More stories

  • in

    Diversity increases yield but reduces harvest index in crop mixtures

    1.Weiner, J. Plant Reproductive Ecology: Patterns and Strategies (Oxford Univ. Press, 1988).2.Ashman, T. L. & Schoen, D. J. How long should flowers live? Nature 371, 788–791 (1994).CAS 
    Article 

    Google Scholar 
    3.Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).Article 

    Google Scholar 
    4.Unkovich, M., Baldock, J. & Forbes, M. Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv. Agron. 105, 173–219 (2010).Article 

    Google Scholar 
    5.Tamagno, S., Sadras, V. O., Ortez, O. A. & Ciampitti, I. A. Allometric analysis reveals enhanced reproductive allocation in historical set of soybean varieties. Field Crop Res. 248, 107717 (2020).Article 

    Google Scholar 
    6.Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Li, C. et al. Syndromes of production in intercropping impact yield gains. Nat. Plants 6, 653–660 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.McConnaughay, K. D. M. & Coleman, J. S. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80, 2581–2593 (1999).Article 

    Google Scholar 
    12.Bonser, S. P. & Aarssen, L. W. Allometry and plasticity of meristem allocation throughout development in Arabidopsis thaliana. J. Ecol. 89, 72–79 (2001).Article 

    Google Scholar 
    13.Reekie, E. G. & Bazzaz, F. A. Reproductive Allocation in Plants (Elsevier Academic Press, 2005).14.Wang, T. H., Zhou, D. W., Wang, P. & Zhang, H. X. Size-dependent reproductive effort in Amaranthus retroflexus: the influence of planting density and sowing date. Can. J. Bot. 84, 485–492 (2006).Article 

    Google Scholar 
    15.Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Li, C. et al. Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. Eur. J. Agron. 113, 125987 (2020).CAS 
    Article 

    Google Scholar 
    17.Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Li, L., Tilman, D., Lambers, H. & Zhang, F. S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203, 63–69 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol. 206, 107–117 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Martin-Guay, M. O., Paquette, A., Dupras, J. & Rivest, D. The new green revolution: sustainable intensification of agriculture by intercropping. Sci. Total Environ. 615, 767–772 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Bazzaz, F. A., Chiariello, N. R., Coley, P. D. & Pitelka, L. F. Allocating resources to reproduction and defense. Bioscience 37, 58–67 (1987).Article 

    Google Scholar 
    23.Hartnett, D. C. Size-dependent allocation to sexual and vegetative reproduction in 4 clonal composites. Oecologia 84, 254–259 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Vega, C. R. C., Sadras, V. O., Andrade, F. H. & Uhart, S. A. Reproductive allometry in soybean, maize and sunflower. Ann. Bot. 85, 461–468 (2000).Article 

    Google Scholar 
    25.Gifford, R. M., Thorne, J. H., Hitz, W. D. & Giaquinta, R. T. Crop productivity and photoassimilate partitioning. Science 225, 801–808 (1984).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Andrade, F. H. et al. Kernel number determination in maize. Crop Sci. 39, 453–459 (1999).Article 

    Google Scholar 
    27.Milla, R., Osborne, C. P., Turcotte, M. M. & Violle, C. Plant domestication through an ecological lens. Trends Ecol. Evol. 30, 463–469 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Niklas, K. J. Plant Allometry: The Scaling of Form and Process (Univ. of Chicago Press, 1994).29.Echarte, L. & Andrade, F. H. Harvest index stability of Argentinean maize hybrids released between 1965 and 1993. Field Crop Res. 82, 1–12 (2003).Article 

    Google Scholar 
    30.Weiner, J., Campbell, L. G., Pino, J. & Echarte, L. The allometry of reproduction within plant populations. J. Ecol. 97, 1220–1233 (2009).Article 

    Google Scholar 
    31.Sugiyama, S. & Bazzaz, F. A. Size dependence of reproductive allocation: the influence of resource availability, competition and genetic identity. Funct. Ecol. 12, 280–288 (1998).Article 

    Google Scholar 
    32.Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. 6, 207–215 (2004).Article 

    Google Scholar 
    33.Weiner, J. et al. Is reproductive allocation in Senecio vulgaris plastic? Botany 87, 475–481 (2009).Article 

    Google Scholar 
    34.Schmid, B. & Weiner, J. Plastic relationships between reproductive and vegetative mass in Solidago altissima. Evolution 47, 61–74 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Schmid, B. & Pfisterer, A. B. Species vs community perspectives in biodiversity experiments. Oikos 100, 620–621 (2003).Article 

    Google Scholar 
    36.Lipowsky, A. et al. Plasticity of functional traits of forb species in response to biodiversity. Perspect. Plant Ecol. Evol. Syst. 17, 66–77 (2015).Article 

    Google Scholar 
    37.Abakumova, M., Zobel, K., Lepik, A. & Semchenko, M. Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytol. 211, 455–463 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Zhu, J. Q., van der Werf, W., Anten, N. P. R., Vos, J. & Evers, J. B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol. 207, 1213–1222 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Niklaus, P. A., Baruffol, M., He, J. S., Ma, K. P. & Schmid, B. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity? Ecology 98, 1104–1116 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Eziz, A. et al. Drought effect on plant biomass allocation: a meta-analysis. Ecol. Evol. 7, 11002–11010.41.Joshi, J. et al. Local adaptation enhances performance of common plant species. Ecol. Lett. 4, 536–544 (2001).Article 

    Google Scholar 
    42.Li, J. et al. Variations in maize dry matter, harvest index, and grain yield with plant density. Agron. J. 107, 829–834 (2015).Article 

    Google Scholar 
    43.Gou, F., van Ittersum, M. K., Wang, G. Y., van der Putten, P. E. L. & van der Werf, W. Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Eur. J. Agron. 76, 17–27.44.Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778.45.Roscher, C. & Schumacher, J. Positive diversity effects on productivity in mixtures of arable weed species as related to density–size relationships. J. Plant Ecol. 9, 792–804 (2016).Article 

    Google Scholar 
    46.Roscher, C. et al. Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecol. Lett. 8, 419–429.47.Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110.49.Rosenthal, R. & Rosnow, R. L. Contrast Analysis: Focused Comparisons in the Analysis of Variance (Cambridge Univ. Press, 2010).50.Díaz-Sierra, R., Verwijmeren, M., Rietkerk, M., de Dios, V. R. & Baudena, M. A new family of standardized and symmetric indices for measuring the intensity and importance of plant neighbour effects. Methods Ecol. Evol. 8, 580–591 (2017).Article 

    Google Scholar 
    51.Poorter, H. & Garnier, E. in Handbook of Functional Plant Ecology (eds Pugnaire, F. I. & Valladares, F.) 81–120 (Marcel Dekker, 1999).52.Grime, J. P. Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).Article 

    Google Scholar 
    53.Wilson, P. J., Thompson, K. & Hodgson, J. G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 143, 155–162 (1999).Article 

    Google Scholar 
    54.Poorter, H., Niinemets, U., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lavorel, S. & Grigulis, K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J. Ecol. 100, 128–140 (2012).Article 

    Google Scholar 
    56.Conti, G. & Díaz, S. Plant functional diversity and carbon storage – an empirical test in semi‐arid forest ecosystems. J. Ecol. 101, 18–28 (2013).CAS 
    Article 

    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.r-project.org/58.Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).Article 

    Google Scholar 
    59.Lüdecke, D. sjPlot: data visualization for statistics in social science. Zenodo https://doi.org/10.5281/zenodo.1308157 (2018). More

  • in

    Red light, green light: both signal ‘go’ to deadly algae

    Green and red lighting might be good for migratory birds and sea turtles, but could have undesirable effects if marine algae are present. Credit: Getty

    Ecology
    24 June 2021
    Red light, green light: both signal ‘go’ to deadly algae

    Artificial lighting thought to be more wildlife-friendly than white light could encourage algal blooms.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Green or red lights in seaside areas have been proposed as alternatives to white light to protect wildlife. But new experiments show that exposure to red or green light at night boosts the growth of some ocean algae — including species known to rob waters of oxygen.Little is known about the impact of artificial light on marine life, even though many brightly lit cities are coastal. To address that knowledge gap, Sofie Spatharis at the University of Glasgow, UK, and her colleagues exposed a mix of microscopic marine algae collected from Scottish waters to standard white light. They also exposed the mixture to red and green lights, which have been proposed to minimize impacts on sea turtles and migratory seabirds, respectively.The team found that all light colours enhanced growth of the microalgae mix. Red light had the most pronounced effect, doubling the number of cells produced. The proportions of species in the mixture also shifted: both red and green light especially favoured growth of harmful species in the Skeletonema genus, which form dense blooms that are deadly to fish.

    Proc. R. Soc. B (2021)

    Ecology More

  • in

    Random population fluctuations bias the Living Planet Index

    1.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    2.Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 

    Google Scholar 
    3.Updated Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020); https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdf4.Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    Article 

    Google Scholar 
    5.Loh, J. et al. The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 360, 289–295 (2005).Article 

    Google Scholar 
    6.Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).Article 

    Google Scholar 
    7.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    8.Almond, R.E.A., Grooten M. & Petersen, T. (eds) Living Planet Report 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).9.Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).10.Global Biodiversity Outlook 5 (Convention on Biological Diversity, 2020).11.Jaspers, A. Can a single index track the state of global biodiversity? Biol. Conserv. 246, 108524 (2020).Article 

    Google Scholar 
    12.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).CAS 
    Article 

    Google Scholar 
    13.Buckland, S. T., Studeny, A. C., Magurran, A. E., Illian, J. & Newson, S. E. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2, 100 (2011).14.de Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76.15.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).CAS 
    Article 

    Google Scholar 
    16.Living Planet Report 2020. Technical Supplement: Living Planet Index (WWF, 2020); https://f.hubspotusercontent20.net/hubfs/4783129/LPR/PDFs/ENGLISH%20-%20TECH%20SUPPLIMENT.pdf17.Vellend, M. Conceptual synthesis in community ecology. Quart. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    18.Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).Article 

    Google Scholar 
    19.Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).Article 

    Google Scholar 
    20.Gravel, D., Guichard, F. & Hochberg, M. E. Species coexistence in a variable world. Ecol. Lett. 14, 828–839 (2011).Article 

    Google Scholar 
    21.Kotze, D. J., O’Hara, R. B. & Lehvävirta, S. Dealing with varying detection probability, unequal sample sizes and clumped distributions in count data. PLoS ONE 7, e40923 (2012).CAS 
    Article 

    Google Scholar 
    22.Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: a quantitative review. PLoS ONE 9, e111436 (2014).Article 

    Google Scholar 
    23.Di Fonzo, M., Collen, B. & Mace, G. M. A new method for identifying rapid decline dynamics in wild vertebrate populations. Ecol. Evol. 3, 2378–2391 (2013).Article 

    Google Scholar 
    24.Maxwell, S. L. et al. Being smart about SMART environmental targets. Science 347, 1075–1076 (2015).CAS 
    Article 

    Google Scholar 
    25.Butchart, S. H. M., Di Marco, M. & Watson, J. E. M. Formulating SMART commitments on biodiversity: lessons from the Aichi Targets. Conserv Lett. 9, 457–468 (2016).Article 

    Google Scholar 
    26.Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).Article 

    Google Scholar 
    27.Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).Article 

    Google Scholar 
    28.Fournier, A. M. V., White, E. R. & Heard, S. B. Site‐selection bias and apparent population declines in long‐term studies. Conserv. Biol. 33, 1370–1379 (2019).Article 

    Google Scholar 
    29.Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    Article 

    Google Scholar 
    30.Papworth, S. K., Rist, J., Coad, L. & Milner-Gulland, E. J. Evidence for shifting baseline syndrome in conservation. Conserv Lett. 2, 93–100 (2009).
    Google Scholar 
    31.Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).CAS 
    Article 

    Google Scholar 
    32.Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).Article 

    Google Scholar 
    33.Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social-ecological systems. Conserv. Biol. 35, 510–521 (2021).Article 

    Google Scholar 
    34.van Strien, A. J. et al. Modest recovery of biodiversity in a western European country: The Living Planet Index for the Netherlands. Biol. Conserv. 200, 44–50 (2016).Article 

    Google Scholar 
    35.Wauchope, H. S., Amano, T., Sutherland, W. J. & Johnston, A. When can we trust population trends? A method for quantifying the effects of sampling interval and duration. Methods Ecol. Evol. 10, 2067–2078 (2019).Article 

    Google Scholar 
    36.Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.11.001 (2020).37.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).38.Buschke, F. T. Biodiversity trajectories and the time needed to achieve no net loss through averted-loss biodiversity offsets. Ecol. Model 352, 54–57 (2017).Article 

    Google Scholar  More

  • in

    Coral mucus rapidly induces chemokinesis and genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral pathogen

    1.De’Ath G, Fabricius KE, Sweatman H, Puotinen M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U.S.A. 2012;109:17995–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Randall CJ, van Woesik R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat Clim Chang. 2015;5:375–9.Article 

    Google Scholar 
    3.Maynard J, van Hooidonk R, Eakin CM, Puotinen M, Garren M, Williams G, et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat Clim Chang. 2015;5:688–95.Article 

    Google Scholar 
    4.Cziesielski MJ, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies. Ecol Evol. 2019;9:10055–66.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Bourne D, Iida Y, Uthicke S, Smith-Keune C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2008;2:350–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.van de Water JAJM, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, et al. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol. 2018;27:1065–80.PubMed 
    Article 
    CAS 

