1.Møller, A., Fiedler, W. & Berthold, P. Effects of climate change on birds (Oxford University Press, 2010).
Google Scholar
2.IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (The Intergovernmental Panel on Climate Change, 2018).3.Lovejoy, T. E., Hannah, L. & Wilson, E. O. Biodiversity and climate change (Yale University Press, 2019).Book
Google Scholar
4.Hughes, L. Biological consequences of global warming: is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).CAS
PubMed
Article
Google Scholar
5.Moore, N. Precipitation regimes and climate change. In Global Environmental Change (ed. Freedman, B.) 191–197 (Springer, Dordrecht, 2014).
Google Scholar
6.Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments. Glob. Change Biol. 21, 2624–2633 (2015).ADS
Article
Google Scholar
7.Tobias, A. & Díaz, J. Heat waves, human health, and climate change. In Global Environmental Change (ed. Freedman, B.) 447–453 (Springer, Dordrecht, 2014).
Google Scholar
8.Freedman, B. Global Environmental Change (Springer, 2014).Book
Google Scholar
9.Hannah, L. Climate change biology 2nd edn. (Elsevier, 2014).
Google Scholar
10.Gibbons, J. W. et al. The global decline of reptiles, Déjà Vu Amphibians: Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience 50, 653–666 (2000).11.Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS ONE 6, e325 (2008).Article
CAS
Google Scholar
12.Huey, R. B., Losos, J. B. & Moritz, C. Are Lizards Toast?. Science 328, 832–833 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
13.Sinervo, B. et al. Erosion of lizard diversity by Climate Change and altered thermal niches. Science 328, 894–899 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
14.Glick, P., Stein, B. A. & Edelson, N. A. Scanning the conservation horizon: A guide to climate change vulnerability assessment (National Wildlife Federation, 2011).
Google Scholar
15.Parmesan, C. Climate and species’ range. Nature 382, 765–766 (1996).ADS
CAS
Article
Google Scholar
16.Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).ADS
CAS
Article
Google Scholar
17.Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 105, 11823–11826 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
18.Zuckerberg, B., Woods, A. M. & Porter, W. F. Poleward shifts in breeding bird distributions in New York State. Glob. Change Biol. 15, 1866–1883 (2009).ADS
Article
Google Scholar
19.Sodhi, N. S. & Ehrlich, P. R. Conservation Biology for all (Oxford University Press, 2010).Book
Google Scholar
20.Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).Article
Google Scholar
21.Avery, R. A. Field studies of body temperatures and thermoregulation. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 93–166 (Academic Press, New York, 1982).
Google Scholar
22.Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).Book
Google Scholar
23.Huey, R. B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 25–91 (Academic Press, New York, 1982).
Google Scholar
24.Angilletta, M. J. Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).Article
Google Scholar
25.Shine, R. Incubation regimes of cold-climate reptiles: the thermal consequences of nest-site choice, viviparity and maternal basking. Biol. J. Linn. Soc. 83, 145–155 (2004).Article
Google Scholar
26.Shine, R. Life-history evolution in Reptiles. Ann. Rev. Ecol. Evol. Syst. 36, 23–46 (2005).Article
Google Scholar
27.Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).Article
Google Scholar
28.Bennett, A. F. The thermal dependence of lizard behaviour. Anim. Behav. 28, 752–762 (1980).Article
Google Scholar
29.Christian, K. A. & Tracy, C. R. The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218–223 (1981).ADS
PubMed
Article
PubMed Central
Google Scholar
30.Snell, H. L., Jennings, R. D., Snell, H. M. & Harcourt, S. Intrapopulation variation in predator-avoidance performance of Galápagos lava lizards: The interaction of sexual and natural selection. Evol. Ecol. 2, 353–369 (1988).Article
Google Scholar
31.Robson, M. A. & Miles, D. B. Locomotor performance and dominance in male Tree Lizards, Urosaurus ornatus. Funct. Ecol. 14, 338–344 (2000).Article
Google Scholar
32.Perry, G., LeVering, K., Girard, I. & Garland, T. Locomotor performance and social dominance in male Anolis cristatellus. Anim. Behav. 67, 37–47 (2004).Article
Google Scholar
33.Cowles, R. B. & Bogert, C. M. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 265–296 (1944).
Google Scholar
34.Bartholomew, G. A. Physiological control of body temperature. In Biology of the Reptilia (eds Gans, C. & Pough, F. H.) 167–211 (Academic Press, New York, 1982).
