dewhirst, O. P. et al. Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning. Ecol. Evol. 6(17), 6210–6222 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    QGIS.org. Working with vector data. QGIS Desktop 3.16 User Guide. pp 304. https://docs.qgis.org/3.22/en/docs/user_manual/index.html (2022).Qasem, L. et al. Tri-axial acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?. PLoS ONE 7(2), e31187 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies; a reappraisal. J anim Ecol. 89(1), 161–172 (2020).Article 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Barton K. Package “MuMin”. Cran (2018).Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728 (1997).Article 

    Google Scholar 
    Macdonald, D. W. & Newman, C. Population dynamics of badgers (Meles meles) in Oxfordshire, UK: Numbers, density and cohort life histories, and a possible role of climate change in population growth. J. Zool. 256(1), 121–138 (2002).Article 

    Google Scholar 
    Kruuk, H., & MacDonald, D. Group territories of carnivores: empires and enclaves. In 25th Symposium of the British Ecological Society (1985).Roper, T. J., Shepherdson, D. J. & Davies, J. M. Scent marking with faeces and anal secretion in the European badger (Meles meles): seasonal and spatial characteristics of latrine use in relation to territoriality. Behaviour 97(1–2), 94–117 (1986).
    Google Scholar 
    Sleeman, D. P. et al. How many Eurasian badgers Meles meles L. are there in the republic of Ireland?. Eur. J. Wildl. Res. 55(4), 333–344 (2009).Article 

    Google Scholar 
    Carter, S. P. et al. BCG vaccination reduces risk of tuberculosis infection in vaccinated badgers and unvaccinated badger cubs. PLoS ONE 7(12), e49833 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, A., Parnell, A., O’Keeffe, J. & Madden, J. The challenge of estimating wildlife populations at scale: the case of the European badger (Meles meles) in Ireland. Eur. J. Wildl. Res. 67(5), 1–10 (2021).Article 

    Google Scholar 
    Minta, S. C. Sexual differences in spatio-temporal interaction among badgers. Oecologia 96(3), 402–409 (1993).Article 
    PubMed 

    Google Scholar 
    Annavi, G. et al. Neighbouring-group composition and within-group relatedness drive extra-group paternity rate in the European badger (Meles meles). J. Evol. Biol. 27(10), 2191–2203 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DEFRA. Monitoring regional changes in badger numbers. Research Project Final Report. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=14237. Accessed 07 February 2023 (2009).Johnson, D. D., Jetz, W. & Macdonald, D. W. Environmental correlates of badger social spacing across Europe. J. Biogeogr. 29(3), 411–425 (2002).Article 

    Google Scholar 
    Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J Zool. 184(1), 1–19 (1978).Article 

    Google Scholar 
    Macdonald, D., Newman, C., Dean, J., Buesching, C. & Johnson, P. The distribution of Eurasian badger, Meles meles, setts in a high-density area: field observations contradict the sett dispersion hypothesis. Oikos 106(2), 295–307 (2004).Article 

    Google Scholar 
    Sleeman, D. P. & Mulcahy, M. F. Loss of territoriality in a local badger Meles meles population at Kilmurry, Co Cork, Irealnd. Irish Nat. J. 28(1), 11–19 (2005).
    Google Scholar 
    Byrne, A. W., O’Keeffe, J., Buesching, C. D. & Newman, C. Push and pull factors driving movement in a social mammal: Context dependent behavioral plasticity at the landscape scale. Curr. Zool. 65(5), 517–525 (2019).Article 
    PubMed 

    Google Scholar 
    Cheeseman, C. L., Cresswell, W. J., Harris, S. & Mallinson, P. J. Comparison of dispersal and other movements in two Badger (Meles meles) populations. Mamm. Rev. 18(1), 51–59 (1988).Article 

    Google Scholar 
    Seebacher, F. & Krause, J. Epigenetics of social behaviour. TREE 34(9), 818–830 (2019).PubMed 

    Google Scholar 
    Allen, A. et al. European badger (Meles meles) responses to low-intensity, selective culling: Using mark–recapture and relatedness data to assess social perturbation. Ecol. Solut. Evid. 3(3), e12165 (2022).Article 

    Google Scholar 
    Loureiro, F., Rosalino, L. M., Macdonald, D. W. & Santos-Reis, M. Path tortuosity of Eurasian badgers (Meles meles) in a heterogeneous Mediterranean landscape. Ecol. Res. 22(5), 837–844 (2007).Article 

    Google Scholar 
    Sun, Q., Stevens, C., Newman, C., Buesching, C. & Macdonald, D. Cumulative experience, age-class, sex and season affect the behavioural responses of European badgers (Meles meles) to handling and sedation. Anim Welf. 24(4), 373–385 (2015).Article 

    Google Scholar 
    Conlan, A. et al. Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis. PLoS Comput. Biol. 11(2), e1004038 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gormley, E. et al. Oral vaccination of free-living badgers (Meles meles) with Bacille Calmette Guérin (BCG) vaccine confers protection against tuberculosis. PLoS ONE 12(1), e0168851 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benton, C. H. et al. Badger vaccination in England: Progress, operational effectiveness and participant motivations. People Nat. 2(3), 761–775 (2020).Article 

    Google Scholar  More

  • in

    Above-ground tree carbon storage in response to nitrogen deposition in the U.S. is heterogeneous and may have weakened

    Forest Inventory dataTree growth, tree survival, and plot-level basal area data were compiled from the Forest Inventory and Analysis (FIA) program database (accessed on January 24, 2017, FIA phase 2 manual version 6.1; http://www.fia.fs.fed.us/). Aboveground tree biomass was estimated from tree diameter measurements44 and then multiplied by 0.5 to estimate aboveground C. Tree growth rates were calculated from the difference in estimated aboveground C between the latest and first live measurement of every tree and divided by the elapsed time between measurements to the day. Tree species that had at least 2000 individual trees after the data filters were applied were retained for further growth and survival evaluation. The probability of tree survival was calculated using the first measurement to the last measurement of a plot. Trees that were alive at both measurements were assigned a value of 1 (survived) and trees alive at the first and dead at the last measurement were assigned a value of 0 (dead). The duration between the first and last measurement was used to determine the annual probability of tree survival. Trees that were recorded as dead at both measurement inventories and trees that were harvested were excluded from the survival analysis.Predictor data: Climate, deposition, size, and competitionThere were six predictors that were related to the response rate of growth or survival for each individual tree: mean annual temperature, mean annual precipitation, mean annual total nitrogen deposition, mean annual total S deposition, tree size, and plot-level competition.To obtain total N and S deposition rates for each tree, we used spatially modeled N and S deposition data from the National Atmospheric Deposition Program’s Total Deposition Science Committee32. Annual N and S deposition rates were then averaged from the first year of measurement to the last year of measurement for every tree so that each tree had an individualized average N deposition based on the remeasurement years, and each species had an individualized range of average N deposition exposure based on its distribution. Monthly mean temperature and precipitation values were obtained in a gridded (4 x 4 km) format from the PRISM Climate Group at Oregon State45 for the contiguous US and averaged between measurement periods for each tree in a similar manner. Tree size was represented by estimated aboveground tree C (previously described). Because the climate and deposition predictors were tailored to each plot, the years assessed varied by plot, but spanned 2000–2016. Thus, the results from the earlier study6 used conditions from the 1980–1990s, whereas the results from this study used more recent environmental and stand conditions. Tree competition was represented by a combination two factors: (1) plot basal area and (2) the basal area of trees larger than the focal tree being modeled. How all six variables were statistically modeled is discussed below.Modeling tree growth and survivalWe developed in ref. 20 multiple models to predict tree growth (G; kg C year−1) and survival (P(s); annual probability of survival). Our growth model (Eq. 1 and 2) assumes that there is a potential maximum growth rate (a) that is modified by up to six predictors in our study (which are multipliers from 0 to 1): temperature (T), precipitation (P), N deposition (N), S deposition (S), tree size (m), and competition. The potential full growth model included all six terms (Eq. 1 for the general form and Eq. 2 for the specific form). The size effect was modeled as a power function (z) based on the aboveground biomass (m). N deposition may affect the allometric relationships between tree diameter and aboveground tree biomass46, but these relationships are not yet accounted for in U.S. inventories44. Competition between trees was modeled as a function of plot basal area (BA) and the basal area of trees larger than that of the tree of interest (BAL) similar to the methods of47. The environmental factors (N deposition, S deposition, temperature, precipitation) were modeled as two-term lognormal functions (e.g., t1 and t2 for temperature effects, n1 and n2 for nitrogen deposition effects). The two-term lognormal functions allowed for flexibility in both the location of the peak (determined by t1 for temperature, for example), and the steepness of the curve (determined by t2 for temperature, for example). Thus, the full growth model is presented in Eq. 2.$$G=potentialgrowthratetimes competitiontimes temperaturetimes precipitationtimes {S}_{dep}times {N}_{dep}$$
    (1)
    $$G=a* {m}^{z}* {e}^{({c}_{1}* BAL+{c}_{2}* {{{{mathrm{ln}}}}}(BA))}* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}$$
    (2)
    We examined a total of five different growth models: (1) a full model with the size, competition, climate, S deposition, and N deposition terms (Eq. 2); (2) a model with all terms except the N deposition term; (3) a model with all terms except the S deposition term; (4) a model with all terms but without S and N deposition terms; and (5) a null model that estimated a single parameter for the mean growth parameter (a in Eq. 2).The annual probability of survival (P(s)) was estimated similarly as for growth, except that the probability was a function of time and we explored two different representations for competition. The general form of the model is shown in Eq. 3, and the full survival model in Eqs. 4, 5 for the two competition forms.$$P(s)={[acdot {{{{{rm{size}}}}}}times competitiontimes temperaturetimes precipitationtimes {N}_{dep}times {S}_{dep}]}^{time}$$
    (3)
    $$P(s)= {left[a* [((1-z{c}_{1}{e}^{-z{c}_{2}* m})* {e}^{-z{c}_{3}* {m}^{z{c}_{4}}})({e}^{-b{r}_{1}* B{A}_{ratio}{,}^{br2}* B{A}^{b{r}_{3}}})]vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}}^{time}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (4)
    $$P(s)= {left[a* left({e}^{-0.5* {left(frac{ln(m/{m}_{1})}{{m}_{2}}right)}^{2}* -0.5* {left(frac{ln(BA/b{a}_{1})}{b{a}_{2}}right)}^{2}* -0.5* {left(frac{ln(BAL+1/b{l}_{1}+1)}{b{l}_{2}}right)}^{2}}right)vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (5)
    A total of nine survival models were examined: four using the formulation for size and competition in Eq. 4 (with the same combinations of predictors as above for growth), four using formulation for size and competition in Eq. 5, and a null survival model in which a mean annual estimate of survival (a) was raised to the exponent of the elapsed time.Parameters for each of the growth and survival models above were fit for a given species using maximum likelihood estimates through simulated annealing with 100,000 iterations via the likelihood package (v2.1.1) in Program R. Akaike’s Information Criteria (AIC) was estimated for all models. The best model was the model with the lowest AIC, and statistically indistinguishable models are those with a delta AIC  More

