More stories

  • in

    The climatic and genetic heritage of Italian goat breeds with genomic SNP data

    Genotyping control and datasets creationsAfter filtering the initial raw dataset of 1,071 goats for poor quality genotype and related animals we obtained the dataset used for the haplotype sharing analysis, which included 980 animals and 48,396 SNPs. This dataset was further pruned for linkage disequilibrium (LD; r2  More

  • in

    The mid-domain effect of mountainous plants is determined by community life form and family flora on the Loess Plateau of China

    MDE hypothesisGradient features of species diversity of plant communities refer to regular changes in species diversity along a gradient of environmental factors at the community level12,43. The altitudinal gradient includes gradient effects of multiple environmental factors. It is therefore important to study altitudinal patterns of species diversity to reveal changes in biodiversity along environmental gradients. The width and range of species distribution along geographical gradients reflect the ecological adaptability, diffusivity, and evolutionary history of species44. To some extent, geographical distribution patterns of species diversity can be interpreted as outcomes of synthetic actions across altitudinal gradients resulting from eurychoric species with a greater distribution width and stenochoric species with a smaller distribution range along geographical gradients44. Hence, the MDE, environmental gradient, distribution area, human disturbance, and habitat heterogeneity all have effects on the vertical distribution patterns of species diversity45,46. According to the MDE hypothesis, there is overlap in the distribution range of species along altitudinal gradients; the highest overlap intensity occurs at intermediate elevations. There is relatively low overlap intensity at low and high elevation areas, and the peak values of species diversity occur at intermediate elevations.In this study, forest ecosystems on the Loess Plateau were separated into three communities: tree, shrub, and herb communities. The altitudinal patterns and factors that influence species diversity of mountainous vegetation were then determined at the plant community level related to the form and family of the plant species. We discovered that the family numbers of the herb, shrub, and tree communities reached their greatest values at intermediate, intermediate, and lower elevations, respectively. We also discovered that correlations of species diversity indices with elevations conformed to unimodal change patterns for herb, shrub, and tree communities, which presented their greatest values at higher, lower, and intermediate elevations, respectively. This showed that MDE is another important factor that affects the distribution patterns of species diversity along regional altitudinal gradients, in addition to temperature, precipitation, and the terrain.A large number of studies have already verified that MDE is a significant mechanism that influences the gradient patterns of species diversity. MDE not only functions along altitudinal gradients but also acts along latitudinal and temporal gradients28,29,30,47. However, the effects of MDE on species diversity patterns are highly controversial. Some studies considered MDE to be the main factor that results in unimodal patterns of species diversity47,48, whereas other studies affirmed that the effects of MDE are smaller in contrast to the functions of the distribution area, environmental gradient, and other factors29,30. Besides MDE, other factors may also lead to unimodal vertical gradient patterns of species diversity, such as plant productivity, human disturbance, and the regional climate45,49. Our research indicated that the relationships of species diversity conformed to unimodal change patterns along various elevations for mountainous herb, shrub, and tree communities in a semi-arid region of the temperate zone. It can be concluded that vertical patterns of species diversity with a unimodal type may be a more universal phenomenon, relative to monotonic decreasing or increasing patterns of species diversity with increasing elevations.Factors influencing MDE at the plant community levelIn this study, more forbs and grasses were found at higher elevations, whereas more sedges occurred at lower elevations. The responses of the importance values of tree species to the altitudinal gradient demonstrated the following variation patterns: evergreen coniferous trees had higher importance values than deciduous coniferous trees, followed by deciduous broad-leaved trees. This showed that MDE was influenced by species life form. The species diversity of different life forms responded differently to the environment, and plant species with different life forms presented different diversity patterns along altitudinal gradients50. In New Zealand, the number of mountainous plants species decreased with increasing elevations and the total species number of all plants also decreased significantly, while species diversity had no significant distribution trend in response to elevation when plants with different life forms were considered under different layers of plant communities51.MDE is a common pattern of species diversity of mountainous plants with changing elevations. Our study area, located on the Loess Plateau of China, belongs to a semi-arid mountainous region in the temperate zone where the maximum species diversity of the tree community occurred at intermediate elevations. This finding was in accordance with the MDE hypothesis. Research from the Kinabalu Mountains in Sabah, Malaysia, indicated an obvious MDE pattern of species number linked to elevations52. On the Haleakala Mountains, Hawaii, USA, the highest species diversity occurred at intermediate elevations, which was also in accordance with the MDE hypothesis53. The MDE hypothesis was also proved by studies conducted in the Yu Mountains of Taiwan and the Emei Mountains of Szechwan in China54. However, the MDE pattern of species diversity in tree communities is caused by precipitation, which is the highest at intermediate elevations52. This situation also occurred in the herb community.There are many factors that affect the distribution of herbaceous plants, so the variations in species