More stories

  • in

    Differential gene expression indicates modulated responses to chronic and intermittent hypoxia in corallivorous fireworms (Hermodice carunculata)

    1.Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. 114, 3660–3665 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Lehrter, J. C., Ko, D. S., Lowe, L. L. & Penta, B. Predicted effects of climate change on northern Gulf of Mexico hypoxia. In Modeling coastal hypoxia 173–214 (Springer, 2017).3.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Nelson, H. R. & Altieri, A. H. Oxygen: The universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).ADS 
    Article 

    Google Scholar 
    5.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 1–12 (2020).ADS 
    Article 

    Google Scholar 
    6.Murphy, J. W. & Richmond, R. H. Changes to coral health and metabolic activity under oxygen deprivation. PeerJ 4, e1956 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Ann. Rev. Mar. Sci. 9, 5.1-5.24 (2017).Article 

    Google Scholar 
    8.Van Oppen, M. J. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).ADS 
    Article 

    Google Scholar 
    9.Montagna, P. A. & Ritter, C. Direct and indirect effects of hypoxia on benthos in Corpus Christi Bay, Texas, USA. J. Exp. Mar. Biol. Ecol. 330, 119–131 (2006).CAS 
    Article 

    Google Scholar 
    10.Pollock, M., Clarke, L. & Dubé, M. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ. Rev. 15, 1–14 (2007).CAS 
    Article 

    Google Scholar 
    11.Seitz, R. D., Dauer, D. M., Llansó, R. J. & Long, W. C. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. J. Exp. Mar. Biol. Ecol. 381, S4–S12 (2009).Article 

    Google Scholar 
    12.Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Ann. Rev. 33, 245–203 (1995).
    Google Scholar 
    13.Dean, T. L. & Richardson, J. Responses of seven species of native freshwater fish and a shrimp to low levels of dissolved oxygen. NZ J. Mar. Freshw. Res. 33, 99–106 (1999).Article 

    Google Scholar 
    14.Wannamaker, C. M. & Rice, J. A. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J. Exp. Mar. Biol. Ecol. 249, 145–163 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Richardson, J., Williams, E. K. & Hickey, C. W. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. NZ J. Mar. Freshwat. Res. 35, 625–633 (2001).Article 

    Google Scholar 
    16.McAllen, R., Davenport, J., Bredendieck, K. & Dunne, D. Seasonal structuring of a benthic community exposed to regular hypoxic events. J. Exp. Mar. Biol. Ecol. 368, 67–74 (2009).Article 

    Google Scholar 
    17.Ogino, T. & Toyohara, H. Identification of possible hypoxia sensor for behavioral responses in a marine annelid. Capitella teleta. Biol. Open 8, bio37630 (2019).
    Google Scholar 
    18.Lenihan, H. S. & Peterson, C. H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol. Appl. 8, 128–140 (1998).Article 

    Google Scholar 
    19.Li, F.-G., Chen, J., Jiang, X.-Y. & Zou, S.-M. Transcriptome analysis of blunt snout bream (Megalobrama amblycephala) reveals putative differential expression genes related to growth and hypoxia. PLoS ONE 10, e0142801 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Sahlmann, A., Wolf, R., Holth, T. F., Titelman, J. & Hylland, K. Baseline and oxidative DNA damage in marine invertebrates. J. Toxicol. Environ. Health A 80, 807–819 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Zoccola, D. et al. Structural and functional analysis of coral Hypoxia Inducible Factor. PLoS ONE 12, e0186262 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Díaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303 (1995).
    Google Scholar 
    23.Bodamer, B. L. & Bridgeman, T. B. Experimental dead zones: two designs for creating oxygen gradients in aquatic ecological studies. Limnol. Oceanogr. Methods 12, 441–454 (2014).CAS 
    Article 

    Google Scholar 
    24.Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457. https://doi.org/10.1073/pnas.0803833105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Branco, P. et al. Potamodromous fish movements under multiple stressors: Connectivity reduction and oxygen depletion. Sci. Total Environ. 572, 520–525 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hayes, D. S., Branco, P., Santos, J. M. & Ferreira, T. Oxygen depletion affects kinematics and shoaling cohesion of cyprinid fish. Water 11, 642 (2019).CAS 
    Article 

    Google Scholar 
    27.Grimes, C. J., Capps, C., Petersen, L. H. & Schulze, A. Oxygen consumption during and post hypoxia exposure in bearded fireworms (Annelida: Amphinomidae). J. Comp. Physiol. B 190, 681–689 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    28.Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. Stke 407, 1–3 (2007).29.Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272–279 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. 92, 5510–5514 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Kaelin, W. G. Jr. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Marques, I. J. et al. Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. J. Comp. Physiol. B. 178, 77–92 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schulze, A., Grimes, C. J. & Rudek, T. E. Tough, armed and omnivorous: Hermodice carunculata (Annelida: Amphinomidae) is prepared for ecological challenges. J. Mar. Biol. Assoc. UK. 97,1–6 (2017).34.Witman, J. D. Effects of predation by the fireworm Hermodice carunculata on milleporid hydrocorals. Bull. Mar. Sci. 42, 446–458 (1988).
    Google Scholar 
    35.Vreeland, H. & Lasker, H. Selective feeding of the polychaete Hermodice carunculata Pallas on Caribbean gorgonians. J. Exp. Mar. Biol. Ecol. 129, 265–277 (1989).Article 

    Google Scholar 
    36.Vargas-Ángel, B., Thomas, J. D. & Hoke, S. M. High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22, 465–473 (2003).Article 

    Google Scholar 
    37.Miller, M., Marmet, C., Cameron, C. & Williams, D. Prevalence, consequences, and mitigation of fireworm predation on endangered staghorn coral. Mar. Ecol. Prog. Ser. 516, 187–194 (2014).ADS 
    Article 

    Google Scholar 
    38.Lucey, N. M., Collins, M. & Collin, R. Oxygen‐mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecol. Evol. 10, 1145–1157 (2019).39.Grimes, C. J., Paiva, P. C., Petersen, L. H. & Schulze, A. Rapid plastic responses to chronic hypoxia in the bearded fireworm, Hermodice carunculata (Annelida: Amphinomidae). Mar. Biol. https://doi.org/10.1007/s00227-020-03756-0 (2020).Article 

    Google Scholar 
    40.Yáñez-Rivera, B. & Salazar-Vallejo, S. I. Revision of Hermodice Kinberg, 1857 (Polychaeta: Amphinomidae). Sci. Mar. 75, 251–262 (2011).Article 

    Google Scholar 
    41.Ahrens, J. B. et al. The curious case of Hermodice carunculata (Annelida: Amphinomidae): Evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol. Ecol. 22, 2280–2291 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gorr, T. A., Cahn, J. D., Yamagata, H. & Bunn, H. F. Hypoxia-induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-dependent. J. Biol. Chem. 279, 36038–36047 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Li, T. & Brouwer, M. Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes pugio: Molecular characterization and response to hypoxia. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 147, 11–19 (2007).Article 
    CAS 

    Google Scholar 
    44.Soñanez-Organis, J. G. et al. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 150, 395–405 (2009).
    Google Scholar 
    45.Wei, L. et al. Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia. Chemosphere 153, 198–204 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Giannetto, A. et al. Hypoxia-inducible factor α and Hif-prolyl hydroxylase characterization and gene expression in short-time air-exposed Mytilus galloprovincialis. Mar. Biotechnol. 17, 768–781 (2015).CAS 
    Article 

    Google Scholar 
    47.Philipp, E. E. et al. Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions. PLoS ONE 7, e44621 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Sussarellu, R., Fabioux, C., Le Moullac, G., Fleury, E. & Moraga, D. Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia. Mar. Genom. 3, 133–143 (2010).Article 

    Google Scholar 
    49.Woo, S. et al. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zool. Stud. 52, 15 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Burgeot, T. et al. Oyster summer morality risks associated with environmental stress. Summer Mortality of Pacific Oyster Crassostrea Gigas. The Morest Project. Éd. Ifremer/Quæ, 107–151 (2008).51.David, E., Tanguy, A., Pichavant, K. & Moraga, D. Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions. FEBS J. 272, 5635–5652 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hourdez, S. et al. Gas transfer system in Alvinella pompejana (Annelida polychaeta, Terebellida): Functional properties of intracellular and extracellular hemoglobins. Physiol. Biochem. Zool. 73, 365–373 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Boutet, I., Jollivet, D., Shillito, B., Moraga, D. & Tanguy, A. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genom. 10, 222 (2009).Article 
    CAS 

    Google Scholar 
    54.Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Huggett, J. & Griffiths, C. Some relationships between elevation, physico-chemical variables and biota of intertidal rock pools. Mar. Ecol. Prog. Ser. 29, 189–197 (1986).ADS 
    Article 

    Google Scholar 
    56.Kinsey, D. & Kinsey, E. Diurnal changes in oxygen content of the water over the coral reef platform at Heron I. Mar. Freshw. Res. 18, 23–34 (1967).Article 

    Google Scholar 
    57.Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part I 51, 1159–1168 (2004).CAS 
    Article 

    Google Scholar 
    58.Levin, L. A., Gage, J. D., Martin, C. & Lamont, P. A. Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep Sea Res. Part II 47, 189–226 (2000).ADS 
    Article 

    Google Scholar 
    59.Gallardo, V. et al. Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep Sea Res. Part II 51, 2475–2490 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Gooday, A. et al. Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep Sea Res. Part II 56, 488–502 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Prabhakar, N. R. & Semenza, G. L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92, 967–1003 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Du, S. N., Mahalingam, S., Borowiec, B. G. & Scott, G. R. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus). J. Exp. Biol. 219, 1130–1138 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    63.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1–19 (2015).68.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    Article 

    Google Scholar 
    69.Conesa, A., Nueda, M. J., Ferrer, A. & Talón, M. maSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22, 1096–1102 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Nueda, M.J., Tarazona, S., & Conesa, A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics, 30, 2598–2602. https://doi.org/10.1093/bioinformatics/btu333 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.OmicsBox. Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox (2019).72.Costa-Paiva, E. M., Schrago, C. G., Coates, C. J. & Halanych, K. M. Discovery of novel hemocyanin-like genes in Metazoans. Biol. Bull. 235, 134–151 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Kanaoka, Y. & Urade, Y. Hematopoietic prostaglandin D synthase. Prostaglandins Leukot. Essent. Fatty Acids 69, 163–167 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Altun, M. et al. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia. J. Biol. Chem. 287, 1962–1969 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ogawa, M. et al. 17β-estradiol represses myogenic differentiation by increasing ubiquitin-specific peptidase 19 through estrogen receptor α. J. Biol. Chem. 286, 41455–41465 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J. Biol. Chem. 277, 29936–29944 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Nallapalli, R. K. et al. Targeting filamin A reduces K-RAS–induced lung adenocarcinomas and endothelial response to tumor growth in mice. Mol. Cancer 11, 1–11 (2012).Article 
    CAS 

    Google Scholar 
    78.Feng, Y. et al. Filamin A (FLNA) is required for cell–cell contact in vascular development and cardiac morphogenesis. Proc. Natl. Acad. Sci. 103, 19836–19841 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Muñoz-Chápuli, R. Evolution of angiogenesis. Int. J. Dev. Biol. 55, 345–351 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    80.Kim, S., Lee, M. & Choi, Y. K. The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol. Ther. 28, 45 (2020).Article 

    Google Scholar 
    81.Nie, H., Wang, H., Jiang, K. & Yan, X. Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genom. 21, 1–16 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    A quantitative analysis of intensification in the ethnographic record

    1.Trigger, B. G. Sociocultural Evolution: Calculation and Contingency (Blackwell, 1998).2.Morgan, L. H. Ancient Society (Charles Kerr, 1877).3.Spencer, H. The Evolution of Society: Selections from Herbert Spencer’s Principles of Sociology (Univ. of Chicago Press, 1967).4.White, L. A. Energy and the evolution of culture. Am. Anthropol. 45, 335–356 (1943).Article 

    Google Scholar 
    5.Childe, V. G. The urban revolution. Town Plan. Rev. 21, 3–17 (1950).Article 