  • in

    Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis

    Yang, B., Pang, X. Y., Hu, B., Bao, W. K. & Tian, G. L. Does thinning-induced gap size result in altered soil microbial community in pine plantation in eastern Tibetan Plateau? Ecol. Evol. 7(9), 2986–2993 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrés, B. O., Ricardo, R. P., Raquel, O. & Mirendel, R. Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. For. Ecol. Manag. 391, 309–320 (2017).Article 

    Google Scholar 
    Hart, B. T. N., Smith, J. E., Luoma, D. L. & Hatten, J. A. Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon. For. Ecol. Manag. 422, 11–22 (2018).Article 

    Google Scholar 
    Ge, Z. M. et al. Effects of varying thinning regimes on carbon uptake, total stem wood growth, and timber production in Norway spruce (Picea abies) stands in southern Finland under the changing climate. Ann. For. Sci. 68(2), 371–383 (2011).Article 

    Google Scholar 
    Panayotov, M. et al. Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. For. Ecol. Manag. 369, 74–88 (2016).Article 

    Google Scholar 
    Depauw, L. et al. Interactive effects of past land use and recent forest management on the understorey community in temperate oak forests in South Sweden. J. Veg. Sci. 30(5), 917–928 (2019).Article 

    Google Scholar 
    Soalleiro, R. R., Murias, M. B. & Gonzalez, J. G. A. Evaluation through a simulation model of nutrient exports in fast-growing southern European pine stands in relation to thinning intensity and harvesting operations. Ann. For. Sci. 64(4), 375–384 (2007).Article 

    Google Scholar 
    Trentini, C. P. et al. Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. For. Ecol. Manag. 384, 236–247 (2017).Article 

    Google Scholar 
    Baena, C. W. et al. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). For. Ecol. Manag. 308, 223–230 (2013).Article 

    Google Scholar 
    He, Z. B. et al. Responses of soil organic carbon, soil respiration, and associated soil properties to long-term thinning in a semi-arid spruce plantation in northwestern China. Land Degrad. Dev. 29(12), 4387–4396 (2018).Article 

    Google Scholar 
    Rambo, T. R. & North, M. P. Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. For. Ecol. Manag. 257(2), 435–442 (2009).Article 

    Google Scholar 
    Zhou, L. L. et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China. Environ. Sci. Pollut. Res. 23(23), 24135–24150 (2016).Article 
    CAS 

    Google Scholar 
    Collins, C. G., Carey, C. J., Aronson, E. L., Kopp, C. W. & Diez, J. M. Direct and indirect effects of native range expansion on soil microbial community structure and function. J. Ecol. 104(5), 1271–1283 (2016).Article 

    Google Scholar 
    Çömez, A., Tolunay, D. & Güner, ŞT. Litterfall and the effects of thinning and seed cutting on carbon input into the soil in Scots pine stands in Turkey. Eur. J. Forest Res. 138(1), 1–14 (2019).Article 

    Google Scholar 
    Ulvcrona, K. A., Karlsson, K. & Ulvcrona, T. Identifying the biological effects of pre-commercial thinning on diameter growth in young Scots pine stands. Scand. J. For. Res. 29(5), 427–435 (2014).Article 

    Google Scholar 
    Chen, X. L. et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Appl. Soil. Ecol. 92, 35–44 (2015).Article 

    Google Scholar 
    Veselá, P., Vašutová, M., Edwards- Jonášová, M. & Cudlin, P. Soil fungal community in norway spruce forests under bark beetle attack. Forests 10(2), 109 (2019).Article 

    Google Scholar 
    Ardestani, M. M., Jílková, V., Bonkowski, M. & Frouz, J. The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil. Plant Ecol. 220(9), 789–800 (2019).Article 

    Google Scholar 
    Sapsford, S. J., Paap, T., Hardy, G. E. S. J. & Burgess, T. I. The “chicken or the egg”: Which comes first, forest tree decline or loss of mycorrhizae? Plant Ecol. 218(9), 1093–1106 (2017).Article 

    Google Scholar 
    Jirout, J., Šimek, M. & Elhottová, D. Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biol. Biochem. 43(3), 647–656 (2011).Article 
    CAS 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484), 543–545 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iwaoka, C. et al. The impacts of soil fertility and salinity on soil nitrogen dynamics mediated by the soil microbial community beneath the halophytic Shrub Tamarisk. Microb. Ecol. 75(4), 985–996 (2017).Article 
    PubMed 

    Google Scholar 
    Bahnmann, B. et al. Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biol. Biochem. 119, 162–173 (2018).Article 
    CAS 

    Google Scholar 
    Ling, J. J. et al. Genotype by environment interaction analysis of growth of Picea koraiensis families at different sites using BLUP-GGE. New For. 52(1), 113–127 (2021).Article 

    Google Scholar 
    Zhang, J. B., Wang, L. F., Na, X., Zhang, T. T. & San-Ping, A. N. Primary report on introduction of Picea balfouriana and Picea koraiensis in Gansu. J. Gansu For. Sci. Technol. 44(02), 16–19+29 (2019).
    Google Scholar 
    Yin, L. M. et al. Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees. Soil Biol. Biochem. 157, 108246 (2021).Article 
    CAS 

    Google Scholar 
    Zhou, L. & Wang, S. L. Effects of mixed tree species on soil nutrients in Picea koraiensis plantations. J. Northeast For. Univ. 47(2), 37–41 (2019).MathSciNet 
    CAS 

    Google Scholar 
    Cabon, A. et al. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manag. 409, 333–342 (2018).Article 

    Google Scholar 
    Splawinski, T. B. et al. Precommercial thinning of Picea mariana and Pinus banksiana: Impact of treatment timing and competitors on growth response. For. Sci. 63(1), 62–70 (2017).Article 

    Google Scholar 
    Bai, S. H. et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics. Plant Soil 411(1–2), 437–449 (2016).
    Google Scholar 
    D’Amato, A. W., Troumbly, S. J., Saunders, M. R., Puettmann, K. J. & Albers, M. A. Growth and survival of Picea glauca following thinning of plantations affected by eastern spruce budworm. North. J. Appl. For. 28(2), 72–78 (2011).Article 

    Google Scholar 
    Olivar, J., Bogino, S., Rathgeber, C., Bonnesoeur, V. & Bravo, F. Thinning has a positive effect on growth dynamics and growth–climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes. Ann. For. Sci. 71(3), 395–404 (2014).Article 

    Google Scholar 
    Weiskittel, A. R., Kenefic, L. S., Seymour, R. S. & Phillips, L. M. Long-term effects of precommercial thinning on the stem dimensions, form and branch characteristics of red spruce and balsam fir crop trees in Maine, USA. Silva Fennica 43(3), 397–409 (2009).Article 

    Google Scholar 
    Repola, J., Hökkä, H. & Penttilä, T. Thinning intensity and growth of mixed spruce-birch stands on drained peatlands in Finland. Silva Fennica 40(1), 83–99 (2006).Article 

    Google Scholar 
    Misson, L., Vincke, C. & Devillez, F. Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. For. Ecol. Manag. 177(1–3), 51–63 (2003).Article 

    Google Scholar 
    Kim, S., Kim, C., Han, S. H., Lee, S. T. & Son, Y. A multi-site approach toward assessing the effect of thinning on soil carbon contents across temperate pine, oak, and larch forests. For. Ecol. Manag. 424, 62–70 (2018).Article 

    Google Scholar 
    Gliksman, D. et al. Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant Soil 422(1–2), 317–329 (2018).Article 
    CAS 

    Google Scholar 
    Achat, D. L., Fortin, M., Landmann, G., Ringeval, B. & Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 5, 15991 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jurgensen, M. F. et al. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. For. Sci. 43(2), 234–251 (1997).
    Google Scholar 
    Blanco, J. A., Imbert, J. B. & Castillo, F. J. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the pyrenees. Ecol. Appl. 19(3), 682–698 (2009).Article 
    PubMed 