Google Scholar
35.Beaupre, S. J. Effects of geographically variable thermal environment on bioenergetics of mottled rock rattlesnakes. Ecology 76, 1655–1665 (1995).Article
Google Scholar
36.Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).PubMed
Article
PubMed Central
Google Scholar
37.Huey, R. B. Behavioral thermoregulation in lizards: importance of associated costs. Science 184, 1001 (1974).ADS
Article
Google Scholar
38.Hertz, P. E., Huey, R. B. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms: The fallacy of the inappropriate question. Am. Nat. 142, 796–818 (1993).CAS
PubMed
Article
PubMed Central
Google Scholar
39.Vitt, L. & Caldwell, J. Herpetology: An introductory biology of amphibians and reptiles 4th edn. (Elsevier, 2014).
Google Scholar
40.Ortega, Z., Mencía, A. & Pérez-Mellado, V. Sexual differences in behavioral thermoregulation of the lizard Scelarcis perspicillata. J. Therm. Biol. 61, 44–49 (2016).PubMed
Article
PubMed Central
Google Scholar
41.Rodríguez-Serrano, E., Navas, C. A. & Bozinovic, F. The comparative field body temperature among Liolaemus lizards: Testing the static and the labile hypotheses. J. Therm. Biol. 34, 306–309 (2009).Article
Google Scholar
42.Telemeco, R. S., Radder, R. S., Baird, T. A. & Shine, R. Thermal effects on reptile reproduction: Adaptation and phenotypic plasticity in a montane lizard. Biol. J. Linn. Soc. 100, 642–655 (2010).Article
Google Scholar
43.Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus Lizards: Adaptation, phylogenetic inertia, and niche tracking. Am. Nat. 174, 204–220 (2009).PubMed
PubMed Central
Article
Google Scholar
44.Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. Biol. Sci. 276, 1939–1948 (2009).PubMed
PubMed Central
Google Scholar
45.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105, 6668–6672 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
46.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
47.Bestion, E., Teyssier, A., Richard, M., Clobert, J. & Cote, J. Live fast, die young: Experimental evidence of population extinction risk due to climate change. PLoS ONE 13, e1002281 (2015).Article
CAS
Google Scholar
48.Zhang, L., Yang, F. & Zhu, W.-L. Evidence for the ‘rate-of-living’ hypothesis between mammals and lizards, but not in birds, with field metabolic rate. Comp. Biochem. Physiol. Part A 253, 110867 (2021).CAS
Article
Google Scholar
49.Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
50.Sinervo, B. et al. Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai—Tibetan Plateau. Integr. Zool. 13, 450–470 (2018).PubMed
Article
PubMed Central
Google Scholar
51.Ibarguengoytía, N. R. et al. Looking at the past to infer into the future: Thermal traits track environmental change in Liolaemidae. Evolution https://doi.org/10.1111/evo.14246 (2021)Article
PubMed
PubMed Central
Google Scholar
52.Beniston, M. Climate change in mountain regions: A review of possible impacts. Clim. Change 59, 5–31 (2003).Article
Google Scholar
53.Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
54.Martínez Carretero, E. La Puna argentina: Delimitación general y división en distritos florísticos. Bol. Soc. Argent. Bot. 31, 27–40 (1995).
Google Scholar
55.Esquerré, D., Brennan, I. G., Catullo, R. A., Torres-Pérez, F. & Keogh, J. S. How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution 73, 214–230 (2019).PubMed
Article
PubMed Central
Google Scholar
56.Abdala, C. S., Laspiur, A. & Langstroth, R. Las especies del género Liolaemus (Liolaemidae). Lista de taxones y comentarios sobre los cambios taxonómicos más recientes. Cuad. Herp. 35, 193–223 (2021).
Google Scholar
57.Abdala, C. S. et al. Unravelling interspecific relationships among highland lizards: First phylogenetic hypothesis using total evidence of the Liolaemus montanus group (Iguania: Liolaemidae). Zool. J. Linn. Soc. 189, 349–377 (2020).Article
Google Scholar
58.Cabrera, M. R. & Monguillot, J. C. A new Andean species of Liolaemus of the darwinii complex (Reptilia: Iguanidae). Zootaxa 1106, 35–43 (2006).Article
Google Scholar
59.Abdala, C. S. et al. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuad. Herp. 26, 215–248 (2012).
Google Scholar
60.Avila, L. J. Liolaemus montanezi. The IUCN Red List of Threatened Species 2016: e.T56077261A56077269. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T56077261A56077269.en (2016).61.Barros, V. R. et al. Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Change 6, 151–169 (2015).Article
Google Scholar
62.IPCC. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifh Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, 2014).63.Bury, R. B. Natural history, field ecology, conservation biology and wildlife management: time to connect the dots. Herp. Con. Biol. 1, 56–61 (2006).
