More stories

  • in

    Optimization of green and environmentally-benign synthesis of isoamyl acetate in the presence of ball-milled seashells by response surface methodology

    McElroy, C. R., Constantinou, A., Jones, L. C., Summerton, L. & Clark, J. H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 17, 3111–3121. https://doi.org/10.1039/C5GC00340G (2015).Article 
    CAS 

    Google Scholar 
    Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400. https://doi.org/10.1126/science.aay3060 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sheldon, R. A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 6, 32–48. https://doi.org/10.1021/acssuschemeng.7b03505 (2018).Article 
    CAS 

    Google Scholar 
    Anastas, P. T. & Williamson, T. C. in Green Chemistry, Vol. 626 ACS Symposium Series Ch. 1, 1–17 (American Chemical Society, 1996). https://doi.org/10.1021/bk-1996-0626.ch001.Clark, H. J. Green chemistry: Challenges and opportunities. Green Chem. 1, 1–8. https://doi.org/10.1039/A807961G (1999).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G. & Eslami, M. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans under mechanochemical ball milling. Green Chem. 16, 4914–4921 (2014).Article 
    CAS 

    Google Scholar 
    Eze, A. A. et al. Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Sci. Rep. 11, 1–8 (2021).Article 

    Google Scholar 
    Gorrasi, G. & Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17, 2610–2625 (2015).Article 
    CAS 

    Google Scholar 
    Li, L. H., Glushenkov, A. M., Hait, S. K., Hodgson, P. & Chen, Y. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 
    Mac Naughton, G. E., Rolfe, S. A. & Siraj-Blatchford, I. E. Doing Early Childhood Research: International Perspectives on Theory and Practice (Open University Press, 2001).Evangelisti, L. et al. The borderline between reactivity and pre-reactivity of binary mixtures of gaseous carboxylic acids and alcohols. Angew. Chem. 129, 3930–3933 (2017).Article 
    ADS 

    Google Scholar 
    Gaspa, S., Porcheddu, A. & De Luca, L. Metal-free oxidative cross esterification of alcohols via acyl chloride formation. Adv. Synth. Catal. 358, 154–158 (2016).Article 
    CAS 

    Google Scholar 
    Fiorio, J. L., Braga, A. H., Guedes, C. L. S. B. & Rossi, L. M. Reusable heterogeneous tungstophosphoric acid-derived catalyst for green esterification of carboxylic acids. ACS Sustain. Chem. Eng. 7, 15874–15883 (2019).Article 
    CAS 

    Google Scholar 
    Karimi, B., Mirzaei, H. M. & Mobaraki, A. Periodic mesoporous organosilica functionalized sulfonic acids as highly efficient and recyclable catalysts in biodiesel production. Catal. Sci. Technol. 2, 828–834 (2012).Article 
    CAS 

    Google Scholar 
    Tran, T. T. V. et al. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 484, 110724 (2020).Article 
    CAS 

    Google Scholar 
    Afshar, S. et al. Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology. Mon. Chem. Chem. Mon. 146, 1949–1957 (2015).Article 
    CAS 

    Google Scholar 
    Chng, L. L., Yang, J. & Ying, J. Y. Efficient synthesis of amides and esters from alcohols under aerobic ambient conditions catalyzed by a Au/mesoporous Al2O3 nanocatalyst. Chemsuschem 8, 1916–1925 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lozano, P., Bernal, J. M. & Navarro, A. A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chem. 14, 3026–3033 (2012).Article 
    CAS 

    Google Scholar 
    Su, L., Hong, R., Guo, X., Wu, J. & Xia, Y. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase. Food Chem. 206, 131–136 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Güvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö. & Mehmetoğlu, Ü. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785 (2007).Article 

    Google Scholar 
    Torres, S., Baigorí, M. D., Swathy, S., Pandey, A. & Castro, G. R. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454–460 (2009).Article 
    CAS 

    Google Scholar 
    Ando, H., Kurata, A. & Kishimoto, N. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794 (2006).Article 
    CAS 

    Google Scholar 
    Romero, M., Calvo, L., Alba, C., Daneshfar, A. & Ghaziaskar, H. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb. Technol. 37, 42–48 (2005).Article 
    CAS 

    Google Scholar 
    Borges, M. E. & Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012).Article 
    CAS 

    Google Scholar 
    Li, K.-T., Wang, C.-K., Wang, I. & Wang, C.-M. Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl. Catal. A 392, 180–183 (2011).Article 
    CAS 

    Google Scholar 
    Clark, J. H. & Rhodes, C. N. In Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents, Vol. 4, (Royal Society of Chemistry, London, 2000). https://doi.org/10.1039/9781847550569Dekamin, M. G. et al. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol. 87, 172–179 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Melfi, D. T., dos Santos, K. C., Ramos, L. P. & Corazza, M. L. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15. J. Supercrit. Fluids 158, 104736 (2020).Article 
    CAS 

    Google Scholar 
    Azudin, N. Y., Mashitah, M. & Abd Shukor, S. R. Optimization of isoamyl acetate production in a solvent-free system. J. Food Qual. 36, 441–446 (2013).Article 
    CAS 

    Google Scholar 
    Ćorović, M. et al. Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst. Eng. 40, 23–34 (2017).Article 
    PubMed 

    Google Scholar 
    Liu, C. & Luo, G. Synthesis of isoamyl acetate catalyzed by ferric tri-dodecylsulfonate. Riyong Huaxue Gongye 34, 403–405 (2004).
    Google Scholar 
    Narwal, S. K., Saun, N. K., Dogra, P. & Gupta, R. Green synthesis of isoamyl acetate via silica immobilized novel thermophilic lipase from Bacillus aerius. Russ. J. Bioorg. Chem. 42, 69–73 (2016).Article 
    CAS 

    Google Scholar 
    Pizzio, L., Vázquez, P., Cáceres, C. & Blanco, M. Tungstophosphoric and molybdophosphoric acids supported on zirconia as esterification catalysts. Catal. Lett. 77, 233–239 (2001).Article 
    CAS 

    Google Scholar 
    Saha, B., Alqahtani, A. & Teo, H. T. R. Production of iso-Amyl Acetate: Heterogeneous Kinetics and Techno-feasibility Evaluation for Catalytic Distillation. Int. J. Chem. React. Eng. 3(1), https://doi.org/10.2202/1542-6580.1231 (2005).Osorio-Viana, W., Ibarra-Taquez, H. N., Dobrosz-Gomez, I. & Gómez-García, M. Á. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. 76, 70–82 (2014).Article 
    CAS 

    Google Scholar 
    Fang, M. et al. Synthesis of isoamyl acetate using polyoxometalate-based sulfonated ionic liquid as catalyst. Indian J. Chem. Sect. A 53A, 1485–1492 (2014).Yang, Z., Zhou, C., Zhang, W., Li, H. & Chen, M. β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis. Colloids Surf., A 356, 134–139 (2010).Article 
    CAS 

    Google Scholar 
    Yang, Z. et al. Kinetic study and process simulation of transesterification of methyl acetate and isoamyl alcohol catalyzed by ionic liquid. Ind. Eng. Chem. Res. 54, 1204–1215 (2015).Article 
    CAS 

    Google Scholar 
    Dohendou, M., Pakzad, K., Nezafat, Z., Nasrollahzadeh, M. & Dekamin, M. G. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int. J. Biol. Macromol. 192, 771–819. https://doi.org/10.1016/j.ijbiomac.2021.09.162 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Alirezvani, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol. 129, 407–421. https://doi.org/10.1016/j.ijbiomac.2019.01.027 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G., Kazemi, E., Karimi, Z., Mohammadalipoor, M. & Naimi-Jamal, M. R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol. 93, 767–774. https://doi.org/10.1016/j.ijbiomac.2016.09.012 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Bondarian, S. Sulfamic acid grafted to cross-linked chitosan by dendritic units: A bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Adv. 13, 320–334. https://doi.org/10.1039/D2RA07319F (2023).Article 
    ADS 
    CAS 

    Google Scholar 
    Dekamin, M. G., Azimoshan, M. & Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem. 15, 811–820. https://doi.org/10.1039/C3GC36901C (2013).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep. 9, 17758 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rostami, N., Dekamin, M., Valiey, E. & Fanimoghadam, H. Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci. Rep. 12, 8642–8642 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frindy, S., el Kadib, A., Lahcini, M., Primo, A. & García, H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross-coupling. ChemCatChem 7, 3307–3315 (2015).Article 
    CAS 

    Google Scholar 
    Pettignano, A. et al. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction. New J. Chem. 39, 4222–4226 (2015).Article 
    CAS 

    Google Scholar 
    Schnepp, Z. Biopolymers as a flexible resource for nanochemistry. Angew. Chem. Int. Ed. 52, 1096–1108 (2013).Article 
    CAS 

    Google Scholar 
    Khrunyk, Y., Lach, S., Petrenko, I. & Ehrlich, H. Progress in modern marine biomaterials research. Mar. Drugs 18, 589 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, I. Molecular self-assembly: Smart design of surface and interface via secondary molecular interactions. Langmuir 29, 2476–2489. https://doi.org/10.1021/la304123b (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaheed, N., Javanshir, S., Esmkhani, M., Dekamin, M. G. & Naimi-Jamal, M. R. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci. Rep. 11, 18553 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, M. A. et al. Processing Aspects and biomedical and environmental applications of sustainable nanocomposites containing nanofillers. In Sustainable Polymer Composites and Nanocomposites, (eds Inamuddin et al.) 727–757 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-05399-4_25Dekamin, M. G. et al. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Adv. 4, 56658–56664. https://doi.org/10.1039/C4RA11801D (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ilkhanizadeh, S., Khalafy, J. & Dekamin, M. G. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int. J. Biol. Macromol. 140, 605–613. https://doi.org/10.1016/j.ijbiomac.2019.08.154 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G. et al. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol. 108, 1273–1280. https://doi.org/10.1016/j.ijbiomac.2017.11.050 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rostami, N., Dekamin, M. G. & Valiey, E. Chitosan-EDTA-cellulose bio-based network: A recyclable multifunctional organocatalyst for green and expeditious synthesis of Hantzsch esters. Carbohydr. Polym. Technol. Appl. 5, 100279. https://doi.org/10.1016/j.carpta.2022.100279 (2023).Article 
    CAS 

    Google Scholar 
    Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. & Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hill, W. J. & Hunter, W. G. A review of response surface methodology: A literature survey. Technometrics 8, 571–590. https://doi.org/10.1080/00401706.1966.10490404 (1966).Article 
    MathSciNet 

    Google Scholar 
    Hamidi, F. et al. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Han, X.-X. et al. Syntheses of novel halogen-free Brønsted–Lewis acidic ionic liquid catalysts and their applications for synthesis of methyl caprylate. Green Chem. 17, 499–508 (2015).Article 
    CAS 