    Google Scholar 
    6.Adams, R. M. The Evolution of Urban Society: Early Mesopotamia and Prehispanic Mexico (Aldine, 1966).7.Wittfogel, K. A. Oriental Despotism: A Comparative Study of Total Power (Yale Univ. Press, 1957).8.Geertz, C. Agricultural Involution (Univ. of California Press, 1963).9.Boserup, E. The Conditions of Agricultural Growth: the Economics of Agrarian Change under Population Pressure (Aldine, 1965).10.Wolf, E. R. Peasants (Prentice-Hall, 1966).11.Binford, L. R. in New Perspectives in Archaeology (eds Binford, S. R. & Binford, L. R.) 421–449 (Aldine, 1968).12.Flannery, K. V. in The Domestication and Exploitation of Plants and Animals (eds Ucko, P. J. & Dimbleby, G. W.) 73–100 (Aldine, 1969).13.Sahlins, M. Stone Age Economics (Routledge, 2017).14.Cohen, M. N. The Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture (Yale Univ. Press, 1977).15.Renfrew, C. in An Island Polity: the Archaeology of Exploitation in Melos (eds Renfrew, C. & Wagstaff, M.) 264–290 (Cambridge Univ. Press, 1982).16.Diamond, J. Guns, Germs, and Steel: the Fates of Human Societies (Norton, 1997).17.Johnson, A. W. & Earle, T. K. The Evolution of Human Societies: From Foraging Group to Agrarian State 2nd edn (Stanford Univ. Press, 2000).18.Trigger, B. G. Understanding Early Civilizations: a Comparative Study (Cambridge Univ. Press, 2003).19.Wenke, R. J. & Olszewski, D. I. Patterns in Prehistory: Humankind’s First Three Million Years 5th edn (Oxford Univ. Press, 2007).20.Scott, J. C. Against the Grain: a Deep History of the Earliest States (Yale Univ. Press, 2017).21.Hawkes, K., Kaplan, H., Hill, K. & Hurtado, A. M. Ache at the settlement: contrasts between farming and foraging. Hum. Ecol. 15, 133–161 (1987).Article 

    Google Scholar 
    22.Piperno, D. R. & Pearsall, D. M. The Origins of Agriculture in the Lowland Neotropics (Academic Press, 1998).23.Bronson, B. C. in Population Growth: Anthropological Implications (ed. Spooner, B.) 190–218 (MIT Press, 1972).24.Hunt, R. C. Labor productivity and agricultural development: Boserup revisited. Hum. Ecol. 28, 251–277 (2000).Article 

    Google Scholar 
    25.Bowles, S. Cultivation of cereals by the first farmers was not more productive than foraging. Proc. Natl Acad. Sci. USA 108, 4760–4765 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Clark, C. & Haswell, M. The Economics of Subsistence Agriculture 4th edn (Macmillan, 1970).27.Netting, R. Smallholders, Householders: Farm Families and the Ecology of Intensive, Sustainable Agriculture (Stanford Univ. Press, 1993).28.Kirch, P. V. The Wet and the Dry: Irrigation and Agricultural Intensification in Polynesia (Univ. of Chicago Press, 1994).29.Stone, G. D. Settlement Ecology: the Social and Spatial Organization of Kofyar Agriculture (Univ. of Arizona Press, 1996).30.Logan, M. & Sanders, W. T. in The Valley of Mexico: Studies in Pre-Hispanic Ecology and Society (ed. Wolf, E.) 31–58 (Univ. of New Mexico Press, 1976).31.Sanders, W. T., Parsons, J. R. & Santley, R. S. The Basin of Mexico: the Evolution of a Civilization (Academic Press, 1979).32.Pimentel, D. & Pimentel, M. H. Food, Energy, and Society 3rd edn (CRC Press, 2007).33.Smil, V. Energy and Civilization: A History (MIT Press, 2017).34.Turgot, A. R. J. The Turgot Collection: Writings, Speeches, and Letters of Anne Robert Jacques Turgot, Baron de Laune (Ludwig von Mises Institute, 2011).35.Mill, J. S. The Collected Works of John Stuart Mill (Univ. of Toronto Press, 1963).36.Barkley, A. & Barkley, P. W. Principles of Agricultural Economics (Routledge, 2013).37.Naroll, R. A preliminary index of social development. Am. Anthropol. 58, 687–715 (1956).Article 

    Google Scholar 
    38.Carneiro, R. L. On the relationship between size of population and complexity of social organization. Southwest. J. Anthropol. 23, 234–243 (1967).Article 

    Google Scholar 
    39.Bettencourt, L. M., Samaniego, H. & Youn, H. Professional diversity and the productivity of cities. Sci. Rep. 4, 5393 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Hanson, J. W., Ortman, S. G. & Lobo, J. Urbanism and the division of labour in the Roman Empire. J. R. Soc. Interface 14, 20170367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Ortman, S. & Lobo, J. Smithian growth in a nonindustrial society. Sci. Adv. 6, eaba5694 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sandeford, D. S. Organizational complexity and demographic scale in primary states. R. Soc. Open Sci. 5, 171137 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Adams, R. M. Heartland of Cities: Surveys of Ancient Settlement and Land Use on the Central Floodplain at the Euphrates (Univ. of Chicago Press, 1981).44.O’Brien, M., Mason, R. D., Lewarch, D. E. & Neely, J. A. Late Formative Irrigation Settlement below Monte Albán: Survey and Excavation on the Xoxocotlán Piedmont, Oaxaca, Mexico (Univ. of Texas Press, 1982).45.Billman, B. R. Irrigation and the origins of the southern Moche state on the north coast of Peru. Lat. Am. Antiq. 13, 371–400 (2002).Article 

    Google Scholar 
    46.Bandy, M. S. Energetic efficiency and political expediency in Titicaca Basin raised field agriculture. J. Anthropol. Archaeol. 24, 271–296 (2005).Article 

    Google Scholar 
    47.Liu, L. & Chen, X. The Archaeology of China: From the Late Paleolithic to the Early Bronze Age (Cambridge Univ. Press, 2012).48.Allen, R. C. Economic structure and agricultural productivity in Europe, 1300–1800. Eur. Rev. Econ. Hist. 4, 1–26 (2000).Article 

    Google Scholar 
    49.Hamilton, M. J., Walker, R. S., Buchanan, B. & Sandeford, D. S. Scaling human sociopolitical complexity. PLoS ONE 15, e0234615 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ortman, S. G., Lobo, J. & Smith, M. E. Cities: complexity, theory, and history. PLoS ONE 15, e0243621 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fujita, M., Krugman, P. & Mori, T. On the evolution of hierarchical urban systems. Eur. Econ. Rev. 43, 209–251 (1999).Article 

    Google Scholar 
    52.Bettencourt, L. M. The origins of scaling in cities. Science 340, 1438–1441 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Samaniego, H. & Moses, M. E. Cities as organisms: allometric scaling of urban road networks. J. Transp. Land Use 1, 21–39 (2008).Article 

    Google Scholar 
    54.Smith, B. D. A cultural niche construction theory of initial domestication. Biol. Theory 6, 260–271 (2011).Article 

    Google Scholar 
    55.Winterhalder, B. & Smith, E. A. Analyzing adaptive strategies: human behavioral ecology at twenty-five. Evol. Anthropol. 9, 51–72 (2000).Article 

    Google Scholar 
    56.Kennett, D. J. & Winterhalder, B. (eds) Behavioral Ecology and the Transition to Agriculture (Univ. of California Press, 2006).57.Odling-Smee, J. F., Laland, K. N. & Feldman, M. W. Niche construction: the neglected process in evolution. Monographs in Population Biology No. 37 (Princeton Univ. Press, 2003).58.Mokyr, J. The Lever of Riches: Technological Creativity and Economic Progress (Oxford Univ. Press, 1992).59.Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. B 366, 836–848 (2011).PubMed 
    Article 

    Google Scholar 
    60.Turchin, P. in Cultural Evolution: Society, Technology, Language, and Religion (eds Richerson, P. J. & Christiansen, M. H.) 61–73 (MIT Press, 2013).61.Henrich, J. The Secret of Our Success: How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton Univ. Press, 2016).62.Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Bellwood, P. First Farmers: the Origins of Agricultural Societies (Blackwell, 2005).64.Murdock, G. P. et al. Ethnographic Atlas. World Cult. 10, 24–136 (1999).
    Google Scholar 
    65.Bocquet-Appel, J.-P. & Bar-Yosef, O. (eds) The Neolithic Demographic Transition and Its Consequences (Springer, 2008).66.Lesure, R. G., Martin, L. S., Bishop, K. J., Jackson, B. & Chykerda, C. M. The Neolithic demographic transition in Mesoamerica. Curr. Anthropol. 55, 654–664 (2014).Article 

    Google Scholar 
    67.Cohen, J. E. Population growth and Earth’s human carrying capacity. Science 269, 341–346 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.DeLong, J. P. & Burger, O. Socio-economic instability and the scaling of energy use with population size. PLoS ONE 10, e0130547 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Tuzin, D. Social Complexity in the Making: a Case Study among the Arapesh of New Guinea (Routledge, 2001).70.Boserup, E. Population and Technological Change: a Study of Long-Term Trends (Univ. of Chicago Press, 1981).71.Bettencourt, L. M., Lobo, J. & Strumsky, D. Invention in the city: increasing returns to patenting as a scaling function of metropolitan size. Res. Policy 36, 107–120 (2007).Article 

    Google Scholar 
    72.Rowley-Conwy, P. & Layton, R. Foraging and farming as niche construction: stable and unstable adaptations. Phil. Trans. R. Soc. B 366, 849–862 (2011).PubMed 
    Article 

    Google Scholar 
    73.Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Ullah, I. I., Chang, C. & Tourtellotte, P. Water, dust, and agro-pastoralism: modeling socio-ecological co-evolution of landscapes, farming, and human society in southeast Kazakhstan during the mid to late Holocene. J. Anthropol. Archaeol. 55, 101067 (2019).Article 

    Google Scholar 
    75.Turner, B. L. & Doolittle, W. E. The concept and measure of agricultural intensity. Prof. Geogr. 30, 297–301 (1978).Article 

    Google Scholar 
    76.Binford, L. R. Constructing Frames of Reference: an Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets (Univ. of California Press, 2001).77.Abrams, E. M. How the Maya Built Their World: Energetics and Ancient Architecture (Univ. of Texas Press, 1994).78.Erasmus, C. J. Monument building: some field experiments. Southwest. J. Anthropol. 21, 277–301 (1965).Article 

    Google Scholar 
    79.Durrenberger, E. P. Agricultural Production and Household Budgets in a Shan Peasant Village in Northwestern Thailand: a Quantitative Description (Ohio Univ. Center for International Studies, 1978).80.Grimes, W., Hodges, J., Nichols, R. & Tapp, J. A Study of Farm Organization in Central Kansas United States Department of Agriculture Bulletin No. 1296 (Government Printing Office, 1925).81.Barker, R., Herdt, R. & Rose, B. The Rice Economy of Asia (Resources for the Future, 1985).82.Cane, S. Australian aboriginal subsistence in the western desert. Hum. Ecol. 15, 391–434 (1987).Article 

    Google Scholar 
    83.Ortman, S. G., Cabaniss, A. H., Sturm, J. O. & Bettencourt, L. M. The pre-history of urban scaling. PLoS ONE 9, e87902 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).85.Geddes, W. R. The Land Dayaks of Sarawak Colonial Research Studies No. 14 (Her Majesty’s Stationary Office, 1954).86.Freeman, J. D. Iban Agriculture: a Report on the Shifting Cultivation of Hill Rice by the Iban of Sarawak Colonial Research Studies No. 18 (Her Majesty’s Stationary Office, 1955).87.Conklin, H. C. Hanunóo Agriculture: a Report on an Integral System of Shifting Cultivation in the Philippines (Food and Agricultural Organization of the United Nations, 1957).88.Moerman, M. Agricultural Change and Peasant Choice in a Thai Village (Univ. of California Press, 1968).89.Durrenberger, E. P. Rice production in a Lisu village. J. Southeast Asian Stud. 10, 139–145 (1979).Article 