    Google Scholar 
    7.Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG. Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS ONE. 2009;4:1–14.8.Ben-Haim Y, Zicherman-Keren M, Rosenberg E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol. 2003;69:4236–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Garren M, Son K, Raina J-B, Rusconi R, Menolascina F, Shapiro OH, et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014;8:999–1007.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Garren M, Son K, Tout J, Seymour JR, Stocker R. Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J. 2016;10:1363–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Barbara GM, Mitchell JG. Marine bacterial organisation around point-like sources of amino acids. FEMS Microbiol Ecol. 2003;43:99–109.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Seymour JR, Marcos, Stocker R. Resource patch formation and exploitation throughout the marine microbial food web. Am Nat. 2009;173:E15–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Son K, Menolascina F, Stocker R. Speed-dependent chemotactic precision in marine bacteria. Proc Natl Acad Sci U.S.A. 2016;113:8624–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, et al. Role of Flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol. 2009;75:5704–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Ushijima B, Häse CC. Influence of chemotaxis and swimming patterns on the virulence of the coral pathogen Vibrio coralliilyticus. J Bacteriol. 2018;200:1–16.Article 

    Google Scholar 
    16.Crossland CJ, Barnes DJ, Borowitzka MA. Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol. 1980;60:81–90.17.Davies PS. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs. 1984;2:181–6.18.Rix L, de Goeij JM, Mueller CE, Struck U, Middelburg JJ, van Duyl FC, et al. Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Sci Rep. 2016;6:1–11.Article 
    CAS 

    Google Scholar 
    19.Naumann MS, Haas A, Struck U, Mayr C, El-Zibdah M, Wild C. Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs. 2010;29:649–59.Article 

    Google Scholar 
    20.Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jørgensen BB. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature. 2004;428:66–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Bythell JC, Wild C. Biology and ecology of coral mucus release. J Exp Mar Bio Ecol. 2011;408:88–93.Article 

    Google Scholar 
    22.Bakshani CR, Morales-Garcia AL, Althaus M, Wilcox MD, Pearson JP, Bythell JC, et al. Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. NPJ Biofilms Microbiomes. 2018;14:1–12.
    Google Scholar 
    23.Gibbin E, Gavish A, Krueger T, Kramarsky-Winter E, Shapiro O, Guiet R, et al. Vibrio coralliilyticus infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. ISME J. 2019;13:989–1003.24.Gavish AR, Shapiro OH, Kramarsky-Winter E, Vardi A. Microscale tracking of coral-vibrio interactions. ISME Communications. 2021;1:1–18.25.Shapiro OH, Fernandez VI, Garren M, Guasto JS, Debaillon-Vesque FP, Kramarsky-Winter E, et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc Natl Acad Sci U.S.A. 2014;111:13391–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Seymour JR, Ahmed T, Stocker R. A microfluidic chemotaxis assay to study microbial behavior in diffusing nutrient patches. Limnol Oceanogr Methods. 2008;6:477–88.CAS 
    Article 

    Google Scholar 
    27.Penn K, Wang J, Fernando SC, Thompson JR. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME J. 2014;8:1866–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 
    CAS 

    Google Scholar 
    29.Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:1–12.30.Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U.S.A. 2005;102:15545–50.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Schneider WR, Doetsch RN. Effect of viscosity on bacterial motility. J Bacteriol. 1974;117:696–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG, Morozov AN, Poon WCK. Flagellated bacterial motility in polymer solutions. Proc Natl Acad Sci U.S.A. 2014;111:17771–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH, et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 2012;6:835–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Kojima S, Yamamoto K, Kawagishi I, Homma M. The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J Bacteriol. 1999;181:1927–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Sowa Y, Hotta H, Homma M, Ishijima A. Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol. 2003;327:1043–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Milo R, Phillips R. Cell biology by the numbers. 1st ed. New York, NY: Garland Science; 2016.38.Crossland CJ. In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs. 1987;6:35–42.CAS 
    Article 

    Google Scholar 
    39.Wild C, Woyt H, Huettel M. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser. 2005;287:87–98.40.Ducklow HW, Mitchell R. Composition of mucus released by coral reef coelenterates. Limnol Oceanogr. 1979;24:706–14.CAS 
    Article 

    Google Scholar 
    41.Meikle P, Richards GN, Yellowlees D. Structural determination of the oligosaccharide side chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. J Biol Chem. 1987;262:16941–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Coddeville B, Maes E, Ferrier-Pagès C, Guerardel Y. Glycan profiling of gel forming mucus layer from the scleractinian symbiotic coral Oculina arbuscula. Biomacromolecules. 2011;12:2064–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Hasegawa H, Häse CC. TetR-type transcriptional regulator VtpR functions as a global regulator in Vibrio tubiashii. Appl Environ Microbiol. 2009;75:7602–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Ball AS, Chaparian RR, van Kessel JC. Quorum sensing gene regulation by LuxR/HapR master regulators in Vibrios. J Bacteriol. 2017;199:1–13.45.Rutherford ST, Van Kessel JC, Shao Y, Bassler BL. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev. 2011;25:397–408.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Hammer BK, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol. 2003;50:101–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Waters CM, Lu W, Rabinowitz JD, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic Di-GMP levels and repression of vpsT. J Bacteriol. 2008;190:2527–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Burger AH. Quorum Sensing in the Hawai’ian Coral Pathogen Vibrio coralliilyticus strain OCN008. University of Hawaii at Manoa; 2017.49.Yildiz FH, Schoolnik GK. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U.S.A. 1999;96:4028–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Fong JCN, Syed KA, Klose KE, Yildiz FH. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology. 2010;156:2757–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fong JCN, Karplus K, Schoolnik GK, Yildiz FH. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol. 2006;188:1049–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Fong JCN, Yildiz FH. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol. 2007;189:2319–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.DiRita VJ, Mekalanos JJ. Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell. 1991;64:29–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Almagro-Moreno S, Root MZ, Taylor RK. Role of ToxS in the proteolytic cascade of virulence regulator ToxR in Vibrio cholerae. Mol Microbiol. 2015;98:963–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Lee SE, Ryu PY, Kim SY, Kim YR, Koh JT, Kim OJ, et al. Production of Vibrio vulnificus hemolysin in vivo and its pathogenic significance. Biochem Biophys Res Commun. 2004;324:86–91.56.Senoh M, Okita Y, Shinoda S, Miyoshi S. The crucial amino acid residue related to inactivation of Vibrio vulnificus hemolysin. Micro Pathog. 2008;44:78–83.CAS 
    Article 

    Google Scholar 
    57.Bröms JE, Ishikawa T, Wai SN, Sjöstedt A. A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 2013;13:1–12.Article 
    CAS 

    Google Scholar 
    58.Vizcaino MI, Johnson WR, Kimes NE, Williams K, Torralba M, Nelson KE, et al. Antimicrobial resistance of the coral pathogen Vibrio coralliilyticus and Caribbean sister phylotypes isolated from a diseased octocoral. Micro Ecol. 2010;59:646–57.Article 

    Google Scholar 
    59.Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser. 2006;322:1–14.CAS 
    Article 

    Google Scholar 
    60.Nissimov J, Rosenberg E, Munn CB. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol Lett. 2009;292:210–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Shnit-Orland M, Kushmaro A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol. 2009;67:371–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Rypien KL, Ward JR, Azam F. Antagonistic interactions among coral-associated bacteria. Environ Microbiol. 2010;12:28–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Alagely A, Krediet CJ, Ritchie KB, Teplitski M. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J. 2011;5:1609–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci U.S.A. 2008;105:4209–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Polz MF, Hunt DE, Preheim SP, Weinreich DM. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos Trans R Soc B Biol Sci. 2006;361:2009–21.Article 

    Google Scholar 
    66.Taylor JR, Stocker R. Trade-offs of chemotactic foraging in turbulent water. Science. 2012;338:675–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Krediet CJ, Ritchie KB, Cohen M, Lipp EK, Patterson Sutherland K, Teplitski M. Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria. Appl Environ Microbiol. 2009;75:3851–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Krediet CJ, Ritchie KB, Alagely A, Teplitski M. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 2013;7:980–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Packer HL, Armitage JP. The chemokinetic and chemotactic behavior of Rhodobacter sphaeroides: two independent responses. J Bacteriol. 1994;176:206–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Deepika D, Karmakar R, Tirumkudulu MS, Venkatesh KV. Variation in swimming speed of Escherichia coli in response to attractant. Arch Microbiol. 2015;197:211–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Zhulin IB, Armitage JP. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J Bacteriol. 1993;175:952–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Ramos HC, Rumbo M, Sirard J-C. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 2004;12:509–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Reed KC, Muller EM, van Woesik R. Coral immunology and resistance to disease. Dis Aquat Organ. 2010;90:85–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Ushijima B, Videau P, Poscablo D, Stengel JW, Beurmann S, Burger AH, et al. Mutation of the toxR or mshA genes from Vibrio coralliilyticus strain OCN014 reduces infection of the coral Acropora cytherea. Environ Microbiol. 2016;18:4055–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Ushijima B, Richards GP, Watson MA, Schubiger CB, Häse CC. Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus. PLoS ONE. 2018;13:e0199475.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Peterson KM, Mekalanos JJ. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun. 1988;56:2822–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Provenzano D, Klose KE. Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci U.S.A. 2000;97:10220–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Waters CM, Bassler BL. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev. 2006;20:2754–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17:371–82.80.Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem. 2011;286:16555–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Korotkov KV, Sandkvist M, Hol WGJ. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol. 2012;10:336–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Stathopoulos C, Hendrixson DR, Thanassi DG, Hultgren SJ, St. Geme III JW, Curtiss III R. Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story. Microbes Infect. 2000;2:1061–72.83.Hood RD, Singh P, Hsu FS, Güvener T, Carl MA, Trinidad RRS, et al. A Type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010;7:25–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Zheng J, Ho B, Mekalanos JJ. Genetic analysis of anti-amoebae and anti-bacterial activities of the Type VI secretion system in Vibrio cholerae. PLoS ONE. 2011;6:e23876.85.MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U.S.A. 2010;107:19520–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Lee SH, Hava DL, Waldor MK, Camilli A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell. 1999;99:625–34.87.Pennetzdorfer N, Lembke M, Pressler K, Matson JS, Reidl J, Schild S. Regulated proteolysis in Vibrio cholerae allowing rapid adaptation to stress conditions. Front Cell Infect Microbiol. 2019;9:1–9.Article 
    CAS 

    Google Scholar 
    88.Liu R, Chen H, Zhang R, Zhou Z, Hou Z, Gao D, et al. Comparative transcriptome analysis of Vibrio splendidus JZ6 reveals the mechanism of its pathogenicity at low temperatures. Appl Environ Microbiol. 2016;82:2050–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 2018;359:80–3.90.Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C, et al. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol. 2010;12:2007–19.91.Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun. 2016;7:1–12.Article 
    CAS 

    Google Scholar  More

  • in

    The global distribution and environmental drivers of aboveground versus belowground plant biomass

    1.Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Drake, J. B. et al. Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob. Ecol. Biogeogr. 12, 147–159 (2003).Article 

    Google Scholar 
    4.Lefsky, M. A. et al. Lidar remote sensing of above-ground biomass in three biomes. Glob. Ecol. Biogeogr. 11, 393–399 (2002).Article 

    Google Scholar 
    5.Duncanson, L. et al. The importance of consistent global forest aboveground biomass product validation. Surv. Geophys. 40, 979–999 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Ottaviani, G. et al. The neglected belowground dimension of plant dominance. Trends Ecol. Evol. 35, 763–766 (2020).PubMed 
    Article 

    Google Scholar 
    8.Jackson, L. E., Burger, M. & Cavagnaro, T. R. Roots, nitrogen transformations, and ecosystem services. Annu. Rev. Plant Biol. 59, 341–363 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).Article 

    Google Scholar 
    10.Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. Lond. B 274, 2753–2759 (2007).CAS 

    Google Scholar 
    11.Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).PubMed 
    Article 

    Google Scholar 
    12.Ribeiro, S. C. et al. Above- and belowground biomass in a Brazilian Cerrado. For. Ecol. Manage. 262, 491–499 (2011).Article 

    Google Scholar 
    13.Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Chang. Biol. 12, 84–96 (2006).Article 

    Google Scholar 
    14.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Ruesch, A. S. & Gibbs, H. H. K. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2008).16.Chen, J. L. & Reynolds, J. F. A coordination model of whole-plant carbon allocation in relation to water stress. Ann. Bot. 80, 45–55 (1997).CAS 
    Article 

    Google Scholar 
    17.Franklin, O. et al. Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648–666 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Bloom, A. J., Chapin, F. S. & Mooney, H. A. Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst. 16, 363–392 (1985).Article 

    Google Scholar 
    19.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Reich, P. in Plant Roots: The Hidden Half (eds. Waisel, Y. et al.) 205–220 (Marcel Dekker, 2006).21.Ledo, A. et al. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol. 217, 8–11 (2018).PubMed 
    Article 

    Google Scholar 
    22.Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: a global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article 

    Google Scholar 
    23.Reich, P. B. et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl Acad. Sci. USA 111, 13721–13726 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).Article 

    Google Scholar 
    25.Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).Article 

    Google Scholar 
    26.Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Malhi, Y., Doughty, C. & Galbraith, D. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R. Soc. Lond. B 366, 3225–3245 (2011).CAS 
    Article 

    Google Scholar 
    28.Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).Article 

    Google Scholar 
    29.Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia 111, 1–11 (1997).PubMed 
    Article 

    Google Scholar 
    30.McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).Article 

