1.Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
2.Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7, 277 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Meyerson, L. A. & Reaser, J. K. Biosecurity: moving toward a comprehensive approach. Bioscience 52, 593 (2002).Article
Google Scholar
5.Carvajal-Yepes, M. et al. A global surveillance system for crop diseases. Science 364, 1237–1239 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
6.Torres, A., David, M. & Bowman, Q. Risk management of international trade: emergency preparedness. Rev. Sci. Tech. Off. Int. Épizooties 21, 493–496 (2002).CAS
Article
Google Scholar
7.Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).PubMed
Article
PubMed Central
Google Scholar
8.Giovani, B. et al. Science diplomacy for plant health. Nat. Plants 6, 902–905 (2020).PubMed
Article
PubMed Central
Google Scholar
9.Reaser, J. K. et al. The early detection of and rapid response (EDRR) to invasive species: a conceptual framework and federal capacities assessment. Biol. Invasions 22, 1–19 (2020).Article
Google Scholar
10.Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).Article
Google Scholar
11.Crall, A. W. et al. Improving and integrating data on invasive species collected by citizen scientists. Biol. Invasions 12, 3419–3428 (2010).Article
Google Scholar
12.Maistrello, L. et al. Tracking the spread of sneaking aliens by integrating crowdsourcing and spatial modeling: the Italian invasion of halyomorpha halys. Bioscience https://doi.org/10.1093/biosci/biy112 (2018).Article
Google Scholar
13.Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F. Handbook of Citizen Science in Ecology and Conservation (University of California Press, Oakland, 2020).14.Devorshak, C. Plant pest risk analysis: concepts and applications. (CAB International, Wallingford, 2012).15.IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge and New York, 2014).16.Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 12, 2272–2281 (2006).ADS
Article
Google Scholar
17.Broennimann, O. & Guisan, A. Predicting current and future biological invasions: both native and invaded ranges matter. Biol. Lett. 4, 585–589 (2008).PubMed
PubMed Central
Article
Google Scholar
18.Godefroid, M., Meurisse, N., Groenen, F., Kerdelhué, C. & Rossi, J.-P. Current and future distribution of the invasive oak processionary moth. Biol. Invasions 22, 523–534 (2020).Article
Google Scholar
19.Crall, A. W. et al. Citizen science contributes to our knowledge of invasive plant species distributions. Biol. Invasions 17, 2415–2427 (2015).Article
Google Scholar
20.Petrovan, S. O., Vale, C. G. & Sillero, N. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution?. Biodivers. Conserv. 29, 1767–1781 (2020).Article
Google Scholar
21.Hannah, L. J. Climate Change Biology (Academic Press, 2015).
Google Scholar
22.Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).ADS
Article
Google Scholar
23.Porfirio, L. L. et al. Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 9, e113749 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
24.Hamilton, G. C., Ahn, J. J., Bu, W., Leskey, T. C., Nielsen, A. L., Park, Y.-L., Rabitsch, W. & Hoelmer, K.A. Halyomorpha halys (Stål). In Invasive stink bugs and related species (Pentatomoidea): biology, higher systematics, semiochemistry, and management (ed McPherson, J. E.) 243–292 (CRC Press, Taylor & Francis, Boca Raton, 2018).25.Bergmann, E. J., Venugopal, P. D., Martinson, H. M., Raupp, M. J. & Shrewsbury, P. M. Host plant use by the invasive Halyomorpha halys (Stål) on woody ornamental trees and shrubs. PLoS ONE 11, e0149975 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
26.Gapon, D. A. First records of the brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera, Pentatomidae) in Russia, Abkhazia, and Georgia. Entomol. Rev. 96, 1086–1088 (2016).Article
Google Scholar
27.Faúndez, E. I. & Rider, D. A. The brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera: Pentatomidae) in Chile. Arq. Entomolóxicos 17, 305–307 (2017).
