More stories

  • in

    Modeling present and future distribution of plankton populations in a coastal upwelling zone: the copepod Calanus chilensis as a study case

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    González, C. E., Medellín-Mora, J. & Escribano, R. Environmental gradients and spatial patterns of calanoid copepods in the southeast pacific. Front. Ecol. Evol. 8, 1–16 (2020).Article 

    Google Scholar 
    Rombouts, I. et al. Global latitudinal variations in marine copepod diversity and environmental factors. Proc. R. Soc. B Biol. Sci. 276, 3053–3062 (2009).Article 

    Google Scholar 
    Brandão, M. C. et al. Macroscale patterns of oceanic zooplankton composition and size structure. Sci. Rep. 11, 1–19 (2021).
    Google Scholar 
    Mcclain, C. R. & Barry, J. P. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91, 964–976 (2010).Article 
    PubMed 

    Google Scholar 
    Escribano, R. & Rodriguez, L. Life cycle of Calanus chilensis Brodsky in Bay of San Jorge, Antofagasta Chile. Hydrobiologia 292–293, 289–294 (1994).Article 

    Google Scholar 
    Strub, P. T., Mesías, M. J., Montecino, V., Rutllant, J. & Salinas, S. Coastal ocean circulation off western South America coastal segment. Sea 11, 273–313 (1998).
    Google Scholar 
    Montecino, V. & Lange, C. The Humboldt current system: Ecosystem components and processes, fisheries, and sediment studies. Prog. Oceanogr. 83, 65–79 (2009).Article 
    ADS 

    Google Scholar 
    Miloslavich, P. et al. Marine biodiversity in the Atlantic and Pacific coasts of South America: Knowledge and gaps. PLoS ONE 6, e14631 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marín, V., Espinoza, S. & Fleminger, A. Morphometric study of Calanus chilensis males along the Chilean coast. Hydrobiologia 292, 75–80 (1994).Article 

    Google Scholar 
    Escribano, R. & McLaren, I. Production of Calanus chilensis in the upwelling area of Antofagasta Northern Chile. Mar. Ecol. Prog. Ser. 177, 147–156 (1999).Article 
    ADS 

    Google Scholar 
    Escribano, R. & Hidalgo, P. Spatial distribution of copepods in the north of the Humboldt Current region off Chile during coastal upwelling. J. Mar. Biol. Assoc. U. K. 80, 283–290 (2000).Article 

    Google Scholar 
    Hirche, H. J., Barz, K., Ayon, P. & Schulz, J. High resolution vertical distribution of the copepod Calanus chilensis in relation to the shallow oxygen minimum zone off northern Peru using LOKI, a new plankton imaging system. Deep Res. I Oceanogr. Res. Pap. 88, 63–73 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Sabatini, M., rez, F. & Martos, P. Distribution pattern and population structure of Calanus australis Brodsky, 1959 over the southern Patagonian Shelf off Argentina in summer. ICES J. Mar. Sci. 57, 1856–1866 (2000).Article 

    Google Scholar 
    Escribano, R. Population dynamics of Calanus chilensis in the Chilean Eastern Boundary Humboldt Current. Fish. Oceanogr. 7, 245–251 (1998).Article 

    Google Scholar 
    Hidalgo, P. et al. Patterns of copepod diversity in the Chilean coastal upwelling system. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 2089–2097 (2010).Article 
    ADS 

    Google Scholar 
    Hidalgo, P., Escribano, R., Fuentes, M., Jorquera, E. & Vergara, O. How coastal upwelling influences spatial patterns of size-structured diversity of copepods off central-southern Chile (summer 2009). Prog. Oceanogr. 92–95, 134–145 (2012).Article 
    ADS 

    Google Scholar 
    Giraldo, A., Escribano, R. & Marin, V. Spatial distribution of Calanus chilensis off Mejillones Peninsula (northern Chile): Ecological consequences upon coastal upwelling. Mar. Ecol. Prog. Ser. 230, 225–234 (2002).Article 
    ADS 

    Google Scholar 
    Gonzalez, A. & Marin, V. Distribution and life cycle of Calanus chilensis and Centropages brachiatus (Copepoda) in Chilean coastal waters: A GIS approach. Mar. Ecol. Prog. Ser. 165, 109–117 (1998).Article 
    ADS 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).Article 
    ADS 

    Google Scholar 
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl. Acad. Sci. 118, e2015094118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrier, S., Drielsma, M., Manion, G. & Watson, G. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodivers. Conserv. 11, 2309–2338 (2002).Article 

    Google Scholar 
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (MPB-49) (Princeton University Press, 2011). https://doi.org/10.2307/j.ctt7stnh.Book 

    Google Scholar 
    Franklin, J. Spatial Inference and Prediction. Mapping Species Distributions Vol. 141 (Cambridge University Press, 2010).Book 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. Ecology Biodiversity and Conservation (Cambridge University Press, 2017). https://doi.org/10.1017/9781139028271.Book 

    Google Scholar 
    Freer, J. J., Partridge, J. C., Tarling, G. A., Collins, M. A. & Genner, M. J. Predicting ecological responses in a changing ocean: The effects of future climate uncertainty. Mar. Biol. 165, 7 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).Article 

    Google Scholar 
    Pennino, M. G. et al. Accounting for preferential sampling in species distribution models. Ecol. Evol. 9, 653–663 (2019).Article 
    PubMed 

    Google Scholar 
    Coll, M., Pennino, M. G., Steenbeek, J., Sole, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).Article 

    Google Scholar 
    Stock, B. C. et al. Comparing predictions of fisheries bycatch using multiple spatiotemporal species distribution model frameworks. Can. J. Fish. Aquat. Sci. 77, 146–163 (2019).Article 

    Google Scholar 
    Lezama-Ochoa, N. et al. Spatio-temporal distribution of the spinetail devil ray mobula mobular in the Eastern tropical Atlantic ocean. Endanger. Species Res. 43, 447–460 (2020).Article 

    Google Scholar 
    Marshall, C. E., Glegg, G. A. & Howell, K. L. Species distribution modelling to support marine conservation planning: The next steps. Mar. Policy 45, 330–332 (2014).Article 

    Google Scholar 
    Hunt, T. N., Allen, S. J., Bejder, L. & Parra, G. J. Identifying priority habitat for conservation and management of Australian humpback dolphins within a marine protected area. Sci. Rep. 10, 1–14 (2020).Article 

    Google Scholar 
    Champion, C., Brodie, S. & Coleman, M. A. Climate-driven range shifts are rapid yet variable among recreationally important coastal-pelagic fishes. Front. Mar. Sci. 8, 1–13 (2021).Article 

    Google Scholar 
    Przeslawski, R., Falkner, I., Ashcroft, M. B. & Hutchings, P. Using rigorous selection criteria to investigate marine range shifts. Estuar. Coast. Shelf Sci. 113, 205–212 (2012).Article 
    ADS 

    Google Scholar 
    Januario, S. M., Estay, S. A., Labra, F. A. & Lima, M. Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast. PeerJ 3, e1357. https://doi.org/10.7717/peerj.1357 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinochet, J., Rivera, R., Neill, P. E., Brante, A. & Hernández, C. E. Spread of the non-native anemone Anemonia alicemartinae Häussermann & Försterra, 2001 along the Humboldt-current large marine ecosystem: An ecological niche model approach. PeerJ https://doi.org/10.7717/peerj.7156 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lh, G., Rj, R. & Brante, A. One step ahead of sea anemone invasions with ecological niche modeling: Potential distributions and niche dynamics of three successful invasive species. Mar. Ecol. Prog. Ser. 690, 83–95 (2022).Article 

    Google Scholar 
    Allynid, A. J. et al. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS ONE 15, 1–28 (2020).
    Google Scholar 
    Pennino, M. G. et al. Current and future influence of environmental factors on small pelagic fish distributions in the northwestern mediterranean sea. Front. Mar. Sci. 7, 1–20 (2020).Article 

    Google Scholar 
    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).Article 

    Google Scholar 
    Rosa, R., Dierssen, H. M., Gonzalez, L. & Seibel, B. A. Ecological biogeography of cephalopod molluscs in the Atlantic Ocean: Historical and contemporary causes of coastal diversity patterns. Glob. Ecol. Biogeogr. 17, 600–610 (2008).Article 

    Google Scholar 
    Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rodríguez-Ramos, T., Marañón, E. & Cermeño, P. Marine nano- and microphytoplankton diversity: Redrawing global patterns from sampling-standardized data. Glob. Ecol. Biogeogr. 24, 527–538 (2015).Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2022).Article 
    ADS 

    Google Scholar 
    Busseni, G. et al. Large scale patterns of marine diatom richness: Drivers and trends in a changing ocean. Glob. Ecol. Biogeogr. 29, 1915–1928 (2020).Article 

    Google Scholar 
    Ruz, P. M., Hidalgo, P., Yáñez, S., Escribano, R. & Keister, J. E. Egg production and hatching success of Calanus chilensis and Acartia tonsa in the northern Chile upwelling zone (23°S) Humboldt Current System. J. Mar. Syst. 148, 200–212 (2015).Article 

    Google Scholar 
    Ashlock, L., García-Reyes, M., Gentemann, C., Batten, S. & Sydeman, W. Temperature and patterns of occurrence and abundance of key copepod taxa in the Northeast Pacific. Front. Mar. Sci. 8, 1–10 (2021).
    Article 
    ADS 

    Google Scholar 
    Campbell, M. D. et al. Testing Bergmann’s rule in marine copepods. Ecography 44, 1283–1295 (2021).Article 

    Google Scholar 
    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).Article 
    PubMed 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. U. S. A. 106, 19644–19650 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morales, C. E. et al. Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile. Prog. Oceanogr. 84, 158–173 (2010).Article 
    ADS 

    Google Scholar 
    Gonzalez, R. R. & Quiñones, R. A. Ldh activity in Euphausia mucronata and Calanus chilensis: Implications for vertical migration behaviour. J. Plankton Res. 24, 1349–1356 (2002).Article 
    CAS 

    Google Scholar 
    Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 1083–1094 (2009).Article 
    ADS 

    Google Scholar 
    Fernández-Urruzola, I. et al. Plankton respiration in the Atacama Trench region: Implications for particulate organic carbon flux into the hadal realm. Limnol. Oceanogr. 66, 3134–3148 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).Article 
    PubMed 