    Google Scholar 
    Rehman, K. et al. Operational parameters optimization for remediation of crude oil-polluted water in floating treatment wetlands using response surface methodology. Sci. Rep. 12, 1–11 (2022).Article 

    Google Scholar 
    Kamari, S., Ghorbani, F. & Sanati, A. M. Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: Modeling and optimization by response surface methodology. Sustain. Chem. Pharm. 13, 100153. https://doi.org/10.1016/j.scp.2019.100153 (2019).Article 

    Google Scholar 
    Sanati, A. M., Kamari, S. & Ghorbani, F. Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surf. Interfaces 17, 100374. https://doi.org/10.1016/j.surfin.2019.100374 (2019).Article 
    CAS 

    Google Scholar 
    Guner, S. G. & Dericioglu, A. Nacre-mimetic epoxy matrix composites reinforced by two-dimensional glass reinforcements. RSC Adv. 6, 33184–33196 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Shao, Y., Zhao, H.-P. & Feng, X.-Q. Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Adv. 4, 32451–32456 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Jaji, A. Z. et al. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnol. Sci. Appl. 10, 23 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Çam, M. & Aaby, K. Optimization of extraction of apple pomace phenolics with water by response surface methodology. J. Agric. Food Chem. 58, 9103–9111 (2010).Article 
    PubMed 

    Google Scholar 
    Iwuchukwu, I. J. et al. Optimization of photosynthetic hydrogen yield from platinized photosystem I complexes using response surface methodology. Int. J. Hydrog. Energy 36, 11684–11692 (2011).Article 
    CAS 

    Google Scholar 
    Hu, C. et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl. Catal. A 253, 389–396 (2003).Article 
    CAS 

    Google Scholar 
    Noda, L. K., de Almeida, R. M., Probst, L. F. D. & Gonçalves, N. S. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J. Mol. Catal. A Chem. 225, 39–46 (2005).Article 
    CAS 

    Google Scholar 
    Jalali-Heravi, M., Parastar, H. & Ebrahimi-Najafabadi, H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J. Chromatogr. A 1216, 6088–6097 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sendzikiene, E., Sinkuniene, D., Kazanceva, I. & Kazancev, K. Optimization of low quality rapeseed oil transesterification with butanol by applying the response surface methodology. Renew. Energy 87, 266–272 (2016).Article 
    CAS 

    Google Scholar 
    Das, R., Sarkar, S. & Bhattacharjee, C. Photocatalytic degradation of chlorhexidine—a chemical assessment and prediction of optimal condition by response surface methodology. J. Water Process Eng. 2, 79–86 (2014).Article 

    Google Scholar 
    Nandiwale, K. Y., Galande, N. D. & Bokade, V. V. Process optimization by response surface methodology for transesterification of renewable ethyl acetate to butyl acetate biofuel additive over borated USY zeolite. RSC Adv. 5, 17109–17116 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Soltani, R. D. C. & Safari, M. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization. Ultrason. Sonochem. 32, 181–190 (2016).Article 

    Google Scholar 
    Tan, K. T., Lee, K. T. & Mohamed, A. R. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology. Biores. Technol. 101, 965–969 (2010).Article 
    CAS 

    Google Scholar 
    Nagaraju, N., Peeran, M. & Prasad, D. Synthesis of isoamyl acetate usin NaX and NaY zeolites as catalysts. React. Kinet. Catal. Lett. 61, 155–160 (1997).Article 
    CAS 

    Google Scholar 
    Pizzio, L. R. & Blanco, M. N. Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Appl. Catal. A 255, 265–277 (2003).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Karimi, Z. & Farahmand, M. Tetraethylammonium 2-(N-hydroxycarbamoyl)benzoate: A powerful bifunctional metal-free catalyst for efficient and rapid cyanosilylation of carbonyl compounds under mild conditions. Catal. Sci. Technol. 2, 1375–1381. https://doi.org/10.1039/C2CY20037F (2012).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Sagheb-Asl, S. & Reza Naimi-Jamal, M. An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst. Tetrahedron Lett. 50, 4063–4066. https://doi.org/10.1016/j.tetlet.2009.04.090 (2009).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently functionalized MCM-41: An efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives. ACS Omega 4, 20618–20633. https://doi.org/10.1021/acsomega.9b02755 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Non-lethal fungal infection could reduce aggression towards strangers in ants

    Schmid-Hempel P. Parasites in social insects. Princeton University Press (1998).Lefèvre, T. et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 24, 41–48 (2009).Article 
    PubMed 

    Google Scholar 
    Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, e34414 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbison, R., Lagrue, C. & Poulin, R. The missing link in parasite manipulation of host behaviour. Parasites Vectors 11, 1–6 (2018).Article 

    Google Scholar 
    Csata, E., Billen, J., Barbu-Tudoran, L. & Markó, B. Inside Pandora’s box: development of the lethal myrmecopathogenic fungus Pandora formicae within its ant host. Fungal Ecol. 50, 101022 (2021).Article 

    Google Scholar 
    Trinh, T., Ouellette, R. & de Bekker, C. Getting lost: the fungal hijacking of ant foraging behaviour in space and time. Anim. Behav. 181, 165–184 (2021).Article 

    Google Scholar 
    Moore J. Parasites and the Behavior of Animals. Oxford University Press, Oxford (2002).Thomas, F., Fauchier, J. & Lafferty, K. D. Conflict of interest between a nematode and a trematode in an amphipod host: test of the “sabotage” hypothesis. Behav. Ecol. Sociobiol. 51, 296–301 (2002).Article 

    Google Scholar 
    Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beros, S., Foitzik, S. & Menzel, F. What are the mechanisms behind a parasite-induced decline in nestmate recognition in ants? J. Chem. Ecol. 43, 869–880 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hamilton, W. D. Kinship, recognition, disease, and intelligence: constraints of social evolution. In: Ito Y., Brown J. L., Kikkawa J. (eds) Animal societies: theories and facts. Jpn Sci Soc Press, Tokyo, pp 81–102 (1987).Hunt, J. H. & Richard, F. J. Intracolony vibroacoustic communication in social insects. Insect Soc. 60, 403–417 (2013).Article 

    Google Scholar 
    Wyatt, T. D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 97, 273–280 (2014).Article 

    Google Scholar 
    Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casacci, L. P. et al. Ant pupae employ acoustics to communicate social status in their colony’s hierarchy. Curr. Biol. 23, 323–327 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schönrogge, K., Barbero, F., Casacci, L. P., Settele, J. & Thomas, J. A. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 134, 249–256 (2017).Article 

    Google Scholar 
    Sheehan, M. J. & Tibbetts, E. A. Specialized face learning is associated with individual recognition in paper wasps. Science 334, 1272–1275 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chittka, L. & Dyer, A. Your face looks familiar. Nature 481, 154–155 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Billen, J. Signal variety and communication in social insects. Proc. Neht. Entomol. Soc. Meet. 17, 9 (2006).
    Google Scholar 
    Blomquist G. J. Biosynthesis of cuticular hydrocarbons. In: Blomquist, G. J., Bagnères, A.-G. (eds.): Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press (2010).Hefetz, A. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) – interplay of colony odor uniformity and odor idiosyncrasy. Myrmecol. N. 10, 59–68 (2007).
    Google Scholar 
    Bagnères A. G., Lorenzi M. C. Chemical deception/mimicry using cuticular hydrocarbons. Insect hydrocarbons: Biology, biochemistry and chemical ecology. Chemical deception/mimicry using cuticular hydrocarbons, 282–324 (2010).van Zweden, J. S. & d’Ettorre, P. Nestmate recognition in social insects and the role of hydrocarbons. Insect Hydrocarbons: Biol. Biochem. Chem. Ecol. 11, 222–243 (2010).Article 

    Google Scholar 
    Esponda, F. & Gordon, D. M. Distributed nestmate recognition in ants. Proc. R. Soc. B. 282, 20142838 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crozier, R. & Dix, M. W. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav. Ecol. Sociobiol. 4, 217–224 (1979).Article 

    Google Scholar 
    Wakonigg, G., Eveleigh, L., Arnold, G. & Crailsheim, K. Cuticular hydrocarbon profiles reveal age-related changes in honey bee drones (Apis mellifera carnica). J. Apic. Res. 39, 137–141 (2000).Article 
    CAS 

    Google Scholar 
    Cuvillier-Hot, V., Cobb, M., Malosse, C. & Peeters, C. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47, 485–493 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Greene, M. J. & Gordon, D. M. Cuticular hydrocarbons inform task decisions. Nature 423, 32–32 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kather, R., Drijfhout, F. P. & Martin, S. J. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37, 205–212 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kleeberg, I., Menzel, F. & Foitzik, S. The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons. Proc. R. Soc. B. 284, 20162249 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. N. 30, 1–26 (2020).
    Google Scholar 
    Reeve, H. K. The evolution of conspecific acceptance thresholds. Am. Nat. 133, 407–435 (1989).Article 

    Google Scholar 
    Lenoir, A., D’Ettore, P. & Errard, C. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Akino, T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol. N. 11, 173–181 (2008).
    Google Scholar 
    Akino, T., Knapp, J. J., Thomas, J. A. & Elmes, G. W. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. Roy. Soc. B. 266, 1419–1426 (1999).Article 
    CAS 

    Google Scholar 
    Nash, D. R., Als, T. D., Maile, R., Jones, G. R. & Boomsma, J. J. A mosaic of chemical coevolution in a large blue butterfly. Science 319, 88–90 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnson, C. A., Vander Meer, R. K. & Lavine, B. Changes in the cuticular hydrocarbon profile of the slave-maker ant queen, Polyergus breviceps Emery, after killing a Formica host queen (Hymenoptera: Formicidae). J. Chem. Ecol. 27, 1787–1804 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lecuona, R., Riba, G., Cassier, P. & Clément, J. L. Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J. Invertebr. Pathol. 58, 10–18 (1991).Article 
    CAS 

    Google Scholar 
    Trabalon, M., Plateaux, L., Péru, L., Bagnères, A. G. & Hartmann, N. Modification of morphological characters and cuticular compounds in worker ants Leptothorax nylanderi induced by endoparasites Anomotaenia brevis. J. Insect Physiol. 46, 169–178 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zurek, L., Watson, D. W., Krasnoff, S. B. & Schal, C. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly. Musca Domestica. J. Invertebr. Pathol. 80, 171–176 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: immune‐challenged males produce more attractive pheromones. Func. Ecol. 26, 20–28 (2012).Article 

    Google Scholar 
    Beros, S., Jongepier, E., Hagemeier, F. & Foitzik, S. The parasite’s long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host. Proc. Roy. Soc. B. 282, 20151473 (2015).Article 

    Google Scholar 
    Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Soc. 61, 247–252 (2014).Article 

    Google Scholar 
    Markó, B. et al. Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. J. Invertebr. Pathol. 136, 74–80 (2016).Article 
    PubMed 

    Google Scholar 
    Báthori, F., Csata, E. & Tartally, A. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J. Invertebr. Pathol. 126, 7–82 (2015).Article 