    Google Scholar 
    Steer, J. & Harris, J. A. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol. Biochem. 32(6), 869–878 (2000).Article 
    CAS 

    Google Scholar 
    Coulombe, D., Sirois, L. & Paré, D. Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal–temperate interface. Can. J. For. Res. 47(3), 308–318 (2017).Article 
    CAS 

    Google Scholar 
    Hagerman, S. M., Jones, M. D., Bradfield, G. E. & SMSakakibara, S. M. Ectomycorrhizal colonization of Picea engelmannii × Picea glauca seedlings planted across cut blocks of different sizes. Can. J. For. Res. 29(12), 1856–1870 (1999).Article 

    Google Scholar 
    Ogo, S., Yamanaka, T., Akama, K., Nagakura, J. & Yamaji, K. Influence of ectomycorrhizal colonization on cesium uptake by Pinus densiflora seedlings. Mycobiology 46(4), 388–395 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebastiana, M. et al. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak. Mycorrhiza 28(3), 247–258 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jurgensen, M., Tarpey, R., Pickens, J., Kolka, R. & Palik, B. Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci. Soc. Am. J. 76(4), 1418–1425 (2012).Article 
    CAS 

    Google Scholar 
    Mosca, E., Montecchio, L., Barion, G., Dal Cortivo, C. & Vamerali, T. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps. Ann. Bot. 119(7), 1235–1246 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, X. & Christie, P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42(2), 201–207 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hawkes, C. V. et al. Fungal community responses to precipitation. Glob. Change Biol. 17(4), 1637–1645 (2011).Article 

    Google Scholar 
    McGuire, K. L., Fierer, N., Bateman, C., Treseder, K. K. & Turner, B. L. Fungal community composition in Neotropical rain forests: The influence of tree diversity and precipitation. Microb. Ecol. 63(4), 804–812 (2012).Article 
    PubMed 

    Google Scholar 
    Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39(8), 1878–1887 (2007).Article 
    CAS 

    Google Scholar 
    Van Wyk, D. A. B., Adeleke, R., Rhode, O. H. J., Bezuidenhout, C. C. & Mienie, C. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa. J. Basic Microbiol. 57(9), 781–792 (2017).Article 
    PubMed 

    Google Scholar 
    Zhao, C. C. et al. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Sci. Rep. https://doi.org/10.1038/srep24317 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowalchuk, G. A., Buma, D. S. & Boer, W. D. Peter GLK & van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81(1–4), 509 (2002).Article 
    PubMed 

    Google Scholar  More

  • in

    Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests

    Wohlleben, P. The Hidden Life of Trees: What They Feel, How They Communicate—Discoveries From a Secret World Vol. 1 (Greystone Books, 2016).Simard, S. W. Finding the Mother Tree: Discovering the Wisdom of the Forest (Knopf Doubleday Publishing Group, 2022).Powers, R. The Overstory (W. W. Norton & Company, 2018).Jabr, F. The social life of forests. New York Times Magazine https://www.nytimes.com/interactive/2020/12/02/magazine/tree-communication-mycorrhiza.html (2020).Kaplan, S. With forests in peril, she’s on a mission to save ‘mother trees’. Washington Post (27 December 2022).Chung, D. & Williams, R. T. Talking trees. Natl Geogr. 233, 6 (2018).
    Google Scholar 
    Grant, R. Do trees talk to each other? Smithsonian Magazine https://www.smithsonianmag.com/science-nature/the-whispering-trees-180968084/ (2018).Schwartzberg, L. Fantastic Fungi. Moving Art (2019).Druyan, A. Cosmos: Possible Worlds: the Search for Intelligent Life on Earth (2020).Mills, M. C’mon C’mon (2020).Simard, S. W. How trees talk to each other. YouTube https://www.youtube.com/watch?v=Un2yBgIAxYs (2016).Abumrad J & Krulwich, R. From tree to shining tree. Radiolab https://radiolab.org/episodes/from-tree-to-shining-tree (2016).Geddes, L. Unearthing the secret social lives of trees. The Guardian Science Weekly https://www.theguardian.com/science/audio/2021/apr/29/unearthing-the-secret-social-lives-of-trees-podcast (2021).Davies, D. Trees talk to each other. ‘Mother Tree’ ecologist hears lessons for people, too. National Public Radio https://www.npr.org/sections/health-shots/2021/05/04/993430007/trees-talk-to-each-other-mother-tree-ecologist-hears-lessons-for-people-too (2021).Braff, Z. Midnight train to Royston. Ted Lasso (2021).Murphy, R. Welcome, friends. The Watcher (2022).Milović, M., Kebert, M. & Orlović, S. How mycorrhizas can help forests to cope with ongoing climate change? Pregledni Članci Rev. 5, 279–286 (2021).
    Google Scholar 
    Simard, S. W. & Austin, M. E. in Climate Change and Variabilty (eds Simard, S. W. & Austin, M. E.) 275–302 (IntechOpen Europe, 2010).Domínguez-Núñez, J. A. in Structure and Functions of the Pedosphere (eds Giri, B. et al.) 365–391 (Springer, 2022).Authier, L., Violle, C. & Richard, F. Ectomycorrhizal networks in the anthropocene: from natural ecosystems to urban planning. Front. Plant Sci. 13, 900231 (2022).Article 

    Google Scholar 
    Selosse, M.-A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).Article 

    Google Scholar 
    Newman, E. Mycorrhizal links between plants—their functioning and ecological significance. Adv. Ecol. Res. 18, 243–270 (1988).Article 

    Google Scholar 
    Bonello, P., Bruns, T. D. & Gardes, M. Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol. 138, 533–542 (1998).Article 
    CAS 

    Google Scholar 
    Dahlberg, A. & Stenlid, J. Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol. 128, 225–234 (1994).Article 

    Google Scholar 
    Kretzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol. 161, 313–320 (2004).Article 
    CAS 

    Google Scholar 
    Figueiredo, A. F., Boy, J. & Guggenberger, G. Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front. Fungal Biol. 2, https://doi.org/10.3389/ffunb.2021.735299 (2021).Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).Article 

    Google Scholar 
    Trappe, J. M. & Fogel, R. in The Belowground Ecosystem: a Synthesis of Plant-Associated Processes (ed. Marshall J. K.) 205–214 (Colorado State Univ., 1977).Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. & Kretzer, A. M. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 185, 543–553 (2010).Article 
    CAS 

    Google Scholar 
    Beiler, K. J., Simard, S. W. & Durall, D. M. Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J. Ecol. 103, 616–628 (2015).Article 

    Google Scholar 
    Beiler, K. J., Simard, S. W., LeMay, V. & Durall, D. M. Vertical partitioning between sister species of Rhizopogon fungi on mesic and xeric sites in an interior Douglas-fir forest. Mol. Ecol. 21, 6163–6174 (2012).Article 

    Google Scholar 
    Lian, C., Narimatsu, M., Nara, K. & Hogetsu, T. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 171, 825–836 (2006).Article 

    Google Scholar 
    Van Dorp, C. H., Simard, S. W. & Durall, D. M. Resilience of Rhizopogon–Douglas-fir mycorrhizal networks 25 years after selective logging. Mycorrhiza 30, 467–474 (2020).Article 

    Google Scholar 
    Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA 119, e2115329119 (2022).Article 

    Google Scholar 
    Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).Article 

    Google Scholar 
    Setälä, H. Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76, 1844–1851 (1995).Article 

    Google Scholar 
    Kanters, C., Anderson, I. C. & Johnson, D. Chewing up the wood-wide web: selective grazing on ectomycorrhizal fungi by collembola. Forests 6, 2560–2570 (2015).Article 

    Google Scholar 
    Horton, T. R., Bruns, T. D. & Parker, V. T. Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can. J. Bot. 77, 93–102 (1999).
    Google Scholar 
    Kennedy, P. G., Izzo, A. D. & Bruns, T. D. There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91, 1071–1080 (2003).Article 

    Google Scholar 
    Kennedy, P. G., Smith, D. P., Horton, T. R. & Molina, R. J. Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity. Am. J. Bot. 99, 1691–1701 (2012).Article 

    Google Scholar 
    Horton, T. R., Molina, R. & Hood, K. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15, 393–403 (2005).Article 
    CAS 

    Google Scholar 
    Buscardo, E. et al. Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol. Biochem. 46, 136–144 (2012).Article 
    CAS 

    Google Scholar 
    Hewitt, R. E., Chapin, F. S. III, Hollingsworth, T. N. & Taylor, D. L. The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline. Mol. Ecol. 26, 3826–3838 (2017).Article 

    Google Scholar 
    Jia, S., Nakano, T., Hattori, M. & Nara, K. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. Mycorrhiza 27, 733–745 (2017).Article 
    CAS 

    Google Scholar 
    Hortal, S. et al. Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus Laccaria amethystina clustered in two genetic groups. Mol. Ecol. 21, 2116–2129 (2012).Article 
    CAS 

    Google Scholar 
    Wadud, M. A., Nara, K., Lian, C., Ishida, T. A. & Hogetsu, T. Genet dynamics and ecological functions of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji. Mycorrhiza 24, 551–563 (2014).Article 

    Google Scholar 
    Germain, S. J. & Lutz, J. A. Shared friends counterbalance shared enemies in old forests. Ecology 102, e03495 (2021).Article 

    Google Scholar 
    Simard, S. W. et al. Partial retention of legacy trees protect mycorrhizal inoculum potential, biodiversity, and soil resources while promoting natural regeneration of interior Douglas-fir. Front. For. Glob. Change 3, https://doi.org/10.3389/ffgc.2020.620436 (2021).Björkman, E. Monotropa hypopitys L.—an epiparasite on tree roots. Physiol. Plant. 13, 308–327 (1960).Article 