    Google Scholar 
    Tutasi, P. & Escribano, R. Zooplankton diel vertical migration and downward~C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17, 455–473 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Gonzalez, A. & Marín, V. H. Distribution and life cycle of Calanus chilensis and Centropages brachiatus (Copepoda) in chilean coastal waters: A GIS approach. Mar. Ecol. Prog. Ser. 165, 109–117 (1998).Article 
    ADS 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Dias, P. C. Sources and sinks in population biology. Trends Ecol. Evol. 11, 326–330 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ding, M., Lin, P., Liu, H., Hu, A. & Liu, C. Lagrangian eddy kinetic energy of ocean mesoscale eddies and its application to the Northwestern Pacific. Sci. Rep. 10, 12791 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morales, C. E. et al. The distribution of chlorophyll-a and dominant planktonic components in the coastal transition zone off Concepción, central Chile, during different oceanographic conditions. Prog. Oceanogr. 75, 452–469 (2007).Article 
    ADS 

    Google Scholar 
    Escribano, R. & Rodriguez, L. Life cycle of Calanus chilensis Brodsky in Bay of San Jorge, Antofagasta Chile. Hydrobiologia 292, 289–294 (1994).Article 

    Google Scholar 
    Hidalgo, P. & Escribano, R. Coupling of life cycles of the copepods Calanus chilensis and Centropages brachiatus to upwelling induced variability in the central-southern region of Chile. Prog. Oceanogr. 75, 501–517 (2007).Article 
    ADS 

    Google Scholar 
    Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J. & Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75, 363–382 (2007).Article 
    ADS 

    Google Scholar 
    Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).Article 

    Google Scholar 
    Gelfand, A. et al. Explaining species distribution patterns through hierarchical modeling. Bayesian Anal. https://doi.org/10.1214/06-BA102 (2006).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar 
    Gaul, W. et al. Data quantity is more important than its spatial bias for predictive species distribution modelling. PeerJ 8, e10411 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).Article 

    Google Scholar 
    Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).Article 

    Google Scholar 
    Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl. Acad. Sci. 117, 12891–12896 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richardson, A., Schoeman, D., Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609–1612 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chiba, S., Sugisaki, H., Nonaka, M. & Saino, T. Geographical shift of zooplankton communities and decadal dynamics of the Kuroshio-Oyashio currents in the western North Pacific. Glob. Change Biol. 15, 1846–1858 (2009).Article 
    ADS 

    Google Scholar 
    Reygondeau, G. & Beaugrand, G. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol. 17, 756–766 (2011).Article 
    ADS 

    Google Scholar 
    Beaugrand, G., Lindley, J. A., Helaouet, P. & Bonnet, D. Macroecological study of Centropages typicus in the North Atlantic Ocean. Prog. Oceanogr. 72, 259–273 (2007).Article 
    ADS 

    Google Scholar 
    Hirche, H. J., Barz, K., Ayon, P. & Schulz, J. High resolution vertical distribution of the copepod Calanus chilensis in relation to the shallow oxygen minimum zone off northern Peru using LOKI, a new plankton imaging system. Deep Sea Res. I Oceanogr. Res. Pap. 88, 63–73 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Riquelme-Bugueño, R. et al. The influence of upwelling variation on the spatially-structured euphausiid community off central-southern Chile in 2007–2008. Prog. Oceanogr. 92–95, 146–165 (2012).Article 
    ADS 

    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).Article 

    Google Scholar 
    Provoost, P. & Bosch, S. robis: Ocean Biodiversity Information System (OBIS) Client (2020).Chamberlain, S. & Oldoni, D. rgbif: Interface to the Global Biodiversity Information Facility API (2021).R Core Team. R: A Language and Environment for Statistical Computing (2021).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.4.1 (Envrionmental Systems Research Institute, 2016).
    Google Scholar 
    De Marco, P. & Nóbrega, C. C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 13, e202403 (2018).Article 

    Google Scholar 
    Feng, X. et al. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019).Article 
    PubMed 

    Google Scholar 
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellison, A. M. Bayesian inference in ecology. Ecol. Lett. 7, 509–520 (2004).Article 

    Google Scholar 
    Pennino, M. G., Muñoz, F., Conesa, D., López-Quílez, A. & Bellido, J. M. Bayesian spatio-temporal discard model in a demersal trawl fishery. J. Sea Res. 90, 44–53 (2014).Article 

    Google Scholar 
    Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).Article 

    Google Scholar 
    Engler, R., Guisan, A. & Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41, 263–274 (2004).Article 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).Article 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Warren, D. & Dinnage, R. ENMTools: Analysis of Niche Evolution using Niche and Distribution Models (2020).Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    Osorio-Olvera, L. et al. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11, 1199–1206 (2020).Article 

    Google Scholar 
    Bosch, S., Tyberghein, L. & De Clerck, O. ‘sdmpredictors’: Species distribution modelling predictor datasets. R package version 0.2.6. R Packag. version 0.2.6 (2018).Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble platform for species distribution modeling (2020).Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar  More

  • in

    The unequal burden of human-wildlife conflict

    Andrade, G. S. & Rhodes, J. R. Protected areas and local communities: an inevitable partnership toward successful conservation strategies? Ecol. Soc. 17, 14–23 (2012).Article 

    Google Scholar 
    UNHCR. United Nations High Commissioner for Refugees. The Sustainable Development Goals and Addressing Statelessness (2017). https://www.refworld.org/docid/58b6e3364.html [accessed 16 April 2021]Ngorima, A., Brown, A., Masunungure, C. & Biggs, D. Local community benefits from elephants: Can willingness to support anti-poaching efforts be strengthened? Conserv. Sci. Pract. 2, e303 (2020).
    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. Evol. 2, 229–236 (2018).Article 
    PubMed 

    Google Scholar 
    Levi, T. et al. Community ecology and conservation of bear-salmon ecosystems. Front. Ecol. Evol. 8, 433 (2020).Article 

    Google Scholar 
    Raynor, J. L., Grainger, C. A. & Parker, D. P. Wolves make roadways safer, generating large economic returns to predator conservation. Proc. Natl Acad. Sci. U.S.A. 118, e2023251118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: Valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).Article 

    Google Scholar 
    Jacobsen, K. S. et al. What is a lion worth to local people—quantifying of the costs of living alongside a top predator. Ecol. Econ. 198, 107431 (2022).Article 

    Google Scholar 
    Thirgood, S., Woodroffe, R. & Rabinowitz, A. The impact of human-wildlife conflict on human lives and livelihoods. Conserv. Biol. Ser. 9, 13 (2005).
    Google Scholar 
    Mackenzie, C. A. & Ahabyona, P. Elephants in the garden: financial and social costs of crop raiding. Ecol. Econ. 75, 72–82 (2012).Article 

    Google Scholar 
    Anaya, F. C. & Espírito-Santo, M. M. Protected areas and territorial exclusion of traditional communities. Ecol. Soc. 23 (2018).Nsukwini, S. & Bob, U. Protected areas, community costs and benefits: a comparative study of selected conservation case studies from northern KwaZulu-Natal, South Africa. GeoJ. Tour. Geosites 27, 1377–1391 (2019).Article 

    Google Scholar 
    Heydinger, J. M., Packer, C. & Tsaneb, J. Desert-adapted lions on communal land: surveying the costs incurred by, and perspectives of, communal-area livestock owners in northwest Namibia. Biol. Conserv. 236, 496–504 (2019).Article 

    Google Scholar 
    Dickman, A. J., Macdonald, E. A. & Macdonald, D. W. A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc. Natl Acad. Sci. U.S.A. 108, 13937–13944 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. W. & Macdonald, D. W. Livestock predation by carnivores in Jigme Singye Wangchuck National Park, Bhutan. Biol. Conserv. 129, 558–565 (2006).Article 

    Google Scholar 
    Holmern, T., Nyahongo, J. & Røskaft, E. Livestock loss caused by predators outside the Serengeti National Park, Tanzania. Biol. Conserv. 135, 518–526 (2007).Article 

    Google Scholar 
    Thornton, P. K. et al. Locating poor livestock keepers at the global level for research and development targeting. Land Use Policy 20, 311–322 (2003).Article 

    Google Scholar 
    McDermott, J. J., Staal, S. J., Freeman, H. A., Herrero, M. & Van de Steeg, J. A. Sustaining intensification of smallholder livestock systems in the tropics. Livest. Sci. 130, 95–109 (2010).Article 

    Google Scholar 
    Dyson-Hudson, N. & Dyson-Hudson, R. The structure of East African herds and the future of East African herders. Dev. Change 13, 213–238 (1982).Article 

    Google Scholar 
    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).Article 

    Google Scholar 
    Kgathi, D. L., Ngwenya, B. N. & Wilk, J. Shocks and rural livelihoods in the Okavango Delta, Botswana. Dev. South. Afr. 24, 289–308 (2007).Article 

    Google Scholar 
    Letta, M., Montalbano, P. & Tol, R. S. Temperature shocks, short-term growth and poverty thresholds: evidence from rural Tanzania. World Dev. 112, 13–32 (2018).Article 

    Google Scholar 
    Cottrell, R. S. et al. Food production shocks across land and sea. Nat. Sustain. 2, 130–137 (2019).Article 

    Google Scholar 
    Li, J. et al. Role of Tibetan Buddhist monasteries in snow leopard conservation. Conserv. Biol. 28, 87–94 (2014).Article 
    PubMed 

    Google Scholar 
    Bhatia, S., Redpath, S. M., Suryawanshi, K. & Mishra, C. The relationship between religion and attitudes toward large carnivores in northern India? Hum. Dimens. Wildl. 22, 30–42 (2017).Article 

    Google Scholar 
    Gebresenbet, F., Baraki, B., Yirga, G., Sillero-Zubiri, C. & Bauer, H. A culture of tolerance: coexisting with large carnivores in the Kafa Highlands, Ethiopia. Oryx 52, 751–760 (2018).Article 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, e197 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hazzah, L., Mulder, M. B. & Frank, L. Lions and warriors: social factors underlying declining African lion populations and the effect of incentive-based management in Kenya. Biol. Conserv. 142, 2428–2437 (2009).Article 

    Google Scholar 
    Plaza, P. I., Martínez-López, E. & Lambertucci, S. A. The perfect threat: pesticides and vultures. Sci. Total Environ. 687, 1207–1218 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mateo-Tomás, P. & López-Bao, J. V. Poisoning poached megafauna can boost trade in African vultures. Biol. Conserv. 241, 108389 (2020).Article 

    Google Scholar 
    Tumenta, P. N. et al. Threat of rapid extermination of the lion (Panthera leo leo) in Waza National Park, Northern Cameroon. Afr. J. Ecol. 48, 888–894 (2010).Article 

    Google Scholar 
    Braczkowski, A. et al. Detecting early warnings of pressure on an African lion (Panthera leo) population in the Queen Elizabeth Conservation Area, Uganda. Ecol. Solut. Evid. 1, e12015 (2020b).Article 