diversity in the herb community with elevations are complex55. In this study, we found that the herb community exhibited higher species diversity at higher elevations; more forbs and grasses were distributed at higher elevations, whereas more sedges were distributed at lower elevations. In the Siskiyou Mountains in Oregon, USA, the species diversity of herbaceous plants had a significantly positive correlation with elevation. This correlation occurred mainly due to an increase in the number of grass species, which was the primary reason that radiation was enhanced by a drastic reduction in community coverage as a result of increasing elevations. Consequently, there was an increase in the species diversity of herbaceous plants24. A decrease in species diversity with increasing elevations is a more familiar pattern for herbaceous plants in temperate56 and tropical22 forests.We also discovered that the family numbers of herb and shrub species all showed unimodal change patterns with high values at their central elevations in this semi-arid region. This conformed to the MDE hypothesis as well. In arid temperate grasslands, species diversity indicated an MDE distribution pattern. For example, the species diversity of herbaceous plants presented an MDE pattern in drought areas of the Siskiyou Mountains57. However, in semi-humid mountains in the temperate zone, the species diversity of herbaceous plants was principally in control of the community structure, and community coverage did not respond uniformly to elevation. Studies in New Zealand showed that there were no evident distribution trends for species diversity of herbaceous plants along elevations51. In low bush communities of Chile, the species diversity of herbaceous plants declined with increasing elevations after longstanding succession, but it increased during the early stage of succession58. Therefore, relationships between the species diversity of herb species and elevations were not completely clear in semi-humid regions.The major factors that control the distribution areas of species differ among different families and genera, and thus the vertical distribution patterns of species diversity differ22. We concluded that the family number of the tree species had a maximum distribution at lower elevations, unlike herb and shrub species; meanwhile, the responses of the importance values to the altitudinal gradient in the tree community were also different among evergreen coniferous trees, deciduous coniferous trees, and deciduous broad-leaved trees. These differences may have been related to environmental factors. Due to various distribution patterns of environmental parameters with elevations, the distribution patterns of species diversity showed large changes along elevations59. For example, the distribution of fern and Melastomataceae species is principally related to humidity, that of Acanthaceae and Bromeliaceae species is correlated with temperature, and that of Araceae species is related to transpiration59. Research conducted in the Gongga Mountains, China, showed that the species diversity with different floral components exhibited different distribution patterns along elevations due to differences in the environment and species origin60. We also discovered that the importance values of dominant families in the shrub (Rosaceae) and tree (Pinaceae) communities exhibited changing patterns in contrast to MDE. In our study, only the family numbers in the herb and shrub communities, as well as species diversity in the tree community, conformed to the MDE hypothesis. Therefore, we concluded that the MDE hypothesis of species diversity of mountainous vegetation is influenced by the species life form and family of different plant communities in the temperate semi-arid region of China.Factors influencing plant species diversity at the environment levelThe altitudinal distribution patterns of the plant community diversity had greater discrepancies in mountainous regions and between different community types, which might be connected to regional environmental conditions, relative heights of mountains, and the geological landscape35. Concerning the altitudes of mountains, serious human disturbances (e.g., deforestation, grazing, and land-use conversion) had negative effects on biodiversity in low-altitude regions61. In high-altitude regions, the cold climate slowed down plant growth and soil development, while other harsh environments exceeded the tolerance limits for growth of the majority of species, such as by intense solar radiation or large temperature differences between day and night62. In the middle-altitude regions, the species diversity was relatively higher due to less human disturbances and the formation of transition zones of plant species differentiation between the low- and high-altitude regions62. Hence, the plant community diversity and its altitudinal gradient patterns in mountainous regions were largely influenced by regional climate and human disturbances.Comparisons of the diversity at different levels indicated that the responses of the plant community diversity to the environment were not the same for diverse gradations, and different species exhibited different gradient patterns owing to restrictions from environmental factors63,64. The primary factors leading to the altitudinal differentiation of diversity included the temperature, moisture, soil nutrients, and succession process65. In our study area, compared with Guancen Mountain and Guandi Mountain, Wulu Mountain at the lower latitude of the Lvliang Mountains had a lower altitude and was located in the continental monsoon subhumid climate region of the warm temperate zone, making it suitable for the growth of secondary forests and shrub vegetation. However, the vegetation growth in the herb layer was restricted in Wulu Mountain, making diversity in the herb layer the greatest on Guandi Mountain at the middle latitude of the Lvliang Mountains35. This showed that the plant species diversity in the east of the Loess Plateau changed with the altitude, while being affected by complicated habitat conditions such as latitude and human disturbances. This characterization of the study area was correlated with the unimodal patterns observed. In this study, we observed that the family numbers of the herb and