    Google Scholar 
    Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).Article 
    CAS 

    Google Scholar 
    Read, D. The ties that bind. Nature 388, 517–518 (1997).Article 
    CAS 

    Google Scholar 
    Aleklett, K. & Boddy, L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol. Evol. 36, 787–796 (2021).Article 

    Google Scholar 
    Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).Article 
    CAS 

    Google Scholar 
    Hasselquist, N. J. et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology 97, 1012–1022 (2016).
    Google Scholar 
    Näsholm, T. et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol. 198, 214–221 (2013).Article 

    Google Scholar 
    Hoeksema, J. D. in Mycorrhizal Networks (ed. Horton, T. R.) 255–277 (Springer Netherlands, 2015).Teste, F. P. & Simard, S. W. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158, 193–203 (2008).Article 

    Google Scholar 
    Teste, F. P., Simard, S. W., Durall, D. M., Guy, R. D. & Berch, S. M. Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J. Ecol. 98, 429–439 (2010).Article 
    CAS 

    Google Scholar 
    Teste, F. P. et al. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90, 2808–2822 (2009).Article 

    Google Scholar 
    Lerat, S. et al. 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132, 181–187 (2002).Article 

    Google Scholar 
    Klein, T., Siegwolf, R. T. W. & Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).Article 
    CAS 

    Google Scholar 
    He, X., Bledsoe, C. S., Zasoski, R. J., Southworth, D. & Horwath, W. R. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol. 170, 143–151 (2006).Article 
    CAS 

    Google Scholar 
    Schoonmaker, A. L., Teste, F. P., Simard, S. W. & Guy, R. D. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Oecologia 154, 455–466 (2007).Article 

    Google Scholar 
    Warren, J. M., Brooks, J. R., Meinzer, F. C. & Eberhart, J. L. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol. 178, 382–394 (2008).Article 
    CAS 

    Google Scholar 
    Bingham, M. A. & Simard, S. W. Seedling genetics and life history outweigh mycorrhizal network potential to improve conifer regeneration under drought. For. Ecol. Manag. 287, 132–139 (2013).Article 

    Google Scholar 
    Kranabetter, J. M. Understory conifer seedling response to a gradient of root and ectomycorrhizal fungal contact. Can. J. Bot. 83, 638–646 (2005).Article 

    Google Scholar 
    Liang, M. et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 11, 2636 (2020).Article 
    CAS 

    Google Scholar 
    Liang, M. et al. Soil fungal networks moderate density-dependent survival and growth of seedlings. New Phytol. 230, 2061–2071 (2021).Article 

    Google Scholar 
    McGuire, K. L. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88, 567–574 (2007).Article 

    Google Scholar 
    Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30, 173–183 (2020).Article 

    Google Scholar 
    Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).Article 

    Google Scholar 
    Booth, M. G. Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecol. Lett. 7, 538–546 (2004).Article 

    Google Scholar 
    Booth, M. G. & Hoeksema, J. D. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91, 2294–2302 (2010).Article 

    Google Scholar 
    Brearley, F. Q. et al. Testing the importance of a common ectomycorrhizal network for dipterocarp seedling growth and survival in tropical forests of Borneo. Plant Ecol. Divers. 9, 563–576 (2016).Article 

    Google Scholar 
    Dehlin, H. et al. Tree seedling performance and below-ground properties in stands of invasive and native tree species. N. Z. J. Ecol. 32, 67–79 (2008).
    Google Scholar 
    Newbery, D. M. & Neba, G. A. Micronutrients may influence the efficacy of ectomycorrhizas to support tree seedlings in a lowland African rain forest. Ecosphere 10, e02686 (2019).Article 

    Google Scholar 
    Oliveira, I. R. et al. Nutrient deficiency enhances the rate of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus trees in mixed-species plantations. For. Ecol. Manag. 491, 119192 (2021).Article 

    Google Scholar 
    Paula, R. R. et al. Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol. Biochem. 91, 99–108 (2015).Article 
    CAS 

    Google Scholar 
    Nygren, P. & Leblanc, H. A. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol. 35, 134–147 (2015).Article 
    CAS 

    Google Scholar 
    Liu, Y., Chen, H. & Mou, P. Spatial patterns nitrogen transfer models of ectomycorrhizal networks in a Mongolian scotch pine plantation. J. For. Res. 29, 339–346 (2018).Article 
    CAS 

    Google Scholar 
    Bingham, M. A. & Simard, S. Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15, 188–199 (2012).Article 
    CAS 

    Google Scholar 
    Robinson, D. & Fitter, A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J. Exp. Bot. 50, 9–13 (1999).Article 
    CAS 

    Google Scholar 
    Chen, W., Koide, R. T. & Eissenstat, D. M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 106, 148–156 (2018).Article 
    CAS 

    Google Scholar 
    Jones, M. D., Durall, D. M. & Tinker, P. B. A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol. 140, 125–134 (1998).Article 

    Google Scholar 
    Pickles, B. J. et al. Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. New Phytol. 214, 400–411 (2017).Article 
    CAS 

    Google Scholar 
    Teste, F. P., Simard, S. W. & Durall, D. M. Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecol. 2, 21–30 (2009).Article 

    Google Scholar 
    Bingham, M. A. & Simard, S. W. Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza 22, 317–326 (2012).Article 

    Google Scholar 
    Pec, G. J. et al. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytol. 213, 864–873 (2017).Article 
    CAS 

    Google Scholar 
    Coomes, D. A. & Grubb, P. J. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol. Monogr. 70, 171–207 (2000).Article 

    Google Scholar 
    Finlay, R. D. & Read, D. J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol. 103, 143–156 (1986).Article 

    Google Scholar 
    Brownlee, C., Duddridge, J. A., Malibari, A. & Read, D. J. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71, 433–443 (1983).Article 

    Google Scholar 
    Wu, B., Nara, K. & Hogetsu, T. Can 14C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol. 149, 137–146 (2001).Article 
    CAS 

    Google Scholar 
    Anten, N. P. R. & Chen, B. J. W. Detect thy family: mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant Cell Environ. 44, 1059–1071 (2021).Article 
    CAS 

    Google Scholar 
    Dominguez, P. G. & Niittylä, T. Mobile forms of carbon in trees: metabolism and transport. Tree Physiol. 42, 458–487 (2021).Article 

    Google Scholar 
    Yu, R.-P., Lambers, H., Callaway, R. M., Wright, A. J. & Li, L. Belowground facilitation and trait matching: two or three to tango. Trends Plant Sci. 26, 1227–1235 (2021).Article 
    CAS 

    Google Scholar 
    Simard, S. W. in The Word for World is Still Forest (eds Springer, A. & Turpin, E.) 66–72 (K Verlag and Haus der Kulturen der Welt, 2017).Simard, S. W. in Memory and Learning in Plants (eds Baluska, F. et al.) 191–213 (Springer, 2018).Boyno, G. & Demir, S. Plant–mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis 86, 155–168 (2022).Article 

    Google Scholar 
    Rasheed, M. U., Brosset, A. & Blande, J. D. Tree communication: the effects of “wired” and “wireless” channels on interactions with herbivores. Curr. For. Rep. 9, 33–47 (2023).
    Google Scholar 
    Song, Y. Y., Simard, S. W., Carroll, A., Mohn, W. W. & Zeng, R. S. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci. Rep. 5, 8495 (2015).Article 
    CAS 

    Google Scholar 
    Gorzelak, M. A. Kin-Selected Signal Transfer Through Mycorrhizal Networks in Douglas-Fir. PhD thesis, Univ. British Columbia (2017).Asay, A. K. Mycorrhizal Facilitation of Kin Recognition in Interior Douglas-Fir (Pseudotsuga menziesii var. glauca). MSc thesis, Univ. British Columbia (2013).Orrego, G. Western Hemlock Regeneration on Coarse Woody Debris is Facilitated by Linkage into a Mycorrhizal Network in an Old-Growth Forest. MSc thesis, Univ. British Columbia (2018).Diédhiou, A. G. et al. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ. Microbiol. 12, 2219–2232 (2010).
    Google Scholar 
    Grelet, G.-A. et al. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol. 188, 210–222 (2010).Article 
    CAS 

    Google Scholar 
    Van der Heijden, M. G. A. & Horton, T. R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97, 1139–1150 (2009).Article 

    Google Scholar 
    Babikova, Z., Johnson, D., Bruce, T., Pickett, J. & Gilbert, L. Underground allies: how and why do mycelial networks help plants defend themselves? BioEssays 36, 21–26 (2014).Article 

    Google Scholar 
    Alaux, P.-L., Zhang, Y., Gilbert, L. & Johnson, D. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plants People Planet 3, 433–444 (2021).Article 

    Google Scholar 
    Simard, S. W. et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60 (2012).Article 

    Google Scholar 
    Flinn, K. The idea that trees talk to cooperate is misleading. Scientific American https://www.scientificamerican.com/article/the-idea-that-trees-talk-to-cooperate-is-misleading/ (2021).Högberg, P. & Högberg, M. N. Does successful forest regeneration require the nursing of seedlings by nurse trees through mycorrhizal interconnections. For. Ecol. Manag. 516, 120252 (2022).Article 

    Google Scholar 
    Teste, F. P., Jones, M. D. & Dickie, I. A. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851 (2020).Article 

    Google Scholar 
    Toju, H., Guimarães, P. R., Olesen, J. M. & Thompson, J. N. Assembly of complex plant–fungus networks. Nat. Commun. 5, 5273 (2014).Article 
    CAS 