    Google Scholar 
    Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. 7, 46323 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E., Billen, J., Bernadou, A., Heinze, J. & Markó, B. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insectes Soc. 65, 503–506 (2018).Article 

    Google Scholar 
    Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E. & Báthori, F. Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep. 11, 1–9 (2021).Article 

    Google Scholar 
    Dani, F. R., Jones, G. R., Destri, S., Spencer, S. H. & Turillazzi, S. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62, 165–171 (2001).Article 

    Google Scholar 
    Lorenzi, M. C., Bagneres, A. G., Clément, J. L. & Turillazzi, S. Polistes biglumis bimaculatus epicuticular hydrocarbons and nestmate recognition (Hymenoptera Vespidae). Insectes Soc. 44, 123–138 (1997).Article 

    Google Scholar 
    Ruther, J., Sieben, S. & Schricker, B. Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89, 111–114 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, A. A., Hölldobler, B. & Liebig, J. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19, 78–81 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ebsen, J. R., Boomsma, J. J. & Nash, D. R. Phylogeography and cryptic speciation in the Myrmica scabrinodis Nylander, 1846 species complex (Hymenoptera: Formicidae), and their conservation implications. Insect Conserv. Divers 12, 467–480 (2019).Article 

    Google Scholar 
    Ballinger, M. J., Moore, L. D. & Perlman, S. J. Evolution and diversity of inherited Spiroplasma symbionts in Myrmica ants. Appl. Environ. Microbiol. 84, e02299–17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Menzel, F. et al. Crematoenones – a novel substance class exhibited by ants functions as appeasement signal. Front. Zool. 10, 1–12 (2013).Article 

    Google Scholar 
    Qiu, H.-L., Qin, C.-S., Fox, E. G. P., Wang, D.-S. & He, Y.-R. Differential behavioral responses of Solenopsis invicta (Hymenoptera: Formicidae) workers toward nestmate and non-nestmate corpses. J. Ins. Sci. 20, 11 (2020).Article 

    Google Scholar 
    Martin, S. J., Vitikainen, E., Helanterä, H. & Drijfhout, F. P. Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc. R. Soc. B. 275, 1271–1278 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guerrieri, F. J. et al. Ants recognize foes and not friends. Proc. R. Soc. B. 276, 2461–2468 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibbs, A. & Pomonis, J. G. Physical properties of insect cuticular hydrocarbons: the effects of chain lengths, methyl branching and unsaturation. Comp. Biochem. Physiol. 112, 243–249 (1995).Article 

    Google Scholar 
    Menzel, F., Blaimer, B. B. & Schmitt, T. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc. R. Soc. B. 284, 20161727 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Breed, M. D., Leger, E. A., Pearce, A. M. & Wang, Y. J. Comb wax effects on the ontogeny of honey bee nestmate recognition. Anim. Behav. 55, 13–20 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Breed, M. D. & Stiller, T. M. Honey bee, Apis mellifera, nestmate discrimination: hydrocarbon effects and the evolutionary implications of comb choice. Anim. Behav. 43, 875–883 (1992).Article 

    Google Scholar 
    Akino, T., Yamamura, K., Wakamura, S. & Yamaoka, R. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39, 381–387 (2004).Article 
    CAS 

    Google Scholar 
    Greene, M. J. & Gordon, D. M. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linepithema humile and Aphaenogaster cockerelli. J. Exp. Biol. 210, 897–905 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Casacci, L. P., Barbero, F., Ślipiński, P. & Witek, M. The inquiline ant Myrmica karavajevi uses both chemical and vibroacoustic deception mechanisms to integrate into its host colonies. Biology 10, 654 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bhatkar, A. & Whitcomb, W. Artificial diet for rearing various species of ants. Florid. Entomol. 53, 229–232 (1970).Article 

    Google Scholar 
    Espadaler X., Santamaria S. Ecto- and endoparasitic fungi on ants from the Holarctic region. Psyche 168478, 1–10 (2012).Csata, E. et al. Comprehensive survey of Romanian myrmecoparasitic fungi: new species, biology and distribution. North West J. Zool. 9, 23–29 (2013).
    Google Scholar 
    Witek, M., Barbero, F. & Markó, B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. 61, 307–323 (2014).Article 

    Google Scholar 
    Tragust, S., Tartally, A., Espadaler, X. & Billen, J. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol. N. 23, 81–89 (2016).
    Google Scholar 
    Czekes, Z. et al. The genus Myrmica Latreille, 1804 (Hymenoptera: Formicidae) in Romania: distribution of species and key for their identification. Entomol. Rom. 17, 29–50 (2012).
    Google Scholar 
    Buczkowski, G. & Silverman, J. Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Anim. Behav. 69, 741–749 (2005).Article 

    Google Scholar 
    Diez, L., Moquet, L. & Detrain, C. Post-mortem changes in chemical profile and their influence on corpse removal in ants. J. Chem. Ecol. 39, 1424–1432 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J. & Markó, B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol. 98, 167–172 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moroń, D., Witek, M. & Woyciechowski, M. Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim. Behav. 75, 345–350 (2008).Article 

    Google Scholar 
    Bernadou, A., Felden, A., Moreau, M., Moretto, P. & Fourcassié, V. Ergonomics of load transport in the seed harvesting ant Messor barbarus: morphology influences transportation method and efficiency. J. Exp. Biol. 219, 2920–2927 (2016).PubMed 

    Google Scholar 
    Keresztes, K. K., Csata, E., Lunka-Tekla, A. & Markó, B. Friend or foe? Differential aggression towards neighbors and strangers in the ant Liometopum microcephalum (Hymenoptera: Formicidae). Sci. Entomol. 23, 351–358 (2020).Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. BOLD: The Barcode of life data system. Mol. Ecol. Notes 7, 355–364, http://www.barcodinglife.org (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (URL ) (2020).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 67, 1–48 (2015).Fox J., Weisberg S. Using car and effects Functions in Other Functions. Using Car Eff. Funct. Other Funct., 3, 1–5 (2020).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric 312 models. Biom. J. 50, 346–363 (2008).Article 
    PubMed 

    Google Scholar 
    Wickham H. ggplot2: elegant graphics for data analysis. (Springer Science & Business Media) (2009). More

  • in

    The case for the reintroduction of cheetahs to India

    Gopalaswamy, A. M. et al. Nat. Ecol. Evol. 6, 1794–1795 (2022).Article 
    PubMed 

    Google Scholar 
    Sandom, C., Donlan, C. J., Svenning, J. C. & Hansen, D. in Key Topics In Conservation Biology 2 (eds MacDonald, D. W. & Willis, K. J.) 430–451 (2013).Ripple, W. J. et al. Science 343, 1241484 (2014).Article 
    PubMed 

    Google Scholar 
    Jhala, Y. V., Ranjitsinh, M. K., Bipin, C. M. & Yadav, S. P. Action Plan For Introduction Of Cheetah In India (2021).Divyabhanusinh & Kazami J. Bombay Nat. Hist. Soc. 116, 22–43 (2019).
    Google Scholar 
    IUCN/SSG. Guidelines For Reintroductions And Other Conservation Translocations IUCN. Ecological Applications 20 (IUCN Species Survival Commission, 2013).Prost, S. et al. Mol. Ecol. 31, 4208–4223 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buk, K. G., van der Merwe, V. C., Marnewick, K. & Funston, P. J. Conservation Of Severely Fragmented Populations: Lessons From The Transformation Of Uncoordinated Reintroductions Of Cheetahs (Acinonyx jubatus) Into A Managed Metapopulation With Self-Sustained Growth. Biodiversity And Conservation 27 (Springer Netherlands, 2018).Scientific Authority of South Africa. Gov. Gaz. Repub. South Africa 677, 1–4 (2021).Walker, E. H., Verschueren, S., Schmidt-Küntzel, A. & Marker, L. Oryx 56, 495–504 (2022).Article 

    Google Scholar 
    Tordiffe, A. S. W. et al. Disease Risk Analysis For Introduction Of Cheetahs (Acinonyx jubatus) To India (2022).Brugière, D., Chardonnet, B. & Scholte, P. Trop. Conserv. Sci. 8, 513–527 (2015).Article 

    Google Scholar 
    Jhala, Y. V. et al. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00312 (2019).Jhala, Y. et al. People Nat. 3, 281–293 (2021).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J. & Kerley, G. I. H. Biol. Conserv. 139, 219–229 (2007).Article 

    Google Scholar 
    Ogutu, J. O., Owen-Smith, N., Piepho, H. P. & Said, M. Y. J. Zool. 285, 99–109 (2011).Article 

    Google Scholar 
    Houser, A. M., Somers, M. J. & Boast, L. K. J. Zool. 278, 108–115 (2009).Article 