    Google Scholar 
    90.Annual Report (International Rice Research Institute, 1966).91.Janlekha, K. A Study of the Economy of a Rice Growing Village in Central Thailand. PhD dissertation, Cornell Univ., 1955.92.Conelly, W. T. Agricultural intensification in a Philippine frontier community: impact on labor efficiency and farm diversity. Hum. Ecol. 20, 203–223 (1992).Article 

    Google Scholar 
    93.Chin, S. C. Agriculture and Subsistence in a Lowland Rainforest Kenyah Community. PhD dissertation, Yale Univ., 1984.94.Cramb, R. The use and productivity of labour in shifting cultivation: an East Malaysian case study. Agric. Syst. 29, 97–115 (1989).Article 

    Google Scholar 
    95.Hastorf, C. A. Agriculture and the Onset of Political Inequality before the Inka (Cambridge Univ. Press, 1993).96.Carter, W. E. New Lands and Old Traditions (Univ. of Florida Press, 1969).97.Truman, K. in Food and Farm: Current Debates and Policies Monographs in Economic Anthropology No. 7 (eds Gladwin, C. H. & Truman, K.) 161–178 (Univ. Press of America, 1989).98.Kirkby, A. Use of Land and Water Resources in the Past and Present Valley of Oaxaca, Mexico Memoirs of the University of Michigan Museum of Anthropology No. 5 (Museum of Anthropology, Univ. of Michigan, 1973).99.Lewis, O. Life in a Mexican Village: Tepoztlán Restudied (Univ. of Illinois Press, 1963).100.Tax, S. Penny Capitalism: a Guatemalan Indian Community (Univ. of Chicago Press, 1963).101.Cancian, F. Change and Uncertainty in a Peasant Economy: The Maya Corn Farmers of Zinacantan (Stanford Univ. Press, 1972).102.Stadelman, R. Maize Cultivation in Northwestern Guatemala Contributions to American Anthropology and History No. 33 (Carnegie Institution of Washington, 1940).103.Steggerda, M. Maya Indians of Yucatan (Carnegie Institution of Washington, 1941).104.Kelly, I. & Palerm, A. The Tajin Totonac: Part 1. History, Subsistence, Shelter and Technology Smithsonian Institution Institute of Social Anthropology No. 13 (United States Government Printing Office, 1952).105.Rappoport, R. Pigs for the Ancestors (Yale Univ. Press, 1968).106.Couture, M. D., Ricks, M. F. & Housley, L. Foraging behavior of a contemporary northern Great Basin population. J. Calif. Gt Basin Anthropol. 8, 150–160 (1986).
    Google Scholar 
    107.Noss, A. J. The economic importance of communal net hunting among the BaAka of the Central African Republic. Hum. Ecol. 25, 71–89 (1997).Article 

    Google Scholar 
    108.Hawkes, K., O’Connell, F. & Jones, N. B. Hadza children’s foraging: juvenile dependency, social arrangements, and mobility among hunter-gatherers. Curr. Anthropol. 36, 688–700 (1995).Article 

    Google Scholar 
    109.Lupo, K. D. & Schmitt, D. N. Small prey hunting technology and zooarchaeological measures of taxonomic diversity and abundance: ethnoarchaeological evidence from Central African forest foragers. J. Anthropol. Archaeol. 24, 335–353 (2005).Article 

    Google Scholar 
    110.Bliege Bird, R. & Bird, D. W. Why women hunt: risk and contemporary foraging in a Western Desert aboriginal community. Curr. Anthropol. 49, 655–693 (2008).Article 

    Google Scholar 
    111.O’Connell, J. F. & Hawkes, K. Food choice and foraging sites among the Alyawara. J. Anthropol. Res. 40, 504–535 (1984).Article 

    Google Scholar 
    112.Greaves, R. D. Ethnoarchaeological Investigation of Subsistence Mobility, Resource Targeting, and Technological Organization among Pume Foragers of Venezuela. PhD dissertation, Univ. of New Mexico, 1998.113.Eder, J. F. The caloric returns to food collecting: disruption and change among the Batak of the Philippine tropical forest. Hum. Ecol. 6, 55–69 (1978).Article 

    Google Scholar 
    114.O’Connell, J. F. & Hawkes, K. in Hunter-Gatherer Foraging Strategies: Ethnographic and Archaeological Analyses (eds Winterhalder, B. & Smith, E. A.) 99–125 (Univ. of Chicago Press, 1981).115.Jones, N. B., Hawkes, K. & Draper, P. Foraging returns of !Kung adults and children: why didn’t !Kung children forage? J. Anthropol. Res. 50, 217–248 (1994).Article 

    Google Scholar 
    116.Lee, R. B. in Man the Hunter (eds Lee, R. B. & DeVore, I.) 30–48 (Aldine, 1968).117.Hames, R. B. A comparison of the efficiencies of the shotgun and the bow in neotropical forest hunting. Hum. Ecol. 7, 219–252 (1979).Article 

    Google Scholar 
    118.Hawkes, K., Hill, K. & O’Connell, J. F. Why hunters gather: optimal foraging and the Ache of eastern Paraguay. Am. Ethnol. 9, 379–398 (1982).Article 

    Google Scholar 
    119.Ichikawa, M. An examination of the hunting-dependent life of the Mbuti. Afr. Study Monogr. 4, 55–76 (1983).
    Google Scholar 
    120.Terashima, H. Hunting life of the Bambote: an anthropological study of hunter-gatherers in a wooded savanna. Senri Ethnol. Stud. 6, 223–268 (1980).
    Google Scholar 
    121.Terashima, H. Mota and other hunting activities of the Mbuti archers: a socio-ecological study of subsistence technology. Afr. Study Monogr. 3, 71–85 (1983).
    Google Scholar 
    122.Arsdale, P. W. Activity patterns of Asmat hunter-gatherers: a time budget analysis. Aust. J. Anthropol. 11, 453–60 (1978).Article 

    Google Scholar 
    123.Baldwin, K. D. S. The Niger Agricultural Project, an Experiment in African Development (Blackwell, 1957).124.Stone, G. D., Netting, R. M. & Stone, M. P. Seasonality, labor scheduling, and agricultural intensification in the Nigerian savanna. Am. Anthropol. 92, 7–23 (1990).Article 

    Google Scholar 
    125.Panter-Brick, C. Motherhood and subsistence work: the Tamang of rural Nepal. Hum. Ecol. 17, 205–228 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Clark, G. A Farewell to Alms: A Brief Economic History of the World Vol. 25 (Princeton Univ. Press, 2008).127.Pospisil, L. J. Kapauku Papuan Economy (Dept of Anthropology, Yale Univ., 1963).128.Slicher Van Bath, B. H. The Agrarian History of Western Europe, AD 500–1850 (Edward Arnold, 1963).129.Goodell, G. Agricultural production in a traditional village of northern Khuzestan. Marbg. Geogr. Schriften 64, 243–289 (1975).
    Google Scholar 
    130.Cleave, J. H. African Farmers: Labor Use in the Development of Smallholder Agriculture (Praeger, 1974). More

  • in

    Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau

    Seawater surface pH (total scale), Ωarag and temperatures (SST) showed a strong gradient at the entrance into the bay (Fig. 2a, b, e) and the seawater pH range (7.65–8.02) observed within the bay was equivalent to the ocean pH value from present to the value expected by the end of this century (IPCC 2013, RCP 8.5)29. The mean daytime seawater temperature within the bay was significantly warmer (31.8 ± 0.6 °C, mean ± S.D.) and had lower pH (7.83 ± 0.06), lower Ωarag, (2.44 ± 0.34) and higher pCO2 (619 ± 104 μatm) compared to parameters outside the bay (30.4 ± 0.1 °C, 8.02 ± 0.02, 391 ± 31 μatm, 3.63 ± 0.14, Wilcoxon-test, p  More

  • in

    Growth performance of five different strains of Nile tilapia (Oreochromis niloticus) introduced to Tanzania reared in fresh and brackish waters

    1.Fitzsimmons, K. M., Gonzalez-Alanis, P. & Martinez-Garcia, R. Why tilapia is becoming the most important food fish on the planet? In Proceedings of the 9th International Symposium on tilapia in Aquaculture, Shanghai Ocean University, Shanghai, China, 22-24 April 2011 8–16 (2011).2.FAO. The State of World Fisheries and Aquaculture. Meeting the sustainable development goals. Rome. Licence. CC BY-NC-SA 3.0 IGO (Food and Agriculture Organisation, 2018).3.ADB. An impact evaluation of the development of genetically improved farmed tilapia and their dissemination in selected countries. The Asian Development Bank, Manila, Philippines 90 (Asian Development Bank, 2004).4.Macaranas, J. M., Taniguchi, N., Pante, M. J. R., Capili, J. B. & Pullin, R. S. V. Electrophoretic evidence for extensive hybrid gene introgression into commercial Oreochromis niloticus (L.) stocks in the Philippines. Aquac. Res. 17, 249–258 (1986).CAS 
    Article 

    Google Scholar 
    5.ADB. An impact evaluation of the development of genetically improved farmed tilapia and their dissemination in selected countries. The Asian Development Bank, Manila, Philippines 137 (Asian Development Bank, 2005).6.Bradbeer, S. J. et al. Limited hybridization between introduced and critically endangered indigenous tilapia fishes in Northern Tanzania. University of Bristol. Hydrobiologia https://doi.org/10.1007/s10750-018-3572-5b (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Shechonge, A. et al. Losing cichlid fish biodiversity: Genetic and morphological homogenization of tilapia following colonization by introduced species. Conserv. Genet. 19(5), 1199–1209 (2018).8.Gupta, M. V & Acosta, B. O. A review of global tilapia farming practices. Aquac. Asia 9, 7–12 (2004). 9.Eknath, A., Dey, M. M., Rye, M. & Gjerde, B. Selective breeding of Nile tilapia for Asia. In Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, University of New England. 27, 89–96 (1998).10.Ponzoni, R. W. et al. Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Rev. Aquac. 3, 27–41 (2011).Article 

    Google Scholar 
    11.WorldFish. Genetically Improved Farmed Tilapia (GIFT). Key facts ongoing and future research. FactSheet. https://digitalarchive.worldfishcenter.org/bitstream/handle/20.500.12348/66/3880_2015-31.pdf?sequence=1&isAllowed=y (2015).
    12.Bolivar, R. Estimation of response to within-family selection for growth in Nile tilapia (Oreochromis niloticus). PhD. Dissertation, Dalhousie University, Halifax, N.S. Canada. 166 (1998).13.Tayamen, M. M. Nationwide dissemination of GET-EXCEL tilapia in the Philippines. In Proceeding of the Sixth International Symposium on Tilapia in Aquaculture. Bureau of Fisheries and Aquatic Resources, Manila, Philippines, and American Tilapia Association, Charles Town, West Virginia (ed. Bolivar, R,B., Mair, G.C and Fitzsimmons, K.) 74–85 (2004).14.Zimmerman, S. & Natividad, J. M. Comparative pond performance evaluation of GenoMar Supreme Tilapia GST 1 and GST 3 groups. In Proceeding of the Sixth International Symposium on Tilapia in Aquaculture. Bureau of Fisheries and Aquatic Resources, Manila, Philippines, and American Tilapia Association, Charles Town, West Virginia (ed. Bolivar, R.B., Mair, G.C and Fitzsimmons, K.) 89 (2004).
    15.Thodesen, J. et al. Genetic improvement of tilapias in China: Genetic parameters and selection responses in growth, survival and external color traits of red tilapia (Oreochromis spp.) after four generations of multi-trait selection. Aquaculture 416–417, 354–366 (2013).Article 

    Google Scholar 
    16.Ansah, Y. B., Frimpong, E. A. & Hallerman, E. M. Genetically-improved tilapia strains in Africa: Potential benefits and negative impacts. Sustain. 6, 3697–3721 (2014).Article 