shrub communities presented unimodal patterns across an altitudinal gradient; the importance values of dominant families also presented unimodal patterns in the shrub and tree communities; and the species diversity indices of the herb, shrub, and tree communities conformed to unimodal change patterns following an altitudinal gradient as well.In our recent studies on the species diversity of herbaceous communities in the Lvliang Mountains66, we found that the results calculated for β-diversity using different indices revealed the highest value for the Cody index and the lowest value for the Bray–Curtis index at altitudes between 1900 and 2000 m, indicating that areas located between 1900 and 2000 m form a transition zone in which the herbaceous community undergoes a rapid process of species renewal and changes in its composition. The results for γ-diversity indicated a pattern of unimodal variation in relation to altitude. Changes in altitude gradient had highly significant impacts on changes in temperature and humidity, indicating that various environmental factors (notably humidity and temperature) and human disturbances had combined effects on changes in the values of the α-diversity indices.At present, it is widely believed that the formation of herbs in different life forms was principally impacted by precipitation, whereas in areas with similar rainfall, water, heat, and light conditions need to be considered. These conditions chiefly included average annual precipitation, accumulated temperature, and illumination time67. In this research, we observed that herb and tree species in different life forms showed different trends with altitudinal gradients in the Lvliang Mountains. At higher elevations, forbs and grasses grew well, whereas sedges grew well at lower elevations. The responses of different tree life forms to the altitudinal gradient were greater for evergreen coniferous tree species than for deciduous coniferous tree species and deciduous broad-leaved tree species. From the north to the south in the Lvliang Mountains, increases in the average annual precipitation increased the number of species and components of the annual herbs, while the hydrothermal matching requirements of Guandi Mountain at the middle latitude were preferred for annual herb growth in comparison with Guancen Mountain at the higher latitude67. However, considering whole mountains, the Lvliang Mountains located in the continental monsoon climate region of the warm temperate zone had four distinctive seasons with drought and wind in the spring, and a quick rise in air temperatures, and larger diurnal temperature differences35. These conditions conformed to the habitat features of herbs and trees. Hence, the hydrothermal distribution status affected by latitude and human disturbances determined the altitudinal distribution patterns of plant community diversity in the Lvliang Mountains.The MDE at different elevationsIn this study, we discussed the MDE of mountainous vegetation on the Loess Plateau with an elevational range from 1324 to 2745 m, including tree, shrub and herb community. This range was a very large elevation range for a case study, but a very short range in comparison to global elevation ranges, which extended from the sea level to well over 8000 m (though the highest locations did not have any vegetation). Therefore, owing to this limitation, the results we obtained in this research were suitable for lower elevation mountains in semi-arid areas.The MDE was changed with different elevations and vegetation layers. In studies on the Daiyun Mountains with an elevation from 900 to 1600 m, the phylogenetic diversity and species diversity of tree community indicated an intermediate high expansion pattern along elevations and their peak values all appeared at the elevation of 1200 m68. This conclusion conformed to the MDE pattern. In our studies on the Lvliang Mountains with an elevation from 1459 to 2610 m, higher species diversity of tree community was observed at intermediate elevations with a peak value being at the 2000 m, which conformed to the MDE pattern either. Therefore, at smaller elevations less than 2600 m, species diversity of tree conformed to the MDE pattern.When an elevation reached 2700 m on the Lvliang Mountains, the vegetation types changed to shrub and grass, and only their family numbers followed the MDE pattern across an altitudinal gradient. Slimily, the species richness of shrub and herb layer showed an obvious “lateral pattern” on an elevational gradient from 2950 to 3750 m on the Three River Headwater, both reaching the maximum value at the 3150 m; while with the rise of altitude, α diversity of shrub layer and herb layer showed a “wave”-shaped changed trend, reaching the lowest value at the 3550 m69. It illustrated that species diversity of shrub and grass did not conform to the MDE pattern completely at medium elevations from 2700 to 3700 m.As for an elevation extending from 3000 to 4400 m on the Gongga Mountains, the vegetation type was alpine meadow, and the species richness index presented an obvious unimodal pattern with a peak value at the 3850 m, which accorded with the MDE pattern70. Similarly, studies on an alpine meadow on the Gannan revealed that the number of richness, Shannon-Weiner index and phylogenetic diversity of plant community all showed a “humped-back” relationship with the increase of altitude from 3000 to 4000 m, and reached the maximum value at the 3800 m71,72. Thereby, at greater elevations more than 3800 m, species diversity of alpine meadow conformed to the MDE pattern.However, when an elevation exceeded 5000 m, research object on species diversity were not vegetation but animals along an altitudinal gradient. For example, on the Himalaya Mountains with an elevation from 3755 to 5016 m, the ant species richness illustrated a “unimodal curve” pattern along the rise of altitude, and the Shannon–Wiener index and Fisher α index of ant community commonly expressed the “Multi-Domain Effect” phenomenon73. Another research on mammalian richness was also conducted on the Himalaya Mountains. It concluded that most of elevational species richness patterns were hump-shaped from 100 to 6000 m on the Himalayas Mountains74. As a result, the MDE pattern was also extremely common in animal communities. More