    Google Scholar 
    Ickes, K. Hyper-abundance of Native Wild Pigs (Sus scrofa) in a Lowland Dipterocarp Rain Forest of Peninsular Malaysia 1. Biotropica 33, 682–690 (2001).Article 

    Google Scholar 
    Ripple, W. J. et al. Widespread mesopredator effects after wolf extirpation. Biol. Conserv. 160, 70–79 (2013).Article 

    Google Scholar 
    Ripple, W. J. & Beschta, R. L. Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biol. Conserv. 133, 397–408 (2006).Article 

    Google Scholar 
    Ripple, W. J. & Beschta, R. L. Trophic cascades involving cougar, mule deer, and black oaks in Yosemite National Park. Biol. Conserv. 141, 1249–1256 (2008).Article 

    Google Scholar 
    Gilbert, S. L. et al. Socioeconomic benefits of large carnivore recolonization through reduced wildlife-vehicle collisions. Conserv. Lett. 10, 431–439 (2017).Article 

    Google Scholar 
    ILRI. Rangelands Atlas. (ILRI, IUCN, FAO, WWF, UNEP and ILC, 2021). Nairobi Kenya: ILRI.Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).Article 

    Google Scholar 
    McManus, J. S. et al. Dead or alive? Comparing costs and benefits of lethal and non-lethal human-wildlife conflict mitigation on livestock farms. Oryx 49, 687–695 (2015).Article 

    Google Scholar 
    Broekhuis, F. et al. Identification of human-carnivore conflict hotspots to prioritize mitigation efforts. Ecol. Evol. 7, 10630–10639 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozano, J. et al. Human-carnivore relations: a systematic review. Biol. Conserv. 237, 480–492 (2019).Article 

    Google Scholar 
    Khorozyan, I. & Waltert, M. A global view on evidence-based effectiveness of interventions used to protect livestock from wild cats. Conserv. Sci. Pract. 3, e317 (2021).
    Google Scholar 
    Di Minin, E., Slotow, R., Fink, C., Bauer, H. & Packer, C. A pan-African spatial assessment of human conflicts with lions and elephants. Nat. Commun. 12, 1–10 (2021).Article 

    Google Scholar 
    Lybbert, T. J. et al. Stochastic wealth dynamics and risk management among a poor population. Econ. J. 114, 750–777 (2004).Article 

    Google Scholar 
    Otte, M. J. & Chilonda, P. Cattle and Small Ruminant Production Systems in Sub-Saharan. Africa – Systematic Rev. (FAO, Rome, Italy, 2002).
    Google Scholar 
    Maystadt, J. F. & Ecker, O. Extreme weather and civil war: Does drought fuel conflict in Somalia through livestock price shocks? Am. J. Agric. Econ. 96, 1157–1182 (2014).Article 

    Google Scholar 
    Galvin, K. A. Transitions: pastoralists living with change. Annu. Rev. Anthropol. 38, 185–198 (2009).Article 

    Google Scholar 
    Stavi, I. et al. Food security among dryland pastoralists and agropastoralists: The climate, land-use change, and population dynamics nexus. Anthropocene Rev. (2021). 20530196211007512.Ogra, M. V. Human–wildlife conflict and gender in protected area borderlands: a case study of costs, perceptions, and vulnerabilities from Uttarakhand (Uttaranchal), India. Geoforum 39, 1408–1422 (2008).Article 

    Google Scholar 
    Botreau, H., & Cohen, M. J. Gender Inequalities and Food Insecurity: Ten Years After The Food Price Crisis, Why Are Women Farmers Still Food-Insecure? Oxfam:Oxford, UK (2019).Salerno, J. et al. Wildlife impacts and changing climate pose compounding threats to human food security. Curr. Biol. 31, 5077–5085 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Prado, E. L. & Dewey, K. G. Nutrition and brain development in early life. Nutr. Rev. 72, 267–284 (2014).Article 
    PubMed 

    Google Scholar 
    Madhusudan, M. D. The global village: linkages between international coffee markets and grazing by livestock in a south Indian wildlife reserve. Conserv. Biol. 19, 411–420 (2005).Article 

    Google Scholar 
    Margulies, J. D. & Karanth, K. K. The production of human-wildlife conflict: A political animal geography of encounter. Geoforum 95, 153–164 (2018).Article 

    Google Scholar 
    Simoons, F. J., Simoons, F. I. & Lodrick, D. O. Background to understanding the cattle situation of India: The sacred cow concept in Hindu religion and folk culture. Zeitschrift Für Ethnologie 106, 121–137 (1981).Good, C., Burnham, D. & Macdonald, D. W. A cultural conscience for conservation. Animals 7, 52 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Courchamp, F. et al. The paradoxical extinction of the most charismatic animals. PLoS Biol. 16, e2003997 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bond, J. & Mkutu, K. Exploring the hidden costs of human–wildlife conflict in northern Kenya. Afr. Stud. Rev. 61, 33–54 (2018).Article 

    Google Scholar 
    Di Minin, E., Leader-Williams, N. & Bradshaw, C. J. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).Article 
    PubMed 

    Google Scholar 
    Dickman, A. et al. Trophy hunting bans imperil biodiversity. Science 365, 874–874 (2019).Article 
    PubMed 

    Google Scholar 
    Bruskotter, J. T., Vucetich, J. A., Gilbert, S. L., Carter, N. H. & George, K. A. Tragic trade‐offs accompany carnivore coexistence in the modern world. Conserv. Lett. 15, e412841 (2022).Dempsey, J. et al. Biodiversity targets will not be met without debt and tax justice. Nat. Ecol. Evol. 6, 237–239 (2022).Hallegatte, S. & Rozenberg, J. Climate change through a poverty lens. Nat. Clim. Change 7, 250–256 (2017).Article 

    Google Scholar 
    Islam, S. N., and Winkel, J. Climate change and social inequality. DESA Working Paper No. 152. New York, NY: United Nations Department of Economic & Social Affairs (2017).Platteau, J. P. Monitoring elite capture in community-driven development. Dev. Change 35, 223–246 (2004).Article 

    Google Scholar 
    Karanth, K. K. & DeFries, R. Nature-based tourism in Indian protected areas: new challenges for park management. Conserv. Lett. 4, 137–149 (2011).Article 

    Google Scholar 
    Ament, J. M., Collen, B., Carbone, C., Mace, G. M. & Freeman, R. Compatibility between agendas for improving human development and wildlife conservation outside protected areas: insights from 20 years of data. People Nat. 1, 305–316 (2019).Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. U.S.A. 116, 23209–23215 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lichtenfeld, L. L., Trout, C. & Kisimir, E. L. Evidence-based conservation: predator-proof bomas protect livestock and lions. Biodivers. Conserv. 24, 483–491 (2015).Article 

    Google Scholar 
    Persson, J., Rauset, G. R. & Chapron, G. Paying for an endangered predator leads to population recovery. Conserv. Lett. 8, 345–350 (2015).Article 

    Google Scholar 
    Barichievy, C. et al. A demographic model to support an impact financing mechanism for black rhino metapopulations. Biol. Conserv. 257, 109073 (2021).Article 

    Google Scholar 
    Maingi, S. W. Safari tourism and its role in sustainable poverty eradication in East Africa: the case of Kenya. Worldwide Hosp. Tour. Themes 13, 81–94 (2021).Homewood, K. M., Trench, P. C. & Brockington, D. Pastoralist livelihoods and wildlife revenues in East Africa: a case for coexistence? Pastoralism: Res. Pol. Pract. 2, 1–23 (2012).Article 

    Google Scholar 
    Thornton, P., Nelson, G., Mayberry, D. & Herrero, M. Impacts of heat stress on global cattle production during the 21st century: a modelling study. Lancet Planet. Health 6, e192–e201 (2022).Article 
    PubMed 

    Google Scholar 
    Lessmann, C. & Seidel, A. Regional inequality, convergence, and its determinants–a view from outer space. Eur. Econ. Rev. 92, 110–132 (2017).Article 

    Google Scholar 
    Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).Article 
    PubMed 

    Google Scholar 
    Miller, J. R. Mapping attack hotspots to mitigate human–carnivore conflict: approaches and applications of spatial predation risk modeling. Biodivers. Conserv. 24, 2887–2911 (2015).Article 

    Google Scholar 
    Gastineau, A., Robert, A., Sarrazin, F., Mihoub, J. B. & Quenette, P. Y. Spatiotemporal depredation hotspots of brown bears, Ursus arctos, on livestock in the Pyrenees, France. Biol. Conserv. 238, 108210 (2019).Article 

    Google Scholar 
    Kruuk, H. Surplus killing by carnivores. J. Zool. 166, 233–244 (1972).Article 

    Google Scholar 
    Khorozyan, I. et al. Effects of shepherds and dogs on livestock depredation by leopards (Panthera pardus) in north-eastern Iran. PeerJ 5, e3049 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lucherini, M., Guerisoli, M. D. L. M. & Luengos Vidal, E. M. Surplus killing by pumas Puma concolor: rumours and facts. Mammal. Rev. 48, 277–283 (2018).Article 

    Google Scholar 
    Ocaido, M., Muwazi, R. T. & Opuda-Asibo, J. Financial analysis of livestock production systems around Lake Mburo National Park, in South Western Uganda. Livest. Res. Rural Dev. 21, 70 (2009).
    Google Scholar 
    Dyson-Hudson, R. & Dyson-Hudson, N. Nomadic pastoralism. Annu. Rev. Anthropol. 9, 15–61 (1980).Barber, J. P. The Karamoja District of Uganda: a pastoral people under colonial rule. J. Afr. Hist. 3, 111–124 (1962).Article 

    Google Scholar 
    Oberg, K. Analysis of the Bahima marriage ceremony. Africa 19, 107–120 (1949).Article 

    Google Scholar 
    Purseglove, J. W. Banyankole Agriculture. East Afr. Agric. J. 5, 198–207 (1939).
    Google Scholar 
    Canonici, N. N. Food in Zulu folktales. South. Afr. J. Folk. Stud. 2, 24–36 (1991).
    Google Scholar 
    United Nations. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3 (2022).Tomas, W. M. et al. Sustainability agenda for the Pantanal Wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1940082919872634 (2019).Article 

    Google Scholar 
    Vale, P. et al. Mapping the cattle industry in Brazil’s most dynamic cattle-ranching state: Slaughterhouses in Mato Grosso, 1967-2016. PLOS One 14, e0215286 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Leeuw, P. N., Bekure, S., & Grandin, B. E. Aspects of livestock productivity in Maasai group ranches in Kenya. ILCA Bull. (1984).Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).Article 

    Google Scholar 
    Choudhury, A. Human–elephant conflicts in Northeast India. Hum. Dimens. Wildl. 9, 261–270 (2004).Article 