    Google Scholar 
    31.Barton, C. V. M. & Montagu, K. D. Effect of spacing and water availability on root:shoot ratio in Eucalyptus camaldulensis. For. Ecol. Manage. 221, 52–62 (2006).Article 

    Google Scholar 
    32.Enquist, B. J. & Niklas, K. J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 295, 1517–1520 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Goward, S. N., Tucker, C. J. & Dye, D. G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64, 3–14 (1985).Article 

    Google Scholar 
    34.Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Kaiser, C., Franklin, O., Dieckmann, U. & Richter, A. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol. Lett. 17, 680–690 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci. Rep. 6, 19601 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 

    Google Scholar 
    38.De Deyn, G. B., Cornelissen, J. H. C. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Tjoelker, M. G., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167, 493–508 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Personeni, E. & Loiseau, P. How does the nature of living and dead roots affect the residence time of carbon in the root litter continuum? Plant Soil 267, 129–141 (2004).CAS 
    Article 

    Google Scholar 
    41.Tuanmu, M. N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article 

    Google Scholar 
    42.Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).Article 

    Google Scholar 
    43.Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl Acad. Sci. USA 94, 7362–7366 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Genet, H., Bréda, N. & Dufrêne, E. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol. 30, 177–192 (2009).PubMed 
    Article 

    Google Scholar 
    45.De Castro, E. A. & Kauffman, J. B. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263–283 (1998).Article 

    Google Scholar 
    46.Ding, B. & Sun, J. Study on biomass of Korean pine plantation in east mountain areas of northeast China. Bull. Bot. Res. 9, 149–157 (1989).
    Google Scholar 
    47.Ding, B., Liu, S. & Cai, T. Studies on biological productivity of artificial forests of Dahurian larches. Chin. J. Plant Ecol. 14, 226–236 (1990).
    Google Scholar 
    48.Ding, B. & Sun, J. Accumulation and distribution of productivity and nutrient element in natural Manchurian ash. J. Northeast For. Univ. 4, 1–9 (1989).
    Google Scholar 
    49.Dossa, E. L., Fernandes, E. C. M., Reid, W. S. & Ezui, K. Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor. Syst. 72, 103–115 (2008).Article 

    Google Scholar 
    50.Epron, D. et al. Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? Tree Physiol. 32, 667–679 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Fonseca, W., Rey Benayas, J. M. & Alice, F. E. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For. Ecol. Manage. 262, 1400–1408 (2011).Article 

    Google Scholar 
    52.Goodman, R. C. et al. Amazon palm biomass and allometry. For. Ecol. Manage. 310, 994–1004 (2013).Article 

    Google Scholar 
    53.Greenland, D. J. & Kowal, J. M. L. Nutrient content of the moist tropical forest of Ghana. Plant Soil 12, 154–173 (1960).CAS 
    Article 

    Google Scholar 
    54.He, Y. et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manage. 295, 193–198 (2013).Article 

    Google Scholar 
    55.Aiba, M. & Nakashizuka, T. Variation in juvenile survival and related physiological traits among dipterocarp species co‐existing in a Bornean forest. J. Veg. Sci. 18, 379–388 (2007).Article 

    Google Scholar 
    56.Jha, K. K. Carbon storage and sequestration rate assessment and allometric model development in young teak plantations of tropical moist deciduous forest, India. J. For. Res. 26, 589–604 (2015).CAS 
    Article 

    Google Scholar 
    57.Kalita, R. M., Das, A. K. & Nath, A. J. Allometric equations for estimating above- and belowground biomass in Tea (Camellia sinensis (L.) O. Kuntze) agroforestry system of Barak Valley, Assam, northeast India. Biomass Bioenergy 83, 42–49 (2015).Article 

    Google Scholar 
    58.Kenzo, T. et al. Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J. Trop. Ecol. 25, 371–386 (2009).Article 

    Google Scholar 
    59.Kenzo, T. et al. Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. J. For. Res. 14, 365–372 (2009).CAS 
    Article 

    Google Scholar 
    60.Kraenzel, M., Castillo, A., Moore, T. & Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. For. Ecol. Manage. 173, 213–225 (2003).Article 

    Google Scholar 
    61.Kuyah, S., Dietz, J., Muthuri, C., van Noordwijk, M. & Neufeldt, H. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes. Biomass Bioenergy 55, 276–284 (2013).Article 

    Google Scholar 
    62.Liu, S., Cai, Y. & Cai, T. in Long-term Research on Forest Ecosystems (ed. Zhou, X.) 419–427 (Northeast Forestry Univ. Press, 1991).63.Luo, T. et al. Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. For. Ecol. Manage. 206, 349–363 (2005).Article 

    Google Scholar 
    64.Markesteijn, L. & Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 97, 311–325 (2009).Article 

    Google Scholar 
    65.McNicol, I. M. et al. Development of allometric models for above and belowground biomass in swidden cultivation fallows of northern Laos. For. Ecol. Manage. 357, 104–116 (2015).Article 

    Google Scholar 
    66.Aiba, M. & Nakashizuka, T. Sapling structure and regeneration strategy in 18 Shorea species co-occurring in a tropical rainforest. Ann. Bot. 96, 313–321 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Menaut, J. C. & Cesar, J. Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60, 1197–1210 (1979).Article 

    Google Scholar 
    68.Morais, V. A. et al. Estoques de carbono e biomassa de um fragmento de cerradão em Minas Gerais, Brasil. Cerne 19, 237–245 (2013).Article 

    Google Scholar 
    69.Mugasha, W. A. et al. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For. Ecol. Manage. 310, 87–101 (2013).Article 

    Google Scholar 
    70.Návar, J. Plasticity of biomass component allocation patterns in semiarid Tamaulipan thornscrub and dry temperate pine species of northeastern Mexico. Polibotánica 31, 121–141 (2011).
    Google Scholar 
    71.Njana, M. A., Eid, T., Zahabu, E. & Malimbwi, R. Procedures for quantification of belowground biomass of three mangrove tree species. Wetl. Ecol. Manage. 23, 749–764 (2015).Article 

    Google Scholar 
    72.Nogueira Junior, L. R., Engel, V. L., Parrotta, J. A., de Melo, A. C. G. & Ré, D. S. Equações alométricas para estimativa da biomassa arbórea em plantios mistos com espécies nativas na restauração da Mata Atlântica. Biota Neotrop. 14, 1–9 (2014).Article 

    Google Scholar 
    73.Peichl, M. & Arain, M. A. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric. For. Meteorol. 140, e20130084 (2006).Article 

    Google Scholar 
    74.Battles, J. J. et al. Vegetation composition, structure, and biomass of two unpolluted watersheds in the Cordillera de Piuchué, Chiloé Island, Chile. Plant Ecol. 158, 5–19 (2002).Article 

    Google Scholar 
    75.Ryan, C. M., Williams, M. & Grace, J. Above- and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).Article 

    Google Scholar 
    76.Saint-André, L. et al. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For. Ecol. Manage. 205, 199–214 (2005).Article 

    Google Scholar 
    77.Aryal, D. R., De Jong, B. H. J., Ochoa-Gaona, S., Esparza-Olguin, L. & Mendoza-Vega, J. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric. Ecosyst. Environ. 195, 220–230 (2014).Article 

    Google Scholar 
    78.Schepaschenko, D. et al. A dataset of forest biomass structure for Eurasia. Sci. Data 4, 170070 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Schroth, G., D’Angelo, S. A., Teixeira, W. G., Haag, D. & Lieberei, R. Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For. Ecol. Manage. 163, 131–150 (2002).Article 

    Google Scholar 
    80.Schulze, E. D. et al. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108, 503–511 (1996).Article 

    Google Scholar 
    81.Stolbovoi, V. & McCallum, I. Land resources of Russia [CD] (International Institute for Applied Systems Analysis and the Russian Academy of Science, 2002); http://www.iiasa.ac.at/Research/FOR/russia_cd/guide.htm82.Wang, L. et al. Biomass allocation patterns across China’s terrestrial biomes. PLoS ONE 9, e93566 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Wauters, J. B., Coudert, S., Grallien, E., Jonard, M. & Ponette, Q. Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). For. Ecol. Manage. 255, 2347–2361 (2008).Article 

    Google Scholar 
    84.Williams-Linera, G. Biomass and nutrient content in two successional stages of tropical wet forest in Uxpanapa, Mexico. Biotropica 15, 275–284 (1983).Article 

    Google Scholar 
    85.Xu, Y. et al. Improving allometry models to estimate the above- and belowground biomass of subtropical forest, China. Ecosphere 6, 289 (2015).Article 

    Google Scholar 
    86.Youkhana, A. H. & Idol, T. W. Allometric models for predicting above- and belowground biomass of Leucaena-KX2 in a shaded coffee agroecosystem in Hawaii. Agrofor. Syst. 83, 331–345 (2011).Article 

    Google Scholar 
    87.Zhang, H. et al. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests. Sci. Rep. 5, 15997 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Castellanos, J., Maass, M. & Kummerow, J. Root biomass of a dry deciduous tropical forest in Mexico. Plant Soil 131, 225–228 (1991).Article 

    Google Scholar 
    89.Zheng, Z., Feng, Z., Cao, M., Li, Z. & Zhang, J. Forest structure and biomass of a tropical seasonal rain forest in Xishuangbanna, southwest China. Biotropica 38, 318–327 (2006).Article 

    Google Scholar 
    90.Návar, J. Root stock biomass and productivity assessments of reforested pine stands in northern Mexico. For. Ecol. Manage. 338, 139–147 (2015).Article 

    Google Scholar 
    91.Wang, X., Fang, J. & Zhu, B. Forest biomass and root–shoot allocation in northeast China. For. Ecol. Manage. 255, 4007–4020 (2008).Article 

    Google Scholar 
    92.Chen, D. K., Zhou, X. F., Zhao, H. X., Wang, Y. H. & Jing, Y. Y. Study on the structure, function and succession of the four types in natural secondary forest. J. Northeast For. Univ. 2, 1–20 (1982).
    Google Scholar 
    93.Chidumayo, E. N. Estimating tree biomass and changes in root biomass following clear-cutting of Brachystegia-Julbernardia (miombo) woodland in central Zambia. Environ. Conserv. 41, 54–63 (2014).Article 

    Google Scholar 
    94.Coll, L., Potvin, C., Messier, C. & Delagrange, S. Root architecture and allocation patterns of eight native tropical species with different successional status used in open-grown mixed plantations in Panama. Trees 22, 585–596 (2008).Article 

    Google Scholar 
    95.Das, D. K. & Chaturvedi, O. P. Structure and function of Populus deltoides agroforestry systems in eastern India: 1. dry matter dynamics. Agrofor. Syst. 65, 215–221 (2005).Article 

    Google Scholar 
    96.Ni, J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol. 174, 217–234 (2011).Article 

    Google Scholar 
    97.Olson, R. et al. NPP Multi-Biome: Summary Data from Intensive Studies at 125 Sites, 1936–2006 (ORNL DAAC, accessed 19 June 2019); https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=135298.Perez, C. A. & Frangi, J. L. Grassland biomass dynamics along an altitudinal gradient in the pampa. J. Range Manage. 53, 518–528 (2007).Article 

    Google Scholar 
    99.Perez-Quezada, J. F. F., Delpiano, C. A. A., Snyder, K. A. A., Johnson, D. A. A. & Franck, N. Carbon pools in an arid shrubland in Chile under natural and afforested conditions. J. Arid Environ. 75, 29–37 (2011).Article 

    Google Scholar 
    100.Pornon, A., Boutin, M. & Lamaze, T. Contribution of plant species to the high N retention capacity of a subalpine meadow undergoing elevated N deposition and warming. Environ. Pollut. 245, 235–242 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Ramakrishnan, P. S. & Ram, S. C. Vegetation, biomass and productivity of seral grasslands of Cherrapunji in north-east India. Vegetatio 74, 47–53 (1988).Article 

    Google Scholar 
    102.Shaver, G. R., Laundre, J. A., Giblin, A. E. & Nadelhoffer, K. J. Changes in live plant biomass, primary production, and species composition along a riverside toposequence in Arctic Alaska, USA. Arct. Alp. Res. 28, 363–379 (2006).Article 

    Google Scholar 
    103.Smith, J. M. B. & Klinger, L. F. Aboveground:belowground phytomass ratios in Venezuelan paramo vegetation and their significance. Arct. Alp. Res. 17, 189–198 (2006).Article 

    Google Scholar 
    104.Sun, J. et al. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, northern Tibetan Plateau. PLoS ONE 9, e108821 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    105.Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ. Res. Lett. 11, 055003 (2016).Article 
    CAS 

    Google Scholar 
    106.Yang, Y., Fang, J., Ji, C. & Han, W. Above- and belowground biomass allocation in Tibetan grasslands. J. Veg. Sci. 20, 177–184 (2009).Article 

    Google Scholar 
    107.Yang, Y., Fang, J., Ma, W., Guo, D. & Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Glob. Ecol. Biogeogr. 19, 268–277 (2010).Article 

    Google Scholar 
    108.Geng, H. L., Wang, Y. H., Wang, F. Y. & Jia, B. R. The dynamics of root-shoot ratio and its environmental effective factors of recovering Leymus chinensis steppe vegetation in Inner Mongolia, China. Acta Ecol. Sin. 28, 4629–4634 (2008).Article 

    Google Scholar 
    109.Hui, D. & Jackson, R. B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol. 169, 85–93 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Jouquet, P., Tavernier, V., Abbadie, L. & Lepage, M. Nests of subterranean fungus-growing termites (Isoptera, Macrotermitinae) as nutrient patches for grasses in savannah ecosystems. Afr. J. Ecol. 43, 191–196 (2005).Article 