  • in

    The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula

    The catenary sequence of soilsThe catena of Andosols down a slope near a hot spring in the Valley of Geysers was subdivided into four thermal zones (Fig. 1a–e), which are described below.Figure 1Location of study area (a–c), soil pits along the catena (d, e) and photos of soil pits (f–i). (a b) Study area location. Soil map is from133 (open access) with additions and corrections by I.N. Semenkov based on the map of soil temperature at a depth of 15 cm in the Valley of Geysers131 and the soil names from44 using CorelDraw X7 software (https://www.coreldraw.com/). (c) Top view of the left side of the Geysernaya River with the body of a catastrophic landslide, a visitor center (in the left lower part) and the location of the transect studied (1–15). (d) The location of transect studied. (e) A schematic profile of the catena studied with numbered soil pits. The main soil pits selected for comprehensive analyses (see section ‘Soil analyses’) are in red. (f) Non-heated Eutrosilic Silandic Andosols (Arenic, Cutanic) on pyroclastic material (pit no 16, Zone I), within levelled parts of the interfluve, under tall-herb meadow communities with local patches of Erman’s birch woods. (g) Slightly heated Eutrosilic Aluandic Andosols (Cutanic, Loamic, Natric) in the upper part of the catena, on hydrothermally altered sandy-loamy pyroclastic material (pit no 12, Zone II), on slightly heated slopes, under tall-herb meadows. (h) Moderately heated Eutrosilic Gleyic Aluandic Andosols (Loamic, Reductic, Protosalic, Hyperthionic) in the middle part of the catena, on hydrothermally altered clayey pyroclastic material (pit no 9.1, Zone III), under different moss and ‘microzonal’ communities. (i) Hot Gleyic Aluandic Andosols (Clayic, Reductic, Salic, Hyperthionic) in the lower part of the catena, on hydrothermal clays (pit no 4, Zone IV), on most heated bare slopes.Full size imageZone I. Non-heated Eutrosilic Silandic Andosols (Arenic, Cutanic) under Kamchatka’s tall herb communities and fragmented Erman’s birch woodsNon-heated Andosols with temperatures of 50 with very small amounts of PM5–50 ( More

  • in

    Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples

    1.Moller, H. Lessons for invasion theory from social insects. Biol. Conserv. 78, 125–142 (1996).Article 

    Google Scholar 
    2.Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).Article 

    Google Scholar 
    3.Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasion 11, 21–45 (2009).Article 

    Google Scholar 
    4.McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeog. 26, 535–548 (1999).Article 

    Google Scholar 
    5.Morrison, L. W., Porter, S. D., Daniels, E. & Korzukhin, M. D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 6, 183–191 (2004).Article 

    Google Scholar 
    6.Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Global Ecol. Biogeog. 16, 24–33 (2007).Article 

    Google Scholar 
    7.Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).Article 

    Google Scholar 
    8.Rowles, A. D. & O’Dowd, D. J. Impacts of the invasive Argentine ant on native ants and other invertebrates in coastal scrub in south-eastern Australia. Austral. Ecol. 34, 239–248 (2009).Article 

    Google Scholar 
    9.Naumann, K. & Higgins, R. J. The European fire ant (Hymenoptera: Formicidae) as an invasive species: Impact on local ant species and other epigaeic arthropods. Can. Entomol. 147, 592–601 (2015).Article 

    Google Scholar 
    10.Uchida, S. et al. Effects of an invasive ant on land snails in the Ogasawara Islands. Conserv. Biol. 30, 1330–1337 (2016).PubMed 
    Article 

