More stories

  • in

    Fewer bat passes are detected during small, commercial drone flights

    Site informationThe study was conducted at the Kenauk Institute, an environmental research site, in western Quebec in July 2018, 2019 and 2020. All surveys occurred between 21h30 and 00h00 at night, with location and time of day randomized for each date of testing. Testing did not occur during inclement weather (rain or winds above 10 km/h). In 2018, during an initial field season, we surveyed bat populations using a traditional method (transect-based surveys) to determine which species were present. Six transects lasting 1.5 h each were laid out, and surveyed three times per season; three transects were located in open-canopy areas, and three were located in rugged, closed-canopy areas. Every 200 m, a flag marked a sampling point where we completed a 2-min static inventory using an Anabat SD2 (Titley Scientific, Columbia, MO). In this pilot study used to develop the main study, we observed all eight species known in Quebec, including the eastern red bat (Lasiurus borealis; 0.005 passes detected per minute in open-canopy habitat; 0.001 in closed-canopy), hoary bat (Lasiurus cinereus; 0.002 passes detected per minute in open-canopy habitat; 0.006 in closed-canopy) and tri-coloured bats (Perimyotis subflavus; 0.026 passes detected per minute in open-canopy habitat; none in closed-canopy). Species in the Eptesicus fuscus/Lasionycteris noctivagans acoustic complex were the most abundant (0.075 passes detected per minute in open-canopy habitat; 0.018 in closed-canopy) followed by Myotis species (Myotis leibii, Myotis septentrionalis, Myotis lucifugus; 0.075 passes detected per minute in open-canopy habitat; none in closed-canopy). Due to small sample sizes per species and because manual identification using spectrographic analyses can be unreliable for the differentiation of some bat species22, we pooled several bat species that had similar spectrograms into complexes. We pooled the big brown bat (Eptesicus fuscus) and the silver-haired bat (Lasionycteris noctivagans), and the Myotis species: little brown bat (Myotis lucifugus), northern long-eared Myotis (M. septentrionalis), and eastern small-footed bat (M. leibii)22. Therefore, these species are grouped together in analyses to minimize identification errors22. The big brown bat and silver-haired bat form the EPNO complex whereas the Myotis species form the MYSP complex. We identified to species the hoary bat (LACI), red bat (LABO), and tri-coloured bat (PESU)22. We identified bat passes visually using the output from the Anabat in the Anabat Insight software17,23.Detection efficiencyBecause total bat passes per minute were seven times higher in open-canopy habitats than in closed-canopy habitats, in 2019 we focused our surveying efforts in relatively open habitats. The Anabat (420 g) is too large to attach to a drone, thus in 2019 and 2020, we used Echometer Touch bat detectors (20 g; Wildlife Acoustics, Maynard, MA), commercially available and inexpensive detectors, attached to iPod 7 s (88 g; Apple Inc., Cupertino, CA). We do not directly compare between surveys done with the Anabat and the Echometer Touch, but merely used the 2018 Anabat surveys as a guide for expected bat species and distributions in 2019 and 2020. The UAV used was a commercially available Phantom 4 quadcopter from DJI (1.3 kg, DJI Technology Co. Inc., Shenzhen, China). To reduce sound interference from the drone, which could reduce the detection range of the instrument, we placed a 2-in. Sonoflat acoustic foam (Auralex, Indianapolis, IN) divider between the recorder and the drone, as recommended by past studies19,21 (Fig. 1).Figure 1Illustration of the three phases of the experiment design. A photograph of the UAV setup used in Phase 2 is presented in the top right corner. The setup consists of an Echometer Touch bat detector from Wildlife Acoustics and 2-inch Sonoflat acoustic foam from Auralex attached to a DJI Phantom 4 quadcopter using zip ties. (Images by Julian Herzog, Symbolon, FontAwesome retrieved from https://commons.wikimedia.org. Picture taken by the author).Full size imageIn both 2019 and 2020, we surveyed in three phases: (1) a 5-min recording from the ground without UAV; (2) a 5-min recording while the detector was attached to the UAV using zip ties and carabiners and while the UAV was manually flown in a 10–15 m diameter circle at canopy height (5––10 m above the pilot), depending on the survey site; and (3), identically to Phase 1, a 5-min recording taken from the ground without UAV (Fig. 1). The ground recorder, used sparsely in 2019 and consistently in 2020, was 1 m above the ground during phase 2. Based on surveys in 2018, seven sites were identified as having higher relative activity and were repeatedly monitored in 2019 and 2020 for bat activity. Of the seven study sites, five were located next to bodies of water and four were located near buildings; all were located in open areas. Open spaces and bodies of water are preferred hunting grounds for most bat species18, and make for an easier and safer drone flight. An additional bat detector (Echometer Touch 2, Wildlife Acoustics, Maynard USA) was used on the ground during Phase 2 to simultaneously monitor bat passes from the air and from the ground, to indicate whether bats were present but not detected due to UAV noise interference. In 2020, ten surveys were conducted with Echometer Touch 2 recorders on (1) the UAV, (2) on the ground, and (3) at a control site > 1 km from the current site. Control sites were only used in 2020. Because different bat detectors, as well as different classification software, detect and identify bats at different rates, we do not directly compare among different detectors or software24,25. In 2019, we used the Kaleidoscope software to identify bats automatically. We removed false identifications manually. In 2020, we used the Kaleidoscope software to identify all bats automatically. We also identified all passes visually and blind to the classification from Kaleidoscope. By classifying all bats using both software and visual identification, we aimed to determine whether our results were robust to identification technique.Data were collected beyond Phase 1 if the site had a bat density above three passes per 5 min (2019: N = 24 without ground detector; N = 5 with ground detector; 2020: N = 10 with ground detector; all sample sizes refer to experiments that included Phases 2 and 3). If insufficient bat activity was recorded at a given site after a 5-min period, data collection moved on to the next site, and data from that site was excluded from any analyses. Phase 1 was done to ensure there was an established bat presence, and to maximize sampling. The length of each phase was extended to 10 min if two passes were detected by the 5-min mark of Phase 1, allowing for the collection of more data, while maintaining the time proportions of each phase. While this process, necessary logistically to obtain a sufficient sample size, could lead to more bats detected during Phase 1, there should be no impact on Phase 3 compared to Phase 2, and thus, we used Tukey tests to examine Phase 3 relative to Phase 2, as well as Phase 1 compared with both other phases26.Each drone flight was performed by two field technicians: a pilot and an assistant. The UAV pilot held a basic operations pilot certificate for a small remotely-piloted aircraft system, visual line-of-sight (certificate number PC1917023611) in accordance with federal regulations enforced by Transport Canada. The assistant held the bat detector during Phases 1 and 3. During Phase 2, the assistant acted as the drone’s elevated launching and landing pad as the additional equipment obstructing the UAV’s landing gear. For take-off, they held the UAV upright above their head and gradually let go as the UAV gained altitude. For landing, the pilot gradually decreased the altitude of the drone until the landing gear was safely grasped by the assistant, who then held the UAV above their head until the propellers stopped moving. All methods were carried out in accordance with the guidelines of the Canadian Council for Animal Care. All experimental protocols were approved by McGill University animal care committee under protocol 2015-7599 and complied with the ARRIVE guidelines for animals.Statistical analyses were conducted using R 3.6.0 base package26. Generalized linear models (glm, Poisson distribution) were performed to determine the effect of phase (i.e., 1, 2, and 3) and detector location (detector on the UAV or on the ground) on the total number of bat passes. Tukey tests were then used to determine what phases and locations were significantly different from one another. To assess interspecific variation in detectability, the difference between the mean detection rate for Phase 1 and 3 and the detection rate in Phase 2 were calculated by species for each survey. A glm was then performed on the difference in detectability by species ([Average of Phases 1 and 3 − Average of Phase 2]–Species). Species were divided into four categories: MYSP (Myotis species complex), EPNO (big brown bat/silver-haired bat complex), LABO (eastern red bat), and LACI (hoary bat). No tri-coloured bats were detected, and are therefore absent from analyses. Detection phases were also divided into four categories in relation to the UAV flight: Phase 1 (pre-flight), Phase 2 from UAV-based detection (during flight), Phase 2 from ground-based detection (ground), and Phase 3 (post-flight).Detection capacityTo estimate the degree to which technological limitations affected the results gathered during the first experiment, a second experiment was conducted to estimate the impact of propeller-noise interference on the range of the bat detector. An Audio Generator SGA-8200 (Circuit-Test, Burnaby, Canada), connected to an Ultra Sound Advice S55/6 amplifier and loudspeaker (Ultra Sound Advice, London, UK) set to broadcast a 40 kHz sine wave at 40 dB SPLA @ 1 m, the highest dB setting, was used to replicate the high amplitude ultrasound reached by most bat species during their echolocation calls22. The Echometer Touch bat detector was moved away from the speaker along a measuring tape until the ultrasonic frequency could no longer be detected by the microphone. The procedure was then repeated with the detector attached to the flying UAV. As ambient sound perception cannot be evaluated when the microphone is attached to the UAV, the spectrogram on the Echometer Touch cellphone app (Wildlife Acoustics) connected to the detector was recorded with the screen video recording feature of the iPod 7 (Apple). These recordings were taken as the drone and bat detector were flown slowly along the ground to three distances (10 m, 15 m, 20 m) away from the ultrasound generator to better approximate the detection range. The videos were later visually assessed qualitatively by estimating the distance at which the signal from the speaker could no longer be distinguished from the noise interference of the drone.To quantify the spectral overlap of the drone with echolocation pulses, a spectral analysis of three 15 s recordings were performed using Avisoft SASLab Pro 4.40 (Avisoft Bioacoustics, Berlin Germany). These recordings included the drone flying, the drone motors running without propellers attached, and the ambient noise from the same location and time (control). Recordings were saved as 16 bit WAV files sampled at 256 kc/s and were normalized to 90% in SASLab Pro prior to parameterization. Spectrographs of those normalized recordings were generated using a Fast Fourier Transform length of 512 points, with a frame size of 100% and 75% overlap of Hann windows. This achieved a frequency resolution of 500 Hz and temporal resolution of 0.5 ms. Frequencies where noise was concentrated are evident from these spectrographs, but were confirmed by generating Logarithmic Power Spectra from each recording using Hann windowing achieving frequency resolution of 0.061 Hz. Noise is described at frequencies where the relative sound pressure level exceeded − 80 dB in those Power Spectra. More