    Google Scholar 
    Sherman, P. B., & Dixon, J. A. Economics of protected areas: a new look at benefits and costs. Earthscan Publications Limited (1990).Braczkowski, A. et al. Evidence for increasing human‐wildlife conflict despite a financial compensation scheme on the edge of a Ugandan National Park. Conserv. Sci. Pract. 2, e309 (2020c).
    Google Scholar 
    Gulati, S., Karanth, K., Nguyet Anh Le, N. & Noack, F. Human casualties are the dominant cost of human–wildlife conflict in India. Proc. Natl Acad. Sci. 118, e1921338118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. 366, 2633–2641 (2011).Article 

    Google Scholar 
    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strassburg, B. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    O’Bryan, C. J. et al. The importance of indigenous peoples’ lands for the conservation of terrestrial mammals. Conserv. Biol. 35, 1002–1008 (2021).Article 
    PubMed 

    Google Scholar 
    Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).Article 
    PubMed 

    Google Scholar 
    Henderson, J. V., Storeygard, A. & Weil, D. N. Measuring economic growth from outer space. Am. Econ. Rev. 102, 994–1028 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ebener, S., Murray, C., Tandon, A. & Elvidge, C. C. From wealth to health: modelling the distribution of income per capita at the sub-national level using night-time light imagery. Int. J. Health Geographics 4, 5 (2005).Article 

    Google Scholar 
    Chen, X. & Nordhaus, W. D. Using luminosity data as a proxy for economic statistics. Proc. Natl Acad. Sci. 108, 8589–8594 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    FAO Meat live weight, cattle database. License: CC BY-NC-SA 3.0 IGO. http://www.fao.org/faostat/en/#search/cattle (2021). Accessed 24 April 2021.Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 1–11 (2018).Article 

    Google Scholar 
    United Nations University & World Health Organization. Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation: Rome, 17–24 October 2001 (Vol. 1) Food & Agriculture Org (2004). More

  • in

    Experimental evidence of parasite-induced behavioural alterations modulated by food availability in wild capuchin monkeys

    Moore, J. An overview of parasite-induced behavioral alterations – and some lessons from bats. J. Exp. Biol. 216, 11–17 (2012).Article 

    Google Scholar 
    Nunn, C. L. & Altizer, S. Infectious Diseases in Primates: Behavior, Ecology and Evolution (Oxford University Press, 2006).Book 

    Google Scholar 
    Hutchings, M. R., Athanasiadou, S., Kyriazakis, I. & Gordon, I. J. Nutrition and Behaviour Group Symposium on ‘Exploitation of medicinal properties of plants by animals and man through food intake and foraging behaviour’: Can animals use foraging behaviour to combat parasites?. Proc. Nutr. Soc. 62, 361–370 (2003).Article 

    Google Scholar 
    Hawley, D. M., Etienne, R. S., Ezenwa, V. O. & Jolles, A. E. Does animal behavior underlie covariation between hosts’ exposure to infectious agents and susceptibility to infection? Implications for disease dynamics. Integr. Comp. Biol. 51, 528–539 (2011).Article 

    Google Scholar 
    Rimbach, R. et al. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140110 (2015).Article 

    Google Scholar 
    Friant, S., Ziegler, T. E. & Goldberg, T. L. Changes in physiological stress and behaviour in semi-free-ranging red-capped mangabeys (Cercocebus torquatus) following antiparasitic treatment. Proc. R. Soc. B Biol. Sci. 283, 20161201 (2016).Article 

    Google Scholar 
    Hudson, P. J. & Dobson, A. P. Macroparasites: Observed patterns in naturally fluctuating animal populations. In Ecology of infectious diseases in natural populations (eds Grenfell, B. T. & Dobson, A. P.) 144–176 (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511629396.006.Chapter 

    Google Scholar 
    Murray, D. L., Lloyd, B. K. & Cary, J. R. Do parasitism and nutritional status interact to affect production in snowshoe hares?. Ecology 79, 1209–1222 (1998).Article 

    Google Scholar 
    Coop, R. L. & Holmes, P. H. Nutrition and parasite interaction. Int. J. Parasitol. 26, 951–962 (1996).Article 
    CAS 

    Google Scholar 
    Møller, A. P., de Lope, F., Moreno, J., González, G. & Pérez, J. J. Ectoparasites and host energetics: House martin bugs and house martin nestlings. Oecologia 98, 263–268 (1994).Article 
    ADS 

    Google Scholar 
    Munger, J. C. & Karasov, W. H. Sublethal parasites and host energy budgets: Tapeworm infection in white-footed mice. Ecology 70, 904–921 (1989).Article 

    Google Scholar 
    Hicks, O. et al. The energetic cost of parasitism in a wild population. Proc. R. Soc. B Biol. Sci. 285, 20180489 (2018).Article 

    Google Scholar 
    Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: A review and meta-analysis. Ecol. Lett. 21, 1869–1884 (2018).Article 

    Google Scholar 
    Kyriazakis, I., Tolkamp, B. J. & Hutchings, M. R. Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim. Behav. 56, 265–274 (1998).Article 
    CAS 

    Google Scholar 
    Hart, B. L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14, 273–294 (1990).Article 
    CAS 

    Google Scholar 
    Lopes, P. C., Block, P. & König, B. Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Pelletier, F. & Festa-Bianchet, M. Effects of body mass, age, dominance and parasite load on foraging time of bighorn rams. Ovis canadensis. Behav. Ecol. Sociobiol. 56, 546–551 (2004).Article 

    Google Scholar 
    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).Article 

    Google Scholar 
    Hart, B. L. The behavior of sick animals. Vet. Clin. North Am. Small Anim. Pract. 21, 225–237 (1991).Article 
    CAS 

    Google Scholar 
    Poulin, R. Meta-analysis of parasite-induced behavioural changes. Anim. Behav. 48, 137–146 (1994).Article 

    Google Scholar 
    Janson, C. H. Toward an experiemental socioecology of primates. Examples from Argentine brown capuchin monkeys (Cebus apella nigritus). In Adaptive Radiations of Neotropical Primates (eds Janson, C. H. et al.) 309–325 (Plenum Press, 1996).Chapter 

    Google Scholar 
    Robinson, J. G. Seasonal variation in use of time and space by the wedge-capped capuchin monkey, Cebus olivaceus: Implications for foraging theory. Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.431 (1986).Article 

    Google Scholar 
    Saj, T., Sicotte, P. & Paterson, J. D. Influence of human food consumption on the time budget of vervets. Int. J. Primatol. 20, 977–994 (1999).Article 

    Google Scholar 
    Ghai, R. R., Fugère, V., Chapman, C. A., Goldberg, T. L. & Davies, T. J. Sickness behaviour associated with non-lethal infections in wild primates. Proc. Biol. Sci. 282, 20151436 (2015).
    Google Scholar 
    Blersch, R. et al. Sick and tired: Sickness behaviour, polyparasitism and food stress in a gregarious mammal. Behav. Ecol. Sociobiol. 75, 169 (2021).Article 

    Google Scholar 
    Müller-Klein, N. et al. Physiological and social consequences of gastrointestinal nematode infection in a nonhuman primate. Behav. Ecol. 30, 322–335 (2019).Article 

    Google Scholar 
    Chapman, C. A. et al. Social behaviours and networks of vervet monkeys are influenced by gastrointestinal parasites. PLoS ONE 11, e0161113 (2016).Article 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Acute phase responses of passerine birds: characterization and seasonal variation. J. Ornithol. 148, 583–591 (2007).Article 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Seasonal modulation of sickness behavior in free-living northwestern song sparrows (Melospiza melodia morphna). J. Exp. Biol. 209, 3062–3070 (2006).Article 

    Google Scholar 
    Janson, C. H. & Di Bitetti, M. S. Experimental analysis of food detection in capuchin monkeys: Effects of distance, travel speed, and resource size. Behav. Ecol. Sociobiol. 41, 17–24 (1997).Article 

    Google Scholar 
    Di Bitetti, M. S. Food-associated calls in the tufted capuchin monkey (Cebus apella). PhD Thesis. (Stony Brook University, New York, 2001).Di Bitetti, M. S. & Janson, C. H. Reproductive socioecology of tufted capuchins (Cebus apella nigritus) in Norteastern Argentina. Int. J. Primatol. 22, 127–142 (2001).Article 

    Google Scholar 
    Janson, C., Baldovino, M. C. & Di Bitetti, M. The group life cycle and demography of brown capuchin monkeys (Cebus [apella] nigritus) in Iguazú National Park, Argentina. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 185–212 (Springer, Berlin, 2012). https://doi.org/10.1007/978-3-642-22514-7_9.Chapter 

    Google Scholar 
    Robinson, J. C. & Galán Saúco, V. Bananas and plantains. (Crop production science in horticulture series N. 19, CAB International, 2010). https://doi.org/10.1079/9781845936587.0000Tiddi, B., Pfoh, R. & Agostini, I. The impact of food provisioning on parasite infection in wild black capuchin monkeys: A network approach. Primates 60, 297–306 (2019).Article 

    Google Scholar 
    Agostini, I., Vanderhoeven, E., Di Bitetti, M. S. & Beldomenico, P. M. Experimental testing of reciprocal effects of nutrition and parasitism in wild black capuchin monkeys. Sci. Rep. 7, 1–11 (2017).Article 

    Google Scholar 
    de Vries, H., Netto, W. J. & Hanegraaf, P. L. H. Matman: a program for the analysis of sociometric matrices and behavioural transition matrices. Behaviour 125, 157–175 (1993).Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour (Cambridge University Press, 1993). https://doi.org/10.1017/cbo9780511810893.Book 

    Google Scholar 
    Cox, D. D. & Todd, A. C. Survey of gastrointestinal parasitism in Wisconsin dairy cattle. J. Am. Vet. Med. Assoc. 141, 706–709 (1962).CAS 

    Google Scholar 
    Ballweber, L. R., Beugnet, F., Marchiondo, A. A. & Payne, P. A. American association of veterinary parasitologists’ review of veterinary fecal flotation methods and factors influencing their accuracy and use—Is there really one best technique?. Vet. Parasitol. 204, 73–80 (2014).Article 
    CAS 

    Google Scholar 
    Godfrey, S. S. Networks and the ecology of parasite transmission: a framework for wildlife parasitology. Int. J. Parasitol. Parasites Wildl. 2, 235–245 (2013).Article 

    Google Scholar 
    Sosa, S., Sueur, C. & Puga-Gonzalez, I. Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol. Evol. 2020, 1–12 (2020).
    Google Scholar 
    Sosa, S. et al. A multilevel statistical toolkit to study animal social networks: The Animal Network Toolkit Software (ANTs) R package. Sci. Rep. 10, 12507 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Croft, D. P., Madden, J. R., Franks, D. W. & James, R. Hypothesis testing in animal social networks. Trends Ecol. Evol. 26, 502–507 (2011).Article 