    Google Scholar  More

  • in

    Post-whaling shift in mating tactics in male humpback whales

    Study area and general observationsFour datasets, equating to four post-whaling timeframes, were used for this study: 1997 (32 years post-whaling), 2003/2004 (38/39 years post-whaling), 2008 (43 years post-whaling) and 2014/2015 (49/50 years post-whaling). Data collection for each timeframe occurred during the annual migration of humpback whales, from breeding grounds in the Great Barrier Reef, to feeding grounds in the Antarctic Ocean. The study site was located off the coast of Peregian Beach (north of Brisbane, in Queensland, Australia), which was approximately one-third of the way along their return migration route. Here, humpback whales were still exhibiting breeding behaviours, such as singing, males joining females as escorts, and males forming competitive groups around a central female. Field work took place in September and October of each year. Generally, the number of migrating groups increased per day to peak during late September and early October. Numbers then gradually fell until the end of the migration.For this study, a group was defined as cluster of whales within approximately 100 m of each other that were diving and surfacing together (as estimated by the land-based visual observers). Groups were constantly changing membership with animals joining and splitting from the group and tend to move at different speeds, and in different directions, whilst making general progress southwards. Groups, unless joining together, were separated by at least 2 km, meaning it was relatively easy to keep a separate track of each group (see below).Acoustic recordings were made from three to five hydrophone buoys moored in 18–28 m of water and arranged in a line or T-shaped array (Fig. 6). Each hydrophone buoy consisted of a surface buoy containing a custom-built pre-amplifier (+20 dB gain) and 41B sonobuoy VHF radio transmitter. A High Tech HTI-96-MIN hydrophone with built-in +40 dB pre-amplifier was suspended approximately 1 m above each buoy’s mooring. Signals were received onshore at a base station 1.5 to 2.5 km away using a directional Yagi antenna and type 8101, four-channel sonobuoy receiver. Singing whales were located by cross-correlating the same song sound arriving at the different hydrophones to determine time-of-arrival differences. These differences, together with an accurate knowledge of the positions of the hydrophones, were then used to determine the most likely location of the singer. Singers generally move slowly and calculating an acoustic position approximately every 10 min produced a detailed track of the singer.Fig. 6: Outline of the study site including the range of visual observations and the position of the acoustic tracking array.Illustrating the study site at Peregian Beach, north of Brisbane, east coast of Australia. The map indicates the position of the land-based station (Emu Mountain) and the acoustic base station along with the position of the 5-buoy hydrophone array. The outline designates the study area. Whales moved in a southerly direction through the area daily. Whale icons illustrate acoustically tracked singing whales (circled in blue) and visually tracked presumed males (black), females (orange), and calves (small black). The 5 km social circle radius for a focal singing (blue circle) and a non-singing (black circle) male are also illustrated. The map is taken from “Google Earth” with permission to print without the need to submit a request (Brand Resource Center | Products and Services – Geo Guidelines (about.google)).Full size imageMigrating groups were tracked visually (7am to 5pm, weather permitting) from a land-based elevated survey point, Emu Mountain (73 m elevation). A theodolite (Leica TM 1100) was used in conjunction with a notebook computer running Cyclopes software (E. Kniest, Univ. Newcastle, Australia) to track the groups in real-time and note group behaviours. The field of view was approximately 20 km in a north/south direction and 10 km offshore (Fig. 6). Humpback whale groups were observed ad libitum and tracked by teams of five people. When whale groups surfaced, the observers called the sighted behaviour, compass bearing, and angle from the group to the horizon (in reticules). Each observation included group identification letter, the time, group size and composition, whether a calf was present, direction of travel, and group location, either by using a binocular reticular measurement or a theodolite measurement. Joining and splitting animals were also noted. A join was defined as one of more animals actively moving towards a group to surface within 100 m and then match the group surfacing times. Examples of this include an individual singing or non-singing whale actively moving towards, and then joining, another individual or group of whales. If more animals subsequently moved in and joined the group, this was termed an additional join to that group. These additionally joined group usually comprised of a female-calf and more than one male escort, or three or more adults, with additional joiners highly likely to be male (21,25,26, supplementary results). On rare occasions a singing whale remained in one place but was joined by another individual. This was termed an additional join given there was no evidence the singer actively moved to join this animal. However, the rarity of these occurrences meant the allocation of this behaviour to additional join, rather than join, had no influence on the results.Some of the migrating animals were biopsied during the day for post-field later sexing. Note biopsied animals were sometimes part of different studies occurring at the field site30,50 and were not necessarily the animals used in this study. However, these biopsy results were used to test assumptions made in this study regarding the sex of joining whales and whales within the observed groups (supplementary results and supplementary note). Weather was noted hourly.Statistics and reproducibilityDefining the proximate effect of male density on individual mating tacticsFor this analysis, a specific period, the 2003/2004 dataset, was chosen as it had the most instances of identified singers and non-singers. Within this timeframe, whales were migrating through the study area at sufficiently low density to avoid confusion. After 2004, it became increasingly difficult to focally follow males.First, for singing males (n = 86), their location within the study area was recorded at the start of singing using the acoustic array. Whilst singing they remained in the same location or meandered slowly within a small area. Non-singing animals that were observed to join a group (n = 31) were assumed to be male (21,25,26,30, supplementary methods and supplementary results). For these joining animals, visual observations were backtracked for 10 to 15 min until they were sighted alone. They were only included in the analysis if they could be definitively backtracked using visual (theodolite) observations, with no opportunity for confusion with other whales in area (i.e., no other whales within 2 km).For each unaccompanied focal male, the number of, and roles, of other presumed males within 5 km radius from the focal whale (Fig. 6) was used as a measure of local male density. The 5 km radius was termed social circle and was chosen as the most likely communication space for their acoustic signals51. For singing focal whales, their social circle was estimated using their location when they began to sing. For non-singing focal males, their social circle was estimated using the backtracked theodolite position to when it was first sighted alone. Next, all groups within the 5 km social circle of the focal whale, along with each group composition (singing animal, lone animal, female and calf pair, female-calf and escort number, adult-only group with the number of adults) were recorded at that timepoint. It was not logistically possible to biopsy and sex all migrating animals, therefore, to estimate the number of males within their social circle several assumptions were made. These assumptions were also tested using a biopsy study carried out in the area (supplementary methods and supplementary results). Female-calf pairs were discounted as it was assumed all adults with a calf were female. It was assumed that female-calf pairs were being escorted by males (21,25,26, supplementary methods and supplementary results). Groups of multiple adults were assumed to be comprised of a likely single female, principal male escort and secondary male escorts or challengers (21,25,26, supplementary methods and supplementary results). Lone animals not involved in any group interactions, and not singing, were given a 70% chance of being male (supplementary note). Animals within adult pairs were given a 70% chance of being male given the likelihood of having a mix of female-male pairs and male-male pairs (21,30, supplementary results and supplementary note).All analysis models were carried out in R (version 3.4.0). The first analysis aimed to determine if the likelihood of first observing the focal individual as a singing or non-singing male was significantly related to local male density, as determined by the number of males within a 5 km radius, termed social circle. Singing whales were allocated a 0 and non-singing whales were allocated a 1. A generalised linear model structure was used, assuming a binomial distribution. Likely males within their social circle were divided into non-singing and singing males (to delineate tactics) and these were included as the two covariates.$${{{{{rm{Singing}}}}}},(0),{{{{{rm{or }}}}}},{{{{{rm{Non}}}}}}{mbox{-}}{{{{{rm{singing}}}}}},(1) sim {{{{{rm{Non}}}}}}{mbox{-}}{{{{{rm{singing}}}}}},{{{{{rm{males}}}}}}, 5,{{{{{rm{km}}}}}}+{{{{{rm{Singing}}}}}},{{{{{rm{whales}}}}}}, 5,{{{{{rm{km}}}}}}$$Each focal male was an independent sample given males were migrating southwards and extremely unlikely to back-track into the study area and therefore be resampled. Significance was set at p  More

  • in

    Seasonal variation in the lipid content of Fraser River Chinook Salmon (Oncorhynchus tshawytscha) and its implications for Southern Resident Killer Whale (Orcinus orca) prey quality

    Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215 (1994).Article 

    Google Scholar 
    Fisheries and Oceans Canada. National recovery strategy for northern and southern resident killer whales (Orcinus orca) in Canada [proposed]. vol. Species at (2018).National Marine Fisheries Service. Recovery Plan for Southern Resident Killer Whales (Orcinus orca). (2008).Barrett-Lennard, L. G. & Ellis, G. M. Population Structure and Genetic Variability in Northeastern Pacific Killer Whales: Towards an Assessment of Population Viability. DFO Can. Sci. Advis. Secr. Res. Deocument 2001/065 65 (2001).DFO. Evaluation of the scientific evidence to inform the probability of effectiveness of mitigation measures in reducing shipping-related noise levels received by southern resident killer whales. CSAS Science Advisory Report vol. 2017/041 (2017).Ross, P. S., Ellis, G. M., Ikonomou, M. G. & Addison, R. F. High PCB concentrations in free-ranging Pacific Killer Whales, Orcinus orca: Effects of age, sex and dietary preference. Mar. Pollut. Bull. 40, 504–515 (2000).Article 
    CAS 

    Google Scholar 
    Ward, E. J., Holmes, E. E. & Balcomb, K. C. Quantifying the effects of prey abundance on killer whale reproduction. J. Appl. Ecol. 46, 632–640 (2009).Article 

    Google Scholar 
    Ford, J. K. B., Ellis, G. M., Olesiuk, P. F. & Balcomb, K. C. Linking killer whale survival and prey abundance: Food limitation in the oceans’ apex predator ?. Biol. Lett. 6, 139–142 (2010).Article 
    PubMed 

    Google Scholar 
    Ford, J. K. B. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).Article 

    Google Scholar 
    Ford, J. K. B., Ellis, G. M. & Olesiuk, P. F. Linking Prey and Population Dynamics Did Food Limitation Cause Recent Declines of RKW in BC, vol. 3848 (2005).O’Neill, S. M., Ylitalo, G. M. & West, J. E. Energy content of Pacific salmon as prey of northern and southern resident killer whales. Endanger. Species Res. 25, 265–281 (2014).Article 

    Google Scholar 
    Ford, J. K. B. & Ellis, G. M. Selective foraging by fish-eating killer whales Orcinus orca in British Columbia. Mar. Ecol. Prog. Ser. 316, 185–199 (2006).Article 
    ADS 

    Google Scholar 
    Jeffrey, K. M., Côté, I. M., Irvine, J. R. & Reynolds, J. D. Changes in body size of Canadian Pacific salmon over six decades. Can. J. Fish. Aquat. Sci. 74, 191–201 (2017).Article 

    Google Scholar 
    Ohlberger, J., Schindler, D. E., Ward, E. J., Walsworth, T. E. & Essington, T. E. Resurgence of an apex marine predator and the decline in prey body size. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1910930116 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ohlberger, J., Ward, E. J., Schindler, D. E. & Lewis, B. Demographic changes in Chinook salmon across the Northeast Pacific Ocean. Fish Fish. 19, 533–546 (2018).Article 

    Google Scholar 
    Bigler, B. S., Welch, D. W. & Helle, J. H. A review of size trends among North Pacific salmon (Oncorhynchus spp.). Can. J. Fish. Aquat. Sci. 53, 455–465 (2011).Article 

    Google Scholar 
    Hanson, M. B. et al. Species and stock identification of prey consumed by endangered southern resident killer whales in their summer range. Endanger. Species Res. 11, 69–82 (2010).Article 
    ADS 

    Google Scholar 
    Losee, J. P., Kendall, N. W. & Dufault, A. Changing salmon: An analysis of body mass, abundance, survival, and productivity trends across 45 years in Puget Sound. Fish Fish. 20, 934–951 (2019).Article 

    Google Scholar 
    Riddell, B. et al. Assessment of Status and Factors for Decline of Southern BC Chinook Salmon: Independent Panel’s Report (2013).DFO. Integrated Biological Status of Southern British Columbia Chinook Salmon (Oncorhynchus tshawytscha) Under the Wild Salmon Policy. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2016/042, 15 (2016).
    Google Scholar 
    COSEWIC. COSEWIC assessment and status report on the Chinook Salmon Oncorhynchus tshawytscha, Designatable Units in Southern British Columbia, in Canada. (2019).Pacific Salmon Commission Joint Chinook Technical Committee. Annual Report of Catch and Escapement for 2021. Tcchinook (13)-01 (2021).Quinn, T. P. Behavior and ecology of Pacific Salmon and trout. Fish Fish. 7, 75–76 (2004).
    Google Scholar 
    Brett, J. R. Energetics. In Phsyiological Ecology of Pacific Salmon (eds Groot, C. et al.) 1–68 (UBC Press, 1995).
    Google Scholar 
    Chamberlain, M. W. & Parken, C. Utilizing the Albion test fishery as an in-season predictor of run size of the Fraser River spring and summer age 52 Chinook. DFO Can. Sci. Advis. Sec. Res. Doc. 2012, 42 (2012).
    Google Scholar 
    Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).Article 