Google Scholar
28.McPherson, J. E., ed. Invasive stink bugs and related species (Pentatomoidea): biology, higher systematics, semiochemistry, and management (CRC Press, Taylor & Francis, Boca Raton, 2018).29.Maistrello, L. et al. Halyomorpha halys in Italy: first results of field monitoring in fruit orchards. Integr. Prot. Fruit Crops IOBC-WPRS Bull. 112, 1–5 (2016).
Google Scholar
30.Bariselli, M., Bugiani, R. & Maistrello, L. Distribution and damage caused by Halyomorpha halys in Italy. EPPO Bull. 46, 332–334 (2016).Article
Google Scholar
31.Zhu, G., Bu, W., Gao, Y. & Liu, G. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLoS ONE 7, e31246 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
32.Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 90, 1033–1043 (2017).Article
Google Scholar
33.Kistner, E. J. Climate change impacts on the potential distribution and abundance of the brown marmorated stink bug (Hemiptera: Pentatomidae) with special reference to North America and Europe. Environ. Entomol. 46, 1212–1224 (2017).PubMed
Article
PubMed Central
Google Scholar
34.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2021).35.Vaclavik, T., Kanaskie, A., Hansen, E. M., Ohmann, J. L. & Meentemeyer, R. K. Predicting potential and actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection and eradication of disease outbreaks. For. Ecol. Manag. 260, 1026–1035 (2010).Article
Google Scholar
36.Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).Article
Google Scholar
37.Elith, J. et al. A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Divers. Distrib. 17, 43–57 (2011).Article
Google Scholar
38.Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).Article
Google Scholar
39.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article
Google Scholar
40.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article
Google Scholar
41.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
42.Wu, T. et al. The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS
Article
Google Scholar
43.Voldoire, A. et al. Evaluation of CMIP6 DECK experiments With CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).ADS
Article
Google Scholar
44.Séférian, R. et al. Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).ADS
Article
Google Scholar
45.Swart, N. C. et al. The Canadian earth system model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).ADS
CAS
Article
Google Scholar
46.Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).ADS
Article
Google Scholar
47.Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).ADS
CAS
Article
Google Scholar
48.Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).ADS
CAS
Article
Google Scholar
49.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models with Applications in R (Cambridge University Press, 2017).Book
Google Scholar
50.Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).Article
Google Scholar
52.Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography https://doi.org/10.1111/j.1600-0587.2013.00441.x (2014).Article
Google Scholar
53.VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).Article
Google Scholar
54.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article
Google Scholar
55.Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH
Google Scholar
56.Godefroid, M., Cruaud, A., Streito, J.-C., Rasplus, J.-Y. & Rossi, J.-P. Xylella fastidiosa: climate suitability of European continent. Sci. Rep. 9, 8844 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
57.Vollering, J., Halvorsen, R. & Mazzoni, S. The MIAmaxent R package: variable transformation and model selection for species distribution models. Ecol. Evol. 9, 12051–12068 (2019).PubMed
PubMed Central
Article
Google Scholar
58.Mazzoni, S., Halvorsen, R. & Bakkestuen, V. MIAT: modular R-wrappers for flexible implementation of MaxEnt distribution modelling. Ecol. Inform. 30, 215–221 (2015).Article
Google Scholar
59.Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species: the art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article
Google Scholar
60.Halvorsen, R., Mazzoni, S., Bryn, A. & Bakkestuen, V. Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. Ecography 38, 172–183 (2015).Article
Google Scholar
61.Halvorsen, R. A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling. Sommerfeltia 36, 1–132 (2013).Article
Google Scholar
62.Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article
Google Scholar
63.Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article
Google Scholar
64.Jiménez, L. & Soberón, J. Leaving the area under the receiving operating characteristic curve behind: an evaluation method for species distribution modeling applications based on presence-only data. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13479 (2020).Article
Google Scholar
65.Chartois, M., Streito, J.-C., Pierre, E., Armand, J.-M., Gaudin, J., Rossi, J.-P. A crowdsourcing approach to track the expansion of the brown marmorated stinkbug Halyomorpha halys (Stål, 1855) in France. Biodivers. Data J. 9, e66335. https://doi.org/10.3897/BDJ.9.e66335 (2021)66.Maurel, J.-P., Blaye G., Valladares L., Roinel, E. & Cochard, P.-O. Halyomorpha halys (Stål, 1855), la punaise diabolique en France, à Toulouse (Heteroptera ; Pentatomidae). Carnets Nat. 3, 21–25 (2016).67.Cherpitel, T. & Casset, L. Halyomorpha halys (Stål, 1855), la Punaise diabolique, atteint la façade atlantique (Heteroptera Pentatomidae). L’Entomologiste 75, 59–60 (2018).