  • in

    Citizen science and niche modeling to track and forecast the expansion of the brown marmorated stinkbug Halyomorpha halys (Stål, 1855)

    1.Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7, 277 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Meyerson, L. A. & Reaser, J. K. Biosecurity: moving toward a comprehensive approach. Bioscience 52, 593 (2002).Article 

    Google Scholar 
    5.Carvajal-Yepes, M. et al. A global surveillance system for crop diseases. Science 364, 1237–1239 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Torres, A., David, M. & Bowman, Q. Risk management of international trade: emergency preparedness. Rev. Sci. Tech. Off. Int. Épizooties 21, 493–496 (2002).CAS 
    Article 

    Google Scholar 
    7.Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Giovani, B. et al. Science diplomacy for plant health. Nat. Plants 6, 902–905 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Reaser, J. K. et al. The early detection of and rapid response (EDRR) to invasive species: a conceptual framework and federal capacities assessment. Biol. Invasions 22, 1–19 (2020).Article 

    Google Scholar 
    10.Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).Article 

    Google Scholar 
    11.Crall, A. W. et al. Improving and integrating data on invasive species collected by citizen scientists. Biol. Invasions 12, 3419–3428 (2010).Article 

    Google Scholar 
    12.Maistrello, L. et al. Tracking the spread of sneaking aliens by integrating crowdsourcing and spatial modeling: the Italian invasion of halyomorpha halys. Bioscience https://doi.org/10.1093/biosci/biy112 (2018).Article 

    Google Scholar 
    13.Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F. Handbook of Citizen Science in Ecology and Conservation (University of California Press, Oakland, 2020).14.Devorshak, C. Plant pest risk analysis: concepts and applications. (CAB International, Wallingford, 2012).15.IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge and New York, 2014).16.Hijmans, R. J. & Graham, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 12, 2272–2281 (2006).ADS 
    Article 

    Google Scholar 
    17.Broennimann, O. & Guisan, A. Predicting current and future biological invasions: both native and invaded ranges matter. Biol. Lett. 4, 585–589 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Godefroid, M., Meurisse, N., Groenen, F., Kerdelhué, C. & Rossi, J.-P. Current and future distribution of the invasive oak processionary moth. Biol. Invasions 22, 523–534 (2020).Article 

    Google Scholar 
    19.Crall, A. W. et al. Citizen science contributes to our knowledge of invasive plant species distributions. Biol. Invasions 17, 2415–2427 (2015).Article 

    Google Scholar 
    20.Petrovan, S. O., Vale, C. G. & Sillero, N. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution?. Biodivers. Conserv. 29, 1767–1781 (2020).Article 

    Google Scholar 
    21.Hannah, L. J. Climate Change Biology (Academic Press, 2015).
    Google Scholar 
    22.Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).ADS 
    Article 

    Google Scholar 
    23.Porfirio, L. L. et al. Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 9, e113749 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Hamilton, G. C., Ahn, J. J., Bu, W., Leskey, T. C., Nielsen, A. L., Park, Y.-L., Rabitsch, W. & Hoelmer, K.A. Halyomorpha halys (Stål). In Invasive stink bugs and related species (Pentatomoidea): biology, higher systematics, semiochemistry, and management (ed McPherson, J. E.) 243–292 (CRC Press, Taylor & Francis, Boca Raton, 2018).25.Bergmann, E. J., Venugopal, P. D., Martinson, H. M., Raupp, M. J. & Shrewsbury, P. M. Host plant use by the invasive Halyomorpha halys (Stål) on woody ornamental trees and shrubs. PLoS ONE 11, e0149975 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Gapon, D. A. First records of the brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera, Pentatomidae) in Russia, Abkhazia, and Georgia. Entomol. Rev. 96, 1086–1088 (2016).Article 

    Google Scholar 
    27.Faúndez, E. I. & Rider, D. A. The brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera: Pentatomidae) in Chile. Arq. Entomolóxicos 17, 305–307 (2017).
    Google Scholar 
    28.McPherson, J. E., ed. Invasive stink bugs and related species (Pentatomoidea): biology, higher systematics, semiochemistry, and management (CRC Press, Taylor & Francis, Boca Raton, 2018).29.Maistrello, L. et al. Halyomorpha halys in Italy: first results of field monitoring in fruit orchards. Integr. Prot. Fruit Crops IOBC-WPRS Bull. 112, 1–5 (2016).
    Google Scholar 
    30.Bariselli, M., Bugiani, R. & Maistrello, L. Distribution and damage caused by Halyomorpha halys in Italy. EPPO Bull. 46, 332–334 (2016).Article 

    Google Scholar 
    31.Zhu, G., Bu, W., Gao, Y. & Liu, G. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLoS ONE 7, e31246 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 90, 1033–1043 (2017).Article 

    Google Scholar 
    33.Kistner, E. J. Climate change impacts on the potential distribution and abundance of the brown marmorated stink bug (Hemiptera: Pentatomidae) with special reference to North America and Europe. Environ. Entomol. 46, 1212–1224 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2021).35.Vaclavik, T., Kanaskie, A., Hansen, E. M., Ohmann, J. L. & Meentemeyer, R. K. Predicting potential and actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection and eradication of disease outbreaks. For. Ecol. Manag. 260, 1026–1035 (2010).Article 

    Google Scholar 
    36.Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).Article 

    Google Scholar 
    37.Elith, J. et al. A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    38.Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).Article 

    Google Scholar 
    39.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    40.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    41.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    42.Wu, T. et al. The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 
    Article 

    Google Scholar 
    43.Voldoire, A. et al. Evaluation of CMIP6 DECK experiments With CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).ADS 
    Article 

    Google Scholar 
    44.Séférian, R. et al. Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).ADS 
    Article 

    Google Scholar 
    45.Swart, N. C. et al. The Canadian earth system model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).ADS 
    Article 

    Google Scholar 
    47.Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models with Applications in R (Cambridge University Press, 2017).Book 

    Google Scholar 
    50.Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).Article 

    Google Scholar 
    52.Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography https://doi.org/10.1111/j.1600-0587.2013.00441.x (2014).Article 

    Google Scholar 
    53.VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).Article 

    Google Scholar 
    54.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    55.Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    56.Godefroid, M., Cruaud, A., Streito, J.-C., Rasplus, J.-Y. & Rossi, J.-P. Xylella fastidiosa: climate suitability of European continent. Sci. Rep. 9, 8844 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Vollering, J., Halvorsen, R. & Mazzoni, S. The MIAmaxent R package: variable transformation and model selection for species distribution models. Ecol. Evol. 9, 12051–12068 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Mazzoni, S., Halvorsen, R. & Bakkestuen, V. MIAT: modular R-wrappers for flexible implementation of MaxEnt distribution modelling. Ecol. Inform. 30, 215–221 (2015).Article 

    Google Scholar 
    59.Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species: the art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    60.Halvorsen, R., Mazzoni, S., Bryn, A. & Bakkestuen, V. Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. Ecography 38, 172–183 (2015).Article 

    Google Scholar 
    61.Halvorsen, R. A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling. Sommerfeltia 36, 1–132 (2013).Article 

    Google Scholar 
    62.Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    63.Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    64.Jiménez, L. & Soberón, J. Leaving the area under the receiving operating characteristic curve behind: an evaluation method for species distribution modeling applications based on presence-only data. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13479 (2020).Article 

    Google Scholar 
    65.Chartois, M., Streito, J.-C., Pierre, E., Armand, J.-M., Gaudin, J., Rossi, J.-P. A crowdsourcing approach to track the expansion of the brown marmorated stinkbug Halyomorpha halys (Stål, 1855) in France. Biodivers. Data J. 9, e66335. https://doi.org/10.3897/BDJ.9.e66335 (2021)66.Maurel, J.-P., Blaye G., Valladares L., Roinel, E. & Cochard, P.-O. Halyomorpha halys (Stål, 1855), la punaise diabolique en France, à Toulouse (Heteroptera ; Pentatomidae). Carnets Nat. 3, 21–25 (2016).67.Cherpitel, T. & Casset, L. Halyomorpha halys (Stål, 1855), la Punaise diabolique, atteint la façade atlantique (Heteroptera Pentatomidae). L’Entomologiste 75, 59–60 (2018).
    Google Scholar 
    68.Pagola-Carte, S. & Zabalegui, I. D. hemípteros asiáticos nuevos para Gipuzkoa, norte de la Península Ibérica (Hemiptera: Pentatomidae, Cicadellidae). Heteropterus Rev. Entomol. 19, 355–360 (2019).
    Google Scholar 
    69.Streito, J. C., Rossi, J.-P., Haye, T., Hoelmer, K. & Tassus, X. La punaise diabolique à la conquête de la France. Phytoma 677, 26–30 (2014).70.Maistrello, L., Dioli, P., Bariselli, M., Mazzoli, G. L. & Giacalone-Forini, I. Citizen science and early detection of invasive species: phenology of first occurrences of Halyomorpha halys in Southern Europe. Biol. Invasions 18, 3109–3116 (2016).Article 

    Google Scholar 
    71.Stoeckli, S., Felber, R. & Haye, T. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. Int. J. Biometeorol. https://doi.org/10.1007/s00484-020-01992-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Leskey, T. C., Lee, D.-H., Glenn, D. M. & Morrison, W. R. Behavioral responses of the invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) to light-based stimuli in the laboratory and field. J. Insect Behav. 28, 674–692 (2015).Article 

    Google Scholar 
    73.Inkley, D. B. Characteristics of home invasion by the brown marmorated stink bug (Hemiptera: Pentatomidae). J. Entomol. Sci. 47, 125–130 (2012).Article 

    Google Scholar 
    74.Cambridge, J., Payenski, A. & Hamilton, G. C. The distribution of overwintering brown marmorated stink bugs (Hemiptera: Pentatomidae) in college dormitories. Fla. Entomol. 98, 1257–1259 (2015).Article 