    Google Scholar 
    Williams, R. et al. Competing conservation objectives for predators and prey: Estimating Killer Whale prey requirements for Chinook Salmon. PLoS ONE 6, e26738 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Courtney, K. R., Falke, J. A., Cox, M. K. & Nichols, J. Energetic status of Alaskan Chinook Salmon: Interpopulation comparisons and predictive modeling using bioelectrical impedance analysis. North Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10398 (2019).Article 

    Google Scholar 
    Pothoven, S. A. et al. Reliability of bioelectrical impedance analysis for estimating whole-fish energy density and percent lipids. Trans. Am. Fish. Soc. 137, 1519–1529 (2008).Article 

    Google Scholar 
    Crossin, G. T. & Hinch, S. G. A Nonlethal, rapid method for assessing the somatic energy content of migrating adult pacific salmon. Trans. Am. Fish. Soc. 134, 184–191 (2005).Article 

    Google Scholar 
    Colt, J. & Shearer, K. D. Evaluation of the Use of the Torry Fish Fatmeter to Non-Lethally Estimate Lipid in Adult Salmon (2001).Hanson, K. C., Ostrand, K. G., Gannam, A. L. & Ostrand, S. L. Comparison and validation of nonlethal techniques for estimating condition in Juvenile Salmonids. Trans. Am. Fish. Soc. 139, 1733–1741 (2010).Article 

    Google Scholar 
    Naughton, G., Caudill, C. & Clabough, T. Migration Behavior and Spawning Success of Spring Chinook Salmon in Fall Creek and the North Fork Middle Fork Willamette River: Relationship Among Fate, Fish Condition, and Environmental Factors, 2011. (2012).Folch, J., Lees, M. & Sloane Stanley, G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).Article 
    CAS 
    PubMed 

    Google Scholar 
    Post, J. R. & Parkinson, E. A. Energy allocation strategy in young fish: Allometry and survival. Ecology 82, 1040–1051 (2001).Article 

    Google Scholar 
    Arrington, D. A., Davidson, B. K., Winemiller, K. O. & Layman, C. A. Influence of life history and seasonal hydrology on lipid storage in three neotropical fish species. J. Fish Biol. 68, 1347–1361 (2006).Article 
    CAS 

    Google Scholar 
    Holty, B. L. & Ciruna, K. A. Conservation units for Pacific Salmon under the Wild Salmon Policy. DFO Can. Sci. Advis. Sec. Res. Doc 2007/070, 350 (2007).
    Google Scholar 
    PSC. Catch and Escapement of Chinook Under Pacific Salmon Commission Jurisdiction, 2001 (PSC, 2002).
    Google Scholar 
    Waples, R. S., Teel, D. J., Myers, J. M. & Marshall, A. R. Life-history divergence in Chinook Salmon: Historic contingency and parallel evolution. Evolution 58, 386–403 (2004).PubMed 

    Google Scholar 
    Beacham, T. D. et al. Pacific rim population structure of chinook salmon as determined from microsatellite analysis. Trans. Am. Fish. Soc. 135, 1604–1621 (2006).Article 
    CAS 

    Google Scholar 
    Crossin, G. T. et al. Energetics and morphology of sockeye salmon: Effects of upriver migratory distance and elevation. J. Fish Biol. 65, 788–810 (2004).Article 

    Google Scholar 
    MacDonald, B. In-Season Forecasting of Fraser Chinook Salmon Using Genetic Stock Identification of Test Fishery Data By (2016).Parken, C. K., Candy, J. R., Irvine, J. R. & Beacham, T. D. Genetic and coded wire tag results combine to allow more-precise management of a complex Chinook salmon aggregate. North Am. J. Fish. Manag. 28, 328–340 (2008).Article 

    Google Scholar 
    Mann, R., Peery, C., Pinson, A. & Anderson, C. Energy use, migration times, and spawning success of adult spring–summer Chinook salmon returning to spawning areas in the South Fork Salmon River in Central Idaho: 2002–2007. Technical report 2009–4 http://www.cnr.uidaho.edu/uiferl/pdfreports/SFS_Tech_Report_2009-4_Final.pdf (2009).Hearsey, J. W. & Kinziger, A. P. Diversity in sympatric chinook salmon runs: Timing, relative fat content and maturation. Environ. Biol. Fishes 98, 413–423 (2015).Article 

    Google Scholar 
    Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Chang. Biol. 27, 1859–1878 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloret-Lloret, E. et al. Small pelagic fish fitness relates to local environmental conditions and trophic variables. Prog. Oceanogr. 202, 102745 (2022).Article 

    Google Scholar 
    Mesa, M. G. & Magie, C. D. Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia River Basin: An assessment based on sequential proximate analysis. River Res. Appl. 22, 1085–1095 (2006).Article 

    Google Scholar 
    Crossin, G. T., Hinch, S. G., Farrell, A. P., Higgs, D. A. & Healey, M. C. Somatic energy of sockeye salmon Oncorhynchus nerka at the onset of upriver migration: A comparison among ocean climate regimes. Fish. Oceanogr. 13, 345–349 (2004).Article 

    Google Scholar 
    Roni, P. & Quinn, T. P. Geographic variation in size and age of North American Chinook salmon. North Am. J. Fish. Manag. 15, 325–345 (1995).Article 

    Google Scholar 
    Hendry, A. P., Berg, O. K., Quinn, T. P. & Condition, T. P. Condition dependence and adaptation-by-time: Breeding date, life history, and energy allocation within a population of salmon. Oikos 85, 499–514 (1999).Article 

    Google Scholar 
    Hanson, M. B. et al. Endangered predators and endangered prey: Seasonal diet of Southern Resident killer whales. PLoS ONE 16, e0247031 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weitkamp, L. A. Marine distributions of Chinook Salmon from the West Coast of North America determined by coded wire tag recoveries. Trans. Am. Fish. Soc. 139, 147–170 (2010).Article 

    Google Scholar 
    Shields, M. W., Lindell, J. & Woodruff, J. Declining spring usage of core habitat by endangered fish-eating killer whales reflects decreased availability of their primary prey. Pac. Conserv. Biol. 24, 189–193 (2018).Article 

    Google Scholar 
    Brown, G. S. et al. Pre-COSEWIC review of southern British Columbia Chinook Salmon (Oncorhynchus tshawytscha) conservation units Part I: Background. Can. Sci. Advis. Sec. Res. Doc. 2019/11, 67 (2019).
    Google Scholar 
    NOAA Fisheries West Coast & Washington Department of Fish and Wildlife. Southern Resident Killer Whale Priority Chinook Stocks Report. https://www.westcoast.fisheries.noaa.gov/publications/protected_species/marine_mammals/killer_whales/recovery/srkw_priority_chinook_stocks_conceptual_model_report___list_22june2018.pdf (2018).Chalifour, L. et al. Chinook salmon exhibit long-term rearing and early marine growth in the fraser river, british columbia, a large urban estuary. Can. J. Fish. Aquat. Sci. 78, 539–550 (2021).Article 
    CAS 

    Google Scholar 
    Lamperth, J. S., Quinn, T. P. & Zimmerman, M. S. Levels of stored energy but not marine foraging patterns differentiate seasonal ecotypes of wild and hatchery steelhead (Oncorhynchus mykiss) returning to the Kalama river, Washington. Can. J. Fish. Aquat. Sci. 74, 157–167 (2017).Article 
    CAS 

    Google Scholar 
    Von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the pacific marine heatwave of 2014–2016. Mar. Ecol. Prog. Ser. 613, 171–182 (2019).Article 
    ADS 

    Google Scholar 
    Healey, M. C. Life history of Chinook Salmon (Oncorhynchus tshawytscha). In Pacific Salmon Life Histories (eds Groot, C. & Margolis, L.) 313–393 (University of British Columbia Press, 1991).
    Google Scholar 
    Freshwater, C. et al. An integrated model of seasonal changes in stock composition and abundance with an application to Chinook salmon. PeerJ 9, 1–27 (2021).Article 

    Google Scholar 
    Couture, F., Oldford, G., Christensen, V., Barrett-lennard, L. & Walters, C. Requirements and availability of prey for northeastern pacific southern resident killer whales. PLoS ONE 17, e0270523 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DFO. Government of Canada Takes Action to Address Fraser River Chinook Decline (DFO, 2019).
    Google Scholar 
    Brown, R. F. & Musgrave, M. M. Preliminary Catalogue of Salmon Steams and Escapements of Misson-Harrison Sub District. Fisheries and Marine Service Data Report No. 133 (1979).Manzon, C. I. & Marshall, D. E. Catalogue of salmon streams and spawning escapements of Cariboo subdistrict. Can. Data Rep. Fish. Aquat. Sci. 211, 51 (1980).
    Google Scholar 
    Marshall, D. E. & Manzon, C. I. Catalogue of Salmon Streams and Spawning Escapements of the Prince George Subdistrict (Department of Fisheries and Oceans Fisheries and Marine Services Data Report N0o. 79, 1980).
    Google Scholar 
    Olmsted, W., Whelen, M. & Stewart, R. 1980 Investigations of fall-spawning chinook salmon (Oncorhynchus tshawytscha), Quesnel, blackwater (west road) and cottonwood river drainages, B.C. 34, 131–134 (1981).Brown, R. F., Musgrave, M. M. & Marshall, D. E. Catalogue of salmon streams and spawning escapements for Kamloops sub-district. Fish. Mar. Serv. Data Rep. 151, 226 (1979).
    Google Scholar 
    DFO. Information Document to Assist Development of a Fraser Chinook Management Plan 56 (DFO, 2006).
    Google Scholar 
    Kosakoski, G. T. & Hamilton, R. E. Water Requirements for the Fisheries Resource of the Nicola River, B.C. Can. Manuscr. Rep. Fish. Aquat. Sci. 140 (1982). More

  • in

    Late Cenozoic cooling restructured global marine plankton communities

    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beaugrand, G., Reid, P. C., Ibanez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Herbert-Read, J. E. et al. A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nat. Ecol. Evol. 6, 1262–1270 (2022).Article 
    PubMed 

    Google Scholar 
    Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strack, A., Jonkers, L., Rillo, M. C., Hillebrand, H. & Kucera, M. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat. Ecol. Evol. 6, 1871–1880 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mokany, K. & Ferrier, S. Predicting impacts of climate change on biodiversity: a role for semi‐mechanistic community‐level modelling. Divers. Distrib. 17, 374–380 (2011).Article 

    Google Scholar 
    Pörtner, H.-O. et al. eds IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022).Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).Article 
    PubMed 

    Google Scholar 
    Schumm, M. et al. Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proc. R. Soc. B 286, 20190745 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl Acad. Sci. USA 100, 9884–9888 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).Article 
    PubMed 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rillo, M. C., Miller, C. G., Kučera, M. & Ezard, T. H. G. Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment. Ecol. Evol. 10, 11579–11590 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, E. Descent into the icehouse. Geology 36, 191–192 (2008).Article 
    ADS 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crame, J. A. Early Cenozoic evolution of the latitudinal diversity gradient. Earth Sci. Rev. 202, 103090 (2020).Article 