    Google Scholar 
    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed). Ecological Modelling (Springer, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-model inference. R package version 1.15.6. 63 (2016). citeulike:11961261Carlton, E. D., Demas, G. E. & French, S. S. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm. Behav. 62, 272–279 (2012).Article 
    CAS 

    Google Scholar 
    Tizard, I. Sickness behavior, its mechanisms and significance. Anim. Health Res. Rev. 9, 87–99 (2008).Article 

    Google Scholar 
    Inoue, W. & Luheshi, G. N. Acute starvation alters lipopolysaccharide-induced fever in leptin-dependent and -independent mechanisms in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1709-19 (2010).Article 

    Google Scholar 
    Macdonald, L., Radler, M., Paolini, A. G. & Kent, S. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an antiinflammatory bias. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, 172–184 (2011).Article 

    Google Scholar 
    Wisse, B. E. et al. Physiological regulation of hypothalamic IL-1β gene expression by leptin and glucocorticoids: implications for energy homeostasis. Am. J. Physiol. Endocrinol. Metab. 287, R1107–R1113 (2004).Article 

    Google Scholar 
    Pohl, J., Woodside, B. & Luheshi, G. N. Changes in hypothalamically mediated acute-phase inflammatory responses to lipopolysaccharide in diet-induced obese rats. Endocrinology 150, 4901–4910 (2009).Article 
    CAS 

    Google Scholar 
    Bretscher, P. On analyzing how the Th1/Th2 phenotype of an immune response is determined: classical observations must not be ignored. Front. Immunol. 10, 1–7 (2019).Article 

    Google Scholar 
    Poppi, D. P., Sykes, A. R. & Dynes, R. A. The effect of endoparasitism on host nutrition – the implications for nutrient manipulation. Proc. New Zeal. Soc. Anim. Prod. 50, 237–243 (1990).
    Google Scholar 
    Coulson, G., Cripps, J. K., Garnick, S., Bristow, V. & Beveridge, I. Parasite insight: assessing fitness costs, infection risks and foraging benefits relating to gastrointestinal nematodes in wild mammalian herbivores. Philos. Trans. R. Soc. B Biol. Sci. 373, 197 (2018).Article 

    Google Scholar 
    Worsley-Tonks, K. E. L. & Ezenwa, V. O. Anthelmintic treatment affects behavioural time allocation in a free-ranging ungulate. Anim. Behav. 108, 47–54 (2015).Article 

    Google Scholar 
    Jones, O. R., Anderson, R. M. & Pilkington, J. G. Parasite-induced anorexia in a free-ranging mammalian herbivore: An experimental test using Soay sheep. Can. J. Zool. 84, 685–692 (2006).Article 

    Google Scholar 
    Cripps, J. K., Martin, J. K. & Coulson, G. Anthelmintic treatment does not change foraging strategies of female eastern grey kangaroos, Macropus giganteus. PLoS ONE 11, e0147384 (2016).Article 

    Google Scholar 
    Giles, N. Predation risk and reduced foraging activity in fish: experiments with parasitized and non-parasitized three-spined sticklebacks, Gasterosteus aculeatus L.. J. Fish Biol. 31, 37–44 (1987).Article 

    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Wu, Q. C., Ortega, C. N. & Rohr, J. R. Host resistance and tolerance of parasitic gut worms depend on resource availability. Oecologia 183, 1031–1040 (2017).Article 
    ADS 

    Google Scholar 
    Lopes, P. C., French, S. S., Woodhams, D. C. & Binning, S. A. Metabolic response of dolphins to short-term fasting reveals physiological changes that differ from the traditional fasting model. J. Exp. Biol. 224, jeb225847 (2021).Article 

    Google Scholar 
    Behringer, D. C., Butler, M. J. & Shields, J. D. Ecology: Avoidance of disease by social lobsters. Nature 441, 421 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Poirotte, C. et al. Mandrills use olfaction to socially avoid parasitized conspecifics. Sci. Adv. 3, e1601721 (2017).Article 
    ADS 

    Google Scholar  More

  • in

    Disentangling the causes of temporal variation in the opportunity for sexual selection

    Darwin, C. The Descent of Man and Selection in Relation to Sex. (John Murray, 1871).Andersson, M. Sexual Selection. (Princeton University Press, 1994).Shuster, S. & Wade, M. J. Mating Systems and Strategies. (Princeton University Press, 2003).Gosden, T. P. & Svensson, E. I. Spatial and temporal dynamics in a sexual selection mosaic. Evolution 62, 845–856 (2008).Article 
    PubMed 

    Google Scholar 
    Kasumovic, M. M., Bruce, M. J., Andrade, M. C. B. & Herberstein, M. E. Spatial and temporal demographic variation drives within-season fluctuations in sexual selection. Evolution 62, 2316–2325 (2008).Article 
    PubMed 

    Google Scholar 
    Mobley, K. B. & Jones, A. G. Environmental, demographic, and genetic mating system variation among five geographically distinct dusky pipefish (Syngnathus floridae) populations. Mol. Ecol. 18, 1476–1490 (2009).Article 
    PubMed 

    Google Scholar 
    Hoffer, J. N., Mariën, J., Ellers, J. & Koene, J. M. Sexual selection gradients change over time in a simultaneous hermaphrodite. eLife 6, e25139 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sih, A., Montiglio, P.-O., Wey, T. W. & Fogarty, S. Altered physical and social conditions produce rapidly reversible mating systems in water striders. Behav. Ecol. 28, 632–639 (2017).Article 

    Google Scholar 
    Preston, B. T., Stevenson, I. R., Pemberton, J. M. & Wilson, K. Dominant rams lose out by sperm depletion. Nature 409, 681–682 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cornwallis, C. K. & Uller, T. Towards an evolutionary ecology of sexual traits. Trends Ecol. Evol. 25, 145–152 (2010).Article 
    PubMed 

    Google Scholar 
    Forsgren, E., Amundsen, T., Borg, A. A. & Bjelvenmark, J. Unusually dynamic sex roles in a fish. Nature 429, 551–554 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hare, R. M. & Simmons, L. W. Sexual selection maintains a female-specific character in a species with dynamic sex roles. Behav. Ecol. 32, 609–616 (2021).Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B 374, 20180174 (2019).Article 

    Google Scholar 
    Ingleby, F. C., Hunt, J. & Hosken, D. J. The role of genotype-by-environment interactions in sexual selection. J. Evol. Biol. 23, 2031–2045 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lindström, J., Pike, T. W., Blount, J. D. & Metcalfe, N. B. Optimization of resource allocation can explain the temporal dynamics and honesty of sexual signals. Am. Nat. 174, 515–525 (2009).Article 
    PubMed 

    Google Scholar 
    Janicke, T., David, P. & Chapuis, E. Environment-dependent sexual selection: Bateman’s parameters under varying levels of food availability. Am. Nat. 185, 756–768 (2015).Article 
    PubMed 

    Google Scholar 
    Morimoto, J., Pizzari, T. & Wigby, S. Developmental environment effects on sexual selection in male and female Drosophila melanogaster. PLoS ONE 11, e0154468 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cattelan, S., Evans, J. P., Garcia-Gonzalez, F., Morbiato, E. & Pilastro, A. Dietary stress increases the total opportunity for sexual selection and modifies selection on condition-dependent traits. Ecol. Lett. 23, 447–456 (2020).Article 
    PubMed 

    Google Scholar 
    Glavaschi, A., Cattelan, S., Grapputo, A. & Pilastro, A. Imminent risk of predation reduces the relative strength of postcopulatory sexual selection in the guppy. Philos. Trans. R. Soc. B 375, 20200076 (2020).Article 

    Google Scholar 
    Clark, D. C., DeBano, S. J. & Moore, A. J. The influence of environmental quality on sexual selection in Nauphoeta cinerea (Dictyoptera: Blaberidae). Behav. Ecol. 8, 46–53 (1997).Article 

    Google Scholar 
    Emlen, S. & Oring, L. Ecology, sexual selection and the evolution of mating systems. Science 197, 215–223 (1977).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liker, A., Freckleton, R. P. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1–6 (2013).Article 

    Google Scholar 
    Wacker, S. et al. Operational sex ratio but not density affects sexual selection in a fish. Evolution 67, 1937–1949 (2013).Article 
    PubMed 

    Google Scholar 
    Wacker, S., Ness, M. H., Östlund-Nilsson, S. & Amundsen, T. Social structure affects mating competition in a damselfish. Coral Reefs 36, 1279–1289 (2017).Article 
    ADS 

    Google Scholar 
    Janicke, T. & Morrow, E. H. Operational sex ratio predicts the opportunity and direction of sexual selection across animals. Ecol. Lett. 21, 384–391 (2018).Article 
    PubMed 

    Google Scholar 
    Procter, D. S., Moore, A. J. & Miller, C. W. The form of sexual selection arising from male-male competition depends on the presence of females in the social environment. J. Evol. Biol. 25, 803–812 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Eldakar, O. T., Dlugos, M. J., Pepper, J. W. & Wilson, D. S. Population structure mediates sexual conflict in Water striders. Science 326, 816–816 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Martin, A. M., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Demographic drivers of age-dependent sexual selection. J. Evol. Biol. 29, 1437–1446 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pilakouta, N. & Ålund, M. Sexual selection and environmental change: what do we know and what comes next? Curr. Zool. 67, 293–298 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kahn, A. T., Dolstra, T., Jennions, M. D. & Backwell, P. R. Y. Strategic male courtship effort varies in concert with adaptive shifts in female mating preferences. Behav. Ecol. 24, 906–913 (2013).Article 

    Google Scholar 
    Jordan, L. A. & Brooks, R. C. Recent social history alters male courtship preferences. Evolution 66, 280–287 (2012).Article 
    PubMed 

    Google Scholar 
    Wilson, D. R., Nelson, X. J. & Evans, C. S. Seizing the opportunity: Subordinate male fowl respond rapidly to variation in social context. Ethology 115, 996–1004 (2009).Article 

    Google Scholar 
    Gwynne, D. T., Bailey, W. J. & Annells, A. The sex in short supply for matings varies over small Spatial scales in a Katydid (Kawanaphila nartee, Orthoptera: Tettigoniidae). Behav. Ecol. Sociobiol. 42, 157–162 (1998).Article 

    Google Scholar 
    Fedina, T. Y. & Lewis, S. M. Female mate choice across mating stages and between sequential mates in flour beetles. J. Evol. Biol. 20, 2138–2143 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Clark, H. L. & Backwell, P. R. Y. Temporal and spatial variation in female mating preferences in a fiddler crab. Behav. Ecol. Sociobiol. 69, 1779–1784 (2015).Article 