    Google Scholar 
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Elsevier, 2008).Nara, K. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169, 169–178 (2006).Article 
    CAS 

    Google Scholar 
    Arnebrant, K., Ek, H., Finlay, R. D. & Söderström, B. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124, 231–242 (1993).Article 

    Google Scholar 
    Finlay, R. D. Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cauipes. New Phytol. 112, 185–192 (1989).Article 
    CAS 

    Google Scholar 
    Cahanovitc, R., Livne-Luzon, S., Angel, R. & Klein, T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. 16, 1420–1429 (2022).Article 
    CAS 

    Google Scholar 
    Teste, F. P., Veneklass, E. J., Dixon, K. W. & Lambers, H. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies? Plant Cell Environ. 38, 50–60 (2015).Article 
    CAS 

    Google Scholar 
    Simard, S. W. et al. Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol. 137, 529–542 (1997).Article 
    CAS 

    Google Scholar 
    Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).Article 
    CAS 

    Google Scholar 
    He, X., Critchley, C., Ng, H. & Bledsoe, C. Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3− supplied as ammonium nitrate. New Phytol. 167, 897–912 (2005).Article 
    CAS 

    Google Scholar 
    He, X., Critchley, C., Ng, H. & Bledsoe, C. Reciprocal N (15NH4+ or 15NO3−) transfer between nonN2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163, 629–640 (2004).Article 

    Google Scholar 
    Bingham, M. A. & Simard, S. W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecol. Evol. 1, 306–316 (2011).Article 

    Google Scholar 
    Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843 (2013).Article 

    Google Scholar 
    Birch, J. D., Simard, S. W., Beiler, K. J. & Karst, J. Beyond seedlings: ectomycorrhizal fungal networks and growth of mature Pseudotsuga menziesii. J. Ecol. 109, 806–818 (2021).Article 
    CAS 

    Google Scholar 
    Färkkilä, S. M. A. et al. Fluorescent nanoparticles as tools in ecology and physiology. Biol. Rev. 96, 2392–2424 (2021).Article 

    Google Scholar  More

  • in

    Global conservation prioritization areas in three dimensions of crocodilian diversity

    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, 50–61 (2006).Article 

    Google Scholar 
    Somaweera, R. et al. The ecological importance of crocodylians: Towards evidence-based justification for their conservation. Biol. Rev. Camb. Philos. Soc. 95, 936–959. https://doi.org/10.1111/brv.12594 (2020).Article 

    Google Scholar 
    Swain, S. et al. Anthropogenic influence on the physico-chemical parameters of Dhamra estuary and adjoining coastal water of the Bay of Bengal. Mar. Pollut. Bull. 162, 111826. https://doi.org/10.1016/j.marpolbul.2020.111826 (2021).Article 
    CAS 

    Google Scholar 
    IUCN. IUCN Red List of Threatened Species. Version 2022.1. www.iucnredlist.org (2022).Markich, S. J. & Jeffree, R. A. (eds) The Finnis River. A Natural Laboratory of Mining Impact—Past, Present and Future (Australian Nuclear Science and Technology Organisation, 2002).
    Google Scholar 
    Vieira, L. M. et al. Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area, Brazil. J. Environ. Monitor. 13, 280–287. https://doi.org/10.1039/c0em00561d (2011).Article 
    CAS 

    Google Scholar 
    Quintela, F. M. et al. Arsenic, lead and cadmium concentrations in caudal crests of the yacare caiman (Caiman yacare) from Brazilian Pantanal. Sci. Total Environ. 707, 135479. https://doi.org/10.1016/j.scitotenv.2019.135479 (2020).Article 
    CAS 

    Google Scholar 
    Briggs-Gonzalez, V. S., Basille, M., Cherkiss, M. S. & Mazzotti, F. J. American crocodiles (Crocodylus acutus) as restoration bioindicators in the Florida Everglades. PLoS ONE 16, e0250510. https://doi.org/10.1371/journal.pone.0250510 (2021).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015).Book 

    Google Scholar 
    Subalusky, A. L., Fitzgerald, L. A. & Smith, L. L. Ontogenetic niche shifts in the American alligator establish functional connectivity between aquatic systems. Biol. Conserv. 142, 1507–1514 (2009).Article 

    Google Scholar 
    Villamarín, F., Escobedo-Galván, A. H., Siroski, P. & Magnusson, W. E. Geographic distribution, habitat, reproduction, and conservation status of crocodilians in the Americas. In Conservation Genetics of New World Crocodilians (eds Zucoloto, R. B. et al.) (Springer, 2021).
    Google Scholar 
    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flag ships. Conserv. Lett. 4, 1–8. https://doi.org/10.1111/j.1755-263X.2010.00151.x (2011).Article 

    Google Scholar 
    Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10, 569–579 (2000).Article 

    Google Scholar 
    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trents Ecol. Evol. 2211, 583–592 (2007).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).Article 

    Google Scholar 
    Magurran, A. E. Measuring Biological Diversity 2nd edn. (Blackwell Publishing, 2004).
    Google Scholar 
    Campos, F. S., Lourenço-de-Moraes, R., Llorente, G. A. & Solé, M. Cost-effective conservation of amphibian ecology and evolution. Sci. Adv. 36, e1602929 (2017).Article 

    Google Scholar 
    Dietz, M. S., Belote, R. T., Aplet, G. H. & Aycrigg, J. L. The world’s largest wilderness protection network after 50 years: An assessment of ecological system representation in the US National Wilderness Preservation System. Biol. Conserv. 184, 431–438 (2015).Article 

    Google Scholar 
    UNEP-WCMC, IUCN. Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).
    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791. https://doi.org/10.1126/science.aap9565 (2018).Article 
    CAS 

    Google Scholar 
    Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643. https://doi.org/10.1038/nature02422 (2004).Article 
    CAS 

    Google Scholar 
    Ladle, R. J. & Whittaker, R. J. Conservation Biogeography 301 (Wiley-Blackwell, 2011).Book 

    Google Scholar 
    Dinerstein, E. et al. A “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, 2824 (2020).Article 

    Google Scholar 
    Lourenço-de-Moraes, R. et al. No more trouble: An economic strategy to protect taxonomic, functional and phylogenetic diversity of continental turtles. Biol. Conserv. 261, 109241. https://doi.org/10.1016/j.biocon.2021.109241 (2021).Article 

    Google Scholar 
    Brochu, C. A. Phylogenetic relationships of Necrosuchus ionensis Simpson, 1937 and the early history of caimanines. Zool. J. Linn. Soc. 163, 228–256. https://doi.org/10.1111/j.1096-3642.2011.00716.x (2011).Article 

    Google Scholar 
    Buffetaut, E. Systématique, origine et evolution des Gavialidae sud-américains. In Phylógenie et Paléobiogeography: Livre Jubilaire en l´honneur de Robert Hoffstetter (ed. Buffetaut, E.) 127–140 (Géobios, 1982).
    Google Scholar 
    Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Data from: Using functional traits to identify conservation priorities for the world’s crocodylians. Zenodo. https://doi.org/10.5281/zenodo.6645415 (2022).Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Using functional traits to identify conservation priorities for the world’s crocodylians. Funct. Ecol. 37, 112. https://doi.org/10.1111/1365-2435.14140 (2022).Article 
    CAS 

    Google Scholar 
    Milian-Garcia, Y. et al. Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J. Exp. Zool. A 315, 358–375. https://doi.org/10.1002/jez.683 (2011).Article 

    Google Scholar 
    Rodrıguez-Soberon, R., Ross, P. & Seal, U. IUCN/SSC Conservation Breeding Specialist Group (2000).Milián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Espinosa-López, G. & Russello, M. A. Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: Implications for population history and in situ/ex situ conservation. Heridity 114, 272–280 (2015).Article 

    Google Scholar 
    Pacheco-Sierra, G., Gompert, Z., Dominguez-Laso, J. & Vazquez-Dominguez, E. Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylus acutus and Crocodylus moreletii. Mol. Ecol. 25, 3484–3498. https://doi.org/10.1111/mec.13694 (2016).Article 

    Google Scholar 
    Borges, V. S. et al. Evolutionary significant units within populations of Neotropical broad-snouted caimans (Caiman latirostris, Daudin, 1802). J. Herpetol. 52, 282–288 (2018).Article 

    Google Scholar 
    Palmer, M. L. & Mazzoti, F. J. Structure of everglades alligator holes. Wetlands 24, 115–122 (2004).Article 

    Google Scholar 
    Marques, T. S. et al. Intraspecific isotopic niche variation in broad-snouted caiman (Caiman latirostris). Isot. Environ. Health Stud. 49, 325–335 (2013).Article 
    CAS 

    Google Scholar 
    Mascarenhas-Junior, P. B. et al. Conflicts between humans and crocodilians in urban areas across Brazil: A new approach to support management and conservation. Ethnobiol. Conserv. 10, 19. https://doi.org/10.15451/ec2021-12-10.37-1-19 (2021).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 

    Google Scholar 
    Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).Article 

    Google Scholar 
    Filogonio, R., Assis, V. B., Passos, L. F. & Coutinho, M. E. Distribution of populations of broad-snouted caiman (Caiman latirostris, Daudin 1802, Alligatoridae) in the São Francisco River basin, Brazil. Braz. J. Biol. https://doi.org/10.1590/S1519-69842010000500007 (2010).Article 

    Google Scholar 
    Marques, J. F. et al. Fires dynamics in the Pantanal: Impacts of anthropogenic activities and climate change. J. Environ. Manag. 299, 113586. https://doi.org/10.1016/j.jenvman.2021.113586 (2021).Article 