    Google Scholar 
    75.Hancock, T. J., Lee, D.-H., Bergh, J. C., Morrison, W. R. & Leskey, T. C. Presence of the invasive brown marmorated stink bug Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) on home exteriors during the autumn dispersal period: results generated by citizen scientists: presence of H. halys during the autumn dispersal. Agric. For. Entomol. 21, 99–108 (2019).Article 

    Google Scholar 
    76.Streito, J.-C., Chartois, M., Pierre, É. & Rossi, J.-P. Beware the brown marmorated stink bug!. IVES Tech Rev. Vine Wine https://doi.org/10.20870/IVES-TR.2020.3304 (2020).Article 

    Google Scholar 
    77.Haye, T. et al. Range expansion of the invasive brown marmorated stinkbug, Halyomorpha halys: an increasing threat to field, fruit and vegetable crops worldwide. J. Pest Sci. 88, 665–673 (2015).Article 

    Google Scholar 
    78.Zhu, G., Gariepy, T. D., Haye, T. & Bu, W. Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. J. Pest Sci. 90, 1045–1057 (2017).Article 

    Google Scholar 
    79.Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Leskey, T. C. & Nielsen, A. L. Impact of the invasive brown marmorated stink bug in North America and Europe: history, biology, ecology, and management. Annu. Rev. Entomol. 63, 599–618 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).Article 

    Google Scholar 
    84.Urvois, T., Auger-Rozenberg, M. A., Roques, A., Rossi, J. P. & Kerdelhue, C. Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Sci. Rep. 11, 1339 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar  More

  • in

    A polyphagous, tropical insect herbivore shows strong seasonality in age-structure and longevity independent of temperature and host availability

    1.Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17, 67–88 (1986).Article 

    Google Scholar 
    2.Kishimoto-Yamada, K. & Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)?. Entomol. Sci. 18, 407–419. https://doi.org/10.1111/ens.12134 (2015).Article 

    Google Scholar 
    3.dos Santos, J. P. D., Iserhard, C. A., Carreira, J. Y. O. & Freitas, A. V. L. Monitoring fruit-feeding butterfly assemblages in two vertical strata in seasonal Atlantic Forest: Temporal species turnover is lower in the canopy. J. Trop. Ecol. 33, 345–355. https://doi.org/10.1017/s0266467417000323 (2017).Article 

    Google Scholar 
    4.Bonebrake, T. C., Ponisio, L. C., Boggs, C. L. & Ehrlich, P. R. More than just indicators: A review of tropical butterfly ecology and conservation. Biol. Conser. 143, 1831–1841 (2010).Article 

    Google Scholar 
    5.Molleman, F. Moving beyond phenology: New directions in the study of temporal dynamics of tropical insect communities. Curr. Sci. 114, 982 (2018).Article 

    Google Scholar 
    6.Frith, C. B. & Frith, D. W. Seasonality of insect abundance in an Australian upland tropical rainforest. Aust. J. Ecol. 10, 237–248 (1985).Article 

    Google Scholar 
    7.Braby, M. Seasonal-changes in relative abundance and spatial-distribution of Australian lowland tropical satyrine butterflies. Aust. J. Zool. 43, 209–229 (1995).Article 

    Google Scholar 
    8.Muniz, D. G., Freitas, A. V. & Oliveira, P. S. Phenological relationships of Eunica bechina (Lepidoptera: Nymphalidae) and its host plant, Caryocar brasiliense (Caryocaraceae), in a Neotropical savanna. Stud. Neotrop. Fauna Environ. 47, 111–118 (2012).Article 

    Google Scholar 
    9.Wolda, H. Insect seasonality: Why?. Annu. Rev. Ecol. Syst. 19, 1–18 (1988).Article 

    Google Scholar 
    10.Yonow, T. et al. Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: A cohort-based approach incorporating the effects of weather. Ecol. Model. 173, 9–30. https://doi.org/10.1016/s0304-3800(03)00306-5 (2004).Article 

    Google Scholar 
    11.Baker, R. et al. Bactrocera dorsalis pest report to support ranking of EU candidate priority pests. EFSA https://doi.org/10.5281/zenodo.2786921 (2019).12.Valtonen, A. et al. Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere https://doi.org/10.1890/es12-00338.1 (2013).Article 

    Google Scholar 
    13.Hernández, C. X. P. & Caballero, S. Z. Temporal variation in the diversity of Cantharidae (Coleoptera), in seven assemblages in tropical dry forest in Mexico. Trop. Conserv. Sci. 9, 439–464 (2016).Article 

    Google Scholar 
    14.Marchioro, C. A. & Foerster, L. A. Biotic factors are more important than abiotic factors in regulating the abundance of Plutella xylostella L., Southern Brazil. Rev. Bras. Entomol. 60, 328–333 (2016).Article 

    Google Scholar 
    15.Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 1–61 (1981).
    Google Scholar 
    16.Sutherst, R. W. & Yonow, T. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust. J. Agric. Res. 49, 935–954 (1998).Article 

    Google Scholar 
    17.Choudhary, J. S. et al. Potential changes in number of generations of oriental fruit fly, Bactrocera Dorsalis (Diptera: Tephritidae) on mango in India in response to climate change scenarios. J. Agrometeorol. 19, 200–206 (2017).
    Google Scholar 
    18.Clarke, A. R. Biology and Management of Bactrocera and Related Fruit Flies (CABI, 2019).Book 

    Google Scholar 
    19.Sakai, S. et al. Plant reproductive phenology over four years including an episode of general flowering in a lowland dipterocarp forest, Sarawak, Malaysia. Am. J. Bot. 86, 1414–1436 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Land, K. C., Yang, Y. & Zeng, Y. Mathematical demography. Handbook of Population 659–717 (Springer, 2005).21.Carey, J. R. & Roach, D. A. Biodemography: An Introduction to Concepts and Methods (Princeton University Press, 2020).MATH 
    Book 

    Google Scholar 
    22.Carey, J. R. Applied Demography for Biologists: With Special Emphasis on Insects (Oxford University Press, 1993).
    Google Scholar 
    23.Carey, J. R. Insect biodemography. Annu. Rev. Entomol. 46, 79–110 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Southwood, T. R. E. Ecological Methods: With Particular Reference to the Study of Insect Populations. xviii + 391 (Methuen, London, 1966).25.Udevitz, M. S. & Ballachey, B. E. Estimating survival rates with age-structure data. J. Wildl. Manag. 62, 779–792 (1998).Article 

    Google Scholar 
    26.Müller, H. G. et al. Demographic window to aging in the wild: constructing life tables and estimating survival functions from marked individuals of unknown age. Aging Cell 3, 125–131 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Zajitschek, F., Zajitschek, S. & Bonduriansky, R. Senescence in wild insects: Key questions and challenges. Funct. Ecol. 34, 26–37 (2020).Article 

    Google Scholar 
    28.Carey, J. R. et al. Age structure changes and extraordinary lifespan in wild medfly populations. Aging Cell 7, 426–437. https://doi.org/10.1111/j.1474-9726.2008.00390.x (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Rao, A. S. S. & Carey, J. R. Generalization of Carey’s equality and a theorem on stationary population. J. Math. Biol. 71, 583–594 (2015).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    30.Carey, J. R. Biodemography of the Mediterranean fruit fly: Aging, longevity and adaptation in the wild. Exp. Gerontol. 46, 404–411. https://doi.org/10.1016/j.exger.2010.09.009 (2011).Article 
    PubMed 

    Google Scholar 
    31.Muller, H. G., Wang, J. L., Yu, W., Delaigle, A. & Carey, J. R. Survival and aging in the wild via residual demography. Theor. Popul. Biol. 72, 513–522. https://doi.org/10.1016/j.tpb.2007.07.003 (2007).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    32.Vaupel, J. Life lived and left: Carey’s equality. Demogr Res 20, 7–10. https://doi.org/10.4054/DemRes.2009.20.3 (2009).Article 

    Google Scholar 
    33.Carey, J. R., Papadopoulos, N. T., Papanastasiou, S., Diamantidis, A. & Nakas, C. T. Estimating changes in mean population age using the death distributions of live-captured medflies. Ecol. Entomol. 37, 359–369. https://doi.org/10.1111/j.1365-2311.2012.01372.x (2012).Article 

    Google Scholar 
    34.Papadopoulos, N. T. et al. Seasonality of post-capture longevity in a medically-important mosquito (Culex pipiens). Front. Ecol. Evol https://doi.org/10.3389/fevo.2016.00063 (2016).Article 

    Google Scholar 
    35.Behrman, E. L., Watson, S. S., O’Brien, K. R., Heschel, M. S. & Schmidt, P. S. Seasonal variation in life history traits in two Drosophila species. J Evol Biol 28, 1691–1704. https://doi.org/10.1111/jeb.12690 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Drew, R. A. The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Mem. Queensland Museum 26, 1 (1989).
    Google Scholar 
    37.Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop prot. 116, 56–67 (2019).Article 

    Google Scholar 
    38.Boulter, S. L., Kitching, R. L. & Howlett, B. G. Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia. J. Ecol. 94, 369–382. https://doi.org/10.1111/j.1365-2745.2005.01084.x (2006).Article 

    Google Scholar 
    39.Dominiak, B. C. & Mapson, R. Revised distribution of Bactrocera tryoni in eastern Australia and effect on possible incursions of Mediterranean fruit fly: Development of Australia’s eastern trading block. J. Econ. Entomol. 110, 2459–2465 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Bateman, M. Adaptations to temperature in geographic races of the Queensland fruit fly Dacus (Strumenta) tryoni. Aust. J. Zool. 15, 1141–1161 (1967).Article 

    Google Scholar 
    41.Bateman, M. Determinants of abundance in a population of the Queensland fruit fly. In: Southwood, T.R.E. (ed.) Insect abundance 119–131 (Blackwell Scientific Publications, London, 1968).42.Drew, R., Zalucki, M. & Hooper, G. Ecological studies of eastern Australian fruit flies (Diptera: Tephritidae) in their endemic habitat. Oecologia 64, 267–272 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Muthuthantri, S., Maelzer, D., Zalucki, M. P. & Clarke, A. R. The seasonal phenology of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) in Queensland. Aust. J. Entomol. 49, 221–233. https://doi.org/10.1111/j.1440-6055.2010.00759.x (2010).Article 