    Google Scholar 
    17.Charo-karisa, H. Selection for growth of Nile tilapia (Oreochromis niloticus L.) in low-input environments. PhD Thesis, Wageningen University, The Netherlands (2006). 18.Kohinoor, A. H. M., Modak, P. C. & Hussain, M. G. Growth and production performance of red tilapia and Nile tilapia (Oreochromis niloticus L.) under low-input culture system. Bangladesh J. Fish Res. 3, 11–17 (1999).
    Google Scholar 
    19.Vadhel, N. et al. Red Tilapia: A candidate euryhaline species for aqua farming in Gujarat. J. Fish. 11(1), 048–050 (2017).
    Google Scholar 
    20.Felix, E., Avwemoya, F. E. & Abah, A. Some methods of monosex tilapia production: A review. Int. j. fish. aquat. res. 4(2), 42–49 (2019). 21.Fuentes-silva, C., Soto-zarazúa, G. M., Torres-pacheco, I. & Flores-rangel, A. Male tilapia production techniques: A mini-review. Afr. J. Biotechnol. 12, 5496–5502 (2013).
    Google Scholar 
    22.Wohlfarth, G. W. The unexploited potential of tilapia hybrids in aquaculture. Aquacult Fish Manage, 25, 781–788 (1994).23.Lahav, M. & Lahav, E. The development of all-male tilapia hybrids in Nir David. Bamidgeh. Isr. J. Aquac. 42, 58–61 (1990).
    Google Scholar 
    24.Siddiqui, A. Q. & Al-harbi, A. H. Evaluation of three species of tilapia, red tilapia and a hybrid tilapia as culture species in Saudi Arabia. Aquaculture 8486, 145–157 (1995).Article 

    Google Scholar 
    25.Gjerde, B. et al. Growth and survival in two complete diallele crosses with five stocks of Rohu carp (Labeo rohita). Aquaculture 209, 103–115 (2002).Article 

    Google Scholar 
    26.Mbiru, M. et al. Comparative performance of mixed-sex and hormonal sex-reversed Nile tilapia Oreochromis niloticus and hybrids (Oreochromis niloticus × Oreochromis urolepis hornorum) cultured in concrete tanks. Aquac. Int. 24, 557–566 (2015).Article 
    CAS 

    Google Scholar 
    27.Marengoni, N. G. et al. Morphological traits and growth performance of monosex male tilapia GIFT strain and Saint Peter®. Semin. Agrar. 36, 3399–3410 (2015).Article 

    Google Scholar 
    28.Eknath, A. E. & Acosta, B. O. Genetic improvement of farmed tilapias (GIFT) project: Final report, March to December 1997. International Center for Living Aquatic Resources Management (ICLARM), Makati City, Philippines 75 (1988). 29.Dan, N. C. & Little, D. C. The culture performance of monosex and mixed-sex new-season and overwintered fry in three strains of Nile tilapia (Oreochromis niloticus) in northern Vietnam. Aquaculture 184, 221–231. https://doi.org/10.1016/S0044-8486(99)00329-4 (2000).Article 

    Google Scholar 
    30.Kohinoor, A. H. M., Rahman, M. & Islam, S. Upgradation of genetically improved farmed tilapia (GIFT) strain by family selection in Bangladesh. Int. J. Fish. Aquat. Stud. 4, 650–654 (2016).
    Google Scholar 
    31.Ridha, M. Preliminary study on growth, feed conversion and production in non-improved and improved strains of the Nile tilapia Oreochromis niloticus. Fisheries and Marine Environment Department, Kuwait Institute for scientific Research, Salmiyah 22017, Kuwait (2016).32.Santos, B., Mareco, E. & Silva, M. Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Sci. Anim. Sci. 35, 235–242 (2013).
    Google Scholar 
    33.Eknath, A. E. et al. Genetic improvement of farmed tilapias: Composition and genetic parameters of a synthetic base population of Oreochromis niloticus for selective breeding. Aquaculture 273, 1–14 (2007).CAS 
    Article 

    Google Scholar 
    34.Sukmanomon, S. et al. Genetic changes, intra- and inter-specific introgression in farmed Nile tilapia (Oreochromis niloticus) in Thailand. Aquaculture 324–325, 44–54 (2012).Article 

    Google Scholar 
    35.Anane-taabeah, G., Frimpong, E. A. & Hallerman, E. Aquaculture-mediated invasion of the Genetically Improved Farmed Tilapia (GIFT) into the Lower Volta Basin of Ghana. Diversity (Basel) 11, 188 (2019).CAS 
    Article 

    Google Scholar 
    36.Trinh, T. Q., Agyakwah, S. K., Khaw, H. L., Benzie, J. A. H. & Attipoe, F. K. Y. Performance evaluation of Nile tilapia (Oreochromis niloticus) improved strains in Ghana. Aquaculture 530, 735938 (2021).CAS 
    Article 

    Google Scholar 
    37.Canonico, G., Oceanic, N. & Arthington, A. H. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 463–483 (2005).Article 

    Google Scholar 
    38.Lind, C. E., Brummett, R. E. & Ponzoni, R. W. Exploitation and conservation of fish genetic resources in Africa: Issues and priorities for aquaculture development and research. Rev. Aquac. 4, 125–141 (2012).Article 

    Google Scholar 
    39.URT. Ministry Livestock and Fisheries.Annual Report, Dodoma, Tanzania (United Republic of Tanzania, 2019).40.URT. Ministry of Livestock and Fisheries. Annual Report, Dodoma, Tanzania (United Republic of Tanzania, 2018).41.Mbiru, M. et al. Characterizing the genetic structure of introduced Nile tilapia (Oreochromis niloticus) strains in Tanzania using double digest RAD sequencing. Int. Aquac. https://doi.org/10.1007/s10499-019-00472-5 (2019).Article 

    Google Scholar 
    42.Kajungiro, R. A. et al. Population structure and genetic diversity of Nile Tilapia (Oreochromis niloticus) strains cultured in Tanzania. Front. Genet. 10, 1–12. https://doi.org/10.3389/fgene.2019.01269 (2019).Article 

    Google Scholar 
    43.Rothuis, A. et al. Aquaculture in East Africa: A regional approach. Wageningen, LEI Wageningen UR (University & Research Centre), LEI Report. IMARES C153/14| LEI. 14–120 (2014).44.URT. Vice President’s Office, Division of Environment: National Adaptation Programme of Action(NAPA, 2007).45.ATLAS. Climate change in Tanzania: Country risk profile. Task Order No. AID-OAA-I-14-00013 1–5 (Climate Change Adaptation, Thought Leadership and Assessments, 2018).46.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plot. 2019. https://rdrr.io/cran/ggpubr 2020/03/24 (2019).47.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    48.Evans, J. Straightforward Statistics for the Behavioral Sciences (Brooks/Cole Publishing, 1996).
    Google Scholar 
    49.Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn. (Routledge, 1988).MATH 

    Google Scholar 
    50.Fox, J. & Weisberg, S. car: Companion to Applied Regression. Third Edition, Sage. Version 3.0–7 (2019). 51.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means. R Package version 3.5.3. http://CRAN.R-project.org/package=emmeans, https://doi.org/10.1080/00031305.1980.10483031. (2020).52.Dey, M. M. et al. Performance and nature of genetically improved farmed tilapia: A bioeconomic analysis. Aquac. Econ. Manag. 4, 1–2 (2000).Article 

    Google Scholar 
    53.Sifa, L., Chenhong, L. & Dey, M. Cold tolerance of three strains of Nile tilapia, Oreochromis niloticus, in China. Aquaculture 213, 123–129 (2002).Article 

    Google Scholar 
    54.Cnaani, A., Gall, G. A. E. & Hulata, G. Cold tolerance of tilapia species and hybrids. Aquac. Int. 8, 289–298 (2000).Article 

    Google Scholar 
    55.Nandlal, S., Morris, C. W., Lagibalavu, M. & Ledua, E. A comparative evaluation of two tilapia strains in Fiji, 35–41. In Proceeding of the Fish Genetics Research in Member Countries and Institutions of the International Network on Genetics in Aquaculture. ICLARM Conf. Proc, 2-5 March 1999, Kuala Lumpur, Malaysia (eds. Gupta, M. V. & Acosta, B. O.) 64, (179), 35–42 (2001).56.Hussain, M. G. et al. Genetic evaluation of GIFT and existing strains of nile tilapia, Oreochromis niloticus L., under on-station and on-farm conditions in Bangladesh. Asian Fish. Sci. 13, 117–126 (2000).
    Google Scholar 
    57.Hopkins, K. Reporting fish growth: A review of the basics. J. World Aquac. Soc. 33, 173–179 (1992).Article 

    Google Scholar 
    58.Bhujel, R. C. On-farm feed management practices for Nile tilapia in Thailand. In On-Farm Feeding and Feed Management in Aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583. Rome. (ed. Hasan, M. R. & New, M. B.) 159–189 (2013).59.Volpato, G. & Fernandes, M. Social control of growth in fish. Braz. J. Med. Biol. Res. 27, 797–810 (1994).
    Google Scholar 
    60.Enquist, M. & Jakobsson, S. Decision making and assessment in the fighting behaviour of Nannacara anomala (Cichlidae, Pisces). Ethology 72, 143–153 (1986).Article 

    Google Scholar 
    61.Boscolo, C. N. P., Morais, R. N. & Freitas, E. G. Same-sized fish groups increase aggressive interaction of sex-reversed males Nile tilapia GIFT strain. Appl. Anim. Behav. Sci. 135, 154–159 (2011).Article 

    Google Scholar 
    62.Ebtehag Kamel, A. R. Evaluation of reproductive performance of tilapia strains and some of their crosses. J. Arab. Aquac. Soc. 6, 119–138 (2011).
    Google Scholar 
    63.Thoa, N. P., Ninh, N. H., Hoa, N. T., Knibb, W. & Diep, N. H. Additive genetic and heterotic effects in a 4 × 4 complete diallel cross-population of Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) reared in different water temperature environments in different water temperature environments in Northern Viet. Aquac. Res. 47, 708–720 (2016).Article 
    CAS 

    Google Scholar 
    64.Ridha, M. T. Comparative study of growth performance of three strains of Nile tilapia, Oreochromis niloticus, L., at two stocking densities. Aquac. Res. 37, 172–179 (2006).Article 

    Google Scholar 
    65.Khan, S., Hossain, M. & Science, P. Production and economics of GIFT strain of tilapia (Oreochromis niloticus) in small seasonal ponds. Progress. Agric. 19(1), 97–104 (2008).Article 

    Google Scholar 
    66.Alam, M. B., Islam, M. A., Marine, S. S., Rashid, A. & Hossain, M. A. Growth performances of GIFT tilapia (Oreochromis niloticus) in Cage culture at the Old Brahmaputra river using different densities. J. SylhetAgril. Univ. 1(2), 265–271 (2014).
    Google Scholar 
    67.Matthew, M. T. et al. Growth performance evaluation of four wild strains and one current farmed strain of Nile tilapia in Uganda. Int. J. Fish. Aquat. Stud. 4, 594–598 (2016).
    Google Scholar 
    68.Shoko, A. P., Limbu, S. M., Mrosso, H. D. J., Mkenda, A. F. & Mgaya, Y. D. Effect of stocking density on growth, production and economic benefits of mixed sex Nile tilapia (Oreochromis niloticus) and African sharptooth catfish (Clarias gariepinus) in polyculture and monoculture. Aquac. Res. https://doi.org/10.1111/are.12463 (2014).Article 

    Google Scholar 
    69.Hasan, S. J., Mian, S., Rashid, A. H. & Rahmatullah, S. M. Effects of stocking density on growth and production of GIFT Tilapia (Oreochromis niloticus). Bangladesh. Fish. Res. 14, 45–53 (2010).
    Google Scholar 
    70.Rahman, M. M., Mondal, D. K., Amin, M. R. & Muktadir, M. G. Impact of stocking density on growth and production performance of monosex tilapia (Oreochromis niloticus) in ponds. Asian J. Med. Biol. Res. 2, 471–476 (2016).Article 

    Google Scholar 
    71.Li, S. et al. Improving growth performance and caudal fin stripe pattern in selected F6–F8 generations of GIFT Nile tilapia (Oreochromis niloticus L.) using mass selection. Aquac. Res. 37, 1165–1171 (2006).CAS 
    Article 

    Google Scholar 
    72.Dos Santos, B., Vander Silva, V. V., De, M. V., Mareco, E. A. & Salomão, R. A. S. Performance of Nile tilapia Oreochromis niloticus strains in Brazil: A comparison with Philippine strain. J. Appl. Anim. Res. 47, 72–78 (2019).Article 