    Google Scholar 
    Mataveli, G. A. V. et al. 2020 Pantanal’s widespread fire: Short- and long-term implications for biodiversity and conservation. Biodivers. Conserv. https://doi.org/10.1007/s10531-021-02243-2 (2021).Article 
    PubMed Central 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    CAS 

    Google Scholar 
    Canning, A. & Death, R. Trophic cascade direction and flow determine network flow stability. Ecol. Model. 355, 18–23 (2017).Article 

    Google Scholar 
    Wang, Y. Q., Zhu, W. Q., Huang, L., Zhou, K. Y. & Wang, R. P. Genetic diversity of Chinese alligator (Alligator sinensis) revealed by AFLP analysis: An implication on the management of captive conservation. Biodivers. Conserv. 15, 2945–2955 (2006).Article 

    Google Scholar 
    Zhai, T. et al. Effects of population bottleneck and balancing selection on the chinese alligator are revealed by locus-specific characterization of MHC genes. Sci. Rep. 7, 5549. https://doi.org/10.1038/s41598-017-05640-2 (2017).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Sharma, S. P. et al. Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Sci. Rep. https://doi.org/10.1038/s41598-021-85201-w (2021).Article 
    PubMed Central 

    Google Scholar 
    Nair, T. & Krishna, Y. C. Vertebrate fauna of the Chambal River basin, with emphasis on the National Chambal Sanctuary, India. J. Threat. Taxa 5, 3620–3641 (2013).Article 

    Google Scholar 
    Sharma, R. & Singh, L. Status of mugger crocodile (Crocodylus palustris) in National Chambal Sanctuary after thirty years and its implications on conservation of Gharial (Gavialis gangeticus). Zoo’s Print 30, 9–16 (2015).
    Google Scholar 
    Sinhg, H. & Rao, R. Status, threats and conservation challenges to key aquatic fauna (crocodile and dolphin) in National Chambal Sanctuary, India. Aquat. Ecosyst. Health Manag. 20, 59–70 (2017).Article 

    Google Scholar 
    UNEP-WCMC, IUCN. Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC, IUCN, 2021).
    Google Scholar 
    Smolensky, N. L., Hurtado, L. A. & Fitzgerald, L. A. DNA barcoding of Cameroon samples enhances our knowledge on the distributional limits of putative species of Osteolaemus (African dwarf crocodiles). Conserv. Genet. 16, 235–240. https://doi.org/10.1007/s10592-014-0639-3 (2014).Article 
    CAS 

    Google Scholar 
    Shirley, M. H., Villanova, V. L., Vliet, K. A. & Austin, J. D. Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim. Conserv. 18, 322–330 (2015).Article 

    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African Slender-snouted Crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151–193. https://doi.org/10.11646/zootaxa.4504.2.1 (2018).Article 

    Google Scholar 
    Murray, C. M., Russo, P., Zorrilla, A. & McMahan, C. D. Divergent morphology among populations of the New Guinea crocodile, Crocodylus novaeguineae (Schmidt, 1928): Diagnosis of an independent lineage and description of a new species. Copeia 107, 517–523. https://doi.org/10.1643/CG-19-240 (2019).Article 

    Google Scholar 
    Hekkala, E. H. et al. An ancient icon reveals new mysteries: Mummy DNA resurrects a cryptic species within the Nile crocodile. Mol. Ecol. 20, 4199–4215 (2011).Article 
    CAS 

    Google Scholar 
    Mobaraki, A. et al. Conservation status of the mugger crocodile Crocodylus palustris: Establishing a task force for a poster species of climate change. Crocodile Specialist Group Newslett. 40(3), 12–20 (2021).
    Google Scholar 
    Cunningham, S. W., Shirley, M. H. & Hekkala, E. R. Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ 12, e1901 (2016).Article 

    Google Scholar 
    Platt, S. G. et al. Siamese Crocodile Crocodylus siamensis. In Crocodiles. Status Survey and Conservation Action Plan 4th edn (eds Manolis, S. C. & Stevenson, C.) (Crocodile Specialist Group, 2019).
    Google Scholar 
    Arcgis Software v. Version 10.1 (2011).Lourenço-de-Moraes, R. et al. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. J. Biogeogr. 47, 275–287 (2020).Article 

    Google Scholar 
    Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402. https://doi.org/10.1111/j.1600-0706.2008.16668.x (2009).Article 

    Google Scholar 
    Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20(1), 1–16 (2020).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Pio, D. V. et al. Spatial predictions of phylogenetic diversity in conservation decision making. Conserv. Biol. 256, 1229–1239 (2011).Article 

    Google Scholar 
    Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).Article 

    Google Scholar 
    Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366, 2536–2544 (2011).Article 

    Google Scholar 
    Trindade-Filho, J., Carvalho, R. A., Brito, D. & Loyola, R. D. How does the inclusion of data deficient species change conservation priorities for amphibians in the Atlantic Forest?. Biodivers. Conserv. 21, 2709–2718 (2012).Article 

    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).
    Google Scholar 
    Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).Book 
    MATH 

    Google Scholar 
    Mouchet, M., Villéger, S., Mason, N. W. H. & Mouillo, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).Article 

    Google Scholar 
    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).Article 
    CAS 

    Google Scholar 
    Sharp, R. et al. InVEST 3.10.2.post28+ug.ga4e401c.d20220324 User’s Guide (The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2020).
    Google Scholar 
    Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 8523. https://doi.org/10.1038/s41598-019-44732-z (2019).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Sánchez-Fernandez, D. & Abellán, P. Using null models to identify underrepresented species in protected areas: A case study using European amphibians and reptiles. Biol. Conserv. 184, 290–299 (2015).Article 

    Google Scholar  More

  • in

    Adélie penguins north and east of the ‘Adélie gap’ continue to thrive in the face of dramatic declines elsewhere in the Antarctic Peninsula region

    Fraser, W., Trivelpiece, W., Ainley, D. & Trivelpiece, S. Increases in Antarctic penguin populations: Reduced competition with whales or a loss of sea ice due to environmental warming?. Polar Biol. 11, 525–531 (1992).Article 

    Google Scholar 
    Trivelpiece, W. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 108, 7625–7628 (2011).Article 
    CAS 

    Google Scholar 
    Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).Article 

    Google Scholar 
    Hinke, J., Salwicka, K., Trivelpiece, S., Watters, G. & Trivelpiece, W. Divergent responses of Pygoscelis penguins reveal common environmental driver. Oecologia 153, 845–855 (2007).Article 

    Google Scholar 
    Poncet, S. & Poncet, J. Censuses of penguin populations of the Antarctic Peninsula, 1983–87. Br. Antarct. Surv. Bull. 77, 109–129 (1987).
    Google Scholar 
    Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: Winter-summer heterogeneity in the distribution of Adélie penguin populations. Found. For. Ecol. Res. West Antarct. Penins. 70, 257–272 (1996).Article 

    Google Scholar 
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Rec. 53, 160–166 (2017).Article 

    Google Scholar 
    Lynch, H., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).Article 

    Google Scholar 
    Elliot, D. H., Watts, D. R., Alley, R. B. & Gracanin, T. M. Bird and seal observations at Joinville Island and offshore islands. Antarct. J. USA 13, 154–155 (1978).
    Google Scholar 
    Bender, N. A., Crosbie, K. & Lynch, H. Patterns of tourism in the Antarctic Peninsula region: A twenty-year re-analysis. Antarct. Sci. 28, 194–203 (2016).Article 

    Google Scholar 
    Lynch, H. J. & Schwaller, M. R. Mapping the abundance and distribution of Adélie penguins using Landsat-7: First steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie penguin. Auk 131, 457–466 (2014).Article 

    Google Scholar 
    Parkinson, C. L. & Cavalieri, D. J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880 (2012).Article 

    Google Scholar 
    Parkinson, C. L. Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol. 34, 435–440 (2002).Article 

    Google Scholar 
    Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. NPJ Clim. Atmos. Sci. 5, 1–15 (2022).Article 

    Google Scholar 
    Kumar, A., Yadav, J. & Mohan, R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica. Environ. Res. Lett. 16, 024046 (2021).
    Google Scholar 
    Strass, V. H., Rohardt, G., Kanzow, T., Hoppema, M. & Boebel, O. Multidecadal warming and density loss in the deep Weddell Sea. Antarct. J. Clim. 33, 9863–9881 (2020).Article 

    Google Scholar 
    Morioka, Y. & Behera, S. K. Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res. Ocean 126, e2020JC017036 (2021).Article 

    Google Scholar 
    Veytia, D. et al. Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Chang. 10, 568–575 (2020).Article 

    Google Scholar 
    Humphries, G. R. et al. Predicting the future is hard and other lessons from a population time series data science competition. Ecol. Inf. 48, 1–11 (2018).Article 

    Google Scholar 
    Borowicz, A. et al. A multi-modal survey of Adèlie penguin megacolonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article 

    Google Scholar 
    Cimino, M., Lynch, H., Saba, V. & Oliver, M. Projected asymmetric response of Adèlie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).Article 
    CAS 

    Google Scholar 
    McClintock, J., Silva-Rodriguez, P. & Fraser, W. Southerly breeding in gentoo penguins for the eastern Antarctic Peninsula: Further evidence for unprecedented climate change. Antarct. Sci. 22, 285–286 (2010).Article 

    Google Scholar 
    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001–2007. Mar. Ornithol. 36, 83–97 (2008).
    Google Scholar 
    Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).Article 