Google Scholar
64.Fei, T. et al. A body temperature model for lizards as estimated from the thermal environment. J. Therm. Biol. 37, 56–64 (2012).Article
Google Scholar
65.Ortega, Z. et al. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. J. Trop. Ecol. 35, 149–156 (2019).Article
Google Scholar
66.Bujes, C. S. & Verrastro, L. Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae) in the coastal sand dunes of Rio Grande do Sul, Brazil. Braz. J. Biol. 66, 945–954 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
67.Almeida-Santos, P., Militão, C. M., Nogueira-Costa, P., Menezes, V. A. & Rocha, C. F. D. Thermal ecology of five remaining populations of an endangered lizard (Liolaemus lutzae) in different restinga habitats in Brazil. J. Coast. Conserv. 19, 335–343 (2015).Article
Google Scholar
68.Liz, A. V., Santos, V., Ribeiro, T., Guimarães, M. & Verrastro, L. Are lizards sensitive to anomalous seasonal temperatures? Long-term thermobiological variability in a subtropical species. PLoS ONE 14, e0226399 (2019).Article
CAS
Google Scholar
69.Martori, R., Bignolo, P. & Cardinale, L. Relaciones térmicas en una población de Liolaemus wiegmannii (Iguania: Tropiduridae). Rev. Esp. Herpetol. 12, 19–26 (1998).
Google Scholar
70.Martori, R., Aun, L. & Orlandini, S. Relaciones térmicas temporales en una población de Liolaemus koslowskyi. Cuad. Herp. 16, 33–45 (2002).
Google Scholar
71.Cánovas, M. G., Villavicencio, H. J. & Acosta, J. C. Liolaemus olongasta (NCN) Body temperature. Herp. Rev. 37, 87–88 (2006).
Google Scholar
72.Villavicencio, H., Acosta, J., Cánovas, M. & Marinero, J. Thermal ecology of a population of the lizard, Liolaemus pseudoanomalus in western Argentina. Amphibia-Reptilia 28, 163–165 (2007).Article
Google Scholar
73.Ibargüengoytía, N. R. et al. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35, 21–27 (2010).Article
Google Scholar
74.Castillo, G. N., Villavicencio, H. J., Acosta, J. C. & Marinero, J. A. Temperatura corporal de campo y actividad temporal de las lagartijas Liolaemus vallecurensis y Liolaemus ruibali en clima riguroso de los Andes centrales de Argentina. Multequina 24, 19–31 (2015).
Google Scholar
75.Laspiur, A., Villavicencio, H. J. & Acosta, J. C. Liolaemus chacoensis (NCN). Body temperature. Herp. Rev. 38, 458–459 (2007).
Google Scholar
76.Salva, A. G., Robles, C. I. & Tulli, M. J. Thermal biology of Liolaemus scapularis (Iguania:Liolaemidae) from argentinian northwest. J. Therm. Biol 98, 102924 (2021).PubMed
Article
Google Scholar
77.Mesinger, F., Jovic, D., Chou, S. C., Gomes, J. L. & Bustamante, J. F. Wind forecast around the Andes using the sloping discretization of the eta coordinate. in Proceedings of the 8th International Conference on Southern Hemisphere Meteorology and Oceanography 1837–1848 (INPE, 2006).78.Sannolo, M. & Carretero, M. A. Dehydration constrains thermoregulation and space use in lizards. PLoS ONE 14, e0220384 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
79.Nicholson, K. L. et al. The influence of temperatura and humidity on activity patterns of the lizards Anolis stratulus and Ameiva exsul in the British Virgin Islands. Caribb. J. Sci. 41, 870–873 (2005).
Google Scholar
80.Adolph, A. S. & Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).CAS
PubMed
Article
PubMed Central
Google Scholar
81.Bakken, G. S., Santee, W. R. & Erskine, D. Operative and standard operative temperature: Tools for thermal energetics studies. Am. Zool. 25, 933–943 (1985).Article
Google Scholar
82.Black, I. R. G., Berman, J. M., Cadena, V. C. & Tattersall, G. J. Behavioral thermoregulation in lizards. Strategies for achieving preferred temperature. In Behavior of lizards. Evolutionary and mechanistic perspectives (eds Bels, V. L. & Russell, A. P.) 13–46 (CRC Press, Florida, 2019).
Google Scholar
83.Pirtle, E. I., Tracy, C. R. & Kearney, M. R. Hydroregulation. A neglected behavioral response of lizards to climate change? In Behavior of Lizards. Evolutionary and mechanistic perspectives (eds Bels, V. L. & Russell, A. P.) 343–374 (CRC Press, Florida, 2019).