    Google Scholar 
    73.Reis Neto, V. et al. Genetic parameters and trends of morphometric traits of GIFT tilapia under selection for weight gain. Sci. Agric. 71, 259–265 (2014).Article 

    Google Scholar 
    74.Gilbert, H. R. & Gregory, P. W. Some features of growth and development of Hereford cattle. J. Anim. Sci. 11, 3–16 (1952).Article 

    Google Scholar 
    75.Russell, W. S. T. The growth of Ayrshire cattle: An analysis of linear body measurements. J. Anim. Sci. 21, 217–226 (1975).Article 

    Google Scholar 
    76.Montoya-lópez, A., Moreno-arias, C., Tarazona-morales, A., Olivera-Angel, M. & Betancur, J. Body shape variation between farms of tilapia (Oreochromis sp.) in Colombian Andes using landmark based geometric morphometrics. Lat. Am. J. Aquat. Res. 47, 194–200 (2019).Article 

    Google Scholar 
    77.Bœuf, G. & Payan, P. How should salinity influence fish growth?. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130(4), 411–423 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Azevedo, R. V. et al. Responses of Nile tilapia to different levels of water salinity Rafael. Lat. Am. J. Aquat. Res. 43, 828–835 (2015).
    Google Scholar 
    79.Nguyen, H. N., Khaw, L. H., Ponzoni, R. W., Hamzah, A. & Kamaruzzaman, N. Can sexual dimorphism and body shape be altered in Nile tilapia (Oreochromis niloticus) by genetic means?. Aquaculture 272S1, S38–S46 (2007).Article 

    Google Scholar 
    80.Imre, I., McLaughlin, R. L. & Noakes, D. L. G. Phenotypic plasticity in brook charr: Changes in caudal fin induced by water flow. J. Fish Biol. 61, 1171–1181 (2002).Article 

    Google Scholar 
    81.Costa, C. et al. Genetic and environmental influences on shape variation in the European sea bass (Dicentrarchus labrax). Biol. J. Linn. Soc. 101, 427–436 (2010).Article 

    Google Scholar 
    82.Vehanen, T. & Huusko, A. Brown trout Salmo trutta express different morphometrics due to divergence in the rearing environment. J. Fish Biol. 79, 1167–1181 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Ndiwa, T. C., Nyingi, D. W., Claude, J. & Agnèse, J.-F. Morphological variations of wild populations of Nile tilapia (Oreochromis niloticus) living in extreme environmental conditions in the Kenyan Rift-Valley. Environ. Biol. Fishes. https://doi.org/10.1007/s10641-016-0492-y (2016).Article 

    Google Scholar 
    84.Khaw, L. H., Ponzoni, R. W., Hamzah, A., Abu-bakar, K. R. & Bijma, P. Genotype by production environment interaction in the GIFT strain of Nile tilapia (Oreochromis niloticus). Aquaculture 326–329, 53–60 (2012).Article 

    Google Scholar 
    85.Kosai, P., Sathavorasmith, P., Jiraungkoorskul, K. & Jiraungkoorskul, W. Morphometric characters of Nile Tilapia
    (Oreochromis niloticus) in Thailand. Walailak Jour. Sci. and Tech. 11(10), 857–863 (2014). More

  • in

    Calcification in free-living coralline algae is strongly influenced by morphology: Implications for susceptibility to ocean acidification

    1.Foster, M. S. Rhodoliths between rocks and soft places. J. Phycol. 37, 659–667. https://doi.org/10.1046/j.1529-8817.2001.00195.x (2001).Article 

    Google Scholar 
    2.Riosmena-Rodríguez, R., Nelson, W. & Aguirre, J. Rhodolith/mäerl beds: A global perspective (Springer, 2017). https://doi.org/10.1007/978-3-319-29315-8.Book 

    Google Scholar 
    3.Nelson, W. A. Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60, 787–801. https://doi.org/10.1071/MF08335 (2009).CAS 
    Article 

    Google Scholar 
    4.Amado-Filho, G. M. et al. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7, e35171. https://doi.org/10.1371/journal.pone.0035171 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Smith, S. V. & Mackenzie, F. T. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22, 153–175. https://doi.org/10.1007/s10498-015-9282-y (2015).Article 

    Google Scholar 
    6.Amado-Filho, G.M., Bahia, R.G., Pereira-Filho, G.H. & Longo, L.L. South Atlantic rhodolith beds: Latitudinal distribution, species composition, structure and ecosystem functions, threats and conservation status. In Rhodolith/mäerl beds: A global perspective (eds, Riosmena-Rodríguez, R. et al.), Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_12 (2017).7.Carvalho, V. F. et al. Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. Mar. Environ. Res. 154, 104827. https://doi.org/10.1016/j.marenvres.2019.104827 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Legrand, E. et al. Species interactions can shift the response of a maerl bed community to ocean acidification and warming. Biogeosciences 14, 5359–5376. https://doi.org/10.5194/bg-14-5359-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Legrand, E. et al. Grazers increase the sensitivity of coralline algae to ocean acidification and warming. J. Sea Res. 148–149, 1–7. https://doi.org/10.1016/j.seares.2019.03.001 (2019).Article 

    Google Scholar 
    10.Legrand, E., Martin, S., Leroux, C. & Riera, P. Using stable isotope analysis to determine the effects of ocean acidification and warming on trophic interactions in a maerl bed community. Mar. Ecol. https://doi.org/10.1111/maec.12612 (2020).Article 

    Google Scholar 
    11.Burdett, H. L., Perna, G., McKay, L., Broomhead, G. & Kamenos, N. A. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment. Mar. Ecol. Prog. Ser. 587, 73–80. https://doi.org/10.3354/meps12421 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Sordo, L., Santos, R., Barrote, I. & Silva, J. High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum. Ecol. Evol. 8, 4781–4792. https://doi.org/10.1002/ece3.4020 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Sordo, L., Santos, R., Barrote, I. & Silva, J. Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum. Ecol. Evol. 9, 11000–11009. https://doi.org/10.1002/ece3.5560 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Qui-Minet, Z. M. et al. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Ecol. Evol. 9, 13787–13807. https://doi.org/10.1002/ece3.5802 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Schubert, N. et al. Rhodolith primary and carbonate production in a changing ocean: the interplay of warming and nutrients. Sci. Total Environ. 676, 455–468. https://doi.org/10.1016/j.scitotenv.2019.04.280 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Martin, S. & Hall-Spencer, J.M. Effects of ocean warming and acidification on rhodolith/mäerl beds. In Rhodolith/mäerl beds: A global perspective (eds. Riosmena-Rodríguez, R. et al.). Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_3 (2017).17.Roleda, M. Y., Boyd, P. W. & Hurd, C. L. Before ocean acidification: calcifier chemistry lessons. J. Phycol. 48(4), 840–843. https://doi.org/10.1111/j.1529-8817.2012.01195.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Dupont, S. & Pörtner, H. O. A snapshot of ocean acidification research. Mar. Biol. 160, 1765–1771. https://doi.org/10.1007/s00227-013-2282-9 (2013).CAS 
    Article 

    Google Scholar 
    19.Cyronak, T., Schulz, K. G. & Jokiel, P. L. The Omega myth: what really drives lower calcification rates in an acidifying ocean. ICES J. Mar. Sci. 73(3), 558–562. https://doi.org/10.1093/icesjms/fsv075 (2016).Article 

    Google Scholar 
    20.Falkenberg, L. J., Dupont, S. & Bellerby, R. G. Approaches to reconsider literature on physiological effects of environmental change: examples from ocean acidification research. Front. Mar. Sci. 5, 453. https://doi.org/10.3389/fmars.2018.00453 (2018).Article 

    Google Scholar 
    21.Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biol. 23, 4245–4256. https://doi.org/10.1111/gcb.13673 (2017).ADS 
    Article 

    Google Scholar 
    22.Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. Roy. Soc. B 285(1884), 20181168. https://doi.org/10.1098/rspb.2018.1168 (2018).CAS 
    Article 

    Google Scholar 
    23.Comeau, S., Cornwall, C. E., De Carlo, T. M., Krieger, E. & McCulloch, M. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Global Change Biol. 24, 4857–4868. https://doi.org/10.1111/gcb.14379 (2018).ADS 
    Article 

    Google Scholar 
    24.Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-49044-w (2019).Article 

    Google Scholar 
    25.Comeau, S. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9(6), 477–483. https://doi.org/10.1038/s41558-019-0486-9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6(5), aax1314. https://doi.org/10.1126/sciadv.aax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Donald, H. K., Ries, J. B., Stewart, J. A., Fowell, S. E. & Foster, G. L. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga. Geochim. Cosmochim. Acta 217, 240–253. https://doi.org/10.1016/j.gca.2017.08.021 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Hofmann, L. C., Schoenrock, K. M. & de Beer, D. Arctic coralline algae elevate surface pH and carbonate in the dark. Front. Plant Sci. 9, 1416. https://doi.org/10.3389/fpls.2018.01416 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Hurd, C. L. et al. Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility. Global Change Biol. 17, 3254–3262. https://doi.org/10.1111/j.1365-2486.2011.02473.x (2011).ADS 
    Article 

    Google Scholar 
    30.Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235. https://doi.org/10.1371/journal.pone.0097235 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hofmann, L. C., Koch, M. & de Beer, D. Biotic control of surface pH and evidence of light-induced H+ pumping and Ca2+-H+ exchange in a tropical crustose coralline alga. PLoS ONE 1, e0159057. https://doi.org/10.1371/journal.pone.0159057 (2016).CAS 
    Article 

    Google Scholar 
    32.McNicholl, C., Koch, M. S. & Hofmann, L. C. Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: A proposed mechanism to sustain calcification under ocean acidification. J. Exp. Mar. Biol. Ecol. 521, 151208. https://doi.org/10.1016/j.jembe.2019.151208 (2019).Article 

    Google Scholar 
    33.Hurd, C. L. & Pilditch, C. A. Flow-induced morphological variations affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales). J. Phycol. 47, 341–351. https://doi.org/10.1111/j.1529-8817.2011.00958.x (2011).Article 
    PubMed 

    Google Scholar 
    34.Foster, M.S., Amado-Filho, G.M., Kamenos, N.A., Riosmena-Rodríguez, R. & Steller D.L. Rhodoliths and rhodolith beds. In Research and Discoveries: The Revolution of Science Through SCUBA (eds, Lang, M.A. et al.). Washington, D.C, USA: Smithsonian Institution Scholarly Press (2013).35.Melbourne, L. A., Denny, M. W., Harniman, R. L., Rayfield, E. J. & Schmidt, D. N. The importance of wave exposure on the structural integrity of rhodoliths. J. Exp. Mar. Biol. Ecol. 503, 109–119. https://doi.org/10.1016/j.jembe.2017.11.007 (2018).Article 

    Google Scholar 
    36.Farias, J. N., Riosmena-Rodríguez, R., Bouzon, Z., Oliveira, E. C. & Horta, P. A. Lithothamnion superpositum (Corallinales; Rhodophyta): First description for the Western Atlantic or rediscovery of a species?. Phycol. Res. 58, 210–216. https://doi.org/10.1111/j.1440-1835.2010.00581.x (2010).Article 

    Google Scholar 
    37.Vieira-Pinto, T. et al. Lithophyllum species from Brazilian coast: range extension of Lithophyllum margaritae and description of Lithophyllum atlanticum sp. nov. (Corallineales, Corallinophycidae, Rhodophyta). Phytotaxa 190, 355–369. https://doi.org/10.11646/phytotaxa.190.1.21 (2014).Article 

    Google Scholar 
    38.Sissini, M. N. et al. Mesophyllum erubescens (Corallinales, Rhodophyta)-so many species in one epithet. Phytotaxa 190, 299–319. https://doi.org/10.11646/phytotaxa.190.1.18 (2014).Article 

    Google Scholar 
    39.de Beer, D. & Larkum, A. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ. 24, 1209–1217. https://doi.org/10.1046/j.1365-3040.2001.00772.x (2001).Article 

