Antibiotic treatment increases yellowness of carotenoid feather coloration in male greenfinches (Chloris chloris)
1.Hill, G. E. Plumage coloration is a sexually selected indicator of male quality. Nature 350, 337 (1991).ADS
Article
Google Scholar
2.Cantarero, A., Pérez-Rodríguez, L., Romero-Haro, A. Á., Chastel, O. & Alonso-Alvarez, C. Carotenoid-based coloration predicts both longevity and lifetime fecundity in male birds, but testosterone disrupts signal reliability. PLoS ONE 14, e0221436. https://doi.org/10.1371/journal.pone.0221436 (2019).CAS
Article
PubMed
Google Scholar
3.Zahavi, A. Mate selection—A selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).CAS
Article
Google Scholar
4.Alonso-Alvarez, C. & Galván, I. Free radical exposure creates paler carotenoid-based ornaments: A possible interaction in the expression of black and red traits. PLoS ONE 6 (2011).5.Schantz, T. V., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition–dependent sexual signals. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 1–12 (1999).Article
Google Scholar
6.Tomášek, O. et al. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling. Sci. Rep. 6, 23546. https://doi.org/10.1038/srep23546 (2016).ADS
CAS
Article
PubMed
Google Scholar
7.Sild, E., Sepp, T., Männiste, M. & Hõrak, P. Carotenoid intake does not affect immune-stimulated oxidative burst in greenfinches. J. Exp. Biol. 214, 3467–3473 (2011).CAS
Article
Google Scholar
8.Mohr, A. E., Girard, M., Rowe, M., McGraw, K. J. & Sweazea, K. L. Varied effects of dietary carotenoid supplementation on oxidative damage in tissues of two waterfowl species. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 231, 67–74. https://doi.org/10.1016/j.cbpb.2019.02.003 (2019).CAS
Article
Google Scholar
9.Costantini, D. & Møller, A. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2008).Article
Google Scholar
10.Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—A meta-analysis. PLoS ONE 7, e43088. https://doi.org/10.1371/journal.pone.0043088 (2012).ADS
CAS
Article
PubMed
Google Scholar
11.Hill, G. E. et al. Plumage redness signals mitochondrial function in the house finch. Proc. R. Soc. B 286, 20191354 (2019).CAS
Article
Google Scholar
12.Hill, G. E. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol. Lett. 14, 625–634 (2011).Article
Google Scholar
13.del Cerro, S. et al. Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus). Oecologia 162, 825–835. https://doi.org/10.1007/s00442-009-1510-y (2010).ADS
Article
PubMed
Google Scholar
14.Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).Article
Google Scholar
15.Weaver, R. J., Santos, E. S., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).ADS
Article
Google Scholar
16.Tyczkowski, J. K., Hamilton, P. B. & Ruff, M. D. Altered metabolism of carotenoids during pale-bird syndrome in chickens infected with Eimeria acervulina. Poult. Sci. 70, 2074–2081. https://doi.org/10.3382/ps.0702074 (1991).CAS
Article
PubMed
Google Scholar
17.Joyner, L. et al. Amino-acid malabsorption and intestinal leakage of plasma-proteins in young chicks infected with Eimeria acervulina. Avian Pathol. 4, 17–33 (1975).CAS
PubMed
Google Scholar
18.Sharma, V. & Fernando, M. Effect of Eimeria acervulina infection on nutrient retention with special reference to fat malabsorption in chickens. Can. J. Comp. Med. 39, 146 (1975).CAS
PubMed
PubMed Central
Google Scholar
19.Pout, D. D. Villous atrophy and coccidiosis. Nature 213, 306–307 (1967).ADS
CAS
Article
Google Scholar
20.Sanches, A. W. D. et al. Basal and infectious enteritis in broilers under the I See inside methodology: A chronological evaluation. Front. Vet. Sci. 6, 512. https://doi.org/10.3389/fvets.2019.00512 (2020).Article
PubMed
Google Scholar
21.Russell, J. Jr. & Ruff, M. Eimeria spp.: Influence of coccidia on digestion (amylolytic activity) in broiler chickens. Exp. Parasitol. 45, 234–240 (1978).Article
Google Scholar
22.Kouwenhoven, B. & van der Horst, C. J. Disturbed intestinal absorption of vitamin A and carotenes and the effect of a low pH during Eimeria acervulina infection in the domestic fowl (Gallus domesticus). Z. Parasitenkd. 38, 152–161 (1972).CAS
Article
Google Scholar
23.Ruff, M. D. & Fuller, H. L. Some mechanisms of reduction of carotenoid levels in chickens infected with Eimeria acervulina or E. tenella. J. Nutr. 105, 1447–1456 (1975).CAS