    Google Scholar 
    Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-1, Priority Areas for Conservation. SC-CAMLR- XXXVI/17. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-2, Priority Areas for Conservation. SC-CAMLR- XXXVI/18. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Teschke, K. et al. Planning marine protected areas under the CCAMLR regime—the case of the Weddell Sea (Antarctica). Mar. Policy 124, 104370 (2021).Article 

    Google Scholar 
    Herman, R. et al. Update on the global abundance and distribution of breeding Gentoo Penguins (Pygoscelis papua). Polar Biol. 43, 1947–1956 (2020).Article 

    Google Scholar 
    Korczak-Abshire, M., Hinke, J. T., Milinevsky, G., Juáres, M. A. & Watters, G. M. Coastal regions of the northern Antarctic Peninsula are key for gentoo populations. Biol. Lett. 17, 20200708 (2021).Article 

    Google Scholar 
    Miller, A. K., Karnovsky, N. J. & Trivelpiece, W. Z. Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands. Antarct. Mar. Biol. 156, 2527–2537 (2009).Article 

    Google Scholar 
    Herman, R. W. et al. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 164, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    Cimino, M. A., Fraser, W. R., Irwin, A. J. & Oliver, M. J. Satellite data identify decadal trends in the quality of Pygoscelis penguin chick-rearing habitat. Glob. Chang. Biol. 19, 136–148 (2013).Article 

    Google Scholar 
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).Article 

    Google Scholar 
    Croxall, J. P. & Kirkwood, E. The Distribution of Penguins on the Antarctic Peninsula and Islands of the Scotia Sea (British Antarctic Survey, Cambridge, UK, 1979).
    Google Scholar 
    Naveen, R. et al. Censuses of penguin, blue-eyed shag, and southern giant petrel populations in the Antarctic Peninsula region, 1994–2000. Polar Rec. 36, 323–334 (2000).Article 

    Google Scholar 
    Woehler,E. J. The Distribution and Abundance of Antarctic and Subantarctic Penguins. In SCAR Comm. on Antarctic Res. Bird Biol. Subcomm. (Cambridge University Press, 1993).Naveen, R., Lynch, H. J., Forrest, S., Mueller, T. & Polito, M. First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol. 35, 1879–1888 (2012).
    Google Scholar 
    Hallermann, N., Morgenthal, G. & Rodehorst, V. Unmanned aerial systems (UAS)–case studies of vision based monitoring of ageing structures. In Int. Symp. Non-Destructive Test. Civ. Eng. (NDT-CE) 15–17 (2015).Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 38, 421–430 (2013).Article 

    Google Scholar 
    Cavalieri, D. J., Germain, K. M. S. & Swift, C. T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I. J. Glaciol. 41, 455–464 (1995).Article 

    Google Scholar 
    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. Updated daily Sea Ice Index, Version 3. In Boulder, Colo.USA. NSIDC: Natl. Snow Ice Data Cent (2017).Iles, D. T. et al. Sea ice predicts long-term trends in Adélie penguin population growth, but not annual fluctuations: Results from a range-wide multiscale analysis. Glob. Change Biol. 26, 3788–3798 (2020).Article 

    Google Scholar 
    Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using mcmc. R package version 4. https://rdrr.io/cran/rjags/ (2016).Plummer, M. et al. Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, 1–10 (Vienna, Austria., 2003).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Youngflesh, C. MCMCvis: Tools to visualize, manipulate, and summarize MCMC output. J. Open Sourc. Softw. 3, 640 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2. Wiley Interdiscipl. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Kellner,K. jagsUI: A wrapper around rjags to streamline JAGS analyses. R package version 1, 2015 (2015).Herman, R. & Lynch, H. Age-structured model reveals prolonged immigration is key for colony establishment in Gentoo Penguins. Ornithol. Appl. 124, duac04 (2022).
    Google Scholar 
    Polito, M. J., Lynch, H. J., Naveen, R. & Emslie, S. D. Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar. Ecol. Prog. Ser. 421, 265–277 (2011).Article 

    Google Scholar 
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F. & Focardi, S. Nonlinear effects of winter sea ice on the survival probabilities of Adélie penguins. Oecologia 161, 253–265 (2009).Article 

    Google Scholar 
    Wilson, P. et al. Adélie penguin population change in the pacific sector of Antarctica: Relation to sea-ice extent and the Antarctic Circumpolar Current. Mar. Ecol. Prog. Ser. 213, 301–309 (2001).Article 

    Google Scholar 
    Wienecke, B. et al. Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica. Deep. Sea Res. Part II Top. Stud. Oceanogr. 47, 2573–2587 (2000).Article 

    Google Scholar 
    Ainley, D. G. The Adélie Penguin: Bellwether of Climate Change (Columbia University Press, 2002).Book 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land. Antarct. Mar. Biol. 154, 813–821 (2008).Article 

    Google Scholar 
    Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: Chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).Article 

    Google Scholar 
    Ashford, J., Zane, L., Torres, J. J., La Mesa, M. & Simms, A. R. Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem 193–234 (Springer, 2017).Pakhomov, E. & Perissinotto, R. Antarctic neritic krill Euphausia crystallorophias: Spatio-temporal distribution, growth and grazing rates. Deep. Sea Res. Part I Oceanogr. Res. Pap. 43, 59–87 (1996).Article 

    Google Scholar 
    La Mesa, M. & Eastman, J. T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13, 241–266 (2012).Article 

    Google Scholar 
    Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea. Antarct. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).Article 
    CAS 

    Google Scholar 
    Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).Article 

    Google Scholar 
    La Mesa, M., Piñones, A., Catalano, B. & Ashford, J. Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula. Fish. Oceanogr. 24, 150–161 (2015).Article 

    Google Scholar 
    La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).Article 

    Google Scholar 
    Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Front. Mar. Sci. 7, 256 (2021).Article 

    Google Scholar 
    Brooks, C. et al. Workshop on identifying key biodiversity areas for the Southern Ocean using tracking data. In Tech.Rep. SC-CAMLR-41/BG/22, CCAMLR (2022).Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013: Ecological Archives E094–243. Ecology 94, 2653–2653 (2013).Article 

    Google Scholar 
    Myrcha, A., Tatur, A. & Valle, R. D. V. Numbers of Adélie penguins breeding at Hope Bay and Seymour Island rookeries (West Antarctica) in 1985. Pol. Polar Res. 8, 411–422 (1987).
    Google Scholar 
    Montalti, D. & Soave, G. E. The birds of Seymour Island, Antarctica. Ornitol. Neotrop. 13, 267–271 (2002).
    Google Scholar 
    Perchivale, P. J. et al. Updated estimate of the Breeding Population of Adélie penguins (Pygoscelis adeliae) at Penguin Point, Marambio/Seymour Island within the proposed Weddell Sea Marine Protected Area (2022). https://www.researchsquare.com/article/rs-2117503/v1.Che-Castaldo, C. et al. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 8, 832 (2017).Article 

    Google Scholar 
    Hinke, J. T., Trivelpiece, S. G. & Trivelpiece, W. Z. Variable vital rates and the risk of population declines in Adélie penguins from the Antarctic Peninsula region. Ecosphere 8, e01666 (2017).Article 

    Google Scholar  More

  • in

    Macroecological processes drive spiritual ecosystem services obtained from giant trees

    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. Camb. Phil. Soc. 92, 1434–1458 (2017).Article 

    Google Scholar 
    Voigt, C. C., Borissov, I. & Kelm, D. H. Bats fertilize roost trees. Biotropica 47, 403–406 (2015).Article 

    Google Scholar 
    Blicharska, M. & Mikusiński, G. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 28, 1558–1567 (2014).Article 

    Google Scholar 
    Sponsel, L. E. Spiritual Ecology: A Quiet Revolution (ABC-CLIO, 2012).Omura, H. Trees, forests and religion in Japan. Mt. Res. Dev. 24, 179–182 (2004).Article 

    Google Scholar 
    Heintzman, P. Nature-based recreation and spirituality: a complex relationship. Leis. Sci. 32, 72–89 (2009).Article 

    Google Scholar 
    Irvine, K. N., Hoesly, D., Bell-Williams, R. & Warber, S. L. in Biodiversity and Health in the Face of Climate Change (eds Marselle, M. R. et al.) 213–247 (Springer, 2019).Millennium Ecosystem Assessment Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).Vihervaara, P., Rönkä, M. & Walls, M. Trends in ecosystem service research: early steps and current drivers. Ambio 39, 314–324 (2010).Article 

    Google Scholar 
    Brown, J. H. Macroecology (Univ. Chicago Press, 1995).Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Matsui, K. Geography of Religion in Japan: Religious Space, Landscape, and Behavior (Springer, 2013).Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Giant Trees Follow-Up Survey Report, the Sixth Census of the National Survey of the Natural Environment (in Japanese) (Biodiversity Center of Japan & Ministry of the Environment, 2001); https://www.biodic.go.jp/reports2/6th/kyojuflup/6_kyojuflup.pdfMakino, K. Folkloristics of Giant Trees (in Japanese) (Kobunsha, 1986).Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).Article 
    CAS 

    Google Scholar 
    Muthukrishna, M. et al. Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) psychology: measuring and mapping scales of cultural and psychological distance. Psychol. Sci. 31, 678–701 (2020).Article 

    Google Scholar 
    Twigger-Ross, C. L. & Uzzell, D. L. Place and identity processes. J. Environ. Psychol. 16, 205–220 (1996).Article 

    Google Scholar 
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).Watanabe, T., Matsunaga, K., Kanazawa, Y., Suzuki, K. & Rotherham, I. D. Landforms and distribution patterns of giant Castanopsis sieboldii trees in urban areas and western suburbs of Tokyo, Japan. Urban For. Urban Green. 60, 126997 (2021).Article 