    Google Scholar 
    44.Lloyd, A. C. et al. Area-wide management of fruit flies (Diptera: Tephritidae) in the Central Burnett district of Queensland. Aust. J. Crop Prot. 29, 462–469. https://doi.org/10.1016/j.cropro.2009.11.003 (2010).CAS 
    Article 

    Google Scholar 
    45.Pritchard, G. The ecology of a natural population of Queensland fruit fly, Dacus tryoni III. The maturation of female flies in relation to temperature. Aust. J. Zool. 18, 77–89 (1970).Article 

    Google Scholar 
    46.Clarke, A. R., Merkel, K., Hulthen, A. D. & Schwarzmueller, F. Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) overwintering: an overview. Aust. Entomol. 58, 3–8. https://doi.org/10.1111/aen.12369 (2019).Article 

    Google Scholar 
    47.Merkel, K. et al. Temperature effects on “overwintering” phenology of a polyphagous, tropical fruit fly (Tephritidae) at the subtropical/temperate interface. J. Appl. Entomol. 143, 754–765 (2019).CAS 
    Article 

    Google Scholar 
    48.Raghu, S., Clarke, A. R., Drew, R. A. & Hulsman, K. Impact of habitat modification on the distribution and abundance of fruit flies (Diptera: Tephritidae) in Southeast Queensland. Popul. Ecol. 42, 153–160 (2000).Article 

    Google Scholar 
    49.Novotny, V., Clarke, A. R., Drew, R. A., Balagawi, S. & Clifford, B. Host specialization and species richness of fruit flies (Diptera: Tephritidae) in a New Guinea rain forest. J. Trop. Ecol. 21, 67–77 (2005).Article 

    Google Scholar 
    50.Fletcher, B. Temperature-regulated changes in the ovaries of overwintering females of the Queensland Fruit Fly, Dacus tryoni. Aust. J. Zool. 23, 91–102 (1975).Article 

    Google Scholar 
    51.Meats, A. & Fay, H. The effect of acclimation on mating frequency and mating competitiveness in the Queensland fruit fly, Dacus tryoni, in optimal and cool mating regimes. Physiol. Entomol. 1, 207–212 (1976).Article 

    Google Scholar 
    52.Balagawi, S. Comparative ecology of Bactrocera Cucumis (French) and Bactrocera Tryoni (Froggatt) (Diptera: Tephritidae)—Understanding the life history consequences of host selection and oviposition behavior. Unpublished Thesis, Griffith University (2006).53.Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. 105, 2498–2503 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Carey, J. R., Liedo, P., Müller, H.-G., Wang, J.-L. & Vaupel, J. W. Dual modes of aging in Mediterranean fruit fly females. Science 281, 996–998 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Fanson, B. G. & Taylor, P. W. Protein: carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast: Sugar ratios. Age 34, 1361–1368 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.McElderry, R. M. Seasonal life history trade-offs in two leafwing butterflies: Delaying reproductive development increases life expectancy. J. Insect Physiol. 87, 30–34 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Werfel, J., Ingber, D. E. & Bar-Yam, Y. Theory and associated phenomenology for intrinsic mortality arising from natural selection. PLoS ONE 12, e0173677 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Kozeretska, I. A., Serga, S. V., Koliada, A. K. & Vaiserman, A. M. Epigenetic regulation of longevity in insects. Adv. Insect Physiol. 53, 87–114 (2017).Article 

    Google Scholar 
    59.Meats, A. Critical periods for developmental acclimation to cold in the Queensland fruit fly. Dacus tryoni. J. Insect Physiol. 29, 943–946 (1983).Article 

    Google Scholar 
    60.Kumaran, N. et al. Plant-mediated female transcriptomic changes post-mating in a tephritid fruit fly, Bactrocera tryoni. Genome Biol. Evol. 10, 94–107 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Dominiak, B. C., Sundaralingam, S., Jiang, L., Jessup, A. & Barchia, I. Production levels and life history traits of mass reared Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) during 1999/2002 in Australia. Plant Prot. Q. 23, 131–135 (2008).
    Google Scholar 
    62.Fanson, B., Sundaralingam, S., Jiang, L., Dominiak, B. & D’arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).Article 

    Google Scholar 
    63.Papadopoulos, N., Katsoyannos, B., Carey, J. & Kouloussis, N. Seasonal and annual occurrence of the Mediterranean fruit fly (Diptera: Tephritidae) in northern Greece. Ann. Entomol. Soc. Am. 94, 41–50 (2001).Article 

    Google Scholar 
    64.Brakefield, P. M. & Reitsma, N. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303 (1991).Article 

    Google Scholar 
    65.Molleman, F., Zwaan, B., Brakefield, P. & Carey, J. Extraordinary long life spans in fruit-feeding butterflies can provide window on evolution of life span and aging. Exp. Gerontol. 42, 472–482 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Denlinger, D. L. Dormancy in tropical insects. Ann. Rev. Entomol 31, 239–264 (1986).CAS 
    Article 

    Google Scholar 
    67.Canzano, A. A., Jones, R. E. & Seymour, J. E. Diapause termination in two species of tropical butterfly, Euploea core (Cramer) and Euploea sylvester (Fabricius) (Lepidoptera: Nymphalidae). Aust. J. Entomol 42, 352–356 (2003).Article 

    Google Scholar 
    68.Lankinen, P. & Forsman, P. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. J. Biol. Rhythms 21, 3–12 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Kouloussis, N. A. et al. Seasonal trends in Ceratitis capitata reproductive potential derived from live-caught females in Greece. Entomol. Exp. Appl. 140, 181–188. https://doi.org/10.1111/j.1570-7458.2011.01154.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Kouloussis, N. A. et al. Life table assay of field-caught Mediterranean fruit flies, Ceratitis capitata, reveals age bias. Entomol. Exp. Appl. 132, 172–181. https://doi.org/10.1111/j.1570-7458.2009.00879.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Tasnin, M. S., Silva, R., Merkel, K. & Clarke, A. R. Response of male Queensland fruit fly (Diptera: Tephritidae) to host fruit odors. J. Econ. Entomol. 113, 1888–1893 (2020).PubMed 
    Article 

    Google Scholar 
    72.Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).Article 

    Google Scholar 
    73.Chinajariyawong, A., Drew, R., Meats, A., Balagawi, S. & Vijaysegaran, S. Multiple mating by females of two Bactrocera species (Diptera: Tephritidae: Dacinae). Bull. entomol. research 100, 325 (2010).CAS 
    Article 

    Google Scholar 
    74.Pike, N. & Meats, A. Potential for mating between Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (hardy) (Diptera: Tephritidae). Aust. J. Entomol. 41, 70–74 (2002).Article 

    Google Scholar 
    75.Tasnin, M. S., Merkel, K. & Clarke, A. R. Effects of advanced age on olfactory response of male and female Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). J. Insect Physiol. 122, 104024 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).Article 

    Google Scholar  More

  • in

    Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil

    1.Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. RSoc. Lond. B Biol. Sci. 368, 20130116 (2013).Article 
    CAS 

    Google Scholar 
    2.Fowler, D. et al. The global nitrogen cycle in the Twenty-First Century. Philos. Trans. RSoc. Lond. B Biol. Sci. 368, 20130164 (2013).Article 
    CAS 

    Google Scholar 
    3.Francis, C. A., Beman, J. M. & Kuypers, M. M. M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 1, 19–27 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Beeckman, F., Motte, H. & Beeckman, T. Nitrification in agricultural soils: impact, actors and mitigation. Curr.Opin. Biotechnol. 50, 166–173 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    10.Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl Acad. Sci. USA. 108, 8420–8425 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature. 528, 504–509 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Meinhardt, K. A. et al. Ammonia-oxidizing bacteria are the primary N2O producers in an ammonia-oxidizing archaea dominated alkaline agricultural soil. Environ. Microbiol. 20, 2195–2206 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Di, H. J. et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci. 2, 621–624 (2009).CAS 
    Article 

    Google Scholar 
    18.Prosser, J. I., Hink, L., Gubry-Rangin, C. & Nicol, G. W. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Glob. Change Biol. 26, 103–118 (2020).Article 

    Google Scholar 
    19.Norton, J. & Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 10, 1931 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Lawson, C. E. & Lücker, S. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158–165 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Orellana, L. H., Chee-Sanford, J. C., Sanford, R. A., Löffler, F. E. & Konstantinidis, K. T. Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization. Appl. Environ. Microbiol. 84, e01646–01617 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Kits, K. D. et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat. Commun. 10, 1836 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 549, 269–272 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Stein, L. Y. Insights into the physiology of ammonia-oxidizing microorganisms. Curr. Opin. Chem. Biol. 49, 9–15 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Lehtovirta-Morley, L. E. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol. Lett. 365, fny058–fny058 (2018).Article 
    CAS 

    Google Scholar 
    27.Lu, X., Taylor, A. E., Myrold, D. D. & Neufeld, J. D. Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Sci. Soc. Am J. 84, 287–302 (2020).CAS 
    Article 

    Google Scholar 
    28.Taylor, A. E., Zeglin, L. H., Wanzek, T. A., Myrold, D. D. & Bottomley, P. J. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J. 6, 2024–2032 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Taylor, A. E. et al. Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing Thaumarchaea and Bacteria. Appl. Environ. Microbiol. 79, 6544–6551 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Taylor, A. E., Giguere, A. T., Zoebelein, C. M., Myrold, D. D. & Bottomley, P. J. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 11, 896–908 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Hink, L., Gubry-Rangin, C., Nicol, G. W. & Prosser, J. I. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 12, 1084–1093 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Hink, L., Nicol, G. W. & Prosser, J. I. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ. Microbiol. 19, 4829–4837 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Levičnik-Höfferle, Š., Nicol, G. W., Ausec, L., Mandić-Mulec, I. & Prosser, J. I. Stimulation of Thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol. Ecol. 80, 114–123 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    34.Stopnisek, N. et al. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not Influenced by ammonium amendment. Appl. Environ. Microbiol. 76, 7626–7634 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Rodriguez, A. F., Gerber, S. & Daroub, S. H. Modeling soil subsidence in a subtropical drained peatland. The case of the everglades agricultural Area. Ecol. Modelling. 415, 108859 (2020).Article 