    Google Scholar 
    Yasuhara, M. et al. Time machine biology. Oceanography 33, 16–28 (2020).Article 

    Google Scholar 
    Alegret, L., Arreguín-Rodríguez, G. J., Trasviña-Moreno, C. A. & Thomas, E. Turnover and stability in the deep sea: benthic foraminifera as tracers of Paleogene global change. Global Planet. Change 196, 103372 (2021).Article 

    Google Scholar 
    Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mannion, P. D., Upchurch, P., Benson, R. B. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).Article 
    PubMed 

    Google Scholar 
    Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatology 36, e2020PA004037 (2021).Article 

    Google Scholar 
    Brown, R. M., Chalk, T. B., Crocker, A. J., Wilson, P. A. & Foster, G. L. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity. Nat. Geosci. 15, 664–670 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Guillermic, M., Misra, S., Eagle, R. & Tripati, A. Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific. Clim. Past 18, 183–207 (2022).Article 

    Google Scholar 
    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).Article 
    PubMed 

    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peters, S. E., Kelly, D. C. & Fraass, A. J. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nature 493, 398–401 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodhouse, A. et al. Adaptive ecological niche migration does not negate extinction susceptibility. Sci. Rep. 11, 15411 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).Article 
    PubMed 

    Google Scholar 
    Bindoff, N. L. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, Cambridge Univ. Press, 2019).Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).Article 
    PubMed 

    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).Article 
    PubMed 

    Google Scholar 
    Rojas, A., Calatayud, J., Kowalewski, M., Neuman, M. & Rosvall, M. A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Commun. Biol. 4, 309 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swain, A., Devereux, M. & Fagan, W. F. Deciphering trophic interactions in a mid-Cambrian assemblage. iScience 24, 102271 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaw, J. O. et al. Disentangling ecological and taphonomic signals in ancient food webs. Paleobiology 47, 385–401 (2021).Article 

    Google Scholar 
    Swain, A., Maccracken, S., Fagan, W. & Labandeira, C. Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks. Paleobiology 48, 239–260 (2022).Article 

    Google Scholar 
    Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boscolo-Galazzo, F. and Crichton, K.A. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).Article 
    ADS 

    Google Scholar 
    Keller, G. in The Miocene Ocean: Paleoceanography and Biogeography Vol. 163, 177–196 (Geological Society of America, 1985).Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willeit, M., Ganopolski, A., Calov, R., Robinson, A. & Maslin, M. The role of CO2 decline for the onset of Northern Hemisphere glaciation. Quat. Sci. Rev. 119, 22–34 (2015).Article 
    ADS 

    Google Scholar 
    Hayashi, T. et al. Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation. Commun. Earth Environ. 1, 25–10 (2020).Article 
    ADS 

    Google Scholar 
    Lam, A. R., Crundwell, M. P., Leckie, R. M., Albanese, J. & Uzel, J. P. Diachroneity rules the mid-latitudes: a test case using late Neogene planktic foraminifera across the Western Pacific. Geosciences 12, 190 (2022).Article 
    ADS 

    Google Scholar 
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Global Ecol. Biogeogr. 28, 1866–1878 (2019).Article 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 
    ADS 

    Google Scholar 
    Monllor-Hurtado, A., Pennino, M. G. & Sanchez-Lizaso, J. L. Shift in tuna catches due to ocean warming. PLoS ONE 12, e0178196 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).Article 
    PubMed 

    Google Scholar 
    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renaudie, J., Lazarus, D.B. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, p.a11 (2020).
    Google Scholar 
    Pearson, P. N. in Atlas of Oligocene Planktonic Foraminifera (eds Wade, B. S. et al) 415–428 (Cushman Foundation of Foraminiferal Research, 2018).Liow, L. H., Skaug, H. J., Ergon, T. & Schweder, T. Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36, 224–252 (2010).Article 

    Google Scholar 
    Lazarus, D., Weinkauf, M. & Diver, P. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil data. Paleobiology 38, 144–161 (2012).Article 

    Google Scholar 
    Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the Plio-Pleistocene intensification of Northern Hemisphere glaciations. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2022-844 (2022).Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).Article 
    ADS 

    Google Scholar 
    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Op. Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    Swain, A. et al. Sampling bias and the robustness of ecological metrics for plant-damage-type association networks. Ecology https://doi.org/10.1002/ecy.3922 (2022).Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Vaughan, I. P. et al. econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods Ecol. Evol. 9, 728–733 (2018).Article 
    MathSciNet 

    Google Scholar  More

  • in

    The interplay between spatiotemporal overlap and morphology as determinants of microstructure suggests no ‘perfect fit’ in a bat-flower network

    Study siteThe study was conducted in the Brasília National Park (PNB), Federal District, Brazil (15º39′57″ S; 47º59′38″ W), a 42.355 ha Protected Area with a typical vegetation configuration found in the Cerrado of the central highlands of Brazil, i.e., a mosaic of gallery forest patches along rivers surrounded by a matrix of savannas and grasslands34. The climate in the region falls into the Aw category in the Köppen scale, categorizing a tropical wet savanna, with marked rainy (October to March) and dry (April to September) seasons.We carried out the study in eight fixed sampling sites scattered evenly throughout the PNB and separated by at least two kilometers from one another (Supplementary Fig. S1). The sites consisted of four cerrado sensu stricto sites (bushy savanna containing low stature trees); two gallery forest edges sites (ca. 5 m from forest edges, containing a transitional community), and two gallery forest interior sites. These three types reflect the overall availability of habitat types in the reserve (excluding grasslands) and are the most appropriate foraging areas to sample interactions as bat-visited plants are either bushes, trees, or epiphytes, but rarely herbs35.Bat and interaction samplingsWe sampled bat-plant interactions using pollen loads collected from bat individuals captured in the course of one phenological year, thus configuring an animal-centered sampling. We carried out monthly field campaigns to capture bats from October 2019 to February 2020, from August to September 2020, and from March to July 2021. In each month, we carried out eight sampling nights during periods of low moonlight intensity, each associated with one of the eight sites. Each night, we set 10 mist nets (2.6 × 12 m, polyester, denier 75/2, 36 mm mesh size, Avinet NET-PTX, Japan) at ground level randomly within the site, which were opened at sunset and closed after six hours. We accumulated a total sampling effort of 552 net-hours, 28,704 m2 of net area, or 172,224 m2h sensu Straube and Bianconi36.All captured bats were sampled for pollen, irrespective of family or feeding guild. We used glycerinated and stained gelatin cubes to collect pollen grains from the external body of bats (head, torso, wings, and uropatagium). Samples were stored individually, and care was taken not to cross-contaminate samples. Pollen types were identified by light microscopy, and palynomorphs were identified to the lowest-possible taxonomical level using an extensive personal reference pollen collection from plants from the PNB (details in next section). Palynomorphs were sometimes classified to the genus or family level or grouped in entities representing more than one species. Any palynomorph numbering five or fewer grains in one sample was considered contamination, alongside any anemophilous species irrespective of pollen number.Bats were identified using a specialized key37 and four ecomorphological variables were measured for each individual. (i) Forearm length and (ii) body mass were used to calculate the body condition index (BCI), a proxy of body robustness38, where higher BCI values indicate larger and heavier bats, which are less effective in interacting with flowers in general due to a lack of hovering behavior, the incapability of interacting with delicate flowers that cannot sustain them, a lower maneuverability and higher energetic requirements39. Moreover, we measured (iii) longest skull length (distance from the edge of the occipital region to the anterior edge of the lower lip) and (iv) rostrum length (distance from the anterior edge of the eye to the anterior edge of the lower lip) to calculate the rostrum-skull ratio (RSR), a proxy of morphological specialization to nectar consumption23. Higher RSR values indicate bats with proportionally longer rostra in relation to total skull length. Longer rostra in bats are associated with a weaker bite force and thus less effective in consuming harder food items such as fruits and insects, thus suggesting a higher adaptation to towards nectar40,41. Bats were then tagged with aluminum bands for individualization and released afterward. To evaluate the sampling completeness of the bat community and of the pollen types found on bats, we employed the Chao1 asymptotic species richness estimator and an individual-based sampling effort to estimate and plot rarefaction curves, calculating sampling completeness according to Chacoff et al.42.All methods were carried out in accordance with relevant guidelines and regulations. The permits to capture, handle and collect bats were granted by the Ethical Council for the Usage of Animals (CEUA) of the University of Brasília (permit 23106.119660/2019-07) and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (permit: SISBIO 70268). Vouchers of each species, when the collection was possible, were deposited in the Mammal Collection of the University of Brasília.Assessment of the plant communityIn each of the eight sampling sites, we delimited a 1000 × 10 m transect, each of which was walked monthly for one phenological year (January and February 2020, August to December 2020, and March to July 2021) to build a floristic inventory of plants of interest and to estimate their monthly abundance of flowering individuals. Plant species of interest were any potential partner for bats, which included species already known to be pollinated by bats, presenting chiropterophilous traits sensu Faegri and Van Der Pijl43, or any plant that could be accessed by and reward bats, whose flowers passes all the three following criteria:(i) Nectar or pollen is presented as the primary reward to visitors. (ii) Corolla diameter of 1 cm or more. This criterion excludes small generalist and insect-pollinated flowers where the visitation by bats is mechanically unlikely. It applies to the corolla diameter in non-tubular flowers or the diameter of the tube opening. Exceptions were small and actinomorphic flowers aggregated in one larger pollination unit (pseudanthia) where the 1 cm threshold was applied to inflorescence diameter. (iii) Reward must be promptly available for bats. This criterion excludes species with selective morphological mechanisms, such as quill-shaped bee-pollinated flowers or flowers with long and narrow calcars.All flowering individuals of interest species found in the transects were registered. A variable number of flowers/inflorescences (n = 5–18) were collected per species for morphometric analysis. For each species, we calculated floral tube length (FTL), corresponding to the distance between the base of the corolla, calyx, or hypanthium (depending on the species) to its opening, and the corolla’s outermost diameter (COD), which corresponds to the diameter of the corolla opening (tubular flowers) or simply the corolla diameter (non-tubular flowers). For pseudanthia-forming species, inflorescence width was measured. Pseudanthia and non-tubular flowers received a dummy FTL value of 0.1 mm to represent low restriction and enable later calculations. Finally, we collected reference pollen samples from all species from anthers of open flowers, which were used to identify pollen types found on bats. For plant species found in pollen loads but not in the PNB, measures were taken from plants found either on the outskirts of the site (Inga spp.) or from dried material in an online database (Ceiba pentandra, in https://specieslink.net/) using the ImageJ software44. Vouchers were deposited in the Herbarium of the Botany Department, University of Brasília.Data analysisNetwork macrostructureWe built a weighted adjacency matrix i x j, where cells corresponded to the number of individuals of bat species i that interacted with plant species or morphotype j. All edges corresponding to legitimate interactions were included. With this matrix, we calculated three structural metrics to describe the network’s macrostructure. First, weighted modularity (Qw), calculated by the DIRTLPAwb + algorithm45. A modular network comprises subgroups of species in which interactions are stronger and more frequent than species out of these subgroups10, which may reveal functional groups in the network9. Qw varies from zero to one, the latter representing a perfectly modular network.Second, complementary specialization through the H2′ metric46. It quantifies how unique, on average, are the interactions made by species in the network, considering interaction weights and correcting for network size. It varies from zero to one, the latter corresponding to a specialized network where interactions perfectly complement each other because species do not share partners.Lastly, nestedness, using the weighted WNODA metric25. Nested networks are characterized by interaction asymmetries, where peripheral species are only a subset of the pool of species with which generalists interact47. The index was normalized to vary from zero to one, with one representing a perfectly nested network. Given that the network has a modular structure, we also tested for a compound topology, i.e., the existence of distinct network patterns within network modules, by calculating intra-module WNODA and between-module WNODA36. Internally nested modules appear in networks in which consumers specialize in groups of dissimilar or clustered resources and suggest the existence of distinct functional groups of consumers25,48. Metric significance (Qw, H2′, and WNODA) was assessed using a Monte Carlo procedure based on a null model. We used the vaznull model3, where random matrices are created by preserving the connectance of the observed matrix but allowing marginal totals to vary. One thousand matrices were generated and metrics were calculated for each of them. Metric significance (p) corresponded to the number of times the null model delivered a value equal to or higher than the observed metric, divided by the number of matrices. The significance threshold was considered p ≤ 0.05.Given a modular structure, we followed the framework of Phillips et al.49 that correlates network concepts (especially modularity) with the distribution of morphological variables of pollinators to unveil patterns of niche divergence in pollination networks. Given the most parsimonious module configuration suggested by the algorithm, we compared modules in terms of the distribution of morphological variables of the bat (RCR and BCI) and plant (FTL and COD) species that composed the module. Differences between modules means were tested with one-way ANOVAs.Drivers of network microstructureThe role of different ecological variables in determining pairwise interaction frequencies was assessed using a probability matrices approach3. This framework considers that an interaction matrix Y is a product of several probability matrices of the same size as Y, with each matrix representing the probability of species interacting based on an ecological mechanism. Thus, adapting it to our objectives, we have Eq. (1):$$mathrm{Y}=mathrm{f}(mathrm{A},mathrm{ M },mathrm{P},mathrm{ S})$$
    (1)
    where Y is the observed interaction matrix, and a function of interaction probability matrices based on species relative abundances (A), representing neutrality as species interact by chance; species morphological specialization (M), phenological overlap (P), and spatial overlap (S). We built models containing each of these matrices in the following ways:Relative abundance (A): matrix cells were the products of the relative abundances of bat and plant species. The relative abundances of bats were determined through capture frequencies (each species’ capture frequency divided by all captures, excluding recaptures) and the relative abundances of plants were determined by the number of flowering individuals recorded in transections (each species’ summed abundance in all transects and all months divided by the pooled abundance of all species in the network). Cell values were normalized to sum one.Morphological specialization (M): cells were the probability of species interacting based on their matching degree of morphological specialization. Morphologically specialized bats (i.e., longer rostra and smaller size) are more likely to interact with morphologically specialized flowers (i.e., longer tubes and narrower corollas), while unspecialized bats are more likely to interact with unspecialized, accessible flowers. For this purpose, we calculated a bat specialization index (BSI) as the ratio between RCR and BCI, where higher BSI values indicate overall lower body robustness and longer snout length. Likewise, the flower specialization index (FSI) was calculated for plants as the ratio between FTL and COD, where higher values indicate smaller, narrower, long-tubed flowers that require specialized morphology and behavior from bats for visitation. BSI and FTL were normalized to range between zero and one and were averaged between individuals of each species of bat or plant. Therefore, interaction probabilities were calculated as in Eq. (2):$${P}_{i,j}=1-|{BSI}_{i}-{FSI}_{j}|$$
    (2)
    where Pi,j is the interaction probability between bat species i and plant species j and |BSIi – FSIj| is the absolute difference between bat and plant specialization indexes. Similar index values (two morphologically specialized or unspecialized species interacting) lead to a low difference in specialization and thus to a high probability of interaction (Pi,j → 1), whereas the interaction between a morphologically specialized and a morphologically unspecialized species leads to a high absolute difference and thus lower probability of interaction (Pi,j → 0). Cell values of the resulting matrix were normalized to sum one.Phenological overlap (P): cells were the probability of species interacting based on temporal synchrony, calculated as the number of months that individuals of bat species i and flowering individuals of plant species j co-occurred in the research site, pooling all capture sites/transections. Cell values were normalized to sum one.Spatial overlap (S): cells were the probability of species interacting based on their co-occurrence over small-scale distances and vegetation types, calculated as the number of individuals from a bat species i captured in sampling sites where the plant species j was registered in the transection, considering all capture months. Cell values were normalized to sum one.Because more than one ecological mechanism may simultaneously drive interactions3,9, we built an additional set of seven models resultant from the element-wise multiplication of individual probability matrices:

    SP: The spatial and temporal distribution of species work simultaneously in driving a resource turnover in the community, driving interactions.

    AS: Abundance drives interactions between bats and plants, but within spatially clustered resources in the landscape caused by a turnover in species distributions.

    AP: Abundance drives interactions between bats and plants, but within temporally clustered resources caused by a seasonal distribution of resources.

    APS: Abundance drives interactions between bats and plants, but within resource clusters that emerge by a simultaneous temporal and spatial aggregation.

    MS: Similar to AS, but morphology drives interactions within spatial clusters.

    MP: Similar to MP, but morphology drives interactions within temporal clusters.

    MPS: Similar to APS, but morphology drives interactions within spatiotemporal clusters.

    Finally, we created a benchmark null model in which all cells in the matrix had the same probability value. All the compound matrices and the null model were also normalized to sum one.To compare the fit of these probability models with the real data, we conducted a maximum likelihood analysis3,9. We calculated the likelihood of each of these models in predicting the observed interaction matrix, assuming a multinomial distribution for the probability of interaction between species12. To compare model fit, we calculated the Akaike Information Criterion (AIC) for each model and their variation in AIC (ΔAIC) in relation to the best-fitting model. The number of species used in the probability matrices was considered the number of model parameters to penalize model complexity. Intending to assess whether nectarivorous bats and non-nectarivorous bats assembly sub-networks with different assembly rules, we created two partial networks from the observed matrix. One contained nectarivores only (subfamilies Glossophaginae and Lonchophyllinae) and their interactions, and the other contained frugivore and insectivore bats and their interactions. We repeated the likelihood procedure for these two partial networks.To conduct the likelihood analysis, we excluded plant species from the network that could not have their interaction probabilities measured, such as species found in pollen samples but not registered in the park or pollen types that could not be identified to the species level. Therefore, the interaction network Y and probability matrices did not include these species (details in Supplementary Table S1).SoftwareAnalyses were performed in R 3.6.050. Network metrics and null models were generated with the bipartite package51, and the sampling completeness analysis was performed with the vegan package52. Gephi 0.9.253 was used to draw the graph. More

  • in

    Genetic monitoring on the world’s first MSC eco-labeled common octopus (O. vulgaris) fishery in western Asturias, Spain

    FAO. El estado mundial de la pesca y la acuicultura 2020 (FAO, 2020).
    Google Scholar 
    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S. & de Young, B. Cascading effects of overfishing marine systems. Trends Ecol. Evol. 20, 579–581 (2005).Article 
    PubMed 

    Google Scholar 
    Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, M. S. & Lowe, M. R. Implications of cumulative impacts to estuarine and marine habitat quality for fish and invertebrate resources. Rev. Fish. Sci. 17, 505–523 (2009).Article 

    Google Scholar 
    Claudet, J. & Fraschetti, S. Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biol. Cons. 143, 2195–2206 (2010).Article 

    Google Scholar 
    Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Derraik, J. G. B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44, 842–852 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    PubMed 

    Google Scholar 
    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).Article 

    Google Scholar 
    Wojnarowska, M., Sołtysik, M. & Prusak, A. Impact of eco-labelling on the implementation of sustainable production and consumption. Environ. Impact Assess. Rev. 86, 106505 (2021).Article 

    Google Scholar 
    Yan, H. F. et al. Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Sci. Adv. 7, 6026 (2021).Article 
    ADS 

    Google Scholar 
    Bastardie, F. et al. Spatial planning for fisheries in the Northern Adriatic: Working toward viable and sustainable fishing. Ecosphere 8, e01696 (2017).Article 

    Google Scholar 
    Arkema, K. K. et al. Integrating fisheries management into sustainable development planning. Ecol. Soc. 24, 0201 (2019).Article 

    Google Scholar 
    Aguión, A. et al. Establishing a governance threshold in small-scale fisheries to achieve sustainability. Ambio. https://doi.org/10.1007/s13280-021-01606-x (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gudmundsson, E. & Wessells, C. R. Ecolabeling seafood for sustainable production: Implications for fisheries management. Mar. Resour. Econ. 15, 97–113 (2000).Article 

    Google Scholar 
    FAO. Guidelines for the Ecolabelling of Fish and Fishery Products from Marine Capture Fisheries. Revision 1 (FAO, 2009).
    Google Scholar 
    Hilborn, R. & Ovando, D. Reflections on the success of traditional fisheries management. ICES J. Mar. Sci. 71, 1040–1046 (2014).Article 

    Google Scholar 
    Casey, J., Jardim, E. & Martinsohn, J. T. H. The role of genetics in fisheries management under the E.U. common fisheries policy. J. Fish Biol. 89, 2755–2767 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    MSC. MSC Fisheries Standard v2.01. https://www.msc.org/docs/default-source/default-document-library/for-business/program-documents/fisheries-program-documents/msc-fisheries-standard-v2-01.pdf?sfvrsn=8ecb3272_9 (2018).Costello, C. et al. Status and solutions for the world’s unassessed fisheries. Science 338, 517–520 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. PNAS 117, 2218–2224 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).Article 
    PubMed 

    Google Scholar 
    Palomares, M. L. D. et al. Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuar. Coast. Shelf Sci. 243, 106896 (2020).Article 

    Google Scholar 
    Ihssen, P. E. et al. Stock identification: Materials and methods. Can. J. Fish. Aquat. Sci. 38, 1838–1855 (1981).Article 

    Google Scholar 
    Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. In Molecular Genetics in Fisheries (eds Carvalho, G. R. & Pitcher, T. J.) 55–79 (Springer, 1995).Chapter 

    Google Scholar 
    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gough, C. L. A., Dewar, K. M., Godley, B. J., Zafindranosy, E. & Broderick, A. C. Evidence of overfishing in small-scale fisheries in Madagascar. Front. Mar. Sci. 7, 317 (2020).Article 