    Google Scholar 
    111.Leonid, U. et al. Impact of climate and grazing on biomass components of eastern Russia typical steppe. J. Integr. Agric. 13, 1183–1192 (2014).Article 

    Google Scholar 
    112.Lucash, M. S., Farnsworth, B. & Winner, W. E. Response of sagebrush steppe species to elevated CO2 and soil temperature. West. N. Am. Nat. 65, 80–86 (2005).
    Google Scholar 
    113.Luo, W. et al. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China. PLoS ONE 8, e71749 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Barbour, M. G. Desert dogma reexamined: root/shoot productivity and plant spacing. Am. Midl. Nat. 89, 41–57 (1973).Article 

    Google Scholar 
    115.Becker, P., Sharbini, N. & Yahya, R. Root architecture and root:shoot allocation of shrubs and saplings in two lowland tropical forests: implications for life-form composition. Biotropica 31, 93–101 (1999).
    Google Scholar 
    116.Becker, P. & Castillo, A. Root architecture of shrubs and saplings in the understory of a tropical moist forest in lowland Panama. Biotropica 22, 242–249 (1990).Article 

    Google Scholar 
    117.Beier, C. et al. Carbon and nitrogen balances for six shrublands across Europe. Glob. Biogeochem. Cycles 23, GB4008 (2009).Article 
    CAS 

    Google Scholar 
    118.Bhatt, Y. D., Rawat, Y. S. & Singh, S. P. Changes in ecosystem functioning after replacement of forest by Lantana shrubland in Kumaun Himalaya. J. Veg. Sci. 5, 67–70 (1994).Article 

    Google Scholar 
    119.Caldwell, M. M., White, R. S., Moore, R. T. & Camp, L. B. Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia 29, 275–300 (1977).PubMed 
    Article 

    Google Scholar 
    120.De Viñas, I. C. R. et al. Biomass of root and shoot systems of Quercus coccifera shrublands in eastern Spain. Ann. For. Sci. 57, 803–810 (2000).Article 

    Google Scholar 
    121.Caravaca, F., Figueroa, D., Alguacil, M. M. & Roldán, A. Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land. Bioresour. Technol. 90, 65–70 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    122.Caravaca, F., Figueroa, D., Azcón-Aguilar, C., Barea, J. M. & Roldán, A. Medium-term effects of mycorrhizal inoculation and composted municipal waste addition on the establishment of two Mediterranean shrub species under semiarid field conditions. Agric. Ecosyst. Environ. 97, 95–105 (2003).Article 

    Google Scholar 
    123.Carrasco, L., Azcón, R., Kohler, J., Roldán, A. & Caravaca, F. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci. Total Environ. 409, 1205–1209 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    124.Carrillo-Garcia, Á., Bashan, Y. & Bethlenfalvay, G. J. Resource-island soils and the survival of the giant cactus, cardon, of Baja California Sur. Plant Soil 218, 207–214 (2000).CAS 
    Article 

    Google Scholar 
    125.Carrión-Prieto, P. et al. Mediterranean shrublands as carbon sinks for climate change mitigation: new root-to-shoot ratios. Carbon Manage. 8, 67–77 (2017).Article 
    CAS 

    Google Scholar 
    126.Deng, L., Han, Q. S., Zhang, C., Tang, Z. S. & Shangguan, Z. P. Above-ground and below-ground ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom plantation development. Land Degrad. Dev. 28, 906–917 (2017).Article 

    Google Scholar 
    127.Perkins, S. R. & Owens, M. K. Growth and biomass allocation of shrub and grass seedlings in response to predicted changes in precipitation seasonality. Plant Ecol. 168, 107–120 (2003).Article 

    Google Scholar 
    128.Gargaglione, V., Peri, P. L. & Rubio, G. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. For. Ecol. Manage. 259, 1118–1126 (2010).Article 

    Google Scholar 
    129.Hao, H. M. et al. Effects of shrub patch size succession on plant diversity and soil water content in the water-wind erosion crisscross region on the Loess Plateau. Catena 144, 177–183 (2016).Article 

    Google Scholar 
    130.Herwitz, S. R. & Olsvig-Whittaker, L. Preferential upslope growth of Zygophyllum dumosum Boiss. (Zygophyllaceae) roots into bedrock fissures in the northern Negev desert. J. Biogeogr. 16, 457–460 (1989).Article 

    Google Scholar 
    131.Hoffmann, A. & Kummerow, J. Root studies in the Chilean matorral. Oecologia 32, 57–69 (1978).PubMed 
    Article 

    Google Scholar 
    132.Holl, K. D. Effects of above- and below-ground competition of shrubs and grass on Calophyllum brasiliense (Camb.) seedling growth in abandoned tropical pasture. For. Ecol. Manage. 109, 187–195 (1998).Article 

    Google Scholar 
    133.Hollister, R. D. & Flaherty, K. J. Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl. Veg. Sci. 13, 378–387 (2010).
    Google Scholar 
    134.Kizito, F. et al. Seasonal soil water variation and root patterns between two semi-arid shrubs co-existing with pearl millet in Senegal, West Africa. J. Arid Environ. 67, 436–455 (2006).Article 

    Google Scholar 
    135.Kummerow, J., Krause, D. & Jow, W. Root systems of chaparral shrubs. Oecologia 29, 163–177 (1977).PubMed 
    Article 

    Google Scholar 
    136.León, M. F., Squeo, F. A., Gutiérrez, J. R. & Holmgren, M. Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert. J. Veg. Sci. 22, 120–129 (2011).Article 

    Google Scholar 
    137.Li, C. P. & Xiao, C. W. Above- and belowground biomass of Artemisia ordosica communities in three contrasting habitats of the Mu Us Desert, northern China. J. Arid Environ. 70, 195–207 (2007).Article 

    Google Scholar 
    138.Liang, Y. M., Hazlett, D. L. & Lauenroth, W. K. Biomass dynamics and water use efficiencies of five plant communities in the shortgrass steppe. Oecologia 80, 148–153 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    139.Zan, Q., Wang, Y., Liao, B. & Zheng, D. Biomass and net productivity of Sonneratia apetala, S. caseolaris mangrove man-made forest. Wuhan Bot. Res. 19, 391–396 (2001).
    Google Scholar 
    140.Liao, B., Zheng, D. & Zheng, S. Studies on the biomass of Sonneratia caseolaris stand. For. Res. 3, 47–54 (1990).
    Google Scholar 
    141.Lufafa, A. et al. Allometric relationships and peak-season community biomass stocks of native shrubs in Senegal’s Peanut Basin. J. Arid Environ. 73, 260–266 (2009).Article 

    Google Scholar 
    142.Lusk, C. H. Leaf area and growth of juvenile temperate evergreens in low light: species of contrasting shade tolerance change rank during ontogeny. Funct. Ecol. 18, 820–828 (2004).Article 

    Google Scholar 
    143.Marsh, A. S., Arnone, J. A., Bormann, B. T. & Gordon, J. C. The role of Equisetum in nutrient cycling in an Alaskan shrub wetland. J. Ecol. 88, 999–1011 (2000).Article 

    Google Scholar 
    144.Martínez, F. et al. Belowground structure and production in a Mediterranean sand dune shrub community. Plant Soil 201, 209–216 (1998).Article 

    Google Scholar 
    145.Marziliano, P. A. et al. Estimating belowground biomass and root/shoot ratio of Phillyrea latifolia L. in the Mediterranean forest landscapes. Ann. For. Sci. 72, 585–593 (2015).Article 

    Google Scholar 
    146.Mauchamp, A., Montaña, C., Lepart, J., Rambal, S. & Montana, C. Ecotone dependent recruitment of a desert shrub, Flourensia cernua, in vegetation stripes. Oikos 68, 107–116 (1993).Article 

    Google Scholar 
    147.Mendoza-Ponce, A. & Galicia, L. Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in central Mexico. Forestry 83, 497–506 (2010).Article 

    Google Scholar 
    148.Miller, P. C. & Ng, E. Root:shoot biomass ratios in shrubs in southern California and central Chile. Madrono 24, 215–223 (1977).
    Google Scholar 
    149.Mooney, H. A. & Rundel, P. W. Nutrient relations of the evergreen shrub, Adenostoma fasciculatum, in the California chaparral. Bot. Gaz. 140, 109–113 (1979).CAS 
    Article 

    Google Scholar 
    150.Moro, M. J., Pugnaire, F. I., Haase, P. & Puigdefábregas, J. Effect of the canopy of Retama sphaerocarpa on its understorey in a semiarid environment. Funct. Ecol. 11, 425–431 (1997).Article 

    Google Scholar 
    151.Negreiros, D., Fernandes, G. W., Silveira, F. A. O. & Chalub, C. Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecol. 35, 301–310 (2009).Article 

    Google Scholar 
    152.Nie, X., Yang, Y., Yang, L. & Zhou, G. Above- and belowground biomass allocation in shrub biomes across the northeast Tibetan Plateau. PLoS ONE 11, e0154251 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    153.Nobel, P. S., Quero, E. & Linares, H. Root versus shoot biomass: responses to water, nitrogen, and phosphorus applications for Agave lechuguilla. Bot. Gaz. 150, 411–416 (1989).Article 

    Google Scholar 
    154.Pacaldo, R. S., Volk, T. A. & Briggs, R. D. Greenhouse gas potentials of shrub willow biomass crops based on below- and aboveground biomass inventory along a 19-year chronosequence. Bioenergy Res. 6, 252–262 (2013).CAS 
    Article 

    Google Scholar 
    155.Padilla, F. M., Miranda, J. D., Jorquera, M. J. & Pugnaire, F. I. Variability in amount and frequency of water supply affects roots but not growth of arid shrubs. Plant Ecol. 204, 261–270 (2009).Article 

    Google Scholar 
    156.Portsmuth, A., Niinemets, Ü., Truus, L. & Pensa, M. Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age. Can. J. For. Res. 35, 2346–2359 (2005).CAS 
    Article 

    Google Scholar 
    157.Roth, G. A., Whitford, W. G. & Steinberger, Y. Jackrabbit (Lepus californicus) herbivory changes dominance in desertified Chihuahuan Desert ecosystems. J. Arid Environ. 70, 418–426 (2007).Article 

    Google Scholar 
    158.Ruiz-Peinado, R., Moreno, G., Juarez, E., Montero, G. & Roig, S. The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J. Arid Environ. 91, 22–30 (2013).Article 

    Google Scholar 
    159.Rundel, P. W. Biomass, productivity, and nutrient allocation in subalpine shrublands and meadows of the Emerald Lake Basin, Sequoia National Park, California. Arct. Antarct. Alp. Res. 47, 115–123 (2015).Article 

    Google Scholar 
    160.Millikin, C. S. & Bledsoe, C. S. Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in the northern Sierra Nevada foothills of California. Plant Soil 214, 27–38 (1999).CAS 
    Article 

    Google Scholar 
    161.Saura-Mas, S. & Lloret, F. Adult root structure of Mediterranean shrubs: relationship with post-fire regenerative syndrome. Plant Biol. 16, 147–154 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    162.Schenk, H. J. & Mahall, B. E. Positive and negative plant interactions contribute to a north-south-patterned association between two desert shrub species. Oecologia 132, 402–410 (2002).PubMed 
    Article 

    Google Scholar 
    163.Silva, J. S., Rego, F. C. & Martins-Loução, M. A. Belowground traits of Mediterranean woody plants in a Portuguese shrubland. Ecol. Mediterr. 28, 5–13 (2002).Article 

    Google Scholar 
    164.Simões, M. P., Madeira, M. & Gazarini, L. Biomass and nutrient dynamics in Mediterranean seasonal dimorphic shrubs: strategies to face environmental constraints. Plant Biosyst. 146, 500–510 (2012).
    Google Scholar 
    165.Tao, Y., Zhang, Y. M. & Downing, A. Similarity and difference in vegetation structure of three desert shrub communities under the same temperate climate but with different microhabitats. Bot. Stud. 54, 59 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    166.Toscano, S., Scuderi, D., Giuffrida, F. & Romano, D. Responses of Mediterranean ornamental shrubs to drought stress and recovery. Sci. Hortic. 178, 145–153 (2014).Article 

    Google Scholar 
    167.Trubat, R., Cortina, J. & Vilagrosa, A. Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol. Eng. 37, 1164–1173 (2011).Article 

    Google Scholar 
    168.Van Wijk, M. T., Williams, M., Gough, L., Hobbie, S. E. & Shaver, G. R. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J. Ecol. 91, 664–676 (2003).Article 

    Google Scholar 
    169.Walker, L. R., Clarkson, B. D., Silvester, W. B. & Clarkson, B. R. Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession. J. Veg. Sci. 14, 277–290 (2003).Article 

    Google Scholar 
    170.Wang, B. & Yang, X. S. Comparison of biomass and species diversity of four typical zonal vegetations. J. Fujian Coll. For. 29, 345–350 (2009).
    Google Scholar 
    171.Wang, M. & Li, H. Quantitative study on the soil water dynamics of various forest plantations in the Loess Plateau region in northwestern Shanxi. Acta Ecol. Sin. 2, 178–184 (1995).
    Google Scholar 
    172.Wang, P. et al. Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site. Plant Soil 407, 55–65 (2016).CAS 
    Article 

    Google Scholar 
    173.Whittaker, R. H. & Woodwell, G. M. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. J. Ecol. 56, 1–25 (1968).Article 