    Google Scholar 
    Serbezov, D., Bernatchez, L., Olsen, E. M. & Vøllestad, L. A. Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living population. Mol. Ecol. 19, 3193–3205 (2010).Article 
    PubMed 

    Google Scholar 
    Gerlach, N. M., McGlothlin, J. W., Parker, P. G. & Ketterson, E. D. Reinterpreting Bateman gradients: multiple mating and selection in both sexes of a songbird species. Behav. Ecol. 23, 1078–1088 (2012).Article 

    Google Scholar 
    Dubuc, C., Ruiz-Lambides, A. & Widdig, A. Variance in male lifetime reproductive success and estimation of the degree of polygyny in a primate. Behav. Ecol. 25, 878–889 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Breuer, T. et al. Variance in the male reproductive success of western gorillas: acquiring females is just the beginning. Behav. Ecol. Sociobiol. 64, 515–528 (2010).Article 

    Google Scholar 
    Germain, R. R., Hallworth, M. T., Kaiser, S. A., Sillett, T. S. & Webster, M. S. Variance in within-pair reproductive success influences the opportunity for selection annually and over the lifetimes of males in a multi-brooded songbird. Evolution 75, 915–930 (2021).Article 
    PubMed 

    Google Scholar 
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 
    PubMed 

    Google Scholar 
    Klug, H., Heuschele, J., Jennions, M. D. & Kokko, H. The mismeasurement of sexual selection. J. Evol. Biol. 23, 447–462 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jennions, M. D., Kokko, H. & Klug, H. The opportunity to be misled in studies of sexual selection. J. Evol. Biol. 25, 591–598 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Krakauer, A. H., Webster, M. S., Duval, E. H., Jones, A. G. & Shuster, S. M. The opportunity for sexual selection: not mismeasured, just misunderstood. J. Evol. Biol. 24, 2064–2071 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hebets, E. A., Stafstrom, J. A., Rodriguez, R. L. & Wilgers, D. J. Enigmatic ornamentation eases male reliance on courtship performance for mating success. Anim. Behav. 81, 963–972 (2011).Article 

    Google Scholar 
    Fitzpatrick, J. L. & Lüpold, S. Sexual selection and the evolution of sperm quality. Mol. Hum. Reprod. 20, 1180–1189 (2014).Article 
    PubMed 

    Google Scholar 
    Jones, A. G. On the opportunity for sexual selection, the Bateman gradient and the maximum intensity of sexual selection. Evolution 63, 1673–1684 (2009).Article 
    PubMed 

    Google Scholar 
    Henshaw, J. M., Kahn, A. T. & Fritzsche, K. A rigorous comparison of sexual selection indexes via simulations of diverse mating systems. Proc. Natl Acad. Sci. USA 113, E300–E308 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, J. P. & Garcia-Gonzalez, F. The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world. J. Evol. Biol. 29, 2338–2361 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Downhower, J. F., Blumer, L. S. & Brown, L. Opportunity for selection: an appropriate measure for evaluating variation in the potential for selection? Evolution 41, 1395–1400 (1987).Article 
    PubMed 

    Google Scholar 
    Klug, H. & Stone, L. More than just noise: Chance, mating success, and sexual selection. Ecol. Evol. 11, 6326–6340 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anthes, N., Häderer, I. K., Michiels, N. K. & Janicke, T. Measuring and interpreting sexual selection metrics: evaluation and guidelines. Methods Ecol. Evol. 8, 918–931 (2016).Article 

    Google Scholar 
    Klug, H., Lindström, K. & Kokko, H. Who to include in measures of sexual selection is no trivial matter. Ecol. Lett. 13, 1094–1102 (2010).Article 
    PubMed 

    Google Scholar 
    Collet, J. M., Dean, R. F., Worley, K., Richardson, D. S. & Pizzari, T. The measure and significance of Bateman’s principles. Proc. R. Soc. B 281, 20132973 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collet, J., Richardson, D. S., Worley, K. & Pizzari, T. Sexual selection and the differential effect of polyandry. Proc. Natl Acad. Sci. USA 109, 8641–8645 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDonald, G. C., Spurgin, L. G., Fairfield, E. A., Richardson, D. S. & Pizzari, T. Pre- and postcopulatory sexual selection favor aggressive, young males in polyandrous groups of red junglefowl. Evolution 71, 1653–1669 (2017).Article 
    PubMed 

    Google Scholar 
    Morimoto, J. et al. Sex peptide receptor-regulated polyandry modulates the balance of pre- and post-copulatory sexual selection in Drosophila. Nat. Commun. 10, 283 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shuster, S. M., Willen, R. M., Keane, B. & Solomon, N. G. Alternative mating tactics in socially monogamous prairie voles, Microtus ochrogaster. Front. Ecol. Evol. 7, 7 (2019).Article 

    Google Scholar 
    Dowling, J. & Webster, M. S. Working with what you’ve got: unattractive males show greater mate-guarding effort in a duetting songbird. Biol. Lett. 13, 20160682 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pizzari, T. & McDonald, G. C. Sexual selection in socially structured, polyandrous populations: Some insights from the fowl. Adv. Study Behav. 51, 77–141 (2019).Article 

    Google Scholar 
    Archer, M. S. & Elgar, M. A. Female preference for multiple partners: sperm competition in the hide beetle, Dermestes maculatus (DeGeer). Anim. Behav. 58, 669–675 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Qvarnström, A. & Forsgren, E. Should females prefer dominant males? Trends Ecol. Evol. 13, 498–501 (1998).Article 
    PubMed 

    Google Scholar 
    Webster, M. S., Tarvin, K. A., Tuttle, E. M. & Pruett-Jones, S. Promiscuity drives sexual selection in a socially monogamous bird. Evolution 61, 2205–2211 (2007).Article 
    PubMed 

    Google Scholar 
    Brunton, D. H. Energy expenditure in reproductive effort of male and female Killdeer (Charadrius vociferus). Auk 105, 553–564 (1988).Article 

    Google Scholar 
    Johnson, L. S., Hicks, B. G. & Masters, B. S. Increased cuckoldry as a cost of breeding late for male house wrens (Troglodytes aedon). Behav. Ecol. 13, 670–675 (2002).Article 

    Google Scholar 
    Boinski, S. Mating patterns in squirrel monkeys (Saimiri oerstedi): implications for seasonal sexual dimorphism. Behav. Ecol. Sociobiol. 21, 13–21 (1987).Article 

    Google Scholar 
    McDonald, G. C., Spurgin, L. G., Fairfield, E. A., Richardson, D. S. & Pizzari, T. Differential female sociality is linked with the fine-scale structure of sexual interactions in replicate groups of red junglefowl, Gallus gallus. Proc. R. Soc. B 286, 20191734 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carleial, R. et al. Temporal dynamics of competitive fertilization in social groups of red junglefowl (Gallus gallus) shed new light on avian sperm competition. Philos. Trans. R. Soc. B 375, 20200081 (2020).Article 

    Google Scholar 
    Lessells, C. M. & Birkhead, T. R. Mechanisms of sperm competition in birds: mathematical models. Behav. Ecol. Sociobiol. 27, 325–337 (1990).Article 

    Google Scholar 
    Taborsky, T., Oliveira, R. F. & Brockmann, H. J. The Evolution of Alternative Reproductive Tactics: Concepts and Questions. in Alternative Reproductive Tactics: An Integrative Approach (Cambridge University Press, 2008).Ghislandi, P. G. et al. Resource availability, mating opportunity and sexual selection intensity influence the expression of male alternative reproductive tactics. J. Evol. Biol. 31, 1035–1046 (2018).Article 
    PubMed 

    Google Scholar 
    Lehtonen, T. K., Wong, B. B. M. & Lindström, K. Fluctuating mate preferences in a marine fish. Biol. Lett. 6, 21–23 (2010).Article 
    PubMed 

    Google Scholar 
    Chaine, A. S. & Lyon, B. E. Adaptive plasticity in female mate choice dampens sexual selection on male ornaments in the lark bunting. Science 319, 459–462 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Oklander, L. I., Kowalewski, M. & Corach, D. Male reproductive strategies in black and gold howler monkeys (Alouatta caraya). Am. J. Primatol. 76, 43–55 (2014).Article 
    PubMed 

    Google Scholar 
    Pröhl, H. & Hödl, W. Parental investment, potential reproductive rates, and mating system in the strawberry dart-poison frog, Dendrobates pumilio. Behav. Ecol. Sociobiol. 46, 215–220 (1999).Article 

    Google Scholar 
    Turnell, B. R. & Shaw, K. L. High opportunity for postcopulatory sexual selection under field conditions. Evolution 69, 2094–2104 (2015).Article 
    PubMed 

    Google Scholar 
    Gill, L. F., van Schaik, J., von Bayern, A. M. P. & Gahr, M. L. Genetic monogamy despite frequent extrapair copulations in “strictly monogamous” wild jackdaws. Behav. Ecol. 31, 247–260 (2020).Article 
    PubMed 

    Google Scholar 
    Carleial, R., McDonald, G. C. & Pizzari, T. Dynamic phenotypic correlates of social status and mating effort in male and female red junglefowl, Gallus gallus. J. Evol. Biol. 33, 22–40 (2020).Article 
    PubMed 

    Google Scholar 
    McDonald, G. C. & Pizzari, T. Structure of sexual networks determines the operation of sexual selection. Proc. Natl Acad. Sci. USA 115, E53–E61 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal kingdom. Sci. Adv. 2, e1500983 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webster, M. S., Pruett-Jones, S., Westneat, D. F. & Arnold, S. J. Measuring the effects of pairing success, extra-pair copulations and mate quality on the opportunity for sexual selection. Evolution 49, 1147–1157 (1995).PubMed 

    Google Scholar 
    Etches, R. J. Reproduction in Poultry. (CABI, 1996).Schielzeth, H. Simple means to improve the interpretability of regression coefficients: Interpretation of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    Løvlie, H., Cornwallis, C. K. & Pizzari, T. Male mounting alone reduces female promiscuity in the fowl. Curr. Biol. 15, 1222–1227 (2005).Article 
    PubMed 

    Google Scholar 
    Berglund, A. Many mates make male pipefish choosy. Behaviour 132, 213–218 (1995).Article 

    Google Scholar 
    Carleial, R., Pizzari, T., Richardson, D. S. & McDonald, G. C. Data for: Disentangling the causes of temporal variation in the opportunity for sexual selection. figshare Dataset (2023) https://doi.org/10.6084/m9.figshare.21902133.v1.McLain, D. K., Burnette, L. B. & Deeds, D. A. Within season variation in the intensity of sexual selection on body size in the bug Margus obscurator (Hemiptera Coreidae). Ethol. Ecol. Evol. 5, 75–86 (1993).Article 