    Google Scholar 
    37.Terry, R. E. Nitrogen mineralization in Florida histosols. Soil Sci. Soc. Am. J. 44, 747–750 (1980).CAS 
    Article 

    Google Scholar 
    38.Zhalnina, K. et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 104 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Hart S. C., Stark, J. M., Davidson, E. A., Firestone, M. K. Nitrogen mineralization, immobilization, and nitrification. In Methods of soil analysis (eds, Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A. et al). pp 985–1018. (Soil Science Society of America, 1994).40.Martens-Habbena, W. et al. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ. Microbiol. 17, 2261–2274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Hill, J. T. et al. Poly peak parser: Method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products. Devel Dyn. 243, 1632–1636 (2014).CAS 
    Article 

    Google Scholar 
    44.Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    Article 

    Google Scholar 
    48.Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    49.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Oksanen J., et al. vegan: Community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. (2019).53.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).54.Wickham H. ggplot2: Elegant graphics for data analysis. (Springer, 2016).55.Ouyang, Y., Norton, J. M. & Stark, J. M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biol. Biochem. 113, 161–172 (2017).CAS 
    Article 

    Google Scholar 
    56.Ouyang, Y., Evans, S. E., Friesen, M. L. & Tiemann, L. K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 127, 71–78 (2018).CAS 
    Article 

    Google Scholar 
    57.Ouyang, Y., Norton, J. M., Stark, J. M., Reeve, J. R. & Habteselassie, M. Y. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol. Biochem. 96, 4–15 (2016).CAS 
    Article 

    Google Scholar 
    58.Norton, J. M., Alzerreca, J. J., Suwa, Y. & Klotz, M. G. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch. Microbiol. 177, 139–149 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Shen, T., Stieglmeier, M., Dai, J., Urich, T. & Schleper, C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol. Lett. 344, 121–129 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Sauder, L. A., Ross, A. A. & Neufeld, J. D. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria. FEMS Microbiol. Lett. 363, fnw052 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Stieglmeier, M. et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J. 8, 1135–1146 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Erguder, T. H., Boon, N., Wittebolle, L., Marzorati, M. & Verstraete, W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol. Rev. 33, 855–869 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Zhalnina, K., Dörr de Quadros, P., Camargo, F. A. O. & Triplett, E. W. Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol. 3, 210 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Thion, C. E. et al. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol. Ecol. 92, fiw091 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    65.Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 22, 661–673 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Marschner P. Mineral nutrition of higher plants. (Academic Press, 2012).67.Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants. 3, 17074 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Masclaux-Daubresse, C. et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann. Bot. 105, 1141–1157 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Button, D. K., Robertson, B. R., Lepp, P. W. & Schmidt, T. M. A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl. Environ. Microbiol. 64, 4467–4476 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Martens-Habbena, W., Berube, P. M., Urakawa, H., Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature. 461, 976–979 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Ferreira, D. A. et al. Contribution of N from green harvest residues for sugarcane nutrition in Brazil. GCB Bioenergy. 8, 859–866 (2016).Article 

    Google Scholar 
    72.Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol. Biochem. 141, 107675 (2020).CAS 
    Article 

    Google Scholar 
    73.Maathuis, F. J. M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Song, G. C. et al. Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae. Environ. Microbiol. 21, 940–948 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    A natural constant predicts survival to maximum age

    1.Bailey, D. L., Humm, J. L., Todd-Pokropek, A. & van Aswegen, A. Nuclear Medicine Physics: A Handbook for Teachers and Students. International Atomic Energy Agency (International Atomic Energy Agency, 2014).2.McGraw-Hill. McGraw-Hill encyclopedia of science & technology. (McGraw-Hill, 2007).3.Medawar, P. B. An unsolved problem of biology. in The uniqueness of the individual (ed. Medawar, P. B.) 44–70 (Basic Books, Inc., 1952).4.Leike, A. Demonstration of the exponential decay law using beer froth. Eur. J. Phys. 23, 21–26 (2002).Article 

    Google Scholar 
    5.Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39, 175–192 (1980).Article 

    Google Scholar 
    6.Vetter, E. F. Estimation of natural mortality in fish stocks: a review. Fish. Bull. 86, 25–43 (1988).
    Google Scholar 
    7.Gosselin, J., Zedrosser, A., Swenson, J. E. & Pelletier, F. The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proc. R. Soc. B Biol. Sci. 282, 1–9 (2015).8.Nowak, D. J., Kuroda, M. & Crane, D. E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban . Urban Green. 2, 139–147 (2004).Article 

    Google Scholar 
    9.Hoenig, J. M. et al. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate. ICES J. Mar. Sci. 73, 2453–2467 (2016).Article 

    Google Scholar 
    10.Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance. (Pearson Education Limited, 2014).11.Myers, R. A., Bowen, K. G. & Barrowman, N. J. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56, 2404–2419 (1999).
    Google Scholar 
    12.Simpfendorfer, C. A., Bonfil, R. & Latour, R. J. Mortality estimation. in. FAO Fish. Tech. Pap. 474, 127 (2005).
    Google Scholar 
    13.Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).Article 

    Google Scholar 
    14.IUCN. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Geographical 14, 1–113 (2019).15.Myers, R. A. & Worm, B. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. B Biol. Sci. 360, 13–20 (2005).Article 

    Google Scholar 
    16.Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. U. S. A. 116, 9658–9664 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Gavrilov, L. & Gavrilova, N. The biology of life span: a quantitative approach. (Harwood Academic Publishers, 1991).18.Sekharan, K. Estimates of the stocks of oil sardine and mackerel in the present fishing grounds off the West coast of India. Indian J. Fish. 21, 177–182 (1974).
    Google Scholar 
    19.Alagaraja, K. Simple methods for estimation of parameters for assessing exploited fish stocks. Indian J. Fish. 31, 177–208 (1984).
    Google Scholar 
    20.Cadima, E. L. Fish stock assessment manual. FAO Fish. Tech. Pap. 393, 161 (2003).
    Google Scholar 
    21.Hewitt, D. A. & Hoenig, J. M. Comparison of two approaches for estimating natural mortality based on longevity. Fish. Bull. 103, 433–437 (2005).
    Google Scholar 
    22.Dureuil, M. et al. Unified natural mortality estimation for teleosts and elasmobranchs. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps13704 (accepted).23.Litzgus, J. D. Sex differences in longevity in the spotted turtle (Clemmys guttata). Copeia 2, 281–288 (2006).Article 

    Google Scholar 
    24.Calder, W. A. III Body size, mortality, and longevity. J. Theor. Biol. 102, 135–144 (1983).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872 (1972).Article 

    Google Scholar 
    26.Holt, S. J. A note on the relation between the mortality rate and the duration of life in an exploited fish population. Int. Comm. Northwest Atl. Fish. Res. Bull. 2, 73–75 (1965).
    Google Scholar 
    27.Hoenig, J. M. Should natural mortality estimators based on maximum age also consider sample size? Trans. Am. Fish. Soc. 146, 136–146 (2017).Article 

    Google Scholar 
    28.Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).Article 

    Google Scholar 
    29.Hamilton, W. D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Kirkwood, T. B. L. & Rose, M. R. Evolution of senescence: late survival sacrificed for reproduction. Philos. Trans. R. Soc. Lond., B 332, 15–24 (1991).CAS 
    Article 

    Google Scholar 
    32.Froese, R. & Pauly, D. FishBase. World Wide Web Electronic Publication (2019). Available at: www.fishbase.org. (accessed: 6th February 2018)33.I. C. E. S. Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel). in Report of the ICES Advisory Committee, 2019. ICES Advice 2019, her.27.3a47d 11 (2019).34.Caswell, H. & Shyu, E. Senescence, selection gradients and mortality. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 56–82 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.00435.Promislow, D. E. L. Senescence in natural populations of mammals: a comparative study. Evolution 45, 1869–1887 (1991).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Sibly, R. M., Collett, D., Promislow, D. E. L., Peacock, D. J. & Harvey, P. H. Mortality rates of mammals. J. Zool. 243, 1–12 (1997).Article 

    Google Scholar 
    37.Blumstein, D. T. & Møller, A. P. Is sociality associated with high longevity in North American birds? Biol. Lett. 4, 146–148 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Salguero-Gómez, R. & Jones, O. R.. Life history trade-offs modulate the speed of senescence. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 403–421 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.02040.Hoekstra, L. A., Schwartz, T. S., Sparkman, A. M., Miller, D. A. W. & Bronikowski, A. M. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct. Ecol. 34, 38–54 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Bonduriansky, R. & Brassil, C. E. Rapid and costly ageing in wild male flies. Nature 420, 377 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Zajitschek, F., Zajitschek, S. & Bonduriansky, R. Senescence in wild insects: Key questions and challenges. Funct. Ecol. 34, 26–37 (2020).Article 

    Google Scholar 
    43.Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).Article 

    Google Scholar 
    44.Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Ruby, J. G., Smith, M. & Buffenstein, R. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. Elife 7, 1–18 (2018).Article 

    Google Scholar 
    46.Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958–960 (1997).CAS 
    Article 

    Google Scholar 
    47.Cooke, G. M., Tonkins, B. M. & Mather, J. A. Care and Enrichment for Captive Cephalopods. in The Welfare of Invertebrate Animals (eds. Carere, C. & Mather, J.). 179–208 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-13947-6_848.Baudisch, A. et al. The pace and shape of senescence in angiosperms. J. Ecol. 101, 596–606 (2013).Article 

    Google Scholar 
    49.Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS One 13, 1–18 (2018).Article 
    CAS 

    Google Scholar 
    50.Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825).
    Google Scholar 
    51.Makeham, W. M. On the law of mortality and the construction of annuity tables. Assur. Mag. J. Inst. Actuar. 8, 301–310 (1860).Article 

    Google Scholar 
    52.Finch, C. E. & Pike, M. C. Maximum life span predictions from the Gompertz mortality model. J. Gerontol. Biol. Sci. 51A, 183–194 (1996).Article 

    Google Scholar 
    53.Reznick, D. N., Bryant, M. J., Roff, D., Ghalambor, C. K. & Ghalambor, D. E. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431, 1095–1099 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Kirkwood, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).Article 