    Google Scholar 
    40.Hurd, C. L. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J. Phycol. 51, 599–605. https://doi.org/10.1111/jpy.12307 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Nash, M. C., Diaz-Pulido, G., Harvey, A. S. & Adey, W. Coralline algal calcification: A morphological and process-based understanding. PLoS ONE 14, e0221396. https://doi.org/10.1371/journal.pone.0221396 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Burdett, H. L., Hennige, S. J., Francis, F. T. Y. & Kamenos, N. A. The photosynthetic characteristics of red coralline algae, determined using pulse amplitude modulation (PAM) fluorometry. Bot. Mar. 5, 499–509. https://doi.org/10.1515/bot-2012-0135 (2012).CAS 
    Article 

    Google Scholar 
    43.Noisette, F., Egilsdottir, H., Davoult, D. & Martin, S. Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J. Exp. Mar. Biol. Ecol. 448, 179–187. https://doi.org/10.1016/j.jembe.2013.07.006 (2013).CAS 
    Article 

    Google Scholar 
    44.Martin, S., Cohu, S., Vignot, C., Zimmerman, G. & Gattuso, J. P. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol. Evol. 3(3), 676–693. https://doi.org/10.1002/ece3.475 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Johnson, M. D., Moriarty, V. W. & Carpenter, R. C. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS ONE 9(2), e87678. https://doi.org/10.1371/journal.pone.0087678 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Cornwall, C. E. et al. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nat. Clim. Chang. 10, 143–146. https://doi.org/10.1038/s41558-019-0681-8 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. Roy. Soc. London Series B 280, 20132201. https://doi.org/10.1098/rspb.2013.2201 (2013).CAS 
    Article 

    Google Scholar 
    48.Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biol. 22(8), 2633–2650. https://doi.org/10.1111/gcb.13287 (2016).ADS 
    Article 

    Google Scholar 
    49.Noisette, F. & Hurd, C. Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Funct. Ecol. 32(5), 1329–1342. https://doi.org/10.1111/1365-2435.13067 (2018).Article 

    Google Scholar 
    50.Johnson, M. D. et al. pH variability exacerbates effects of ocean acidification on a Caribbean crustose coralline alga. Front. Mar. Sci. 6, 150. https://doi.org/10.3389/fmars.2019.00150 (2019).Article 

    Google Scholar 
    51.Borowitzka, M. A. Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A foliacea. Mar. Biol. 62, 17–23. https://doi.org/10.1007/BF00396947 (1981).CAS 
    Article 

    Google Scholar 
    52.Chisholm, J. R. Calcification by crustose coralline algae on the northern Great Barrier Reef Australia. Limnol. Oceanogr. 45(7), 1476–1484. https://doi.org/10.4319/lo.2000.45.7.1476 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Martin, S., Castets, M.-D. & Clavier, J. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquat. Bot. 85, 121–128. https://doi.org/10.1016/j.aquabot.2006.02.005 (2006).CAS 
    Article 

    Google Scholar 
    54.McNicholl, C. et al. Ocean acidification effects on calcification and dissolution in tropical reef macroalgae. Coral Reefs 39, 1635–1647. https://doi.org/10.1007/s00338-020-01991-x (2020).Article 

    Google Scholar 
    55.Kamenos, N. A. et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biol. 19, 3621–3628. https://doi.org/10.1111/gcb.12351 (2013).ADS 
    Article 

    Google Scholar 
    56.Vogel, N. et al. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnol. Oceanogr. 60, 263–275. https://doi.org/10.1002/lno.10021 (2015).ADS 
    Article 

    Google Scholar 
    57.Vogel, N., Meyer, F. W., Wild, C. & Uthicke, S. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar. Ecol. Prog. Ser. 521, 49–61. https://doi.org/10.3354/meps11088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    58.McNicholl, C. & Koch, M. S. Irradiance, photosynthesis and elevated pCO2 effects on net calcification in tropical reef macroalgae. J. Exp. Mar. Biol. Ecol. 535, 151489. https://doi.org/10.1016/j.jembe.2020.151489 (2021).Article 

    Google Scholar 
    59.Schoenrock, K. M. et al. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). J. Phycol. 54, 690–702. https://doi.org/10.1111/jpy.12774 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.MAArE. Projeto de monitoramento ambiental da Reserva Biológica Marinha do Arvoredo e entorno. Florianópolis, Brazil: ICMBio/UFSC (2017).61.Kaandorp, J. A. & Kübler, J. E. The algorithmic beauty of seaweeds, sponges and corals (Springer, Heidelberg, 2001). https://doi.org/10.1007/978-3-662-04339-4.Book 
    MATH 

    Google Scholar 
    62.Leal, R. N., Bassi, D., Posenato, R. & Amado-Filho, G. M. Tomographic analysis for bioerosion signatures in shallow-water rhodoliths from the Abrolhos Bank Brazil. J. Coast. Res. 279, 306–309. https://doi.org/10.2112/11T-00006.1 (2012).Article 

    Google Scholar 
    63.Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 1–5. https://doi.org/10.1038/srep06972 (2014).CAS 
    Article 

    Google Scholar 
    64.Torrano-Silva, B. N., Ferreira, S. G. & Oliveira, M. C. Unveiling privacy: Advances in microtomography of coralline algae. Micron 72, 34–38. https://doi.org/10.1016/j.micron.2015.02.004 (2015).Article 
    PubMed 

    Google Scholar 
    65.Laforsch, C. et al. A precise and non-destructive method to calculate the surface area in living scleractinian corals using x-ray computed tomography and 3D modeling. Coral Reefs 27, 811–820. https://doi.org/10.1007/s00338-008-0405-4 (2008).ADS 
    Article 

    Google Scholar 
    66.Limaye, A. Drishti: a volume exploration and representation tool. In Developments in X-Ray Tomography VIII, San Diego, California, USA: SPIE Proc. 85060X; https://doi.org/10.1117/12.935640 (2012).67.Ahrens, J., Geveci, B. & Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook (eds CD Hansen, CR Johnson) Oxford, UK: Elsevier; https://doi.org/10.1016/B978-012387582-2/50038-1 (2005).68.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529. https://doi.org/10.1186/s12859-017-1934-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478. https://doi.org/10.4319/lo.1989.34.2.0474 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    71.de Beer, D. et al. A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments. Limnol. Oceanogr. Methods 6, 532–541. https://doi.org/10.4319/lom.2008.6.532 (2008).Article 

    Google Scholar 
    72.Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus 1. Limnol. Oceanogr. 30, 111–122. https://doi.org/10.4319/lo.1985.30.1.0111 (1985).ADS 
    Article 

    Google Scholar 
    73.Smith, S.V. & Kinsey, D.W. Calcification and organic carbon metabolism as indicated by carbon dioxide. In Coral Reefs: Research Methods. Monographs on Oceanographic Methodology (eds. Stoddart, D. & Johannes, R.). Paris: UNESCO (1978)74.Hansson, I. & Jagner, D. Evaluation of the accuracy of Gran plots by means of computer calculations: application to the potentiometric titration of the total alkalinity and carbonate content in sea water. Anal. Chim. Acta 75, 363–373. https://doi.org/10.1016/S0003-2670(01)82503-4 (1973).Article 

    Google Scholar 
    75.Bradshaw, A. L., Brewer, P. G., Sharer, D. K. & Williams, R. T. Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet. Sci. Lett. 55, 99–115. https://doi.org/10.1016/0012-821X(81)90090-X (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillophora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74. https://doi.org/10.1016/S0022-0981(05)80006-1 (1991).Article 

    Google Scholar 
    77.Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117. https://doi.org/10.1007/s00338-008-0459-3 (2009).ADS 
    Article 

    Google Scholar 
    78.Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three-dimensional shape measurements of coral skeletons. Limnol. Oceanogr. Methods 8, 241–253. https://doi.org/10.4319/lom.2010.8.241 (2010).Article 

    Google Scholar  More

  • in

    Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death

    Aivelo T, Norberg A (2018) Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J Anim Ecol 87:438–447PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP (2016) Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol Evol 31:689–699PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Amaral WZ, Lubach GR, Proctor A, Lyte M, Phillips GJ, Coe CL (2017) Social influences on Prevotella and the gut microbiome of young monkeys. Psychosom Med 79:888–897PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amato KR, Sanders GJ, Song SJ, Nute M, Metcalf JL, Thompson LR et al. (2019) Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J 13:576–587CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
    Google Scholar 
    Björk JR, Dasari M, Grieneisen L, Archie EA (2019) Primate microbiomes over time: longitudinal answers to standing questions in microbiome research. Am J Primatol 81:e22970PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks JW (2016) Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet Pathol 53:929–940CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS et al. (2019) High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res 47:e103CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA et al. (2016) Captivity humanizes the primate microbiome. Proc Natl Acad Sci U S A 113:10376–10381CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dill-McFarland KA, Neil KL, Zeng A, Sprenger RJ, Kurtz CC, Suen G et al. (2014) Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol 23:4658–4669CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Dubois S, Fenwick N, Ryan EA, Baker L, Baker SE, Beausoleil NJ et al. (2017) International consensus principles for ethical wildlife control. Conserv Biol J Soc Conserv Biol 31:753–760Article 

    Google Scholar 
    Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S, Ehrlich RL et al. (2018) Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome 6:190PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ericsson AC, Johnson PJ, Lopes MA, Perry SC, Lanter HR (2016) A microbiological map of the healthy equine gastrointestinal tract. PLoS ONE 11:e0166523PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    García-Amado MA, Michelangeli F, Gueneau P, Perez ME, Domínguez-Bello MG (2007) Bacterial detoxification of saponins in the crop of the avian foregut fermenter Opisthocomus hoazin. J Anim Feed Sci 16:82–85Article 

    Google Scholar 
    Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K et al. (2016) Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep 14:2142–2153CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrázek J, Koppova I et al. (2015) Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol 24:2551–2565CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregorová S, Forejt J (2000) PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol 46:31–41
    Google Scholar 
    Gu S, Chen D, Zhang J-N, Lv X, Wang K, Duan L-P et al. (2013) Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8:e74957Heimesaat MM, Boelke S, Fischer A, Haag L-M, Loddenkemper C, Kühl AA et al. (2012) Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PloS ONE 7:e40758CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hird SM (2017) Evolutionary biology needs wild microbiomes. Front Microbiol 8:725Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A et al. (2020) Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 14:113–124PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL (2018) Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, evolution. Front Microbiol 9:803Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783PubMed 
    PubMed Central 

    Google Scholar 
    Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM (2019) Covariation of diet and gut microbiome in African megafauna. Proc Natl Acad Sci U S A 116:23588–23593CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohl KD, Dearing MD (2016) The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins. Front Microbiol 7:1165Kohl KD, Luong K, Dearing MD (2015) Validating the use of trap-collected feces for studying the gut microbiota of a small mammal (Neotoma lepida). J Mammal 96:90–93Article 

    Google Scholar 
    Kohl KD, Varner J, Wilkening JL, Dearing MD (2018) Gut microbial communities of American pikas (Ochotona princeps): Evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 87:323–330PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE (2015) Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc B Biol Sci 370:20140295Kreisinger J, Čížková D, Vohánka J, Piálek J (2014) Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol 23:5048–5060CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kreisinger J, Kropáčková L, Petrželková A, Adámková M, Tomášek O, Martin J-F et al. (2017) Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front Microbiol 8:50Laukaitis CM, Critser ES, Karn RC (1997) Salivary androgen-binding protein (ABP) mediates sexual isolation in Mus musculus. Evol Int J Org Evol 51:2000–2005CAS 
    Article 

    Google Scholar 
    Lawrence K, Lam K, Morgun A, Shulzhenko NLöhr C (2019) Effect of temperature and time on the thanatomicrobiome of the cecum, ileum, kidney, and lung of domestic rabbits. J Vet Diagn Invest 31. https://doi.org/10.1177/1040638719828412Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24Article 

    Google Scholar 
    Li D, Chen H, Mao B, Yang Q, Zhao J, Gu Z et al. (2017) Microbial biogeography and core microbiota of the rat digestive tract. Sci Rep 7:45840PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Maslanik T, Tannura K, Mahaffey L, Loughridge AB, Benninson L, Ursell L et al. (2012) Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1. PLoS ONE 7:e50636CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T et al. (2020) Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. bioRxiv. https://doi.org/10.1101/2020.05.06.078147McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM et al. (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57:690–704PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput Biol 10:e1003531PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Menke S, Meier M, Sommer S (2015) Shifts in the gut microbiome observed in wildlife faecal samples exposed to natural weather conditions: lessons from time-series analyses using next-generation sequencing for application in field studies. Methods Ecol Evol 6:1080–1087Article 