Article
Google Scholar
24.Swayne, D. E., Getzy, D., Slemons, R. D., Bocetti, C. & Kramer, L. Coccidiosis as a cause of transmural lymphocytic enteritis and mortality in captive Nashville warblers (Vermivora ruficapilla). J. Wildl. Dis. 27, 615–620 (1991).CAS
Article
Google Scholar
25.Gosbell, M. C., Olaogun, O. M., Luk, K. & Noormohammadi, A. H. Investigation of systemic isosporosis outbreaks in an aviary of greenfinch (Carduelis chloris) and goldfinch (Carduelis carduelis) and a possible link with local wild sparrows (Passer domesticus). Aust. Vet. J. 98, 338–344 (2020).CAS
Article
Google Scholar
26.Baeta, R., Faivre, B., Motreuil, S., Gaillard, M. & Moreau, J. Carotenoid trade-off between parasitic resistance and sexual display: An experimental study in the blackbird (Turdus merula). Proc. R. Soc. B Biol. Sci. 275, 427–434 (2008).CAS
Article
Google Scholar
27.Amin, A., Bilic, I., Liebhart, D. & Hess, M. Trichomonads in birds—A review. Parasitology 141, 733–747 (2014).Article
Google Scholar
28.Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5 (2010).29.Chavatte, J.-M. et al. An outbreak of trichomonosis in European greenfinches Chloris chloris and European goldfinches Carduelis carduelis wintering in Northern France. Parasite 26, 21–21. https://doi.org/10.1051/parasite/2019022 (2019).Article
PubMed
PubMed Central
Google Scholar
30.Huyghebaert, G., Ducatelle, R. & Immerseel, F. V. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187, 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003 (2011).CAS
Article
PubMed
Google Scholar
31.Singer, R. S. & Hofacre, C. L. Potential impacts of antibiotic use in poultry production. Avian Dis. 50, 161–172, 112 (2006).Article
Google Scholar
32.Miles, R. D., Butcher, G. D., Henry, P. R. & Littell, R. C. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology1. Poult. Sci. 85, 476–485. https://doi.org/10.1093/ps/85.3.476 (2006).CAS
Article
PubMed
Google Scholar
33.Oh, S., Lillehoj, H. S., Lee, Y., Bravo, D. & Lillehoj, E. P. Dietary antibiotic growth promoters down-regulate intestinal inflammatory cytokine expression in chickens challenged with LPS or co-infected with Eimeria maxima and Clostridium perfringens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2019.00420 (2019).Article
PubMed
Google Scholar
34.Meitern, R., Lind, M. A., Karu, U. & Hõrak, P. Simple and noninvasive method for assessment of digestive efficiency: Validation of fecal steatocrit in greenfinch coccidiosis model. Ecol. Evol. 6, 8756–8763 (2016).Article
Google Scholar
35.Surai, P., Speake, B. & Sparks, N. Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. J. Poultry Sci. 38, 1–27 (2001).CAS
Article
Google Scholar
36.Madonia, C., Hutton, P., Giraudeau, M. & Sepp, T. Carotenoid coloration is related to fat digestion efficiency in a wild bird. Sci. Nat. 104, 96. https://doi.org/10.1007/s00114-017-1516-y (2017).CAS
Article
Google Scholar
37.Hõrak, P. & Männiste, M. Viability selection affects black but not yellow plumage colour in greenfinches. Oecologia 180, 23–32 (2016).ADS
Article
Google Scholar
38.Saks, L., McGraw, K. & Hõrak, P. How feather colour reflects its carotenoid content. Funct. Ecol. 17, 555–561 (2003).Article
Google Scholar
39.Sepp, T. et al. Coccidian infection causes oxidative damage in greenfinches. PLoS ONE 7 (2012).40.Männiste, M. & Hõrak, P. Emerging infectious disease selects for darker plumage coloration in greenfinches. Front. Ecol. Evol. 2, 4 (2014).Article
Google Scholar
41.Hackstein, J. H. et al. Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol. Res. 81, 207–216 (1995).CAS
PubMed
Google Scholar
42.Krautwald-Junghanns, M.-E., Zebisch, R. & Schmidt, V. Relevance and treatment of coccidiosis in domestic pigeons (Columba livia forma domestica) with particular emphasis on toltrazuril. Journal of Avian Medicine and Surgery, 1–5 (2009).43.Löfmark, S., Edlund, C. & Nord, C. E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. 50, S16–S23. https://doi.org/10.1086/647939 (2010).CAS
Article
PubMed
Google Scholar
44.Cramp, S. & Perrins, C. Handbook of the Birds of the Western Palearctic. Volume IV. Terns to Woodpeckers (ed. Cramp, S.), 353–363 (1994).45.Stradi, R., Celentano, G., Rossi, E., Rovati, G. & Pastore, M. Carotenoids in bird plumage—I. The carotenoid pattern in a series of Palearctic Carduelinae. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 110, 131–143 (1995).Article