    Google Scholar 
    Uryu, S. jpmesh: Utilities for Japanese Mesh Code. R package version 2.1.0 https://CRAN.R-project.org/package=jpmesh (2022).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Yamanouchi, T. et al. A Checklist of Japanese Plant Names (Japan Node of Global Biodiversity Information Facility, 2019); https://www.gbif.jp/v2/activities/wamei_checklist.html More

  • in

    House Sparrow (Passer domesticus) escape behavior is triggered faster in smaller settlements

    Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).Article 

    Google Scholar 
    Ritzel, K. & Gallo, T. Behavior change in urban mammals: A systematic review. Front. Ecol. Evol. 8, 393 (2020).Article 

    Google Scholar 
    Gil, D. & Brumm, H. Avian Urban Ecology: Behavioural and Physiological Adaptations (Oxford University Press, 2014).
    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).Article 

    Google Scholar 
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).Article 

    Google Scholar 
    Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manag. 67, 852–857 (2003).Article 

    Google Scholar 
    Cooper, W. E. & Frederick, W. G. Optimal flight initiation distance. J. Theor. Biol. 244, 59–67 (2007).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Blumstein, D. T. & Fernández-Juricic, E. A Primer of Conservation Behavior (Sinauer Associates, 2010).
    Google Scholar 
    Nunes, J. A. C. C. et al. Global trends on reef fishes’ ecology of fear: Flight initiation distance for conservation. Mar. Environ. Res. 136, 153–157 (2018).Article 
    CAS 

    Google Scholar 
    Haidt, A., Kamiński, T., Borowik, T. & Kowalczyk, R. Human and the beast—Flight and aggressive responses of European bison to human disturbance. PLoS ONE 13, e0200635 (2018).Article 

    Google Scholar 
    Breck, S. W., Poessel, S. A., Mahoney, P. & Young, J. K. The intrepid urban coyote: A comparison of bold and exploratory behavior in coyotes from urban and rural environments. Sci. Rep. 9, 2104 (2019).Article 

    Google Scholar 
    Andrade, M. & Blumstein, D. T. Anti-predator behavior along elevational and latitudinal gradients in dark-eyed juncos. Curr. Zool. 66, 239–245 (2020).Article 

    Google Scholar 
    Cooper, W. & Pérez-Mellado, V. Escape by the Balearic Lizard (Podarcis lilfordi) is affected by elevation of an approaching predator, but not by some other potential predation risk factors. Acta Herpetol. 6, 247–259 (2011).
    Google Scholar 
    Møller, A. P. Interspecific variation in fear responses predicts urbanization in birds. Behav. Ecol. 21, 365–371 (2010).Article 

    Google Scholar 
    Samia, D. S. M. et al. Rural–urban differences in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 5, 66 (2017).Article 

    Google Scholar 
    Morelli, F. et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 9, 6096–6104 (2019).Article 

    Google Scholar 
    Tätte, K., Møller, A. P. & Mänd, R. Towards an integrated view of escape decisions in birds: Relation between flight initiation distance and distance fled. Anim. Behav. 136, 75–86 (2018).Article 

    Google Scholar 
    Bókony, V., Kulcsár, A., Tóth, Z. & Liker, A. Personality traits and behavioral syndromes in differently urbanized populations of house sparrows (Passer domesticus). PLoS ONE 7, e36639 (2012).Article 

    Google Scholar 
    Vincze, E. et al. Habituation to human disturbance is faster in urban than rural house sparrows. Behav. Ecol. 27, 1304–1313 (2016).Article 

    Google Scholar 
    Seress, G., Bókony, V., Heszberger, J. & Liker, A. Response to predation risk in urban and rural house sparrows: Response to predation risk in house sparrows. Ethology 117, 896–907 (2011).Article 

    Google Scholar 
    Metcalf, B. M., Davies, S. & Ladd, P. G. Adaptation of behaviour by two bird species as a result of habituation to humans. Aust. Field Ornithol. 18, 306–312 (2000).
    Google Scholar 
    Blumstein, D. T. Attention, habituation, and antipredator behaviour: Implications for urban birds. In Avian Urban Ecology: Behavioural and Physiological Adaptations (eds Gil, D. & Brumm, H.) 41–53 (Oxford University Press, 2014).
    Google Scholar 
    Cavalli, M., Baladrón, A. V., Isacch, J. P., Biondi, L. M. & Bó, M. S. The role of habituation in the adjustment to urban life: An experimental approach with burrowing owls. Behav. Process. 157, 250–255 (2018).Article 
    CAS 

    Google Scholar 
    Fossett, T. E. & Hyman, J. The effects of habituation on boldness of urban and rural song sparrows (Melospiza melodia). Behaviour 159, 243–257 (2021).Article 

    Google Scholar 
    Møller, A. P., Grim, T., Ibanez-Alamo, J. D., Marko, G. & Tryjanowski, P. Change in flight initiation distance between urban and rural habitats following a cold winter. Behav. Ecol. 24, 1211–1217 (2013).Article 

    Google Scholar 
    Møller, A. P. Reproductive behaviour. In Behavioural Responses to a Changing World (eds Candolin, U. & Wong, B. B. M.) 106–118 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61, 373–408 (2015).Article 

    Google Scholar 
    Eötvös, C. B., Magura, T. & Lövei, G. L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 180, 54–59 (2018).Article 

    Google Scholar 
    Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818 (2012).Article 

    Google Scholar 
    Vincze, E. et al. Great tits take greater risk toward humans and sparrowhawks in urban habitats than in forests. Ethology 125, 686–701 (2019).Article 

    Google Scholar 
    Anderson, T. R. Biology of the Ubiquitous House Sparrow: From Genes to Populations (Oxford University Press, 2006).Book 

    Google Scholar 
    Santiago-Alarcon, D., Carbó-Ramírez, P., Macgregor-Fors, I., Chávez-Zichinelli, C. A. & Yeh, P. J. The prevalence of avian haemosporidian parasites in an invasive bird is lower in urban than in non-urban environments. Ibis 162, 201–214 (2020).Article 

    Google Scholar 
    García-Arroyo, M. & MacGregor-Fors, I. Tolerant to humans? Assessment of alert and flight initiation distances of two bird species in relation to sex, flock size, and environmental characteristics. Ethol. Ecol. Evol. 32, 445–456 (2020).Article 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).Article 

    Google Scholar 
    Cohen, S. B. & Dor, R. Phenotypic divergence despite low genetic differentiation in house sparrow populations. Sci. Rep. 8, 394 (2018).Article 

    Google Scholar 
    Martin, L. B. & Fitzgerald, L. A taste for novelty in invading house sparrows, Passer domesticus. Behav. Ecol. 16, 702–707 (2005).Article 

    Google Scholar 
    Quesada, J. et al. Bold or shy? Examining the risk-taking behavior and neophobia of invasive and non-invasive house sparrows. Anim. Biodivers. Conserv. 45, 97–106 (2022).Article 

    Google Scholar 
    Díaz, M. et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE 8, e64634 (2013).Article 

    Google Scholar 
    Quesada, J. & Calderon, J. Pardal comú. In Atles Dels Ocells Nidificants De Catalunya: Distribució i Abundancia 2015–2018 i Canvi des de 1980 (eds Franch, M. et al.) (Institut Català d’Ornitologia/Cossetània Edicions, 2021).
    Google Scholar 
    Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106, 622–626 (2004).Article 

    Google Scholar 
    Statistical Institute of Catalonia. The municipality in figures. Bages. gencat https://www.idescat.cat/emex/?id=07 (2020).Bellet Sanfeliu, C. The evolution of urban planning in medium-sized Catalan cities (1979–2019). Urban Sci. 5, 36 (2021).Article 

    Google Scholar 
    Borras, A. & Junyent, F. Vertebrats de la Catalunya Central (Edicions Intercomarcals, 1993).
    Google Scholar 
    Vangestel, C., Braeckman, B. P., Matheve, H. & Lens, L. Constraints on home range behaviour affect nutritional condition in urban house sparrows (Passer domesticus). Biol. J. Linn. Soc. 101, 41–50 (2010).Article 

    Google Scholar 
    Herrando, S., Brotons, L., Estrada, J., Guallar, S. & Anton, M. Atles dels Ocells de Catalunya a I’hivern 2006–2009: Catalan Winter Bird Atlas 2006–2009 (Lynx Ed, 2011).
    Google Scholar 
    MacGregor-Fors, I. How to measure the urban-wildland ecotone: Redefining ‘peri-urban’ areas. Ecol. Res. 25, 883–887 (2010).Article 

    Google Scholar 
    Lemoine-Rodríguez, R., MacGregor-Fors, I. & Muñoz-Robles, C. Six decades of urban green change in a neotropical city: A case study of Xalapa, Veracruz, Mexico. Urban Ecosyst. 22, 609–618 (2019).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Shochat, E. et al. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60, 199–208 (2010).Article 

    Google Scholar 
    Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).Article 

    Google Scholar 
    Geue, D. & Partecke, J. Reduced parasite infestation in urban Eurasian blackbirds (Turdus merula): A factor favoring urbanization?. Can. J. Zool. 86, 1419–1425 (2008).Article 

    Google Scholar 
    MacGregor-Fors, I., Quesada, J., Lee, J.G.-H. & Yeh, P. J. On the lookout for danger: House sparrow alert distance in three cities. Urban Ecosyst. 22, 955–960 (2019).Article 

    Google Scholar  More