    Google Scholar 
    Miller AW, Oakeson KF, Dale C, Dearing MD (2016) Microbial community transplant results in increased and long-term oxalate degradation. Micro Ecol 72:470–478CAS 
    Article 

    Google Scholar 
    Pafčo B, Čížková D, Kreisinger J, Hasegawa H, Vallo P, Shutt K et al. (2018) Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci Rep 8:5933Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L et al. (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:1000–1010CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pechal JL, Schmidt CJ, Jordan HR, Benbow ME (2018) A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci Rep 8:5724PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pollock J, Glendinning L, Wisedchanwet T, Watson M (2018) The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol 84:e02627–17PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
    Google Scholar 
    Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K et al. (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028.e13CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Round JL, Mazmanian SK (2009) The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2:e01202PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sommer F, Ståhlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J et al. (2016) The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14:1655–1661CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stalder GL, Pinior B, Zwirzitz B, Loncaric I, Jakupović D, Vetter SG et al. (2019) Gut microbiota of the European Brown Hare (Lepus europaeus). Sci Rep 9:2738CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15:51PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stearns JC, Lynch MDJ, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG et al. (2011) Bacterial biogeography of the human digestive tract. Sci Rep 1:170CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stothart MR, Palme R, Newman AEM (2019) It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc R Soc B Biol Sci 286:20192111Article 

    Google Scholar 
    Suzuki TA, Martins FM, Nachman MW (2019) Altitudinal variation of the gut microbiota in wild house mice. Mol Ecol 28:2378–2390CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Suzuki TA, Nachman MW (2016) Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice (EG Zoetendal, Ed.). PLoS ONE 11:e0163720PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M et al. (2017) Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front Microbiol 8:391Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B et al. (2020) Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol 10:151Tang W, Zhu G, Shi Q, Yang S, Ma T, Mishra SK et al. (2019) Characterizing the microbiota in gastrointestinal tract segments of Rhabdophis subminiatus: dynamic changes and functional predictions. MicrobiologyOpen 8:e789Trevelline BK, Fontaine SS, Hartup BK, Kohl KD (2019) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc R Soc B Biol Sci 286:20182448Article 

    Google Scholar 
    Tuomisto S, Karhunen PJ, Pessi T (2013) Time-dependent post mortem changes in the composition of intestinal bacteria using real-time quantitative PCR. Gut Pathog 5:35Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Vasemägi A, Visse M, Kisand V (2017) Effect of Environmental Factors and an Emerging Parasitic Disease on Gut Microbiome of Wild Salmonid Fish. mSphere 2:e00418–17PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis C (2017) Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol Ecol Resour 18:424–434PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Vlčková K, Shutt-Phillips K, Heistermann M, Pafčo B, Petrželková KJ, Todd A et al. (2018) Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiol Read Engl 164:40–44Article 
    CAS 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau M-J, Rosenstiel P et al. (2014) Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci U S A 111:E2703–2710CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warne RW, Kirschman L, Zeglin L (2017) Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integr Comp Biol 57:786–794PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M (2015) The gut microbiota of wild mice. PLoS ONE 10:e0134643PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan W, Sun C, Zheng J, Wen C, Ji C, Zhang D et al. (2019) Efficacy of fecal sampling as a gut proxy in the study of chicken gut microbiota. Front Microbiol 10:2126Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM et al. (2015) Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17:385–391CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zemanova MA (2019) Poor implementation of non-invasive sampling in wildlife genetics studies. Rethink Ecol 4:119–132Article 

    Google Scholar 
    Zemanova MA (2020) Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. Wildl Biol 2020. https://doi.org/10.2981/wlb.00607Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C et al. (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE 10:e0117441PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Influence of intrinsic and extrinsic attributes on neonate survival in an invasive large mammal

    1.Sæther, B.-E. Environmental stochasticity and population dynamics of large herbivores: A search for mechanisms. Trends Ecol. Evol. 12, 143–149 (1997).PubMed 
    Article 

    Google Scholar 
    2.Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Coulson, T. et al. Estimating individual contributions to population growth: Evolutionary fitness in ecological time. Proc. R. Soc. B 273, 547–555 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S. & Coulson, T. The evolutionary demography of ecological change: Linking trait variation and population growth. Science 315, 1571–1574 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J.-M. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. & Albon, S. D. Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70, 721–729 (2001).Article 

    Google Scholar 
    7.Owen-Smith, N., Mason, D. R. & Ogutu, J. O. Correlates of survival rates for 10 African ungulate populations: Density, rainfall and predation. J. Anim. Ecol. 74, 774–788 (2005).Article 

    Google Scholar 
    8.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    9.Griffin, K. A. et al. Neonatal mortality of elk driven by climate, predator phenology and predator community composition. J. Anim. Ecol. 80, 1246–1257 (2011).PubMed 
    Article 

    Google Scholar 
    10.Kilgo, J. C., Vukovich, M., Scott Ray, H., Shaw, C. E. & Ruth, C. Coyote removal, understory cover, and survival of white-tailed deer neonates. J. Wildl. Manag. 78, 1261–1271 (2014).Article 

    Google Scholar 
    11.Coltman, D. W., Bowen, W. D. & Wright, J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. B 265, 803–809 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kolbe, J. & Janzen, F. The influence of propagule size and maternal nest-site selection on survival and behaviour of neonate turtles. Funct. Ecol. 15, 772–781 (2001).Article 

    Google Scholar 
    13.Kissner, K. J. & Weatherhead, P. J. Phenotypic effects on survival of neonatal northern watersnakes Nerodia sipedon. J. Anim. Ecol. 74, 259–265 (2005).Article 

    Google Scholar 
    14.Carstensen, M., Delgiudice, G. D., Sampson, B. A. & Kuehn, D. W. Survival, birth characteristics, and cause-specific mortality of white-tailed deer neonates. J. Wildl. Manag. 73, 175–183 (2009).Article 

    Google Scholar 
    15.Guttery, M. R. et al. Effects of landscape-scale environmental variation on greater sage-grouse chick survival. PLoS One 8, e65582 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Duquette, J. F., Belant, J. L., Svoboda, N. J., Beyer, D. E. Jr. & Lederle, P. E. Effects of maternal nutrition, resource use and multi-predator risk on neonatal white-tailed deer survival. PLoS One 9, 1–10 (2014).Article 

    Google Scholar 
    17.Pimentel, D. In Managing Vertebrate Invasive Species: Proceedings of an International Symposium. (eds. Pitt, W.C. et al.) 2–8 (USDA/APHIS/WS, 2007).18.Pitt, W. C., Beasley, J. & Witmer, G. W. Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States. 7–31 (CRC Press, 2018).19.Strickland, B. K., Smith, M. D., Smith, A. L. Wild pig damage to resources. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 143–174 (CRC Press, 2020).20.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. In 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Vol. 12 (Invasive Species Specialist Group, Species Survival Commission, World Conservation Union (IUCN), 2000).21.Keiter, D. A., Mayer, J. J. & Beasley, J. C. What is in a “common” name? A call for consistent terminology for nonnative Sus scrofa. Wild. Soc. Bull. 40, 384–387 (2016).Article 

    Google Scholar 
    22.Smyser, T. J. et al. Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Mol. Ecol. 29, 1103–1119 (2020).PubMed 
    Article 

    Google Scholar 
    23.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioSci. 64, 291–299 (2014).Article 

    Google Scholar 
    24.Mohr, D., Cohnstaedt, L. W. & Topp, W. Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol. Biochem. 37, 693–700 (2005).CAS 
    Article 

    Google Scholar 
    25.Barrios-García, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    26.Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).Article 

    Google Scholar 
    27.Ditchkoff, S. S. & Bodenchuk, M. J. Management of wild pigs. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 175–198 (CRC Press, 2020).28.Bieber, C. & Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213 (2005).Article 

    Google Scholar 
    29.Hanson, L. B. et al. Effect of experimental manipulation on survival and recruitment of feral pigs. Wildl. Res. 36, 185–191 (2009).Article 

    Google Scholar 
    30.Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    31.Keiter, D. A., Kilgo, J. C., Vukovich, M. A., Cunningham, F. L. & Beasley, J. C. Development of known-fate survival monitoring techniques for juvenile wild pigs (Sus scrofa). Wildl. Res. 44, 165–173 (2017).Article 

    Google Scholar 
    32.Snow, N. P., Miller, R. S., Beasely, J. C. & Pepin, K. M. Wild pig population dynamics. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 57–82 (CRC Press, 2020).33.Alonso-Spilsbury, M., Ramirez-Necoechea, R., Gonzalez-Lozano, M., Mota-Rojas, D. & Trujillo-Ortega, M. Piglet survival in early lactation: A review. J. Anim. Vet. Adv. 1, 76–86 (2007).
    Google Scholar 
    34.Baubet, E., Servanty, S. & Brandt, S. Tagging piglets at the farrowing nest in the wild: Some preliminary guidelines. Acta Sylvatica Lig. Hung. 5, 159–166 (2009).
    Google Scholar 
    35.Kerr, J. & Cameron, N. Reproductive performance of pigs selected for components of efficient lean growth. Anim. Sci. 60, 281–290 (1995).Article 

    Google Scholar 
    36.Van der Lende, T., KnoI, E. & Leenhouwers, J. Prenatal development asa predisposing factor for perinatal lossesin pigs. Reproduction 58, 247–261 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    37.Mount, L. The heat loss from new-born pigs to the floor. Res. Vet. Sci. 8, 175–186 (1967).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Herpin, P., Damon, M. & Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78, 25–45 (2002).Article 

    Google Scholar 
    39.Gaillard, J.-M., Pontier, D., Brandt, S., Jullien, J.-M. & Allaine, D. Sex differentiation in postnatal growth rate: A test in a wild boar population. Oecologia 90, 167–171 (1992).ADS 
    Article 

    Google Scholar 
    40.Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313, 131–133 (1985).ADS 
    Article 

    Google Scholar 
    42.Theil, P. K., Nielsen, M. O., Sørensen, M. T. & Lauridsen, C. Lactation, milk and suckling. In Nutritional Physiology of Pigs: with emphasis on Danish production conditions (eds. Knudsen et al.) 1–49 (University of Copenhagen, 2012).43.Theil, P. K., Lauridsen, C. & Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8, 1021–1030 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Mayer, J. & Brisbin Jr, I. L. Wild pigs of the Savannah River Site. Report No. SRNL-RP-2011-00295, 114 (Savannah River National Laboratory, 2012).45.Withey, J. C., Bloxton, T. D. & Marzluff, J. M. Effects of tagging and location error in wildlife telemetry studies. In Radio Tracking and Animal Populations. 43–75 (Academic Press, 2001).46.Webster, S. C. & Beasley, J. C. Influence of lure choice and survey duration on scent stations for carnivore surveys. Wildl. Soc. Bull. 43, 661–668 (2019).Article 

    Google Scholar 
    47.Matschke, G. H. Aging European wild hogs by dentition. J. Wildl. Manag. 31, 109–113 (1967).Article 

    Google Scholar 
    48.Mayer, J. J., Martin, F. D. & Brisbin, I. L. Characteristics of wild pig farrowing nests and beds in the upper Coastal Plain of South Carolina. Appl. Anim. Behav. Sci. 78, 1–17 (2002).Article 

    Google Scholar 
    49.Kilgo, J. C., Ray, H. S., Vukovich, M., Goode, M. J. & Ruth, C. Predation by coyotes on white-tailed deer neonates in South Carolina. J. Wildl. Manag. 76, 1420–1430 (2012).Article 

    Google Scholar 
    50.Mayer, J. J. & Brisbin, I. J., Jr. Wild Pigs: Biology, Damage, Control Techniques and Management. Report No. SRNL-RP-2009-00869, 77–104 (Savannah River National Laboratory, 2009).51.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    52.R: A language and environment for statistical computing. v. 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020).53.Weinbeck, S. W., Viner, B. J., Rivera-Giboyeaux A. M. Meteorological Monitoring Program at the Savannah River Site. Report No. SRNL-TR-2020-00197 (Savannah River National Laboratory, 2020).54.Plummer, M. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. 1–10 (Vienna, Austria).55.Denwood, M. J. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25 (2016).Article 