    Google Scholar 
    55.Gavrilov, L. A. & Gavrilova, N. S. New trend in old-age mortality: gompertzialization of mortality trajectory. Gerontology 65, 451–457 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ohsumi, S. Interspecies relationships among some biological parameters in cetaceans and estimation of the natural mortality coefficient of the Southern Hemisphere minke whale. Rep. Int. Whal. Comm. 29, 397–406 (1979).
    Google Scholar 
    57.Mizroch, S. A. On the relationship between mortality rate and length in baleen whales. Rep. Int. Whal. Comm. 35, 505–510 (1985).
    Google Scholar  More

  • in

    North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift

    1.Astthorsson, O. S. & Palsson, O. K. Predation on euphausiids by cod, Gadus morhua, in winter in Icelandic subarctic waters. Mar. Biol. 96, 327–334 (1987).Article 

    Google Scholar 
    2.MacAulay, M. C., Wishner, K. F. & Daly, K. L. Acoustic scattering from zooplankton and micronekton in relation to a whale feeding site near Georges Bank and Cape Cod. Cont. Shelf Res. 15, 509–537 (1995).Article 

    Google Scholar 
    3.Víkingsson, G. A. Feeding of fin whales (Balaenoptera physalus) off Iceland – diurnal and seasonal variation and possible rates. J. Northwest Atl. Fish. Sci. 22, 77–89 (1997).Article 

    Google Scholar 
    4.Tarling, G. A., Ensor, N. S., Fregin, T., Goodall-Copestake, W. P. & Fretwell, P. An introduction to the biology of Northern krill (Meganyctiphanes norvegica Sars). Adv. Mar. Biol. 57, 1–40 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.McBride, M. M. et al. Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J. Mar. Sci. 71, 1934–1955 (2014).Article 

    Google Scholar 
    6.Orlova, E.L. et al. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952–2009). Front. Mar. Sci. 1, 1–13 (2015).Article 

    Google Scholar 
    7.Silva, T. et al. Long-term changes of euphausiids in shelf and oceanic habitats southwest, south and southeast of Iceland. J. Plankton Res. 36, 1262–1278 (2014).Article 

    Google Scholar 
    8.Warner, A. J. & Hays, G. C. Sampling by the Continuous Plankton Recorder Survey. Prog. Oceanogr. 6611, 237–256 (1994).Article 

    Google Scholar 
    9.Williams, R. & Lindley, J. A. Variability in abundance, vertical distribution and ontogenetic migrations of Thysanoessa longicaudata (Crustacea: Euphausiacea) in the north-eastern Atlantic Ocean. Mar. Biol. 69, 321–330 (1982).Article 

    Google Scholar 
    10.Beaugrand, G., Luczak, C. & Edwards, M. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).Article 

    Google Scholar 
    11.Edwards, M., Beaugrand, G., Helaouët, P., Alheit, J. & Coombs, S. Marine ecosystem response to the Atlantic Multidecadal Oscillation. PLoS ONE 8, e57212 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Harris, V., Edwards, M. & Olhede, S. C. Multidecadal Atlantic climate variability and its impact on marine pelagic communities. J. Mar. Syst. 133, 55–69 (2014).Article 

    Google Scholar 
    14.Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibanez, F. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11, 1157–1168 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Edwards, M., Beaugrand, G., Hays, G. C., Koslow, J. A. & Richardson, A. J. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol. Evol. 25, 602–610 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Harris, V., Olhede, S. C. & Edwards, M. Multidecadal spatial reorganisation of plankton communities in the North East Atlantic. J. Mar. Syst. 142, 16–24 (2015).Article 

    Google Scholar 
    17.Reid, P. C. & Edwards, M. Long-term changes in the pelagos, benthos and fisheries of the North Sea. Senckenbergiana maritima. 32, 107–115 (2001).Article 

    Google Scholar 
    18.Gregory, B., Christophe, L. & Martin, E. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).Article 

    Google Scholar 
    19.Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147 (2019).Article 

    Google Scholar 
    22.Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Progr. Ser. 458, 1–19 (2012).Article 

    Google Scholar 
    23.Bograd, S. J., Checkley, D. A. & Wooster, W. S. CalCOFI: a half century of physical, chemical, and biological research in the California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2349–2353 (2003).Article 

    Google Scholar 
    24.Brinton, E. & Townsend, A. Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2449–2472 (2003).Article 

    Google Scholar 
    25.Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Caesar, A.L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation.Nature 556, 191–196 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Reid, P. C. et al. A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Glob. Chang. Biol. 13, 1910–1921 (2007).Article 

    Google Scholar 
    28.Burrows, M. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Chang. 9, 959–963 (2019).Article 

    Google Scholar 
    29.Biri, S. & Klein, B. North Atlantic sub‐polar gyre climate index: a new approach. J. Geophys. Res. Ocean. 124, 4222–4237 (2019).Article 

    Google Scholar 
    30.Batten, S. et al. CPR sampling: the technical background, materials and methods, consistency and comparability. Prog. Oceanogr. 58, 193–215 (2003).Article 

    Google Scholar 
    31.Reid, P. C. et al. The Continuous Plankton Recorder: concepts and history, from plankton indicator to undulating recorders. Prog. Oceanogr. 58, 117–173 (2003).Article 

    Google Scholar 
    32.Richardson, A. J. et al. Using Continuous Plankton Recorder data. Prog. Oceanogr. 68, 27–74 (2006).Article 

    Google Scholar 
    33.Dalpadado, P., Yamaguchi, A., Ellertsen, B. & Johannessen, S. Trophic interactions of macro-zooplankton (krill and amphipods) in the marginal ice zone of the Barents Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 55, 2266–2274 (2008).Article 

    Google Scholar 
    34.Letessier, T. B., Cox, M. J. & Brierley, A. S. Drivers of euphausiid species abundance and numerical abundance in the Atlantic Ocean. Mar. Biol. 156, 2539–2553 (2009).Article 

    Google Scholar 
    35.Lowe, M. R., Lawson, G. L. & Fogarty, M. J. Drivers of euphausiid distribution and abundance in the Northeast U.S. Shelf Large Marine Ecosystem. ICES J. Mar. Sci. 75, 1280–1295 (2018).Article 

    Google Scholar 
    36.Lindley, J. A. Population dynamics and production of euphausiids. I. Thysanoessa longicaudata in the North Atlantic Ocean. Mar. Biol. 46, 121–130 (1978).Article 

    Google Scholar 
    37.Lindley, J. A. Population dynamics and production of euphausiids II. Thysanoessa inermis and T. raschii in the North Sea and American Coastal Waters. Mar. Biol. 59, 225–233 (1980).Article 

    Google Scholar 
    38.Lindley, J. A. Population dynamics and production of euphausiids. Mar. Biol. 71, 1–6 (1982).Article 

    Google Scholar 
    39.Rayner, N. A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).Article 

    Google Scholar 
    40.Edwards, M., Johns, D. G. D., Leterme, S. C. S., Svendsen, E. & Richardson, A. J. A. Regional climate change and harmful algal blooms in the northeast Atlantic. Limnol. Oceanogr. 51, 820–829 (2006).Article 

    Google Scholar 
    41.Hélaouët, P., Beaugrand, G. & Reygondeau, G. Reliability of spatial and temporal patterns of C. finmarchicus inferred from the CPR survey. J. Mar. Syst. 153, 18–24 (2016).Article 

    Google Scholar 
    42.Owens, N. J. P. et al. All plankton sampling systems underestimate abundance: response to “Continuous Plankton Recorder underestimates zooplankton abundance” by J.W. Dippner and M. Krause. J. Mar. Syst. 128, 240–242 (2013).Article 

    Google Scholar 
    43.Jonas, T. D., Walne, A., Beaugrand, G., Gregory, L. & Hays, G. C. The volume of water filtered by a Continuous Plankton Recorder sample: the effect of ship speed. J. Plankton Res. 26, 1499–1506 (2004).Article 

    Google Scholar  More

  • in

    Differential gene expression in Drosophila melanogaster and D. nigrosparsa infected with the same Wolbachia strain

    1.Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0150-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gutzwiller, F. et al. Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle. G3 Genes Genomes Genet. 5, 2843–2856 (2015).CAS 

    Google Scholar 
    3.Bennuru, S. et al. Stage-specific transcriptome and proteome analyses of the filarial parasite Onchocerca volvulus and its Wolbachia endosymbiont. MBio 7, e02028-e2116 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Baião, G. C., Schneider, D. I., Miller, W. J. & Klasson, L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genom. 20, 465 (2019).Article 
    CAS 

    Google Scholar 
    5.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7, e38544 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Sazama, E. J., Bosch, M. J., Shouldis, C. S., Ouellette, S. P. & Wesner, J. S. Incidence of Wolbachia in aquatic insects. Ecol. Evol. 7, 1165–1169 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Detcharoen, M., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Wolbachia megadiversity: 99% of these microorganismic manipulators unknown. FEMS Microbiol. Ecol. 95, fiz151 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. U. S. A. 107, 769–774 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    10.Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 
    Article 

    Google Scholar 
    11.Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science (80-). 322, 702–702 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    12.Osborne, S. E., Leong, Y. S., O’Neill, S. L. & Johnson, K. N. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog. 5, e1000656 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Cattel, J., Martinez, J., Jiggins, F., Mouton, L. & Gibert, P. Wolbachia-mediated protection against viruses in the invasive pest Drosophila suzukii. Insect Mol. Biol. 25, 595–603 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science (80-). 300, 1742–1745 (2003).CAS 
    Article 
    ADS 

    Google Scholar 
    15.Herbert, R. I. & McGraw, E. A. The nature of the immune response in novel Wolbachia-host associations. Symbiosis 74, 225–236 (2018).Article 

    Google Scholar 
    16.Woodford, L. et al. Vector species-specific association between natural Wolbachia infections and avian malaria in black fly populations. Sci. Rep. 8, 4188 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    17.Huigens, M. E., De Almeida, R. P., Boons, P. A. H., Luck, R. F. & Stouthamer, R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. R. Soc. B Biol. Sci. 271, 509–515 (2004).CAS 
    Article 