    Google Scholar 
    174.Xu, H., Li, Y., Xu, G. & Zou, T. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ. 30, 399–409 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    175.Yan, Z. Biomass and its allocation in a 28-year-old Castanopsis kawakamii plantation. J. Fujian Coll. For. 2, 114–118 (1996).
    Google Scholar 
    176.Gong, Y. et al. Carbon storage and vertical distribution in three shrubland communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, northwest China. Chin. Geogr. Sci. 22, 541–549 (2012).Article 

    Google Scholar 
    177.Yu, Y., Shi, D., Qiuyi, J., He, L. & Cheng, G. On the biomass of secondary Schima superba forest in Hangzhou. J. Zhejiang For. Coll. 2, 157–161 (1993).
    Google Scholar 
    178.Kato, T. et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agric. Meteorol. 124, 121–134 (2004).Article 

    Google Scholar 
    179.Li, Z., Zhu, Q. & Li, J. A comparison of photosynthetic carbon sequestration of four shrubs in Ningxia. Pratacultural Sci. 29, 352–357 (2012).CAS 

    Google Scholar 
    180.Zhu, X., Shi, Q. & Li, Y. A preliminary study on the Qinghai’s treasure house of the forest biomass and shrubs. Sci. Technol. Qinghai Agric. For. 1, 15–20 (1993).
    Google Scholar 
    181.Liao, B. & Zheng, D. Study on the forest biomass and productivity of olive wood. For. Res. 4, 22–29 (1991).
    Google Scholar 
    182.Liu, B., Liu, Z., Lü, X., Maestre, F. T. & Wang, L. Sand burial compensates for the negative effects of erosion on the dune-building shrub Artemisia wudanica. Plant Soil 374, 263–273 (2014).CAS 
    Article 

    Google Scholar 
    183.Alguacil, M. M., Hernández, J. A., Caravaca, F., Portillo, B. & Roldán, A. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol. Plant. 118, 562–570 (2003).CAS 
    Article 

    Google Scholar 
    184.Axe, M. S., Grange, I. D. & Conway, J. S. Carbon storage in hedge biomass—a case study of actively managed hedges in England. Agric. Ecosyst. Environ. 250, 81–88 (2017).Article 

    Google Scholar 
    185.van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    186.Erin, L. et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package v.3.32.0.2 (2020); https://github.com/h2oai/h2o-3187.Sagi, O. & Rokach, L. Ensemble learning: a survey. WIREs Data Min. Knowl. Discov. 8, e1249 (2018).
    Google Scholar 
    188.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).189.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    190.Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland (2020).191.Hothorn, T. & Zeileis, A. partykit: A modular toolkit for recursive partytioning in R. J. Mach. Learn. Res. 16, 3905–3909 (2015).
    Google Scholar 
    192.Borkovec, M. & Madin, N. ggparty: ‘ggplot’ visualizations for the ‘partykit’ package (2019).193.Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 16, 129–138 (2007).Article 

    Google Scholar 
    194.Hutchinson, M., Xu, T., Houlder, D., Nix, H. & McMahon, J. ANUCLIM 6.0 User’s Guide (Australian National Univ., 2009).195.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    196.Global Aridity and PET database (CGIAR-CSI, accessed 15 May 2018); http://www.cgiarcsi.community/data/global-aridity-and-pet-database197.CIESIN Gridded Population of the World, version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals (NASA SEDAC, 2018); https://doi.org/10.7927/H4HX19NJ198.Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    199.SoilGrids (ISRIC, accessed 15 May 2018); https://www.soilgrids.org200.Entekhabi, D. et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).Article 

    Google Scholar 
    201.Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    202.Batjes, N. H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68 (2016).CAS 
    Article 

    Google Scholar 
    203.Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global – 500m V006 (NASA LP DAAC, 2015); https://doi.org/10.5067/MODIS/MCD43A1C.006204.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 (NASA LP DAAC, 2015).205.Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Co-benefits of protecting mangroves for biodiversity conservation and carbon storage

    1.Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Conti, G. & Díaz, S. Plant functional diversity and carbon storage – an empirical test in semi-arid forest ecosystems. J. Ecol. 101, 18–28 (2013).CAS 
    Article 

    Google Scholar 
    4.Mensah, S., Veldtman, R., Assogbadjo, A. E., Glèlè Kakaï, R. & Seifert, T. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 6, 7546–7557 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Islam, M., Dey, A. & Rahman, M. Effect of Tree Diversity on Soil Organic Carbon Content in the Homegarden Agroforestry System of North-Eastern Bangladesh. Small-scale 14, 91–101 (2015).Article 

    Google Scholar 
    6.Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).Article 

    Google Scholar 
    7.Rahman, M. M., Kabir, M. E., Jahir Uddin Akon, A. S. M. & Ando, K. High carbon stocks in roadside plantations under participatory management in Bangladesh. Glob. Ecol. Conserv. 3, 412–423 (2015).Article 

    Google Scholar 
    8.McKee, K. L. Interspecific Variation in Growth, Biomass Partitioning, and Defensive Characteristics of Neotropical Mangrove Seedlings: response To Light and Nutrient Availability. Am. J. Bot. 82, 299–307 (1995).Article 

    Google Scholar 
    9.Kauffman, J. B. et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 90, 1–18 (2020).Article 

    Google Scholar 
    10.Tinh, P. H. et al. A comparison of soil carbon stocks of intact and restored mangrove forests in Northern Vietnam. Forests 11, 1–10 (2020).
    Google Scholar 
    11.Saintilan, N. Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River stuary, New South Wales. Mar. Freshw. Res. 48, 147–152 (1997).CAS 
    Article 

    Google Scholar 
    12.Tamooh, F. et al. Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Ecol. Manag. 256, 1290–1297 (2008).Article 

    Google Scholar 
    13.MacKenzie, R. A. et al. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves. Wetl. Ecol. Manag. 24, 245–261 (2016).Article 

    Google Scholar 
    14.Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15, 1–5 (2019).Article 

    Google Scholar 
    16.Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Adame, M. F. et al. Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Ecol. Manag. 256, 1290–1297 (2014).
    Google Scholar 
    18.Sharma, S. et al. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci. Total Environ. 706, 135416 (2020).19.Ruiz-benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. 1–12 (2013) https://doi.org/10.1111/geb.12126.20.Mace, G. Biodiversity Policy Challenges. (2009) https://doi.org/10.1126/science.1180935.21.Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Sci. (80-.) 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    22.Cavanaugh, K. C. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale: Biodiversity and aboveground carbon storage. Glob. Ecol. Biogeogr. 23, 563–573 (2014).Article 

    Google Scholar 
    23.Ruiz-Jaen, M. C. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. N. Phytol. 189, 978–987 (2011).Article 

    Google Scholar 
    24.Ali, A., Chen, H. Y. H., You, W.-H. & Yan, E.-R. Multiple abiotic and biotic drivers of aboveground biomass shift with forest stratum. Ecol. Manag. 436, 1–10 (2019).Article 

    Google Scholar 
    25.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    26.Franck, J. & Jérôme, C. Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. Ecol. Lett. 12, 239–248 (2009).Article 

    Google Scholar 
    27.Poorter, L., Bongers, L. & Bongers, F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87, 1289–1301 (2006).PubMed 
    Article 

    Google Scholar 
    28.Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeosci. 113, G02S06 (2008).29.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Díaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).Article 

    Google Scholar 
    32.Lasky, J. R., Uriarte, M., Boukili, V. K. & Chazdon, R. L. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl Acad. Sci. U. S. A. 111, 5616–5621 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998). vol.Article 

    Google Scholar 
    34.Pradisty, N. A., Amir, A. A. & Zimmer, M. Plant species- and stage-specific differences in microbial decay of mangrove leaf litter: the older the better? Oecologia (2021) https://doi.org/10.1007/s00442-021-04865-3.35.Hossain, M. et al. Nutrient Dynamics Associated with Leaching and Microbial Decomposition of Four Abundant Mangrove Species Leaf Litter of the Sundarbans, Bangladesh. Wetlands 34, 439–448 (2014).Article 

    Google Scholar 
    36.Chanda, A. et al. Mangrove associates versus true mangroves: a comparative analysis of leaf litter decomposition in Sundarban. Wetl. Ecol. Manag. 24, 293–315 (2016).Article 

    Google Scholar 
    37.Alongi, D. M. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci 2, 67 (2020).Article 

    Google Scholar 
    38.Lovelock, C. E. & Reef, R. Variable Impacts of Climate Change on Blue. Carbon One Earth 3, 195–211 (2020).Article 

    Google Scholar 
    39.Alongi, D. Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 9, 596 (2018).Article 

    Google Scholar 
    40.Rahman, M. M. & Rahaman, M. M. Impacts of Farakka barrage on hydrological flow of Ganges river and environment in Bangladesh. Sustain. Water Resour. Manag. 1–14 (2017) https://doi.org/10.1007/s40899-017-0163-y.41.Gilman, E. L., Ellison, J., Duke, N. C. & Field, C. Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot. 89, 237–250 (2008).Article 

    Google Scholar 
    42.Kirui, B., Kairo, J., Skov, M., Mencuccini, M. & Huxham, M. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya. Mar. Ecol. Prog. Ser. 465, 1–10 (2012).ADS 
    Article 

    Google Scholar 
    43.Ball, M. C. Ecophysiology of mangroves. Trees 2, 129–142 (1988). vol.Article 

    Google Scholar 
    44.Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Rahman, M. M., Khan, M. N. I., Hoque, A. K. F. & Ahmed, I. Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetl. Ecol. Manag. 23, 269–283 (2015).Article 

    Google Scholar 
    46.Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Komiyama, A., Poungparn, S. & Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21, 471–477 (2005).Article 

    Google Scholar 
    48.Hossain, M., Siddique, M. R. H., Saha, S. & Abdullah, S. M. R. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetl. Ecol. Manag. 23, 765–774 (2015).CAS 
    Article 

    Google Scholar 
    49.Loreau, M., Hector, A., The, C. J. & Funct, D. Partitioning Selection and Complementarity in Biodiversity Experiments Partitioning selection and complementarity in biodiversity experiments. (2001) https://doi.org/10.1038/35083573.50.Phelps, J., Webb, E. L. & Adams, W. M. Biodiversity co-benefits of policies to reduce forest-carbon emissions. Nat. Clim. Chang. 2, 497–503 (2012).ADS 
    Article 

    Google Scholar 
    51.Zimmer, M. Ecosystem design: when mangrove ecology meets human needs. Coast. Res. Libr. 25, 367–376 (2018).Article 

    Google Scholar 
    52.Rahman, M. S., Sass-Klaassen, U., Zuidema, P. A., Chowdhury, M. Q. & Beeckman, H. Salinity drives growth dynamics of the mangrove tree Sonneratia apetala Buch. -Ham. in the Sundarbans, Bangladesh. Dendrochronologia 62, 125711 (2020).Article 

    Google Scholar 
    53.Suwa, R., Deshar, R. & Hagihara, A. Forest structure of a subtropical mangrove along a river inferred from potential tree height and biomass. Aquat. Bot. 91, 99–104 (2009).Article 

    Google Scholar 
    54.Sparks, D. L. et al. Total Carbon, Organic Carbon, and Organic Matter. in SSSA Book Series (Soil Science Society of America, American Society of Agronomy, 1996).55.Yakub, M., Omar Ali, M. & Bhattacharjee, D. K. Strength properties of some Bangladesh timber species. (Govt. of the People’s Republic of Bangladesh, Forest Research Institute, 1972).56.Nandy (Datta), P. & Ghose, M. Photosynthesis and water-use efficiency of some mangroves from Sundarbans, India. J. Plant Biol. 44, 213–219 (2001).Article 

    Google Scholar 
    57.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    58.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar 
    59.Oliveira, A. D. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. 191–201 (2015) https://doi.org/10.1111/1365-2745.12346.60.Demján, P. & Dreslerová, D. Modelling distribution of archaeological settlement evidence based on heterogeneous spatial and temporal data. J. Archaeol. Sci. 69, 100–109 (2016).Article 

    Google Scholar 
    61.Hossain, G. M. & Bhuiyan, M. A. H. Spatial and temporal variations of organic matter contents and potential sediment nutrient index in the Sundarbans mangrove forest, Bangladesh. KSCE J. Civ. Eng. 20, 163–174 (2016).Article 

    Google Scholar 
    62.Ggraham, M. H. Confronting Multicollinearity in Ecological Multiple Regression. Ecology 84, 2809–2815 (2003).63.Rosseel, Y. Lavaan:anRpackageforstructuralequationmodeling and more. Version 0.5-12 (BETA). J. Stat. Softw. 48, 1–36 (2012).Article 

    Google Scholar 
    64.Grace, J. B. & Bollen, K. A. Interpreting the Results from Multiple Regression and Structural Equation Models. Bull. Ecol. Soc. Am. 86, 283–295 (2005).Article 