    Google Scholar 
    56.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    57.Pollock, K. H., Winterstein, S. R., Bunck, C. M. & Curtis, P. D. Survival analysis in telemetry studies: The staggered entry design. J. Wildl. Manag. 53, 7–15 (1989).Article 

    Google Scholar 
    58.Harrell, F. Regression Modeling Strategies (ed. Harrell, F.) 60–64 (Springer, 2001).59.McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038. https://doi.org/10.1002/ajp.23038 (2019).60.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).61.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference, 2nd edn. 75–117 (Springer, 2002).62.Taylor, R. B., Hellgren, E. C., Gabor, T. M. & Ilse, L. M. Reproduction of feral pigs in southern Texas. J. Mammal. 79, 1325–1331 (1998).Article 

    Google Scholar 
    63.Mittwoch, U. Blastocysts prepare for the race to be male. Hum. Reprod. 8, 1550–1555 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Stanton, H. & Carroll, J. Potential mechanisms responsible for prenatal and perinatal mortality or low viability of swine. J. Anim. Sci. 38, 1037–1044 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Hartsock, T. G. & Graves, H. Neonatal behavior and nutrition-related mortality in domestic swine. J. Anim. Sci. 42, 235–241 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Spicer, E. et al. Causes of preweaning mortality on a large intensive piggery. Aus. Vet. J. 63, 71–75 (1986).CAS 
    Article 

    Google Scholar 
    67.Hendrix, W. F., Kelley, K. W., Gaskins, C. T. & Hinrichs, D. J. Porcine neonatal survival and serum gamma globulins. J. Anim. Sci. 47, 1281–1286 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.De Roth, L. & Downie, H. Evaluation of viability of neonatal swine. Can. Vet. J. 17, 275–279 (1976).PubMed 
    PubMed Central 

    Google Scholar 
    69.Williams, G. The question of adaptive sex ratio in outcrossed vertebrates. Proc. R. Soc. Lond. B 205, 567–580 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Servanty, S., Gaillard, J.-M., Allainé, D., Brandt, S. & Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 18, 427–432 (2007).Article 

    Google Scholar 
    71.Fernández-Llario, P., Carranza, J. & Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 58, 1079–1084 (1999).PubMed 
    Article 

    Google Scholar 
    72.Focardi, S., Gaillard, J.-M., Ronchi, F. & Rossi, S. Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. J. Mammal. 89, 1113–1123 (2008).Article 

    Google Scholar 
    73.Gamelon, M. et al. Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?. Evolution 68, 3636–3643 (2014).PubMed 
    Article 

    Google Scholar 
    74.Saïd, S., Tolon, V., Brandt, S. & Baubet, E. Sex effect on habitat selection in response to hunting disturbance: The study of wild boar. Eur. J. Wildl. Res. 58, 107–115 (2012).Article 

    Google Scholar 
    75.Caro, T. The adaptive significance of coloration in mammals. BioSci. 55, 125–136 (2005).Article 

    Google Scholar 
    76.Tewes, M. E., Mock, J. M. & Young, J. H. Bobcat predation on quail, birds, and mesomammals. In Proc. Nat. Quail Symp. 65–70. (2002).77.Jones, M. P., Pierce, K. E. Jr. & Ward, D. Avian vision: a review of form and function with special consideration to birds of prey. J. Ex. Pet Med. 16, 69–87 (2007).Article 

    Google Scholar 
    78.Walsberg, G. E. Coat color and solar heat gain in animals. BioSci. 33, 88–91 (1983).Article 

    Google Scholar 
    79.Lack, D. The Natural Regulation of Animal Numbers. (ed. Lack, D.) 343 (Oxford University Press, 1954).80.Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Gamelon, M. et al. The relationship between phenotypic variation among offspring and mother body mass in wild boar: Evidence of coin-flipping?. J. Anim. Ecol. 82, 937–945 (2013).PubMed 
    Article 

    Google Scholar 
    82.Mitchell, G. & Stevens, C. Primiparous and multiparous monkey mothers in a mildly stressful social situation: First three months. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 1, 280–286 (1968).Article 

    Google Scholar 
    83.Okai, D., Aherne, F. & Hardin, R. Effects of sow nutrition in late gestation on the body composition and survival of the neonatal pig. Can. J. Anim. Sci. 57, 439–448 (1977).CAS 
    Article 

    Google Scholar  More

  • in

    Thermally tolerant intertidal triplefin fish (Tripterygiidae) sustain ATP dynamics better than subtidal species under acute heat stress

    1.Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42(4), 780–789 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).
    Google Scholar 
    3.Helmuth, B. et al. Living on the Edge of Two Changing Worlds: Forecasting the Responses of Rocky Intertidal Ecosystems to Climate Change Vol. 37 (ECU Publications, 2006).
    Google Scholar 
    4.Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9(2), 228–241 (2006).ADS 
    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Woodward, A. Climate change: Disruption, risk and opportunity. Glob. Transit. 1, 44–49 (2019).Article 

    Google Scholar 
    6.Hoffmann, K. H. 6—Metabolic and enzyme adaptation to temperature and pressure. In The Mollusca (ed. Hochachka, P. W.) 219–255 (Academic Press, 1983).
    Google Scholar 
    7.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808), 95 (2007).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology. J. Exp. Biol. 220(15), 2685–2696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88(4), 137–146 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Verberk, W. C. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 192, 64–78 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: Blurring ecology and physiology. J. Exp. Biol. 221(1), jeb169615 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ern, R. et al. Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. Sci. Rep. 5, 10743 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mitchell, P. et al. Regulation of Metabolic Processes in Mitochondria (Elsevier, 1966).
    Google Scholar 
    14.Hüttemann, M. et al. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J. Bioenerg. Biomembr. 40(5), 445 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Iftikar, F. I. & Hickey, A. J. Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. PLoS One 8(5), e64120 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218(Pt 12), 1856–1866 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Power, A. et al. Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart. Physiol. Rep. 2(9), e12138 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Lemieux, H., Blier, P. U. & Gnaiger, E. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: Electron flow through the Q-junction in permeabilized fibers. Sci. Rep. 7(1), 2840 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Christen, F. et al. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic. Biol. Med. 116, 11–18 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kiyatkin, E. A. Brain hyperthermia as physiological and pathological phenomena. Brain Res. Brain Res. Rev. 50(1), 27–56 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kiyatkin, E. A. Brain temperature homeostasis: Physiological fluctuations and pathological shifts. Front. Biosci. (Landmark Ed) 15, 73–92 (2010).CAS 
    Article 

    Google Scholar 
    22.Wang, H. et al. Brain temperature and its fundamental properties: A review for clinical neuroscientists. Front. Neurosci.-switz 8, 307–307 (2014).
    Google Scholar 
    23.Pellerin, L. & Magistretti, P. J. How to balance the brain energy budget while spending glucose differently. J. Physiol. 546(Pt 2), 325–325 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Zhao, Y. & Boulant, J. A. Temperature effects on neuronal membrane potentials and inward currents in rat hypothalamic tissue slices. J. Physiol. 564(Pt 1), 245–257 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Obel, L. F. et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front. Neuroenergetics 4, 3 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.White, M. G. et al. Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons. J. Neurophysiol. 108(8), 2203–2214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Walter, E. J. & Carraretto, M. The neurological and cognitive consequences of hyperthermia. Crit. Care (London, England) 20(1), 199–199 (2016).Article 

    Google Scholar 
    28.Vornanen, M. & Paajanen, V. Seasonal changes in glycogen content and Na+-K+-ATPase activity in the brain of crucian carp. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(5), R1482–R1489 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Hochachka, P. W. et al. Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9493–9498 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Chung, D. J., Bryant, H. J. & Schulte, P. M. Thermal acclimation and subspecies-specific effects on heart and brain mitochondrial performance in a eurythermal teleost (Fundulus heteroclitus). J. Exp. Biol. 220(8), 1459–1471 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    31.Brahim, A., Mustapha, N. & Marshall, D. J. Non-reversible and reversible heat tolerance plasticity in tropical intertidal animals: Responding to habitat temperature heterogeneity. Front. Physiol. 9, 1909–1909 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26(4), 331–348 (1997).Article 

    Google Scholar 
    33.Hilton, Z., Clements, K. D. & Hickey, A. J. Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes. J. Comp. Physiol. B 180(7), 979–990 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.McArley, T. J., Hickey, A. J. R. & Herbert, N. A. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures. J. Exp. Biol. 221(22), 189993 (2018).Article 

    Google Scholar 
    35.Gout, E. et al. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. U. S. A. 111(43), E4560–E4567 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pham, T. et al. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am. J. Physiol. Cell Physiol. 307(6), C499-507 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Masson, S. W. C. et al. Mitochondrial glycerol 3-phosphate facilitates bumblebee pre-flight thermogenesis. Sci. Rep. 7(1), 13107 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Chinopoulos, C. et al. A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. Biophys. J. 96(6), 2490–2504 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Devaux, J. B. L. et al. Acidosis maintains the function of brain mitochondria in hypoxia-tolerant triplefin fish: A strategy to survive acute hypoxic exposure? Front. Physiol. 9, 1941 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Goo, S. et al. Multiscale measurement of cardiac energetics. Clin. Exp. Pharmacol. Physiol. 40(9), 671–681 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lagerspetz, K. Y. Temperature effects on different organization levels in animals. Symp. Soc. Exp. Biol. 41, 429–449 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Rosenthal, J. J. & Bezanilla, F. A comparison of propagated action potentials from tropical and temperate squid axons: Different durations and conduction velocities correlate with ionic conductance levels. J. Exp. Biol. 205(Pt 12), 1819–1830 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Robertson, R. M. Thermal stress and neural function: Adaptive mechanisms in insect model systems. J. Therm. Biol. 29(7), 351–358 (2004).CAS 
    Article 

    Google Scholar 
    44.Miller, N. A. & Stillman, J. H. Neural thermal performance in porcelain crabs, Genus Petrolisthes. Physiol. Biochem. Zool. 85(1), 29–39 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gladwell, R. T., Bowler, K. & Duncan, C. J. Heat death in the crayfish Austropotamobius pallipes—Ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1(2), 79–94 (1976).CAS 
    Article 

    Google Scholar 
    46.Chen, I. & Lui, F. Neuroanatomy, Neuron Action Potential (StatPearls Publishing, 2019).
    Google Scholar 
    47.Milligan, L. P. & McBride, B. W. Energy costs of ion pumping by animal tissues. J. Nutr. 115(10), 1374–1382 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Buzatu, S. The temperature-induced changes in membrane potential. Riv. Biol. 102(2), 199–217 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Krans, J. L., Rivlin, P. K. & Hoy, R. R. Demonstrating the temperature sensitivity of synaptic transmission in a Drosophila mutant. J. Undergrad. Neurosci. Educ. 4(1), A27–A33 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    50.Khan, J. R. et al. Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae). J. Comp. Physiol. B 184(8), 991–1001 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McArley, T. et al. Intertidal triplefin fishes have a lower critical oxygen tension (Pcrit), higher maximal aerobic capacity, and higher tissue glycogen stores than their subtidal counterparts. J. Comp. Physiol. B. 189, 399–411 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Pfleger, J., He, M. & Abdellatif, M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 6(7), e1835–e1835 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Brand, M. D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 33(Pt 5), 897–904 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Brown, J. H. et al. Toward a metabolic theory of ecology. Ecology 85(7), 1771–1789 (2004).ADS 
    Article 

    Google Scholar 
    55.Salin, K. et al. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 2015(282), 20151028–20151028 (1812).
    Google Scholar 
    56.Findly, R. C., Gillies, R. J. & Shulman, R. G. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Science 219(4589), 1223 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sharma, H. S. Neurobiology of Hyperthermia (Elsevier, 2011).
    Google Scholar 
    58.Salin, K. et al. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol. Rep. 4(20), e13007 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Hinkle, P. C. P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta BBA Bioenerg. 1706(1), 1–11 (2005).CAS 

    Google Scholar  More