    Google Scholar 
    18.Detcharoen, M., Arthofer, W., Jiggins, F. M., Steiner, F. M. & Schlick-Steiner, B. C. Wolbachia affect behavior and possibly reproductive compatibility but not thermoresistance, fecundity, and morphology in a novel transinfected host, Drosophila nigrosparsa. Ecol. Evol. 10, 4457–4470 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Woolfit, M. et al. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol. Evol. 5, 2189–2204 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Suh, E., Mercer, D. R., Fu, Y. & Dobson, S. L. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Appl. Environ. Microbiol. 75, 7783–7788 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.McGraw, E. A., Merritt, D. J., Droller, J. N. & O’Neill, S. L. Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc. R. Soc. B Biol. Sci. 268, 2565–2570 (2001).CAS 
    Article 

    Google Scholar 
    22.Xie, J., Vilchez, I. & Mateos, M. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One 5, e12149 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    23.Hutchence, K. J., Fischer, B., Paterson, S. & Hurst, G. D. D. How do insects react to novel inherited symbionts? A microarray analysis of Drosophila melanogaster response to the presence of natural and introduced Spiroplasma. Mol. Ecol. 20, 950–958 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.O’Grady, P. M. & DeSalle, R. Phylogeny of the genus Drosophila. Genetics 209, 1–25 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science (80-). 325, 1244–1246 (2009).CAS 
    Article 
    ADS 

    Google Scholar 
    26.Bächli, G., Viljoen, F., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill, 2005).27.Kinzner, M.-C. et al. Life-history traits and physiological limits of the alpine fly Drosophila nigrosparsa (Diptera: Drosophilidae): A comparative study. Ecol. Evol. 8, 2006–2020 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kinzner, M.-C. et al. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. Sci. Total Environ. 695, 133753 (2019).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    29.Kinzner, M.-C. et al. Oviposition substrate of the mountain fly Drosophila nigrosparsa (Diptera: Drosophilidae). PLoS One 11, e0165743 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Cicconardi, F. et al. Chemosensory adaptations of the mountain fly Drosophila nigrosparsa (Insecta: Diptera) through genomics’ and structural biology’s lenses. Sci. Rep. 7, 43770 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    31.Tratter Kinzner, M. et al. Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Glob. Ecol. Conserv. 18, e00638 (2019).Article 

    Google Scholar 
    32.Arthofer, W. et al. Genomic resources notes accepted 1 August 2014–30 September 2014. Mol. Ecol. Resour. 15, 228–229 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Cicconardi, F., Marcatili, P., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol. Phylogenet. Evol. 112, 230–243 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Verspoor, R. L. & Haddrill, P. R. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One 6, e26318 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    35.Lints, F. A. Size in relation to development-time and egg-density in Drosophila melanogaster. Nature 197, 1128–1130 (1963).Article 
    ADS 

    Google Scholar 
    36.Clemson, A. S., Sgrò, C. M. & Telonis-Scott, M. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: Quantitative traits to transcripts. J. Evol. Biol. 29, 2447–2463 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Morozova, T. V., Anholt, R. H. & Mackay, T. F. Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biol. 7, R95 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Elya, C., Zhang, V., Ludington, W. B. & Eisen, M. B. Stable host gene expression in the gut of adult Drosophila melanogaster with different bacterial mono-associations. PLoS One 11, e0167357 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: A phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Zhang, B. et al. Comparative transcriptome analysis of chemosensory genes in two sister leaf beetles provides insights into chemosensory speciation. Insect Biochem. Mol. Biol. 79, 108–118 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Gazara, R. K. et al. De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera. Gene 627, 85–93 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020), https://www.R-project.org.46.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2016).PubMed Central 
    Article 

    Google Scholar 
    47.Thurmond, J. et al. FlyBase 2.0: The next generation. Nucleic Acids Res. 47, D759–D765 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hardcastle, T. J. & Kelly, K. A. BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform. 11, 422 (2010).Article 

    Google Scholar 
    49.Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).Article 
    CAS 

    Google Scholar 
    50.Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 11, 367 (2010).Article 
    CAS 

    Google Scholar 
    51.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. (2019) https://cran.r-project.org/web/packages/vegan/.52.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).54.Wittkopp, P. J. Variable gene expression in eukaryotes: A network perspective. J. Exp. Biol. 210, 1567–1575 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lin, Y., Chen, Z.-X., Oliver, B. & Harbison, S. T. Microenvironmental gene expression plasticity among individual Drosophila melanogaster. G3 Genes Genomes Genet. 6, 4197–4210 (2016).CAS 

    Google Scholar 
    56.Kristensen, T. N., Sørensen, P., Pedersen, K. S., Kruhøffer, M. & Loeschcke, V. Inbreeding by environmental interactions affect gene expression in Drosophila melanogaster. Genetics 173, 1329–1336 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dunning, L. T., Dennis, A. B., Sinclair, B. J., Newcomb, R. D. & Buckley, T. R. Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Mol. Ecol. 23, 2712–2726 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lambert, A. J. & Brand, M. D. Reactive oxygen species production by mitochondria. In Mitochondrial DNA. Methods in Molecular Biology (ed. Stuart, J. A.) vol. 554 165–181 (Humana Press, 2009).
    Google Scholar 
    59.Kurz, M. et al. Structural and functional characterization of the oxidoreductase α-DsbA1 from Wolbachia pipientis. Antioxidants Redox Signal. 11, 1485–1500 (2009).CAS 
    Article 

    Google Scholar 
    60.Zug, R. & Hammerstein, P. Wolbachia and the insect immune system: What reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front. Microbiol. 6, 1201 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Ratzka, C., Gross, R. & Feldhaar, H. Endosymbiont tolerance and control within insect hosts. Insects 3, 553–572 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. U. S. A. 109, E23-31 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Brennan, L. J., Haukedal, J. A., Earle, J. C., Keddie, B. & Harris, H. L. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol. Biol. 21, 510–520 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Blagrove, M. S. C., Arias-Goeta, C., Failloux, A.-B. & Sinkins, S. P. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc. Natl. Acad. Sci. 109, 255–260 (2012).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    65.Andrews, E. S., Crain, P. R., Fu, Y., Howe, D. K. & Dobson, S. L. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types. PLoS Pathog. 8, e1003075 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Oliveira, M. F. et al. Haem detoxification by an insect. Nature 400, 517–518 (1999).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    67.Paiva-Silva, G. O. et al. A heme-degradation pathway in a blood-sucking insect. Proc. Natl. Acad. Sci. U. S. A. 103, 8030–8035 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    68.Levi, S. & Rovida, E. The role of iron in mitochondrial function. Biochim. Biophys. Acta Gen. Subj. 1790, 629–636 (2009).CAS 
    Article 

    Google Scholar 
    69.Kremer, N. et al. Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog. 5, e1000630 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Kremer, N. et al. Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol. 12, S7 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    71.Peng, Y., Nielsen, J. E., Cunningham, J. P. & McGraw, E. A. Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl. Environ. Microbiol. 74, 3943–3948 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Peng, Y. & Wang, Y. Infection of Wolbachia may improve the olfactory response of Drosophila. Chin. Sci. Bull. 54, 1369–1375 (2009).
    Google Scholar 
    73.Fattouh, N., Cazevieille, C. & Landmann, F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl. Trop. Dis. 13, e0007218 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Chagas-Moutinho, V. A., Silva, R., de Souza, W. & Motta, M. C. Identification and ultrastructural characterization of the Wolbachia symbiont in Litomosoides chagasfilhoi. Parasit. Vectors 8, 74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell biology of Wolbachia-host interactions. Annu. Rev. Genet. 42, 683–707 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Ping, Y. et al. Linking Aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer’s model. PLoS Genet. 11, e1005025 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Ping, Y. et al. Shal/Kv4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila. PLoS One 6, e16043 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    78.Ping, Y. & Tsunoda, S. Inactivity-induced increase in nAChRs upregulates Shal K+ channels to stabilize synaptic potentials. Nat. Neurosci. 15, 90–97 (2012).CAS 
    Article 

    Google Scholar 
    79.Kim, W. J., Jan, L. Y. & Jan, Y. N. A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating. Neuron 80, 1190–1205 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.King, A. N. et al. A peptidergic circuit links the circadian clock to locomotor activity. Curr. Biol. 27, 1915-1927.e5 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Kim, Y. J., Žitňan, D., Galizia, C. G., Cho, K. H. & Adams, M. E. A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr. Biol. 16, 1395–1407 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 14, 3158 (2013).Article 
    CAS 

    Google Scholar 
    83.Kvam, V. M., Liu, P. & Si, Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am. J. Bot. 99, 248–256 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Guo, Y., Li, C. I., Ye, F. & Shyr, Y. Evaluation of read count based RNAseq analysis methods. BMC Genom. 14, S2 (2013).Article 

    Google Scholar  More

  • in

    Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance

    1.Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 113, 13785–13790 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).ADS 
    Article 

    Google Scholar 
    3.Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).Article 

    Google Scholar 
    4.Steneck, R. S. Regular sea urchins as drivers of shallow benthic marine community structure. Dev. Aquacult. Fish. Sci. 43, 255–279 (2020).
    Google Scholar 
    5.Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    6.Pearse, J. S. Ecological role of purple sea urchins. Science 31, 940–941 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Harrold, C. & Reed, D. C. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66, 1160–1169 (1985).Article 

    Google Scholar 
    8.Kriegisch, N., Reeves, S. E., Flukes, E. B., Johnson, C. R. & Ling, S. D. Drift-kelp suppresses foraging movement of overgrazing sea urchins. Oecologia 190, 665–677 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Pearse, J. S. & Hines, A. H. Long-term population dynamics of sea urchins in a central California kelp forest: rare recruitment and rapid decline. Mar. Ecol. Prog. Ser. 39, 275–283 (1987).ADS 
    Article 

    Google Scholar 
    10.Watanabe, J. M. & Harrold, C. Destructive grazing by sea urchins Strongylocentrotus spp. in a central California kelp forest: potential roles of recruitment, depth, and predation. Mar. Ecol. Prog. Ser. 71, 125–141 (1991).ADS 
    Article 