Google Scholar
84.Medina, M. et al. Thermal biology of genus Liolaemus: A phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 37, 579–586 (2012).Article
Google Scholar
85.Blouin-Demers, G. & Weatherhead, P. J. Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82, 3025–3043 (2001).Article
Google Scholar
86.Cabezas-Cartes, F., Fernández, J. B., Duran, F. & Kubisch, E. L. Potential benefits from global warming to the thermal biology and locomotor performance of an endangered Patagonian lizard. PeerJ 7, e7437 (2019).PubMed
PubMed Central
Article
Google Scholar
87.Obregón, R. L., Scolaro, J. A., Ibargüengoytía, N. R. & Medina, M. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change? Integr. Zool. 16, 53–66 (2021).PubMed
Article
PubMed Central
Google Scholar
88.Litmer, A. R. & Murray, C. M. Critical thermal tolerance of invasion: Comparative niche breadth of two invasive lizards. J. Therm. Biol. 86, 102432 (2019).PubMed
Article
PubMed Central
Google Scholar
89.Bels, V. L. & Russell, A. P. Behavior of lizards. Evoutionary and mechanistic perspectives (CRC Press, Florida, 2019).Book
Google Scholar
90.Panda, B. B., Achary, V. M., Mahanty, S. & Panda, K. K. Plant adaptation to abiotic and genotoxic stress: Relevance to climate change and evolution. In Climate Change and plant abiotic stress tolerance (eds Tuteja, N. & Gill, S. S.) 251–294 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014).
Google Scholar
91.Kiesling, R. Flora de San Juan, República Argentina Vol. 1 (Vázquez Mazzini, Buenos Aires, 1994).
Google Scholar
92.Köeppen, V. P. Climatología. Con un estudio de los climas de la tierra (Fondo de Cultura Económica, Pánuco, México, DF, 1948).
Google Scholar
93.Bakken, G. S. Measurements and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194–216 (1992).Article
Google Scholar
94.Cecchetto, N. R., Medina, S. M., Taussig, S. & Ibargüengoytía, N. R. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. Can. J. Zool. 97, 773–782 (2019).Article
Google Scholar
95.Cecchetto, N. R., Medina, S. M. & Ibargüengoytía, N. R. Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus. Sci. Rep. 10, 14732 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
96.Mahoney, J. J. & Hutchison, V. H. Photoperiod acclimation and 24-hour variations in the critical thermal maxima of a tropical and a temperate frog. Oecologia 2, 143–161 (1969).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
97.Christian, K. A. & Weavers, B. W. Thermoregulation of monitor lizards in Australia: An evaluation of methods in thermal biology. Ecol. Monogr. 66, 139–157 (1996).Article
Google Scholar
98.Camacho, A. et al. Measuring behavioral thermal tolerance to address hot topics in ecology, evolution, and conservation. J. Therm. Biol. 73, 71–79 (2018).PubMed
Article
PubMed Central
Google Scholar
99.Clusella-Trullas, S. & Chown, S. L. Lizard thermal trait variation at multiple scales: a review. J. Comp. Physiol. B 184, 5–21 (2014).PubMed
Article
PubMed Central
Google Scholar
100.Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. USA 111, 5610–5615 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
101.Sokal, R. R. & Rohlf, F. J. Biometry: The Principles and practice of statistics in biological research 3rd edn. (Freeman W.H, 1995).MATH
Google Scholar
102.Kovach, W. Oriana ver. 4.0. Software. (Kovach Computing Services, 2001).103.Fitzgerald, L. A., Cruz, F. B. & Perotti, G. Phenology of a lizard assemblage in the dry Chaco of Argentina. J. Herpetol. 33, 526–535 (1999).Article
Google Scholar
104.Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Educ. 64, 79–93 (1995).Article
Google Scholar
105.García Pérez, M. A. & Núñez Antón, V. Cellwise residual analysis in two-way contingency tables. Educ. Psychol. Meas. 65, 825–839 (2003).MathSciNet
Article
Google Scholar
106.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).Article
Google Scholar
107.Bohonak, A. J. & van Der Linde, K. RMA for JAVA Software for Reduced Major Axis regression. ver. 1.21. (2004).108.Baty, F. et al. A toolbox for nonlinear regression in R: The Package nlstools. J. Stat. Softw. 5, 1–21 (2015).
Google Scholar
109.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2019).110.Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package ver. 3.4.6. (2020).111.Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package ver. 1.1-4. (2017).112.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package ver. 3.4-5. (2020). More