    Google Scholar  More

  • in

    Reconstruction of plant–pollinator networks from observational data

    Network reconstruction from observational dataThe typical field study of plant–pollinator interactions involves recording instances of potential pollinators (such as insects) visiting plants within a prescribed observation area and over a prescribed period of time. We will refer to these records as visitation data. Network ecologists analyze visitation data by constructing networks of plant and pollinator species, where a connection between two species indicates that a plant-pollinator interaction exists between them.However, the meaning of edges in ecological networks is not always clear31. One popular way to transform visitation data into networks is to connect two species when they interact “enough”—say when a pollinator species is seen on the reproductive organ of a plant species a specified number of times—but in this case the precise meaning of an edge will depend on the details of the data collection and the choices made in the analysis. How many visits do we take as evidence of a plant–pollinator interaction? A single visit is probably not enough—it might well be an error or misobservation. Is two enough, or ten, or a hundred? And what about observations that were missed entirely? Other methods of analysis transform the data in different ways, for instance encoding them as weighted networks, possibly with some statistical processing along the way32. Even in this case, however, the edges still just count numbers of visits (perhaps transformed in some way), so the resulting networks are effectively histograms in disguise, recording only potential interactions rather than true biological connections.A more principled approach to network construction begins with a clear definition of what relationship (or relationships) a network’s edges encode33. We argue that network ecology often calls for a network of preferred interactions. In the context of plant-pollinator networks the edges of such a network indicate that pollinators preferentially visit certain plant species and they encode a variety of mechanisms that constrain species interactions, such as temporal or spatial uncoupling (i.e., species that do not co-occur in either time or space), constraints due to trait mismatches (e.g., proboscis size very different from corolla size), and physiological-biochemical constraints that prevent the interactions (e.g., chemical barriers). (One can regard preferred interactions as being the opposite of the “forbidden links” described in refs. 34,35,36). Preferred interactions are arguably the relevant ones for instance when analyzing the reaction of a network to abrupt changes: when one removes a plant species from a system, for example, the pollinators that prefer it will have to modify their behavior7,37,38. The interactions we consider are binary—either a species prefers another species or it doesn’t—so the network does not encode varying strengths of interaction.While the data gathered in a typical field study are certainly reflective of preferred interactions, they are, for many reasons, not perfect measurements of networks of preferred interactions13,17. First, there may be observational errors. While the observers performing the work are usually highly trained individuals, they may nonetheless make mistakes. They may confuse one species for another, which is particularly easy to do for small-bodied insects, or smaller species may be overlooked altogether. Observers may make correct observations but record them wrongly. And there will be statistical fluctuations in the number of visits of an insect species to a plant species over any finite time. For rare interactions there may even be no visits at all if we are unlucky. The insects themselves may also appear to make “mistakes” by visiting plants that they typically do not pollinate. These and other factors mean that the record of observed visits is an inherently untrustworthy guide to the true structure of the network of preferred interactions. Here we develop a statistical method for making estimates of network structure despite these limitations of the data.Model of plant–pollinator dataConsider a typical plant–pollinator study in which some number np of plant species, labeled by i = 1…np, and some number na of animal pollinator species, labeled by j = 1…na, are under observation for a set amount of time, producing a record of observed visits such that Mij is the number of times plant species i is visited by pollinator species j. Collectively the Mij can be regarded as a data matrix M with np rows and na columns. This is the input to our calculation.The unknown quantity, the thing we would like to understand, is the network of plant–pollinator interactions. We can think of this network as composed of two sets of nodes, one representing plant species and the other pollinator species, with connections or edges joining each pollinator to the plants it pollinates. In the language of network science this is a bipartite network, meaning that edges run only between nodes of unlike kinds—plants and pollinators—and never between two plants or two pollinators. Such a network can be represented by a second matrix B, called the incidence matrix, with the same size as the data matrix and elements Bij = 1 if plant i is preferentially visited by pollinator j and 0 otherwise.The question we would like to answer is this: What is the structure of the network, represented by B, given the data M? It is not straightforward to answer this question directly, but it is relatively easy to answer the reverse question. If we imagine that we know B, then we can say what the probability is that we make a specific set of observations M. And if we can do this then the methods of Bayesian inference allow us to invert the calculation and compute B from a knowledge of M and hence achieve our goal. The procedure is as follows.Consider a specific plant-pollinator species pair i, j. How many times do we expect to see j visit i if there is, or is not, a preferred interaction between i and j? The answer will depend on several factors. First, and most obviously, we expect the number of visits to be higher if j is in fact a pollinator of i. That is, we expect Mij to be larger if Bij = 1 than if Bij = 0. Second, we expect there to be more visits if there is greater sampling effort—for instance if the period of observation is longer or if the land area over which observations take place is larger15,16,26,27. Third, we expect to see more visits for more abundant plant and pollinator species than for less abundant ones, as demonstrated by several studies28,30. And fourth, as discussed above, we expect there to be some random variation in the number of visits, driven by fluctuations in individual behavior and the environment. These are the primary features that we incorporate into our model. It is possible to add others to handle specific situations (see ref. 39 and the Methods), but we focus on these four here.We translate these factors into a mathematical model of plant–pollinator interaction as follows. The random variations in the numbers of visits will follow a Poisson distribution for each plant–pollinator pair i, j, parameterized by a single number, the distribution mean μij, provided only that measurements are made sufficiently far apart to be independent (which under normal conditions they will be). We expect μij to depend on the factors discussed above and we introduce additional parameters to represent this dependence. First we introduce a parameter r to represent the change in the average number of visits when two species are connected (Bij = 1), versus when they are not (Bij = 0). We write the factor by which the number of visits is increased as 1 + r with r ≥ 0, so that r = 0 implies no increase and successively larger values of r give us larger increases. Second, we represent the effect of sampling effort by an overall constant C that multiplies the mean μij. The same constant is used for all i and j, since the same sampling effort is devoted to all plant–pollinator pairs. Third, we assume that the number of visits is proportional to the abundance of the relevant plant and pollinator species: twice as many pollinators of species j, for instance, will mean twice as many visits by that species, and similarly for the abundance of the plant species13. Thus the number of visits will be proportional to σiτj, for some parameters σi and τj representing the abundances of plant i and pollinator j, respectively, in suitable units (which we will determine shortly).Putting everything together, the mean number of observed visits to plant i by pollinator j is$${mu }_{ij}=C{sigma }_{i}{tau }_{j}(1+r{B}_{ij}),$$
    (1)
    and the probability of observing exactly Mij visits is drawn from a Poisson distribution with this mean:$$P({M}_{ij}| {mu }_{ij})=frac{{mu }_{ij}^{{M}_{ij}}}{{M}_{ij}!} {e}^{-{mu }_{ij}}.$$
    (2)
    This equation gives us the probability distribution of a single element Mij of the data matrix. Then, combining Eqs. (1) and (2), the data likelihood—the probability of the complete data matrix M—is given by the product over all species thus:$$P({boldsymbol{M}}| {boldsymbol{B}},theta )=mathop{prod}limits_{i,j}frac{{left[C{sigma }_{i}{tau }_{j}(1+r{B}_{ij})right]}^{{M}_{ij}}}{{M}_{ij}!} {e}^{-C{sigma }_{i}{tau }_{j}(1+r{B}_{ij})},$$
    (3)
    where θ is a shorthand collectively denoting all the parameters of the model: C, r, σ and τ. Our model is thus effectively a model of an entire network, rather than single interactions, in contrast with other recent approaches to the modeling of network data reliability17,18,32.There are two important details to note about this model. First, the definition in Eq. (1) does not completely determine C, σ, and τ because we can increase (or decrease) any of these parameters by a constant factor without changing the resulting value of μij if we simultaneously decrease (or increase) one or both of the others. In the language of statistics we say that the parameters are not “identifiable.” We can rectify this problem by fixing the normalization of the parameters in any convenient fashion. Here we do this by stipulating that σi and τj sum to one, thus:$$mathop{sum }limits_{i=1}^{{n}_{p}}{sigma }_{i}=mathop{sum }limits_{j=1}^{{n}_{a}}{tau }_{j}=1.$$
    (4)
    In effect, this makes σi and τj measures of relative abundance, quantifying the fraction of individual organisms that belong to each species, rather than the total number. (This definition differs from traditional estimates of pollinator abundance that define the abundance of a pollinator species in terms of its number of observed visits.) Second, there may be other species-level effects on the observed number of visits in addition to abundance, such as the propensity for observers to overlook small-bodied pollinators. There is, at least within the data used in this paper, no way to tell these effects from true variation in abundance—no way to tell for example if there are truly fewer individuals of a species or if they are just hard to see and hence less often observed. As a result, the abundance parameters in our model actually capture a combination of effects on observation frequency. This does not affect the accuracy of the model, which works just as well either way, but it does mean that we have to be cautious about interpreting the values of the parameters in terms of actual abundance. This point is discussed further in the applications below.Bayesian reconstructionThe likelihood of Eq. (3) tells us the probability of the data M given the network B and parameters θ. What we actually want to know is the probability of the network and parameters given the data, which we can calculate by applying Bayes’ rule in the form$$P({boldsymbol{B}},theta | {boldsymbol{M}})=frac{P({boldsymbol{M}}| {boldsymbol{B}},theta )P({boldsymbol{B}}| theta )P(theta )}{P({boldsymbol{M}})}.$$
    (5)
    This is the posterior probability that the network has structure B and parameter values θ given the observations that were made. There are three important parts to the expression: the likelihood P(M∣B, θ), the prior probability of the network P(B∣θ), and the prior probability of the parameters P(θ). The denominator P(M) we can ignore because it depends on the data alone and will be constant (and hence irrelevant for our calculations) once M is determined by the observations.Of the three non-constant parts, the first, the likelihood, we have already discussed—it is given by Eq. (3). For the prior on the network P(B∣θ) we make the conservative assumption—in the absence of any knowledge to the contrary—that all edges in the network are a priori equally likely. If we denote the probability of an edge by ρ, then the prior probability on the entire network is$$P({boldsymbol{B}}| theta )=mathop{prod}limits_{i,j}{(1-rho )}^{1-{B}_{ij}}{rho }^{{B}_{ij}}.$$
    (6)
    We consider ρ an additional parameter which is to be inferred from the data and which we will henceforth include, along with our other parameters, in the set θ.To complete Eq. (5), we also need to choose a prior P(θ) over the parameters. We expect there to be some limit on the value of r, which we impose using a minimally informative prior with finite mean (this distribution turns out to be the exponential distribution). For the remaining parameters we use uniform priors. With these choices, we then have everything we need to compute the posterior probability, Eq. (5).Once we have the posterior probability there are a number of things we can do with it. The simplest is just to maximize it with respect to the unknown quantities B and θ to find the most likely structure for the network and the most likely parameter values, given the data. This, however, misses an opportunity for more detailed inference and can moreover give misleading results. In most cases there will be more than one value of B and θ with high probability under Eq. (5): there may be a unique maximum of the probability, a most likely value, but there are often many other values that have nearly as high probability and offer plausible network structures competitive with the most likely one. To get the most complete picture of the structure of the network we should consider all these plausible structures.For example, if all plausible structures are similar to one another in their overall shape then we can be quite confident that this shape is reflective of the true preferred interactions between plant and pollinator species. If plausible structures are widely varying, however, then we have many different candidates for the true structure and our certainty about that structure is correspondingly lower. In other words, by considering the complete set of plausible structures we can not only make an estimate of the network structure but also say how confident we are in that estimate, in effect putting “error bars” on the network.How do we specify these errors bars in practice? One way is to place posterior probabilities on individual edges in the network. For example, when considering the edge connecting plant i and pollinator j, we would not ask “Is there an edge?” but rather “What is the probability that there is an edge?” Within the formulation outlined above, this probability is given by the average$$P({B}_{ij}=1| {boldsymbol{M}})=mathop{sum}limits_{{boldsymbol{B}}}int {B}_{ij}P({boldsymbol{B}},theta | {boldsymbol{M}})dtheta ,$$
    (7)
    where the sum runs over all possible incidence matrices and the integral over all parameter values. More generally we can compute the average of any function f(B, θ) of the matrix B and/or the parameters θ thus:$$leftlangle f({boldsymbol{B}},theta )rightrangle =mathop{sum}limits_{{boldsymbol{B}}}int f({boldsymbol{B}},theta ) P({boldsymbol{B}},theta | {boldsymbol{M}})dtheta .$$
    (8)
    Functions of the matrix and functions of the parameters can both be interesting—the matrix tells us about the structure of the network but the parameters, as we will see, can also reveal important information.Computing averages of the form (8) is unfortunately not an easy task. A closed-form expression appears out of reach and the brute-force approach of performing the sums and integrals numerically over all possible networks and parameters is computationally intractable in all but the most trivial of cases. The sum over B alone involves ({2}^{{n}_{p}{n}_{a}}) terms, which is normally a very large number.Instead therefore we use an efficient Monte Carlo sampling technique to approximate the answers. We generate a sample of network/parameter pairs (B1, θ1), …, (Bn, θn), where each pair appears with probability proportional to the posterior distribution of Eq. (5). Then we approximate the average of f(B, θ) as$$leftlangle f({boldsymbol{B}},theta )rightrangle simeq frac{1}{n}mathop{sum }limits_{i=1}^{n}f({{boldsymbol{B}}}_{i},{theta }_{i}).$$
    (9)
    Under very general conditions, this estimate will converge to the true value of the average asymptotically as the number of Monte Carlo samples n becomes large. Full details of the computations are given in Materials and Methods, and an extensive simulation study of the model is presented in Supplementary Note 1.Checking the modelInherent in the discussion so far is the assumption that the data can be well represented by our model. In other words, we are assuming there is at least one choice of the network B and parameters θ such that the model will generate data similar to what we see in the field. This assumption could be violated if our model is a poor one, but there is nothing in the method described above that would tell us so. To be fully confident in our results we need to be able not only to infer the network structure, but also to check whether that structure is a good match to the data. The Bayesian toolbox comes with a natural procedure for doing this. Given a set of high-probability values of B and θ generated by the method, we can use them in Eq. (3) to compute the likelihood P(M∣B, θ) of a data set M and then sample possible data sets from this probability distribution, in effect recreating data as they would appear if the model were in fact correct. We can then compare these data to the original field data to see if they are similar: if they are then our model has done a good job of capturing the structure in the data.In the parlance of Bayesian statistics this approach is known as a posterior–predictive assessment40. It amounts to calculating the probability$$P({widetilde{M}}_{ij}| {boldsymbol{M}})=mathop{sum}limits_{{boldsymbol{B}}}int P({widetilde{M}}_{ij}| {boldsymbol{B}},theta )P({boldsymbol{B}},theta | {boldsymbol{M}})dtheta$$