    Google Scholar 
    Schlicht, E. & Kempenaers, B. Effects of social and extra-pair mating on sexual selection in Blue tits (Cyanistes caeruleus). Evolution 67, 1420–1434 (2013).PubMed 

    Google Scholar  More

  • in

    The spatio-temporal distribution of alkaline phosphatase activity and phoD gene abundance and diversity in sediment of Sancha Lake

    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sc. Pollut. R. Int. 10, 126–139 (2003).Article 
    CAS 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading an analysis of contemporary long term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Kim, L. H., Choi, E. & Michal, K. S. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50, 53–61 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Jiang, X. J., Xiang, C. & Yao, Y. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Res. 42, 2251–2259 (2008).Article 
    CAS 

    Google Scholar 
    Wang, S. R., Jin, X. C. & Bu, Q. Y. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids Surf. A 316, 245–252 (2008).Article 
    CAS 

    Google Scholar 
    Miao, S. Y., De-Laune, R. D. & Jug-Sujinda, A. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci. Total Environ. 371, 334–343 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Smits, J. G. C. & Van Beek, J. K. L. ECO: A generic eutrophication model including comprehensive sediment-water interaction. PLoS ONE 8, e68104 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Topcu, A. & Pulatsu, S. Phosphorus fractions and cycling in the sediment of a shallow eutrophic pond. Tarim Bilim. Derg. 20, 63–70 (2014).Article 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Song, C. L., Cao, X. Y. & Liu, Y. B. Seasonal variations in chlorophyll a concentrations in relation to potentials of sediment phosphate release by different mechanisms in a large chinese shallow eutrophic lake (Lake Taihu). Geomicrobiol. J. 26, 508–515 (2009).Article 
    CAS 

    Google Scholar 
    Pop, O., Martin, U., Abel, C. & Müller, J. P. The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous tat translocation system. J. Biol. Chem. 277, 3268–3273 (2002).Article 
    CAS 

    Google Scholar 
    Luo, H. W., Zhang, H. M. & Long, R. A. Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 62, 61–69 (2011).Article 

    Google Scholar 
    Tan, H. et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 49, 661–672 (2012).Article 

    Google Scholar 
    Wan, W. J. et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degrad. Dev. 32, 766–776 (2021).Article 

    Google Scholar 
    Chen, X. et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Appl. Soil Ecol. 119, 197–204 (2017).Article 
    ADS 

    Google Scholar 
    Sagnon, A. et al. Amendment with Burkina Faso phosphate rock-enriched composts alters soil chemical properties and microbial structure, and enhances sorghum agronomic performance. Sci. Rep. 12, 13945 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Chhabra, S. et al. Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol. Fertil. Soils 49, 31–39 (2012).Article 

    Google Scholar 
    Luo, H. W., Benner, R., Long, R. A. & Hu, J. J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. 106, 212–219 (2009).Article 

    Google Scholar 
    Zhang, T. X. et al. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. Sci. Total Environ. 728, 138615 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, H. et al. Nutrients regeneration pathway, release potential, transformation pattern and algal utilization strategies jointly drove cyanobacterial growth and their succession. J. Environ. Sci. 103, 255–267 (2021).Article 
    CAS 

    Google Scholar 
    Sun, T. T., Huang, T. & Liu, Y. X. Effects of cyanobacterial growth and decline on the phoD-harboring bacterial community structure in sediments of Lake Chaohu. J. Lake Sci. 34, 32 (2022).ADS 

    Google Scholar 
    Li, Y., Ai, M. J., Sun, Y., Zhang, Y. Q. & Zhang, J. Q. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int. J. Syst. Evol. Microbiol. 67, 3144–3149 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Xu, W. L. & Mou, Z. S. Microbial community structure in the sediments and its relation to environmental factors in eutrophicated Sancha Lake. Int. J. Environ. Res. Public Health 16, 1931–1946 (2019).Article 
    CAS 

    Google Scholar 
    Jia, B. Y., Tang, Y. & Fu, W. L. Relationship among sediment characteristics, eutrophication process and human activities in the Sancha Lake. China Environ. Sci. 33, 1638–1644 (2013).CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Zhang, J. Q., Xu, W. L. & Mou, Z. S. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a Eutrophic Lake. Int. J. Environ. Res. Public Health 16, 2141 (2019).Article 
    CAS 

    Google Scholar 
    Ruban, V., Brigault, S., Demare, D. & Philippe, A. M. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues reservoir, France. J. Environ. Monit. 1, 403–407 (1999).Article 
    CAS 

    Google Scholar 
    Ruban, V., López-Sánchez, J. F. & Pardo, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works. Fresenius J. Anal. Chem. 370, 224–228 (2001).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Fu, W. L. & Wu, D. M. Fractions and temporal and spatial distribution of phosphorus in the sediments of Sancha lake. Appl. Ecol. Environ. Res. 17, 11731–11743 (2019).Article 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Xu, W. L. & Mou, Z. S. Gcd gene diversity of quinoprotein glucose dehydrogenase in the sediment of Sancha lake and its response to the environment. Int. J. Environ. Res. Public Health 16, 1–10 (2019).Article 

    Google Scholar 
    Luo, G. W. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).Article 
    CAS 

    Google Scholar 
    Lagos, L. et al. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol. Fertil. Soils 52, 1007–1019 (2016).Article 
    CAS 

    Google Scholar 
    Acuña, J. et al. Bacterial alkaline phosphomono-esterase in the rhizospheres of plants grown in chilean extreme environments. Biol. Fertil. Soils 52, 763–773 (2016).Article 

    Google Scholar 
    Nicholas, A. B. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods. 10, 57–59 (2013).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).Article 
    CAS 

    Google Scholar 
    Fan, X. F. & Xing, P. The vertical distribution of sediment archaeal community in the (black bloom) disturbing Zhushan Bay of Lake Taihu. Archaea 2016, 201–208 (2016).Article 

    Google Scholar 
    White, J. R., Nagarajan, N. & Pop, M. O. Statistical methods for detecting differentially abundant features in clinical metagenomic samples (differential abundance in clinical metagenomics). PLoS Comput. Biol. 5, 1–11 (2009).Article 

    Google Scholar 
    Hu, H., Chen, X. J., Hou, F. J., Wu, Y. P. & Cheng, Y. X. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Front. Microbiol. 8, 606 (2017).Article 

    Google Scholar 
    Dai, J. Y. et al. Bacterial alkaline phosphatases and affiliated encoding genes in natural waters: A review. J. Lake Sci. 28, 1153–1166 (2016).Article 

    Google Scholar 
    Chróst, R. J. & Overbeck, J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterio-plankton in lake plusee (North German Eutrophic Lake). Microb. Ecol. 13, 229–248 (1987).Article 

    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhao, D. D., Luo, J. F., Huang, X. Y. & Lin, W. T. Diversity of bacterial APase phoD gene in the Pearl River water. Acta Sci. Circum. 35, 722–728 (2015).CAS 

    Google Scholar 
    Valdespino-Castillo, P. M. et al. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico. FEMS Microbiol. Ecol. 90, 504–519 (2014).CAS 

    Google Scholar 
    Ni, Z. K., Li, Y. & Wang, S. R. Cognizing and characterizing the organic phosphorus in lake sediments: Advances and challenges. Water Res. 220, 118663 (2022).Article 
    CAS 

    Google Scholar 
    Han, S. S. & Wen, T. M. Phosphorus release and affecting factors in the sediments of eutrophic water. J. Ecol. 23, 98–101 (2004).
    Google Scholar 
    Wang, F. F., Qu, J. H. & Hu, Y. S. Spatio-temporal characteristics and correlation of phosphate, pH and alkaline phosphatase on water-sediment interface of Lake Taihu. Ecol. Environ. Sci. 21, 907–912 (2012).
    Google Scholar 
    Lu, Y. M. et al. Bioavailability of organic phosphorus in Lake Chaohu sediments. J. Environ. Eng. Technol. 10, 197–204 (2020).
    Google Scholar 
    LeBrun, E. S., King, R. S., Back, J. A. & Kang, S. Microbial community structure and function decoupling across a phosphorus gradient in streams. Microb. Ecol. 75, 64–73 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, J. et al. Connecting sources, fractions and algal availability of sediment phosphorus in shallow lakes: An approach to the criteria for sediment phosphorus concentrations. J. Environ. Sci. 25, 798–810 (2023).Article 

    Google Scholar 
    Hu, Y. J. et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Sci. Total Environ. 628–629, 53–63 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Rethinking river water temperature in a changing, human-dominated world

    Ouellet, V. et al. Sci. Total Environ. 736, 139679 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sutadian, A. D., Muttil, N., Yilmaz, A. G. & Perera, B. J. C. Environ. Monit. Assess. 188, 58 (2016).Article 
    PubMed 

    Google Scholar 
    Murdoch, P. S., Baron, J. S. & Miller, T. L. J. Am. Water Resour. Assoc. 36, 347–366 (2000).Article 
    CAS 

    Google Scholar 
    Hannah, D. M. & Garner, G. Prog Phys Geogr. 39, 68–92 (2015).Article 

    Google Scholar 
    Abbott, B. W. et al. Nat. Geosci. 12, 533–540 (2019).Article 
    CAS 

    Google Scholar 
    Grill, G. et al. Nature 569, 215–221 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hermanson, L. et al. Bull. Am. Meteorol. Soc. 103, E1117–E1129 (2022).Article 

    Google Scholar 
    Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E. & Nobilis, F. Hydrol. Process. 22, 902–918 (2008).Article 

    Google Scholar 
    Hester, E. T. & Doyle, M. W. J. Am. Water Resour. Assoc. 47, 571–587 (2011).Article 

    Google Scholar 
    Schliemann, S. A., Grevstad, N. & Brazeau, R. H. Hydrol. Process 35, e14001 (2021).Article 

    Google Scholar 
    Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P. & Malcolm, I. A. Sci. Total Environ. 612, 1543–1558 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    O’Sullivan, A. M., Devito, K. J. & Curry, R. A. Catena 177, 70–83 (2019).Article 

    Google Scholar 
    Chang, H. & Psaris, M. Sci. Total Environ. 461, 587–600 (2013).Article 
    PubMed 

    Google Scholar 
    Hester, E. T. & Bauman, K. S. J. Am. Water Resour. Assoc. 49, 328–342 (2013).Article 

    Google Scholar 
    Croghan, D., Van Loon, A. F., Sadler, J. P., Bradley, C. & Hannah, D. M. Hydrol. Process. 33, 144–159 (2018).Article 

    Google Scholar 
    Levia, D. F. et al. Nat. Geosci. 13, 656–658 (2020).Article 
    CAS 