Google Scholar
68.Pagola-Carte, S. & Zabalegui, I. D. hemípteros asiáticos nuevos para Gipuzkoa, norte de la Península Ibérica (Hemiptera: Pentatomidae, Cicadellidae). Heteropterus Rev. Entomol. 19, 355–360 (2019).
Google Scholar
69.Streito, J. C., Rossi, J.-P., Haye, T., Hoelmer, K. & Tassus, X. La punaise diabolique à la conquête de la France. Phytoma 677, 26–30 (2014).70.Maistrello, L., Dioli, P., Bariselli, M., Mazzoli, G. L. & Giacalone-Forini, I. Citizen science and early detection of invasive species: phenology of first occurrences of Halyomorpha halys in Southern Europe. Biol. Invasions 18, 3109–3116 (2016).Article
Google Scholar
71.Stoeckli, S., Felber, R. & Haye, T. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. Int. J. Biometeorol. https://doi.org/10.1007/s00484-020-01992-z (2020).Article
PubMed
PubMed Central
Google Scholar
72.Leskey, T. C., Lee, D.-H., Glenn, D. M. & Morrison, W. R. Behavioral responses of the invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) to light-based stimuli in the laboratory and field. J. Insect Behav. 28, 674–692 (2015).Article
Google Scholar
73.Inkley, D. B. Characteristics of home invasion by the brown marmorated stink bug (Hemiptera: Pentatomidae). J. Entomol. Sci. 47, 125–130 (2012).Article
Google Scholar
74.Cambridge, J., Payenski, A. & Hamilton, G. C. The distribution of overwintering brown marmorated stink bugs (Hemiptera: Pentatomidae) in college dormitories. Fla. Entomol. 98, 1257–1259 (2015).Article
Google Scholar
75.Hancock, T. J., Lee, D.-H., Bergh, J. C., Morrison, W. R. & Leskey, T. C. Presence of the invasive brown marmorated stink bug Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) on home exteriors during the autumn dispersal period: results generated by citizen scientists: presence of H. halys during the autumn dispersal. Agric. For. Entomol. 21, 99–108 (2019).Article
Google Scholar
76.Streito, J.-C., Chartois, M., Pierre, É. & Rossi, J.-P. Beware the brown marmorated stink bug!. IVES Tech Rev. Vine Wine https://doi.org/10.20870/IVES-TR.2020.3304 (2020).Article
Google Scholar
77.Haye, T. et al. Range expansion of the invasive brown marmorated stinkbug, Halyomorpha halys: an increasing threat to field, fruit and vegetable crops worldwide. J. Pest Sci. 88, 665–673 (2015).Article
Google Scholar
78.Zhu, G., Gariepy, T. D., Haye, T. & Bu, W. Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. J. Pest Sci. 90, 1045–1057 (2017).Article
Google Scholar
79.Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).PubMed
PubMed Central
Article
Google Scholar
80.Leskey, T. C. & Nielsen, A. L. Impact of the invasive brown marmorated stink bug in North America and Europe: history, biology, ecology, and management. Annu. Rev. Entomol. 63, 599–618 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
81.Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
82.Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).PubMed
Article
PubMed Central
Google Scholar
83.Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).Article
Google Scholar
84.Urvois, T., Auger-Rozenberg, M. A., Roques, A., Rossi, J. P. & Kerdelhue, C. Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Sci. Rep. 11, 1339 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
85.Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article
Google Scholar More