    (10)
    that pollinator species j makes ({widetilde{M}}_{ij}) visits to plant species i in artificial data sets generated by the model, averaged over many sets of values of B and θ. We can then use this probability to calculate the average value of ({widetilde{M}}_{ij}) thus:$$langle {widetilde{M}}_{ij}rangle =mathop{sum}limits_{{widetilde{M}}_{ij}}{widetilde{M}}_{ij} P({widetilde{M}}_{ij}| {boldsymbol{M}}).$$
    (11)
    The averages for all plant–pollinator pairs can be thought of as the elements of a matrix (langle widetilde{{boldsymbol{M}}}rangle), which we can then compare to the actual data matrix M, or alternatively we can calculate a residue ({boldsymbol{M}}-langle widetilde{{boldsymbol{M}}}rangle). If (langle widetilde{{boldsymbol{M}}}rangle) and M are approximately equal, or equivalently if the residue is small, then we consider the model a good one.To quantify the level of agreement between the fit and the data we can also compute the discrepancy40 between the artificial data and M as$${X}^{2}=mathop{sum}limits_{ij}frac{{({M}_{ij}-{langle widetilde{M}_{ij}rangle })}^{2}}{{langle widetilde{M}_{ij}rangle }}.$$
    (12)
    Under the hypothesis that the model is correct, X2 follows a chi-squared distribution with np × na degrees of freedom40. A good fit between model and data is signified by a value of X2 that is much smaller than its expectation value of np × na. Note that the calculation of (P({widetilde{M}}_{ij}| {boldsymbol{M}})) in Eq. (10) is of the same form as the one in Eq. (8), with (f({boldsymbol{B}},theta )=P({widetilde{M}}_{ij}| {boldsymbol{B}},theta )), which means we can calculate (P({widetilde{M}}_{ij}| {boldsymbol{M}})) in the same way we calculate other average quantities, using Monte Carlo sampling and Eq. (9).Application to visitation data setsWell-sampled dataTo demonstrate how the method works in practice, we first consider a large data set of plant–pollinator interactions gathered by Kaiser-Bunbury and collaborators41 at a set of study sites on the island of Mahé in the Seychelles. The data describe the interactions of plant and pollinator species observed over a period of eight months across eight different sites on the island. The data also include measurements of floral abundances for all observation periods and all sites. Our method for inferring network structure does not make use of the abundance measurements, but we discuss them briefly at the end of this section.The study by Kaiser-Bunbury et al. focused particularly on the role of exotic plant species in the ecosystem and on whether restoring a site by removing exotic species would significantly impact the resilience and function of the plant–pollinator network. To help address these questions, half of the sites in the study were restored in this way while the rest were left unrestored as a control group.As an illustration of our method we apply it to data from one of the restored sites, as observed over the course of a single month in December 2012 (the smallest time interval for which data were available). We pick the site named “Trois-Frères” because it is relatively small but also well sampled. Our calculation then proceeds as shown in Fig. 1. There were 8 plant and 21 pollinator species observed at the site during the month, giving us an 8 × 21 data matrix M as shown in Fig. 1a. (Following common convention, the plots of matrices in this paper are drawn with rows and columns ordered by decreasing numbers of observed interactions, so that the largest elements of the data matrix—the darkest squares—are in the top and left of the plot.)Fig. 1: Illustration of the method of this paper applied to data from the study of Kaiser-Bunbury et al.41.a We start with a data matrix M that records the number of interactions between each plant species and pollinator species. Species pairs that are never observed to interact (Mij = 0) are shown in white. b We then draw 2000 samples from the distribution of Eq. (5), four of which are shown in the figure. Each sample consists of a binary incidence matrix B, values for the relative abundances σ and τ (shown as the orange and blue bar plots, respectively), and values for the parameters C, r, and ρ (not shown). c We combine the samples using Eqs. (7)–(9) to give an estimate of the probability of each edge in the network and the complete parameter set θ. For the data set studied here our estimates of the expected values of the parameters C, r, and ρ are 〈C〉 = 20.2, 〈r〉 = 45.9, and 〈ρ〉 = 0.244.Full size imageNow we use our Monte Carlo procedure to draw 2000 sets of incidence matrices B and parameters θ from the posterior distribution of Eq. (5) (Fig. 1b). These samples vary in their structure: some edges, like the one connecting the plant N. vanhoutteanum and the pollinator A. mellifera, are present in nearly all samples, while others, like the one between M. sechellarum and A. mellifera, appear only a small fraction of the time. Some others never occur at all. Averaging over these sampled networks we can estimate the probability, Eq. (7), that each connection exists in the network of preferred interactions between plant and animal species—see Fig. 1c. Some connections have high probability, close to 1, meaning that we have a high degree of confidence that they exist. Others have probability close to 0, meaning we have a high degree of confidence that they do not exist. And some have intermediate probabilities, meaning we are uncertain about them (such as the M. sechellarum–A. mellifera connection, which has probability around 0.45). In the latter case the method is telling us that the data are not sufficient to reach a firm conclusion about these connections. Indeed, if we compare with the original data matrix M in Fig. 1a, we find that most of the uncertain connections are ones for which we have very few observations, relative to the total number of observations for these species—say Mij = 1 or 2 for species with dozens of total observations overall.As we have mentioned, we also need to check whether the model is a good fit to the data by performing a posterior–predictive test. Figure 2 shows the results of this test. The main plot in the figure compares the values of the 40 largest elements of the original data matrix M with the corresponding elements of the generated matrix (widetilde{{boldsymbol{M}}}). In each case, the original value is well within one standard deviation of the average value generated by the test, confirming the accuracy of the model. The inset of the figure shows the residue matrix ({boldsymbol{M}}-widetilde{{boldsymbol{M}}}), which reveals no systematic bias unaccounted for by the model. The discrepancy X2 of Eq. (12) takes the value 26.94 in this case, well below the expected value of npna = 168, which indicates that the good fit is not a statistical fluke.Fig. 2: Results of a posterior–predictive test on the data matrix M for the example data set analyzed in Fig. 1.The main plot shows the error on the 40 largest entries of M, while the inset shows the residue matrix ({boldsymbol{M}}-langle tilde{{boldsymbol{M}}}rangle). Because the actual data M are well within one standard deviation of the posterior–predictive mean, the test confirms that the model is a good fit in this case. Error bars correspond to one standard deviation and are computed with n = 2000 samples from the posterior distribution.Full size imageIn addition to inferring the structure of the network itself, our method allows us to estimate many other quantities from the data. There are two primary methods by which we can do this. One is to look at the values of the fitted model parameters, which represent quantities such as the preference r and species abundances σ, τ. The other is to compute averages of quantities that depend on the network structure or the parameters (or both) from Eq. (9).As an example of the former approach, consider the parameter ρ, which represents the average probability of an edge, also known as the connectance of the network. Figure 3a shows the distribution of values of this quantity over our set of Monte Carlo samples, and neatly summarizes our overall certainty about the presence or absence of edges. If we were certain about all edges in the network, then ρ would take only a single value and the distribution would be narrowly peaked. The distribution we observe, however, is somewhat broadened, indicating significant uncertainty. The most likely value of ρ, the peak of the distribution, turns out to be quite close to the value one would arrive at if one were simply to assume that every pair of species that interacts even once is connected in the network. This does not mean, however, that one could make this assumption and get good results. As we show below, the network one would derive by doing so would be badly in error in other ways.Fig. 3: Analyses that can be performed using samples from the posterior distribution of Eq. (5).a Distribution of the connectance ρ. Connectance values for binary networks obtained by thresholding the data matrix at Mij  > 0 and Mij ≥ 5 are shown as vertical lines for reference. b Distribution of the preference parameter r. The mean value of r is 〈r〉 = 45.9 and its mode close to 40, but individual values as high as 100 are possible. c Distribution of the nestedness measure NODF. Values obtained by thresholding the data matrix at Mij  > 0 and Mij  > 1 are shown for reference. d Measured and estimated abundances for each of the plant species (R2 = 0.54).Full size imageFigure 3b shows the distribution of another of the model parameters, the parameter r, which measures the extent to which pollinators prefer the plants they normally pollinate over the ones they do not. For this particular data set the most likely value of r is around 40, meaning that pollinators visit their preferred plant species about 40 times more often than non-preferred ones, indicating all other things being equal, an impressive level of selectivity on the part of the pollinators.For the calculation of more complicated network properties we can perform an average over the value of any function f(B, θ), as long as there is an algorithm to compute it. As an example, Fig. 3c shows a calculation of the quantity known as “Nestedness based on Overlap and Decreasing Fill” (NODF), a measure of the nestedness property discussed in the introduction. This quantity measures the extent to which specialist species—those with relatively few interactions—tend to interact with a subset of the partners of generalist species42. While it is complicated to compute NODF analytically, due to the fact that one must order the species by degrees22, it is straightforward to calculate it within our framework: we simply calculate the value for each sampled network B and plot the resulting distribution. Interestingly, the most likely value of NODF is significantly different from the one we would calculate had we assumed, as discussed above, that a single interaction is sufficient to consider two species connected. On the contrary, we find that the system is almost certainly more nested than this simple analysis would conclude.In Fig. 3d, we compare the values of our estimated floral abundance parameters σ to the measured abundances reported by Kaiser-Bunbury et al.41. These parameters are not measures of abundance in the usual sense, because they combine actual abundance (quantity or density) with other characteristics such as ease of observation. We do find a correlation between the estimated and observed abundances, but it is relatively weak (R2 = 0.54), signaling significant disagreement, on which we elaborate in the discussion section.Undersampled dataAs we have pointed out, the connections in the network about which we are most uncertain tend to be ones that are undersampled, i.e., those for which we have only a small amount of data. In an ideal world we could address this problem by taking more data, but it is rare that we have the opportunity to do this. More commonly the data have already been gathered and our task is to produce the best results we can with those data. There are nonetheless some remedies open to us, such as aggregating data over different geographical areas or time windows. In Fig. 4 we compare the edge probabilities estimated from data recorded individually at the four “restored” sites in the Mahé study during October 2012 to the edge probabilities we obtain when we aggregate these observations into a single data matrix and only then estimate the network. (We use restored sites observed during the same month because they are likely to be ecologically similar, meaning the data are measuring approximately the same system.) Comparison of the two distributions shows—as we would hope—that there are fewer uncertain edges in the aggregated network than in its disaggregated parts, i.e., there are fewer edges with probabilities in the middle of the distribution and more with probabilities close to zero or one.Fig. 4: Illustration of the effect of data aggregation on edge uncertainty.a Histogram of the edge probabilities P(Bij = 1∣M) for the four restored sites in the Mahé study as observed in October 2012 and analyzed individually. b Equivalent histogram after aggregating the data over the sites and then estimating a single network from the resulting data matrix. The horizontal lines, both drawn at fifty observations—are added merely as a guide to the eye. Note how the upper histogram has more mass near the middle of the plot, while the lower one has most of its mass close to probability zero or one, indicating greater certainty in the positions of the edges in the aggregated data.Full size imageIn other cases neither aggregation nor gathering more data is possible, for instance when reanalyzing a data set already collected by others or already maximally aggregated. Such data sets record the results of observational studies that are already over, and may contain too few observations, but our approach still allows us to perform rigorous inference in these circumstances.For instance, Jordano et al.43 used dozens of existing plant-pollinator and plant-frugivore data sets to argue that the degree distributions of mutualistic networks have a long tail, but this conclusion is undermined by issues with undersampling. As an example, one of the data sets they studied, originally gathered by Inouye and Pyke44, records 1314 individual interactions over a period of 3 months in Kosciusko National Park, Australia, between 40 plants and 85 pollinator species, which works out to an average of 0.386 unique observations per species pair. Is this sampling effort sufficient to establish edges with certainty? As a point of reference, the data analyzed in Fig. 1 comprises 201 observations between 8 plants and 21 pollinators species for an average of 1.196 observations per pair of species, and the aggregated data of Fig. 4 contain 1.420 observations for every pair. Nonetheless, there is uncertainty about some of the connections in these reconstructed networks; this suggests that the network of Inouye and Pyke, with less than a third as much data per species pair, will contain significant uncertainty.Even so, our method allows us to make inferences about this network. In Fig. 5, we show estimates of the degree distributions of both plant and pollinator nodes in the network obtained from the posterior distribution P(B∣M), along with naive estimates calculated by thresholding the (undersampled) data as in the study by Jordano et al.43. As the figure shows, the results derived from the two approaches are very different. The thresholded degree distributions were classified as scale-free by Jordano et al., but this classification no longer holds once we account for the issues with the data; the inferred degree distributions are in this case well-modeled as Poisson distributions of means 5.53 and 2.60 for plants and pollinators respectively and the power-law form is a poor fit. On the other hand, the abundance parameters of the model, shown in Fig. 5, do appear to have a broad distribution, an interesting finding that calls for a rethinking of the relationship between abundances and degree distributions. It is generally thought that interactions will tend to be evenly distributed under an even distribution of abundance13 but here the opposite seems to be true.Fig. 5: Distributions of species-level parameters for a network of plants and pollinators in Kosciusko National Park, Australia, from the study by Inouye and Pyke44.a Thresholded degree distributions calculated by connecting species i and j with an edge if Mij  > 0. Inferred degree distributions are calculated using the method of this paper, averaging the fraction pk of nodes with a given degree k over n = 2000 Monte Carlo samples. b Inferred distributions of abundances σ and τ, calculated as a histogram over n = 2000 Monte Carlo samples of the abundance parameters of the fitted model. Error bars correspond to one standard deviation in all cases.Full size image More