    Google Scholar 
    Nelson, K. C. & Palmer, M. A. J. Am. Water Resour. Assoc 43, 440–452 (2007).Article 

    Google Scholar 
    Heggenes, J. et al. River Res. Appl. 37, 743–765 (2021).Article 

    Google Scholar 
    Menberg, K., Blum, P., Kurylyk, B. L. & Bayer, P. Hydrol. Earth Syst. Sci. 18, 4453–4466 (2014).Article 

    Google Scholar 
    Tissen, C., Benz, S. A., Menberg, K., Bayer, P. & Blum, P. Environ. Res. Lett. 14, 104012 (2019).Article 
    CAS 

    Google Scholar 
    Hannah, D. M. et al. Hydrol. Process. 36, e14525 (2022).Article 

    Google Scholar 
    Carothers, C. et al. Ecol. Soc. https://doi.org/10.5751/ES-11972-260116 (2021).Dugdale, S. J., Hannah, D. M. & Malcolm, I. A. Earth Sci. Rev. 175, 97–113 (2017).Article 

    Google Scholar 
    Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water Resour. Res. 55, 2760–2778 (2019).Article 

    Google Scholar 
    Tavares, M. H. et al. Remote Sens. Environ. 241, 11172 (2020).Article 

    Google Scholar 
    Dugdale, S. J., Klaus, J. & Hannah, D. M. Water Resour. Res. 58, e2021WR031168 (2022).Article 

    Google Scholar 
    Mao, F. et al. Environ. Sci. Technol. 54, 9145–9158 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hannah, D. M. et al. Hydrol. Process. 25, 1191–1200 (2011).Article 

    Google Scholar 
    Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. Earth Syst. Sci. Data 10, 765–785 (2018).Article 

    Google Scholar  More

  • in

    Taxonomic composition, community structure and molecular novelty of microeukaryotes in a temperate oligomesotrophic lake as revealed by metabarcoding

    Pawlowski, J. et al. CBOL Protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLOS Biol. 10, e1001419 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Handbook of the Protists (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0.Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    del Campo, J. et al. Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55, 4–11 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grau-Bové, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. Life 6, e26036 (2017).
    Google Scholar 
    Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gabr, A., Grossman, A. R. & Bhattacharya, D. Paulinella, a model for understanding plastid primary endosymbiosis. J. Phycol. 56, 837–843 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: Puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Caron, D. A. New accomplishments and approaches for assessing protistan diversity and ecology in natural ecosystems. Bioscience 59, 287–299 (2009).Article 

    Google Scholar 
    Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean: Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).Article 
    PubMed 

    Google Scholar 
    Stoecker, D. K., Johnson, M. D., de Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310 (2009).Article 

    Google Scholar 
    Strom, S. L., Benner, R., Ziegler, S. & Dagg, M. J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42, 1364–1374 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Orsi, W. D. et al. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environ. Microbiol. 20, 815–827 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corno, G. & Jürgens, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl. Environ. Microbiol. 72, 78–86 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 91 (2017).Article 
    PubMed 

    Google Scholar 
    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).Article 

    Google Scholar 
    Epstein, S. & López-García, P. “Missing” protists: a molecular prospective. Biodivers. Conserv. 17, 261–276 (2008).Article 

    Google Scholar 
    López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).Article 
    ADS 
    PubMed 

    Google Scholar 
    Lovejoy, C., Massana, R. & Pedrós-Alió, C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microbiol. 72, 3085–3095 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worden, A. Z., Cuvelier, M. L. & Bartlett, D. H. In-depth analyses of marine microbial community genomics. Trends Microbiol. 14, 331–336 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Countway, P. D. et al. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ. Microbiol. 9, 1219–1232 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Massana, R. & Pedrós-Alió, C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol. 11, 213–218 (2008).Article 
    PubMed 

    Google Scholar 
    Alexander, E. et al. Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ. Microbiol. 11, 360–381 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Logares, R. et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24, 813–821 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 150 (2015).Article 

    Google Scholar 
    Fell, J. W., Scorzetti, G., Connell, L. & Craig, S. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with More

  • in

    Temperature, species identity and morphological traits predict carbonate excretion and mineralogy in tropical reef fishes

    Animal collection and holding for this project was conducted under Marine Research Permit RE-19–28 issued by the Ministry of Natural Resources, Environment, and Tourism of the Republic of Palau (10.03.2019), Marine Research/Collection Permit and Agreement 62 issued by the Koror State Government (08.10.2019), Queensland Government GBRMPA Marine Parks Permit G14/36689.1, Queensland Government DNPRSR Marine Parks Permits QS2014/MAN247 and QS2014/MAN247a, Queensland Government General Fisheries Permit 168991, Queensland Government DAFF Animal Ethics approval CA2013/11/733, approval by The Bahamas Department of Marine Resources, approval by the Animal Care Officer of both the University of Bremen and the Leibniz Centre for Tropical Marine Research (ZMT), and in accordance with UK and Germany animal care guidelines.Sample collectionWe collected fish carbonate samples at four study locations across three tropical and subtropical regions: Eleuthera (24°50’N, 76°20’W), The Bahamas, between 2009 and 201127,37; Heron Reef (23°27’S, 151°55’E) and Moreton Bay (27°29’S, 153°24’E) in Queensland, Australia, in 2014 and 201528; and Koror (7°20’N, 134°28’E), Palau, during November and December 2019. These are located within four distinct marine biogeographic provinces and three realms (Tropical Atlantic, Central Indo-Pacific, and Temperate Australasia)43. At each location fish were collected using barrier nets, dip nets, clove oil or hook and line, and immediately transferred to aquaria facilities at the Cape Eleuthera Institute, Heron Island and Moreton Bay Research Stations, and the Palau International Coral Reef Center. Fish were held in a range of tanks (60, 400, or 1400 L in the Bahamas, 10, 60, 100, 120, or 400 L in Heron Island and Moreton Bay, and 8, 80, 280, or 400 L in Palau) of suitable dimensions for different fish sizes ( 5). Each sample was titrated with 0.01–0.5 N HCl (with continuous aeration with CO2-free air) until the end point (grey-lavender; pH~4.80) was reached and stable for at least 10 min. If the sample was over-titrated (pink), 0.01–0.1 N NaOH was added to titrate back to the end point and the amount of base used was subtracted from the amount of acid. Acid and base were added using an electronic multi-dispenser pipette (Eppendorf Repeater ®E3X, Eppendorf, Hamburg, Germany) with a precision of  ± 1 ({{{{{rm{mu }}}}}})L. Additionally, the pH of several samples was monitored using a pH microelectrode (Mettler Toledo InLab Micro) to ascertain the correctness of the colorimetric end point. The amount of carbonate in the sample was then calculated using Eq. (1). The method was validated using certified reference material (Alkalinity Standard Solution, 25,000 mg/L as CaCO3, HACH) and the accuracy in the determination of solid samples was verified using certified CaCO3 powder (Suprapur, ≥ 99.95% purity, Merck) samples (60–500 ({{{{{rm{mu }}}}}})g) and resulted in 96.53 ± 1.94% accuracy (mean ± SE; n = 8).To compare values obtained with the two titration methods we further analysed 12 samples collected at Lizard Island, Australia, in February 2016. Samples were collected at 24 h intervals from one individual of Lethrinus atkinsoni (f. Lethrinidae, body mass: 245 g), a group of five Lutjanus fulvus (f. Lutjanidae, mean body mass: 21 g), and an individual of Cephalopholis cyanostigma (f. Serranidae, body mass: 295 g), following the procedures described above. During sample collection water temperature ranged from 29.1 °C during the night to 32.6 °C during the day, with an average of ~31 °C, mean salinity was 35.4, and pHNBS ranged from 8.13 to 8.21. To compare the amount of carbonate measured by the two methods we added carbonate samples to 20 ml ultrapure water and disaggregated crystals via sonication. We then used a Metrohm Titrando autotitrator and Metrohm Aquatrode pH electrode to measure initial pH of the suspension of carbonates, then titrated each sample of carbonate in two stages. Firstly, they were titrated down to pH 4.80 using 0.1 M HCl, adding 20 µl increments of acid until this was sufficient to keep pH below 4.80 for 10 min whilst bubbling with CO2-free air. This first stage was comparable to the single end point titration used for samples collected in Palau. Secondly, whilst continuing to bubble with CO2-free air, further acid was added to the sample until it reached pH 3.89 and was stable for 1 min. Then 0.1 M NaOH was added to the samples to return them to the initial pH. For all samples the first end point titration (to pH 4.80) yielded slightly higher values for carbonate content than the second double titration. The ratio between the two methods (single end point/double titration) was 1.08 ± 0.01 (mean ± SE; range: 1.04–1.14; Supplementary Table 2). As we found a small but consistent difference between the two methods, all following analyses were initially performed on the actual data obtained with the double titration for samples from Australia and The Bahamas, and the single end point titration for samples from Palau. Then, to assess the robustness of the results, we repeated the analyses after applying a correction factor of 1.08 to the excretion rates of Palauan fishes (that used the single end point titration method). All results were consistent and robust to the measured difference between the titration methods (Supplementary Figs. 8, 9).Finally, measurements of multiple samples from each individual collected over periods of 18–169 h (median: 64 h) were combined to produce an average individual excretion rate in ({{{{{rm{mu }}}}}})mol h−1. For fish held in groups, carbonate excretion rates per individual (of average biomass) were obtained by averaging the total excretion rate of the group across the sampling period and dividing it by the number of individuals in the tank. Excretion rates obtained from fish groups thus evened the intraspecific variability within tanks, and are therefore more robust than those directly obtained from fish held individually. This aspect was considered in our models by fitting weighted regressions (see the “Statistical modelling” section). In total, we measured the carbonate excretion rates of 382 individual fishes arranged in 192 groups (i.e., independent observations), representing 85 species from 35 families across three tropical regions (180 individuals from 29 species in Australia, 90 individuals from 10 species in the Bahamas, and 112 individuals from 46 species in Palau; Supplementary Table 1).We assume that during the sampling of carbonates fishes were close to their resting metabolic rate and that their carbonate excretion rates are representative of fish at rest. Although the ratio of tank volume to fish volume in our study (median ~660; inter-quartile range ~180–1700) typically greatly exceeds the guideline ideal range for measuring resting metabolic rate (20–50)85, fishes were fasted prior to and throughout sampling, and in most instances their movement was somewhat constrained by tank volume. Fasting reduces metabolic rate in all animals, including fish, as they do not undergo energy-intensive digestive processes and use energy reserves to support vital processes, triggering metabolic changes in many tissues and reducing activity levels86,87. Additionally, other than the carbonate syphoning ( More