Google Scholar
46.Stradi, R. The colour of flight: carotenoids in bird plumages. (Solei Gruppo Editoriale Informatico, 1998).47.McGraw, K., Hill, G., Stradi, R. & Parker, R. The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the American goldfinch. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 131, 261–269 (2002).CAS
Article
Google Scholar
48.Sepp, T., Karu, U., Sild, E., Männiste, M. & Hõrak, P. Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches. Exp. Parasitol. 127, 651–657. https://doi.org/10.1016/j.exppara.2010.12.004 (2011).CAS
Article
PubMed
Google Scholar
49.Hõrak, P. et al. Dexamethasone inhibits corticosterone deposition in feathers of greenfinches. Gen. Comp. Endocrinol. 191, 210–214 (2013).Article
Google Scholar
50.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Lin. Soc. 41, 315–352 (1990).Article
Google Scholar
51.Lessells, C. & Boag, P. T. Unrepeatable repeatabilities: A common mistake. Auk 104, 116–121 (1987).Article
Google Scholar
52.Hõrak, P., Saks, L., Karu, U. & Ots, I. Host resistance and parasite virulence in greenfinch coccidiosis. J. Evol. Biol. 19, 277–288 (2006).Article
Google Scholar
53.Jenni-Eiermann, S. & Jenni, L. Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the Garden Warbler. Auk 111, 888–899 (1994).Article
Google Scholar
54.Saint-Georges-Chaumet, Y. & Edeas, M. Microbiota–mitochondria inter-talk: Consequence for microbiota–host interaction. Pathogens Dis. https://doi.org/10.1093/femspd/ftv096 (2015).Article
Google Scholar
55.Franco-Obregón, A. & Gilbert, J. A. The microbiome-mitochondrion connection: Common ancestries, common mechanisms, common goals. mSystems https://doi.org/10.1128/mSystems.00018-17 (2017).Article
PubMed
PubMed Central
Google Scholar
56.Paterson, S. The immunology and ecology of co-infection. Mol. Ecol. 22, 2603–2604 (2013).CAS
Article
Google Scholar
57.Quillfeldt, P. et al. Prevalence and genotyping of Trichomonas infections in wild birds in central Germany. PLoS ONE 13, e0200798–e0200798. https://doi.org/10.1371/journal.pone.0200798 (2018).CAS
Article
PubMed
Google Scholar
58.Kinnula, H., Mappes, J. & Sundberg, L.-R. Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions. BMC Evol. Biol. 17, 77. https://doi.org/10.1186/s12862-017-0922-2 (2017).Article
PubMed
PubMed Central
Google Scholar
59.Gill, H. & Paperna, I. Proliferative visceral Isospora (atoxoplasmosis) with morbid impact on the Israeli sparrow Passer domesticus biblicus Hartert, 1904. Parasitol. Res. 103, 493. https://doi.org/10.1007/s00436-008-0986-4 (2008).Article
PubMed
Google Scholar
60.Shojadoost, B., Vince, A. R. & Prescott, J. F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 43, 74. https://doi.org/10.1186/1297-9716-43-74 (2012).CAS
Article
PubMed
Google Scholar
61.Williams, R. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 34, 159–180 (2005).CAS
Article
Google Scholar
62.Freeman, C. D., Klutman, N. E. & Lamp, K. C. Metronidazole. Drugs 54, 679–708. https://doi.org/10.2165/00003495-199754050-00003 (1997).CAS
Article
PubMed
Google Scholar
63.Hill, G. E. Energetic constraints on expression of carotenoid-based plumage coloration. J. Avian Biol. 31, 559–566 (2000).Article
Google Scholar
64.Hill, G. E. Cellular respiration: The nexus of stress, condition, and ornamentation. Integr. Comp. Biol. 54, 645–657 (2014).Article
Google Scholar
65.Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut 65, 1906. https://doi.org/10.1136/gutjnl-2016-312297 (2016).CAS
Article
PubMed
Google Scholar
66.Heiss, C. N. & Olofsson, L. E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun. 10, 163–171. https://doi.org/10.1159/000481519 (2018).CAS
Article
PubMed
Google Scholar
67.Lind, M.-A., Hõrak, P., Sepp, T. & Meitern, R. Corticosterone levels correlate in wild-grown and lab-grown feathers in greenfinches (Carduelis chloris) and predict behaviour and survival in captivity. Horm. Behav. 118, 104642 (2020).CAS
Article
Google Scholar
68.Sepp, T., Sild, E. & Horak, P. Hematological condition indexes in greenfinches: Effects of captivity and diurnal variation. Physiol. Biochem. Zool. 83, 276–282 (2010).CAS
Article
Google Scholar More