  • in

    Limited potential for bird migration to disperse plants to cooler latitudes

    1.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    2.Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).PubMed 
    Article 

    Google Scholar 
    4.Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).PubMed 
    Article 

    Google Scholar 
    6.Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article 

    Google Scholar 
    7.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    8.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    10.González-Varo, J. P., López-Bao, J. V. & Guitián, J. Seed dispersers help plants to escape global warming. Oikos 126, 1600–1606 (2017).Article 

    Google Scholar 
    11.Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    12.Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152 (2008).Article 

    Google Scholar 
    13.Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. Ecography 42, 1280–1297 (2019).
    Google Scholar 
    14.Bacles, C. F. E., Lowe, A. J. & Ennos, R. A. Effective seed dispersal across a fragmented landscape. Science 311, 628 (2006).PubMed 
    Article 

    Google Scholar 
    15.Jordano, P., García, C., Godoy, J. A. & García-Castaño, J. L. Differential contribution of frugivores to complex seed dispersal patterns. Proc. Natl Acad. Sci. USA 104, 3278–3282 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Breitbach, N., Böhning-Gaese, K., Laube, I. & Schleuning, M. Short seed-dispersal distances and low seedling recruitment in farmland populations of bird-dispersed cherry trees. J. Ecol. 100, 1349–1358 (2012).Article 

    Google Scholar 
    17.Cain, M. L., Damman, H. & Muir, A. Seed dispersal and the Holocene migration of woodland herbs. Ecol. Monogr. 68, 325–347 (1998).Article 

    Google Scholar 
    18.Nathan, R. et al. Spread of North American wind-dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).PubMed 
    Article 

    Google Scholar 
    19.Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).PubMed 
    Article 

    Google Scholar 
    20.Viana, D. S., Gangoso, L., Bouten, W. & Figuerola, J. Overseas seed dispersal by migratory birds. Proc. R. Soc. Lond. B 283, 20152406 (2016).
    Google Scholar 
    21.Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 36, 430–438 (2013).Article 

    Google Scholar 
    22.Carlquist, S. The biota of long-distance dispersal. V. Plant dispersal to Pacific islands. Bull. Torrey Bot. Club 94, 129–162 (1967).Article 

    Google Scholar 
    23.Esteves, C. F., Costa, J. M., Vargas, P., Freitas, H. & Heleno, R. H. On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS ONE 10, e0138882 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Allometric scaling of long-distance seed dispersal by migratory birds. Am. Nat. 181, 649–662 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Martínez-López, V., García, C., Zapata, V., Robledano, F. & De la Rúa, P. Intercontinental long-distance seed dispersal across the Mediterranean basin explains population genetic structure of a bird-dispersed shrub. Mol. Ecol. 29, 1408–1420 (2020).PubMed 
    Article 

    Google Scholar 
    26.Newton, I. The Migration Ecology of Birds (Elsevier, 2010).27.Sorensen, A. E. Interactions between birds and fruit in a temperate woodland. Oecologia 50, 242–249 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    28.González-Varo, J. P., Arroyo, J. M. & Jordano, P. The timing of frugivore-mediated seed dispersal effectiveness. Mol. Ecol. 28, 219–231 (2019).PubMed 
    Article 

    Google Scholar 
    29.Jordano, P. in Seeds: The Ecology of Regeneration of Plant Communities (ed. Gallagher, R. S.) 18–61 (CABI, 2014).30.Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).31.Gallinat, A. S. et al. Patterns and predictors of fleshy fruit phenology at five international botanical gardens. Am. J. Bot. 105, 1824–1834 (2018).PubMed 
    Article 

    Google Scholar 
    32.Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl Acad. Sci. USA 110, 8996–9000 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Mitter, C., Farrell, B. & Futuyma, D. J. Phylogenetic studies of insect–plant interactions: insights into the genesis of diversity. Trends Ecol. Evol. 6, 290–293 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738–750 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).Article 

    Google Scholar 
    36.Beresford, A. E. et al. Phenology and climate change in Africa and the decline of Afro-Palearctic migratory bird populations. Remote Sens. Ecol. Conserv. 5, 55–69 (2019).Article 

    Google Scholar 
    37.Nilsson, C., Bäckman, J. & Alerstam, T. Seasonal modulation of flight speed among nocturnal passerine migrants: differences between short- and long-distance migrants. Behav. Ecol. Sociobiol. 68, 1799–1807 (2014).Article 

    Google Scholar 
    38.Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10, 63–68 (2020).ADS 
    Article 

    Google Scholar 
    40.Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).ADS 
    Article 

    Google Scholar 
    41.Brochet, A.-L. et al. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv. Int. 26, 1–28 (2016).Article 

    Google Scholar 
    42.Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    43.Stiles, E. W. Patterns of fruit presentation and seed dispersal in bird-disseminated woody plants in the eastern deciduous forest. Am. Nat. 116, 670–688 (1980).Article 

    Google Scholar 
    44.Noma, N. & Yumoto, T. Fruiting phenology of animal-dispersed plants in response to winter migration of frugivores in a warm temperate forest on Yakushima Island, Japan. Ecol. Res. 12, 119–129 (1997).Article 

    Google Scholar 
    45.Lovas-Kiss, Á. et al. Shorebirds as important vectors for plant dispersal in Europe. Ecography 42, 956–967 (2019).Article 

    Google Scholar 
    46.Coughlan, N. E., Kelly, T. C., Davenport, J. & Jansen, M. A. K. Up, up and away: bird-mediated ectozoochorous dispersal between aquatic environments. Freshw. Biol. 62, 631–648 (2017).Article 

    Google Scholar 
    47.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    48.Rivas-Martínez, S., Penas, A. & Díaz, T. Bioclimatic Map of Europe, Thermoclimatic Belts (Cartographic Service, Univ. León, 2004).49.Olesen, J. M. et al. Missing and forbidden links in mutualistic networks. Proc. R. Soc. Lond. B 278, 725–732 (2011).
    Google Scholar 
    50.Snow, B. & Snow, D. Birds and Berries (T. and A. D. Poyser, 1988).51.Stiebel, H. & Bairlein, F. Frugivory in central European birds I: diet selection and foraging. Vogelwarte 46, 1–23 (2008).
    Google Scholar 
    52.González-Varo, J. P., Arroyo, J. M. & Jordano, P. Who dispersed the seeds? The use of DNA barcoding in frugivory and seed dispersal studies. Methods Ecol. Evol. 5, 806–814 (2014).Article 

    Google Scholar 
    53.Simmons, B. I. et al. Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networks. J. Anim. Ecol. 87, 995–1007 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Plein, M. et al. Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94, 1296–1306 (2013).PubMed 
    Article 

    Google Scholar 
    55.Albrecht, J. et al. Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. J. Ecol. 103, 526–536 (2015).Article 

    Google Scholar 
    56.García, D. Birds in ecological networks: insights from bird–plant mutualistic interactions. Ardeola 63, 151–180 (2016).Article 

    Google Scholar 
    57.Farwig, N., Schabo, D. G. & Albrecht, J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J. Ecol. 105, 20–28 (2017).Article 

    Google Scholar 
    58.Torroba Balmori, P., Zaldívar García, P. & Hernández Lázaro, Á. Semillas de Frutos Carnosos del Norte Ibérico: Guía de Identificación (Ediciones Univ. Valladolid, 2013).59.Stiebel, H. Frugivorie bei Mitteleuropäischen Vögeln. PhD thesis, Univ. Oldenburg (2003).60.Jordano, P. Data from: Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. Dryad https://doi.org/10.5061/dryad.9tb73 (2013).61.González-Varo, J. P., Carvalho, C. S., Arroyo, J. M. & Jordano, P. Unravelling seed dispersal through fragmented landscapes: frugivore species operate unevenly as mobile links. Mol. Ecol. 26, 4309–4321 (2017).PubMed 
    Article 

    Google Scholar 
    62.Ratnasingham, S. & Hebert, P. D. N. bold: the Barcode of Life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.CBOL Plant Working Group et al. A DNA barcode for land plants. Proc. Natl Acad. Sci. USA 106, 12794–12797 (2009).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    64.Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.González-Varo, J. P., Díaz-García, S., Arroyo, J. M. & Jordano, P. Seed dispersal by dispersing juvenile animals: a source of functional connectivity in fragmented landscapes. Biol. Lett. 15, 20190264 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Fuentes, M. Latitudinal and elevational variation in fruiting phenology among western European bird-dispersed plants. Ecography 15, 177–183 (1992).Article 

    Google Scholar 
    67.Herrera, C. M. A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecol. Monogr. 54, 1–23 (1984).Article 

    Google Scholar 
    68.Hampe, A. & Bairlein, F. Modified dispersal-related traits in disjunct populations of bird-dispersed Frangula alnus (Rhamnaceae): a result of its Quaternary distribution shifts? Ecography 23, 603–613 (2000).Article 

    Google Scholar 
    69.Thomas, P. A. & Mukassabi, T. A. Biological flora of the British Isles: Ruscus aculeatus. J. Ecol. 102, 1083–1100 (2014).Article 

    Google Scholar 
    70.Jordano, P. Biología de la reproducción de tres especies del género Lonicera (Caprifoliaceae) en la Sierra de Cazorla. An. Jardin Botanico Madr. 1979 48, 31–52 (1990).
    Google Scholar 
    71.Debussche, M. & Isenmann, P. A Mediterranean bird disperser assemblage: composition and phenology in relation to fruit availability. Rev. Ecol. 47, 411–432 (1992).
    Google Scholar 
    72.Jordano, P. Diet, fruit choice and variation in body condition of frugivorous warblers in Mediterranean scrubland. Ardea 76, 193–209 (1988).
    Google Scholar 
    73.Barroso, Á., Amor, F., Cerdá, X. & Boulay, R. Dispersal of non-myrmecochorous plants by a “keystone disperser” ant in a Mediterranean habitat reveals asymmetric interdependence. Insectes Soc. 60, 75–86 (2013).Article 

    Google Scholar 
    74.González-Varo, J. P. Fragmentation, habitat composition and the dispersal/predation balance in interactions between the Mediterranean myrtle and avian frugivores. Ecography 33, 185–197 (2010).Article 

    Google Scholar 
    75.Sánchez-Salcedo, E. M., Martínez-Nicolás, J. J. & Hernández, F. Phenological growth stages of mulberry tree (Morus sp.) codification and description according to the BBCH scale. Ann. Appl. Biol. 171, 441–450 (2017).Article 

    Google Scholar 
    76.García-Castaño, J. L. Consecuencias Demográficas de la Dispersión de Semillas por Aves y Mamíferos Frugívoros en la Vegetación Mediterránea de Montaña. PhD thesis, Univ. Sevilla (2001).77.Gilbert, O. L. Symphoricarpos albus (L.) S. F. Blake (S. rivularis Suksd., S. racemosus Michaux). J. Ecol. 83, 159–166 (1995).Article 

    Google Scholar 
    78.Billerman, S. M. et al. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2020).79.Tellería, J., Asensio, B. & Díaz, M. Aves Ibéricas: II. Paseriformes (J. M. Reyero Editor, 1999).80.Díaz, M., Asensio, B. & Tellería, J. L. Aves Ibéricas: I. No paseriformes (J. M. Reyero Editor, 1996).81.SEO/Birdlife. La Enciclopedia de las Aves de España (SEO/Birdlife-Fundación BBVA, 2019).82.Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia. 2. Passeriformi (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Tipografia SCR-Roma, 2008).83.Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia. 1. Non-Passeriformi (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Tipografia CSR-Roma, 2008).84.Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland (T. & A. D. Poyser, 2002).85.Cramp, S. The Complete Birds of the Western Paleartic (CD-ROM) (Oxford Univ. Press, 1998).86.Bairlein, F. et al. Atlas des Vogelzugs – Ringfunde deutscher Brut- und Gastvögel (Aula, 2014).87.Tomiałojć, L. & Stawarczyk, T. Awifauna Polski: Rozmieszczenie, Liczebność i Zmiany (PTPP pro. Natura, 2003).88.Busse, P., Gromadzki, M. & Szulc, B. Obserwacje przelotu jesiennego ptaków w roku 1960 w Górkach Wschodnich koło Gdańska (Observations on bird migration at Górki Wschodnie near Gdańsk Autumn 1960). Acta Ornithologica 7, 305–336 (1963).
    Google Scholar 
    89.Bobrek, R. et al. Międzysezonowa powtarzalność dynamiki jesiennej migracji wróblowych Passeriformes nad Jeziorem Rakutowskim. Ornis Polonica 57, 39–57 (2016).
    Google Scholar 
    90.Keller, M. et al. Ptaki Środkowej Wisły (M-ŚTO, 2017).91.Bocheński, M. et al. Awifauna przelotna i zimująca środkowego odcinka doliny Odry. Ptaki Śląska 16, 123–161 (2006).
    Google Scholar 
    92.BTO. BirdTrack. http://www.birdtrack.net (accessed October 2018).93.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    94.Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn (SAGE, 2011).95.Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).Article 

    Google Scholar 
    96.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    97.Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Molina-Venegas, R. & Rodríguez, M. Á. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    103.Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    104.Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Bates, D., Maechler, M. & Bolker, B. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-19 https://CRAN.R-project.org/package=lme4 (2013). More