    Google Scholar 
    11.Reid, J. et al. The economic value of the recreational red abalone fishery in northern California. Calif. Fish Game 102, 119–130 (2016).
    Google Scholar 
    12.Menge, B. A. & Menge, D. N. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).Article 

    Google Scholar 
    13.Breitburg, D. L., Loher, T., Pacey, C. A. & Gerstein, A. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr. 67, 489–507 (1997).Article 

    Google Scholar 
    14.Hauri, C. et al. (2009) Ocean acidification in the California current system. Oceanography 22, 60–71 (2009).Article 

    Google Scholar 
    15.Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B 277, 1409–1415 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sellers, A. J. et al. Seasonal upwelling reduces herbivore control of tropical rocky intertidal algal communities. Ecology e03335 https://doi.org/10.1002/ecy.3335(2021).17.Moulin, L., Grosjean, P., Leblud, J., Batigny, A. & Dubois, P. Impact of elevated pCO2 on acid-base regulation of the sea urchin Echinometra mathaei and its relation to resistance to ocean acidification: a study in mesocosms. J. Exp. Mar. Biol. Ecol. 457, 97–104 (2014).CAS 
    Article 

    Google Scholar 
    18.Siikavuopio, S. I., Dale, T., Mortensen, A. & Foss, A. Effects of hypoxia on feed intake and gonad growth in the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 266, 112–116 (2007).Article 

    Google Scholar 
    19.Low, H. N. N. The Effects of Upwelling-driven Hypoxia on Sea Urchins in California Current Kelp Forests. PhD dissertation, Stanford University, Stanford, CA (2018).20.Low, N. H. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Prog. Ser. 594, 165–173 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Low, N. H. & Micheli, F. Short-and long-term impacts of variable hypoxia exposures on kelp forest sea urchins. Sci. Rep. 10, 1–9 (2020).CAS 
    Article 

    Google Scholar 
    22.Huyer, A. Coastal upwelling in the California current system. Prog. Oceanogr. 12, 259–284 (1983).ADS 
    Article 

    Google Scholar 
    23.Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).24.Feely, R. A. et al. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Cont. Shelf Res. 152, 50–60 (2018).ADS 
    Article 

    Google Scholar 
    25.Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    26.Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Feely, R. A. et al. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183, 260–270 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Iles, A. C. et al. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob. Change Biol. 18, 783–796 (2012).ADS 
    Article 

    Google Scholar 
    29.CeNCOOS. Real-Time Sensor Feeds of Oceanographic and Atmospheric Models’ Online Tool to Extract Temperature, pH, and Dissolved Oxygen. https://data.cencoos.org (2020).30.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.McGregor, H. V., Dima, M., Fischer, H. W. & Mulitza, S. Rapid 20th-century increase in coastal upwelling off northwest Africa. Science 315, 637–639 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Narayan, N., Paul, A., Mulitza, S. & Schulz, M. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci. 6, 815–823 (2010).ADS 
    Article 

    Google Scholar 
    33.Barton, E. D. D., Field, D. B. B. & Roy, C. Canary current upwelling: more or less?. Prog. Oceanogr. 116, 167–178 (2013).ADS 
    Article 

    Google Scholar 
    34.Mote, P. W. & Mantua, N. J. Coastal upwelling in a warmer future. Geophys. Res. Lett. 29, 2138 (2002).ADS 
    Article 

    Google Scholar 
    35.Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).Article 

    Google Scholar 
    36.Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Snyder, M. A., Sloan, L. C., Diffenbaugh, N. S. & Bell, J. L. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30, 1823 (2003).38.García‐Reyes, M. & Largier, J. Observations of increased wind‐driven coastal upwelling off central California. J. Geophys. Res. Oceans 115, 1–8 (2010).39.Varela, R., Álvarez, I., Santos, F., DeCastro, M. & Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010?. Sci. Rep. 5, 1–15 (2015).40.Varela, R., Lima, F. P., Seabra, R., Meneghesso, C. & Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: a global analysis. Sci. Total Environ. 639, 1501–1511 (2018).41.Abrahams, A., Schlegel, R. W. & Smit, A. J. Variation and change of upwelling dynamics detected in the world’s eastern boundary upwelling systems. Front. Mar. Sci. 8, 626411 (2021).Article 

    Google Scholar 
    42.IPCC Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Vol. 151 (eds Core Writing Team et al.) (IPCC, Geneva, 2014).
    Google Scholar 
    43.Rykaczewski, R. R. & Dunne, J. P. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37, 1-5 (2010).44.Somero, G. N. et al. What changes in the carbonate system, oxygen, and temperature portend for the northeastern Pacific Ocean: a physiological perspective. Bioscience 66, 14–26 (2016).Article 

    Google Scholar 
    45.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).PubMed 
    Article 

    Google Scholar 
    49.Fitzgerald-Dehoog, L., Browning, J. & Allen, B. J. Food and heat stress in the California mussel: evidence for an energetic trade-off between survival and growth. Biol. Bull. 223, 205–216 (2012).PubMed 
    Article 

    Google Scholar 
    50.Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 19374 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Brown, N. E., Bernhardt, J. R., Anderson, K. M. & Harley, C. D. Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth. Sci. Rep. 8, 1–9 (2018).
    Google Scholar 
    52.Wahle, R. A. & Peckham, S. H. Density-related reproductive trade-offs in the green sea urchin, Strongylocentrotus droebachiensis. Mar. Biol. 134, 127–137 (1999).Article 

    Google Scholar 
    53.Rogers-Bennett, L., Allen, B. L. & Rothaus, D. P. Status and habitat associations of the threatened northern abalone: importance of kelp and coralline algae. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 573–581 (2011).Article 

    Google Scholar 
    54.Brown, M. B., Edwards, M. S. & Kim, K. Y. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29, 203–215 (2014).CAS 
    Article 

    Google Scholar 
    55.Klinger, T. S. & Lawrence, J. M. Distance perception of food and the effect of food quantity on feeding behavior of Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). Mar. Freshw. Behav. Physiol. 11, 327–344 (1985).Article 

    Google Scholar 
    56.Trowbridge, C. D. Establishment of the green alga Codium fragile ssp. tomentosoides on New Zealand rocky shores: current distribution and invertebrate grazers. J. Ecol. 83, 949–965 (1995).Article 

    Google Scholar 
    57.Meidel, S. K. & Scheibling, R. E. Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 134, 155–166 (1999).Article 

    Google Scholar 
    58.Harianto, J., Nguyen, H. D., Holmes, S. P. & Byrne, M. The effect of warming on mortality, metabolic rate, heat-shock protein response and gonad growth in thermally acclimated sea urchins (Heliocidaris erythrogramma). Mar. Biol. 165, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    59.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    60.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 
    Article 

    Google Scholar 
    61.Spicer, J. I., Widdicombe, S., Needham, H. R. & Berge, J. A. Impact of CO2-acidified seawater on the extracellular acid-base balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407, 19–25 (2011).CAS 
    Article 

    Google Scholar 
    62.Catarino, A. I., Bauwens, M. & Dubois, P. Acid–base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ. Sci. Pollut. Res. 19, 2344–2353 (2012).CAS 
    Article 

    Google Scholar 
    63.Rogers-Bennett, L., Bennett, W. A., Fastenau, H. C. & Dewees, C. M. Spatial variation in red sea urchin reproduction and morphology: implications for harvest refugia. Ecol. Appl. 5, 1171–1180 (1995).Article 

    Google Scholar 
    64.Quinn, J. F., Wing, S. R. & Botsford, L. W. Harvest refugia in marine invertebrate fisheries: models and applications to the red sea urchin, Strongylocentrotus franciscanus. Am. Zool. 33, 537–550 (1993).Article 

    Google Scholar 
    65.Eurich, J. G., Selden, R. L. & Warner, R. R. California spiny lobster preference for urchins from kelp forests: implications for urchin barren persistence. Mar. Ecol. Prog. Ser. 498, 217–225 (2014).ADS 
    Article 

    Google Scholar 
    66.Steneck, R. S., Leland, A., McNaught, D. C. & Vavrinec, J. Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine’s kelp forest ecosystem. Bull. Mar. Sci. 89, 31–55 (2013).Article 

    Google Scholar 
    67.Gerard, V. A. Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar. Biol. 66(1), 27–35 (1982).CAS 
    Article 

    Google Scholar 
    68.Simonson, E. J., Scheibling, R. E. & Metaxas, A. Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Mar. Ecol. Prog. Ser. 537, 89–104 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).Article 

    Google Scholar 
    70.O’Donnell, M. J., Hammond, L. M. & Hofmann, G. E. Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Mar. Biol. 156, 439–446 (2009).Article 
    CAS 

    Google Scholar 
    71.Dupont, S., Dorey, N., Stumpp, M., Melzner, F. & Thorndyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843 (2013).CAS 
    Article 

    Google Scholar 
    72.Marcel, E. V. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B 270, 367–372 (2003).Article 

    Google Scholar 
    73.Parker, L. M., Ross, P. M. & O’Connor, W. A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar. Biol. 158, 689–697 (2011).Article 

    Google Scholar 
    74.Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Conor, J. J. Gonad growth in the sea urchin, Strongylocentrotus purpuratus (Stimpson) (Echinodermata: Echinoidea) and the assumptions of gonad index methods. J. Exp. Mar. Biol. Ecol. 10, 89–103 (1972).Article 

    Google Scholar 
    76.Bandstra, L., Hales, B. & Takahashi, T. High-frequency measurements of total CO2: method development and first oceanographic observations. Mar. Chem. 100, 24–38 (2006).CAS 
    Article 

    Google Scholar 
    77.Hales, B., Chipman, D. & Takahashi, T. High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors. Limnol. Oceanogr. Methods 2, 356–364 (2004).Article 

    Google Scholar 
    78.Lavigne, H., Epitalon, J. M. & Gattuso, J. P. Seacarb: Seawater Carbonate Chemistry with R. R package version 3.0 http://CRAN.R-project.org/package=seacarb (2011).79.Gattuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. Seacarb: seawater carbonate chemistry. R package version 3.2.10. http://CRAN.R-project.org/package=seacarb (2018).80.Murie, K. A. & Bourdeau, P. E. Fragmented kelp forest canopies retain their ability to alter local seawater chemistry. Sci. Rep. 10, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    81.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2013). More