    Google Scholar 
    Widjaja, S. et al. Illegal, Unreported and Unregulated Fishing and Associated Drivers 60 (2020).Walters, C. & Martell, S. J. D. Stock assessment needs for sustainable fisheries management. Bull. Mar. Sci. 70, 629–638 (2002).
    Google Scholar 
    Moreira, A. A., Tomás, A. R. G. & Hilsdorf, A. W. S. Evidence for genetic differentiation of Octopus vulgaris (Mollusca, Cephalopoda) fishery populations from the southern coast of Brazil as revealed by microsatellites. J. Exp. Mar. Biol. Ecol. 407, 34–40 (2011).Article 

    Google Scholar 
    Allendorf, F. W., Ryman, N. & Utter, F. M. Genetics and fishery management. In Population Genetics and Fishery Management 1–19 (1987).Oosthuizen, A., Jiwaji, M. & Shaw, P. Genetic analysis of the Octopus vulgaris population on the coast of South Africa. S. Afr. J. Sci. 100, 603–607 (2004).CAS 

    Google Scholar 
    Botsford, L. W., Castilla, J. C. & Peterson, C. H. The management of fisheries and marine ecosystems. Science 277, 509–515 (1997).Article 
    CAS 

    Google Scholar 
    Hilborn, R., Orensanz, J. M. & Parma, A. M. Institutions, incentives and the future of fisheries. Philos. Trans. R. Soc. B Biol. Sci. 360, 47. https://doi.org/10.1098/rstb.2004.1569 (2005).Article 

    Google Scholar 
    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 16, 125–159 (2015).Article 

    Google Scholar 
    Aguirre-Sarabia, I. et al. Evidence of stock connectivity, hybridization, and misidentification in white anglerfish supports the need of a genetics-informed fisheries management framework. Evol. Appl. 14, 2221 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grover, A. & Sharma, P. C. Development and use of molecular markers: Past and present. Crit. Rev. Biotechnol. 36, 290 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valenzuela-Quiñonez, F. How fisheries management can benefit from genomics? Brief. Funct. Genom. 15, 352–357 (2016).Article 

    Google Scholar 
    Khoufi, W., Jabeur, C. & Bakhrouf, A. Stock assessment of the common octopus (Octopus vulgaris) in Monastir; the Mid-eastern Coast of Tunisia. Int. J. Mar. Sci. 2, 1 (2012).
    Google Scholar 
    Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).Article 

    Google Scholar 
    Melis, R. et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807, 277–296 (2018).Article 
    CAS 

    Google Scholar 
    De Luca, D., Catanese, G., Procaccini, G. & Fiorito, G. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic diversity and population structure. PLoS ONE 11, e0149496 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández-Rueda, P. & García-Flórez, L. Octopus vulgaris (Mollusca: Cephalopoda) fishery management assessment in Asturias (north-west Spain). Fish. Res. 83, 351–354 (2007).Article 

    Google Scholar 
    Gobierno del Principado de Asturias. BOPA núm. 233 de 03-XII-2021, Vol. 233 (2021).Roa-Ureta, R. H. et al. Estimation of the spawning stock and recruitment relationship of Octopus vulgaris in Asturias (Bay of Biscay) with generalized depletion models: Implications for the applicability of MSY. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab113 (2021).Article 

    Google Scholar 
    González, A. F., Macho, G., de Novoa, J. & García, M. Western Asturias Octopus Traps Fishery of Artisanal Cofradías 181 (2015).Sánchez, J. L. F., Fernández Polanco, J. M. & Llorente García, I. Evidence of price premium for MSC-certified products at fishers’ level: The case of the artisanal fleet of common octopus from Asturias (Spain). Mar. Policy 119, 104098 (2020).Article 

    Google Scholar 
    Murphy, J. M., Balguerías, E., Key, L. N. & Boyle, P. R. Microsatellite DNA markers discriminate between two Octopus vulgaris (Cephalopoda: Octopoda) fisheries along the northwest African coast. Bull. Mar. Sci. 71, 545–553 (2002).
    Google Scholar 
    Cabranes, C., Fernandez-Rueda, P. & Martínez, J. L. Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J. Mar. Sci. 65, 12–16 (2008).Article 

    Google Scholar 
    Quinteiro, J., Rodríguez-Castro, J., Rey-Méndez, M. & González-Henríquez, N. Phylogeography of the insular populations of common octopus, Octopus vulgaris Cuvier, 1797, in the Atlantic Macaronesia. PLoS ONE 15, e0230294 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greatorex, E. C. et al. Microsatellite markers for investigating population structure in Octopus vulgaris (Mollusca: Cephalopoda). Mol. Ecol. 9, 641–642 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Luca, D., Catanese, G., Fiorito, G. & Procaccini, G. A new set of pure microsatellite loci in the common octopus Octopus vulgaris Cuvier, 1797 for multiplex PCR assay and their cross-amplification in O. maya Voss & Solís Ramírez, 1966. Conserv. Genet. Resour. 7, 299–301 (2015).Article 

    Google Scholar 
    Zuo, Z., Zheng, X., Liu, C. & Li, Q. Development and characterization of 17 polymorphic microsatellite loci in Octopus vulgaris Cuvier, 1797. Conserv. Genet. Resour. 4, 367–369 (2012).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).CAS 
    PubMed 

    Google Scholar 
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nei, M. & Takezaki, N. Estimation of Genetic Distances and Phylogenetic Trees from DNA Analysis 8 (1983).Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Waples, R. S. Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. J. Hered. 89, 438–450 (1998).Article 

    Google Scholar 
    Taboada, F. G. & Anadón, R. Patterns of change in sea surface temperature in the North Atlantic during the last three decades: Beyond mean trends. Clim. Change 115, 419–431 (2012).Article 
    ADS 

    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sinclair, M. & Valdimarsson, G. Responsible Fisheries in the Marine Ecosystem (CABI, 2003).Book 

    Google Scholar 
    Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).Article 
    PubMed 

    Google Scholar 
    Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B Biol. Sci. 275, 1803–1809 (2008).Article 

    Google Scholar 
    Waples, R. S. Testing for Hardy-Weinberg proportions: Have we lost the plot? J. Hered. 106, 1–19 (2015).Article 
    PubMed 

    Google Scholar 
    Casu, M. et al. Genetic structure of Octopus vulgaris (Mollusca, Cephalopoda) from the Mediterranean Sea as revealed by a microsatellite locus. Ital. J. Zool. 69, 295–300 (2002).Article 

    Google Scholar 
    Fadhlaoui-Zid, K. et al. Genetic structure of Octopus vulgaris (Cephalopoda, Octopodidae) in the central Mediterranean Sea inferred from the mitochondrial COIII gene. C.R. Biol. 335, 625–636 (2012).Article 
    PubMed 

    Google Scholar 
    Queiroga, H. et al. Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Prog. Oceanogr. 74, 174–191 (2007).Article 
    ADS 

    Google Scholar 
    Mereu, M. et al. Mark–recapture investigation on Octopus vulgaris specimens in an area of the central western Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 95, 131–138 (2015).Article 
    ADS 

    Google Scholar 
    Mereu, M. et al. Movement estimation of Octopus vulgaris Cuvier, 1797 from mark recapture experiment. J. Exp. Mar. Biol. Ecol. 470, 64–69 (2015).Article 

    Google Scholar 
    Roura, Á. et al. Life strategies of cephalopod paralarvae in a coastal upwelling system (NW Iberian Peninsula): Insights from zooplankton community and spatio-temporal analyses. Fish. Oceanogr. 25, 241–258 (2016).Article 

    Google Scholar 
    Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).Article 
    ADS 

    Google Scholar 
    Chédia, J., Widien, K. & Amina, B. Role of sea surface temperature and rainfall in determining the stock and fishery of the common octopus (Octopus vulgaris, Mollusca, Cephalopoda) in Tunisia. Mar. Ecol. 31, 431–438 (2010).Article 
    ADS 

    Google Scholar 
    Otero, J. et al. Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Mar. Ecol. Prog. Ser. 362, 181–192 (2008).Article 
    ADS 

    Google Scholar 
    Hedgecock, D. & Pudovkin, A. I. A. I. Sweepstakes reproductive success in highly fecund marine fish and shellfish: A review and commentary. Bull. Mar. Sci. 87, 971–1002 (2011).Article 

    Google Scholar 
    Kalinowski, S. T. & Waples, R. S. Relationship of effective to census size in fluctuating populations. Conserv. Biol. 16, 129–136 (2002).Article 
    PubMed 

    Google Scholar 
    Sonderblohm, C. P., Pereira, J. & Erzini, K. Environmental and fishery-driven dynamics of the common octopus (Octopus vulgaris) based on time-series analyses from leeward Algarve, southern Portugal. ICES J. Mar. Sci. 71, 2231–2241 (2014).Article 

    Google Scholar 
    Sonderblohm, C. P. et al. Participatory assessment of management measures for Octopus vulgaris pot and trap fishery from southern Portugal. Mar. Policy 75, 133–142 (2017).Article 

    Google Scholar 
    Arkhipkin, A. I. et al. Stock assessment and management of cephalopods: Advances and challenges for short-lived fishery resources. ICES J. Mar. Sci. 78, 714–730 (2021).Article 

    Google Scholar 
    Franklin, I. R. Evolutionary change in small populations. In Conservation Biology: An Evolutionary-Ecological Perspective (eds Soulé, M. E. & Wilcox, B. A.) 395 (Sinauer Associates, 1980).
    Google Scholar 
    Slatkin, M. Rare alleles as indicators of gene flow. Evolution 39, 53–65 (1985).Article 
    PubMed 

    Google Scholar 
    Holleley, C. E. & Geerts, P. G. Multiplex manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article 

    Google Scholar 
    Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-STATISTICS. J. Hered. 86, 485–486 (1995).Article 

    Google Scholar 
    Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223 (1989).Article 
    PubMed 

    Google Scholar 
    Piry, S., Luikart, G. & Cornuet, J. M. M. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).Article 

    Google Scholar 
    Luikart, G., Allendorf, F. W., Cornuet, J.-M.M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. https://doi.org/10.1093/jhered/89.3.238 (1998).Article 
    PubMed 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8, e70651 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gilbert, K. J. et al. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program structure. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2012.05754.x (2012).Article 
    PubMed 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Takezaki, N., Nei, M. & Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 31, 1622–1624 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).Article 
    PubMed 

    Google Scholar 
    Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waples, R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121, 379–391 (1989).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katsanevakis, S. & Verriopoulos, G. Seasonal population dynamics of Octopus vulgaris in the eastern Mediterranean. ICES J. Mar. Sci. 63, 151–160 (2006).Article 

    Google Scholar 
    Jereb, P. et al. Cephalopod Biology and Fisheries in Europe: II Species Accounts 360 (ICES, 2015).
    Google Scholar  More