    Google Scholar 
    11.Helanterä, H., Strassmann, J. E., Carrillo, J. & Queller, D. C. Unicolonial ants: Where do they come from, what are they and where are they going?. Trends Ecol. Evol. 24, 341–349 (2009).PubMed 
    Article 

    Google Scholar 
    12.Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Ann. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    13.Stafford, C. T. Hypersensitivity to fire ant venom. Ann. Allerg. Asthma Im. 77, 87–99 (1996).CAS 
    Article 

    Google Scholar 
    14.Kemp, S. F., deShazo, R. D., Moffitt, J. E., Williams, D. F. & Buhner, W. A. II. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immun. 105, 683–691 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Morrison, J. E. Jr., Williams, D. F., Oi, D. H. & Potter, K. N. Damage to dry crop seed by red imported fire ant (Hymenoptera: Formicidae). J. Econ. Entomol. 90, 218–222 (1997).Article 

    Google Scholar 
    16.Mikissa, J. B., Jeffery, K., Fresneau, D. & Mercier, J. L. Impact of an invasive alien ant, Wasmannia auropunctata Roger., on a specialised plant-ant mutualism, Barteria fistulosa Mast. and Tetraponera aethiops F. Smith., in a Gabon forest. Ecol. Entomol. 38, 580–584 (2013).Article 

    Google Scholar 
    17.Keller, R. P., Lodge, D. M. & Finnoff, D. C. Risk assessment for invasive species produces net bioeconomic benefits. Proc. Natl. Acad. Sci. 104, 203–207 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Hulme, P. E., Nentwig, W., Pyšek, P. & Vilà, M. Common market, shared problems: Time for a coordinated response to biological invasions in Europe. Neobiota 8, 3–19 (2009).
    Google Scholar 
    19.Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against Alien species?. PLoS One 7, 48157 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    20.Sakamoto, Y., Kumagai, N. H. & Goka, K. Declaration of local chemical eradication of the Argentine ant: Bayesian estimation with a multinomial-mixture model. Sci. Rep. 7, 1–8 (2017).Article 
    CAS 

    Google Scholar 
    21.Jiménez-Carmona, F., Carpintero, S. & Reyes-López, J. L. The digging-in effect on ant studies with pitfall traps: Influence of type of habitat and sampling time. Entomol. Exp. Appl. 167, 906–914 (2019).Article 

    Google Scholar 
    22.Paknia, O., Bergmann, T. & Hadrys, H. Some ‘ant’swers: Application of a layered barcode approach to problems in ant taxonomy. Mol. Ecol. Resour. 15, 1262–1274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Chen, Y. & Zhou, S. Phylogenetic relationships based on DNA barcoding among 16 species of the Ant Genus Formica (Hymenoptera: Formicidae) from China. J. Insect Sci. 17, 1–7 (2017).CAS 
    Article 

    Google Scholar 
    24.Giraud, T., Pedersen, J. S. & Keller, L. Evolution of supercolonies: Argentine ants of southern Europe. Proc. Natl. Acad. Sci. 99, 6075–6079 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Touyama, Y., Ogata, K. & Sugiyama, T. The Argentine ant, Linepithema humile, in Japan: Assessment of impact on species diversity of ant communities in urban environments. Entomol. Sci. 6, 57–62 (2003).Article 

    Google Scholar 
    26.Okaue, M. et al. Distribution of the Argentine ant, Linepithema humile, along the Seto Inland Sea, western Japan: Result of surveys in 2003–2005. Entomol. Sci. 10, 337–342 (2007).Article 

    Google Scholar 
    27.Sunamura, E., Nishisue, K., Terayama, M. & Tatsuki, S. Invasion of four Argentine ant supercolonies into Kobe Port, Japan: Their distributions and effects on indigenous ants (Hymenoptera: Formicidae). Sociobiol. 50, 659–674 (2007).
    Google Scholar 
    28.Inoue, M. N. et al. Recent range expansion of Argentine ant in Japan. Divers. Distrib. 19, 2937 (2013).Article 

    Google Scholar 
    29.Park, S. H., Hosoishi, S. & Ogata, K. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan. J. Ecol. Environ. 37, 123–129 (2014).Article 

    Google Scholar 
    30.Sugiyama, T. & Onishi, O. Invasion of Argentinean ants in Kyoto City Ari. J. Myrmecol. Soci. Jpn. 32, 127–129 (2009).
    Google Scholar 
    31.Murakami, K. Exotic ants in PortIsland, Kobe City Ari. J. Myrmecol. Soci. Jpn. 26, 45–46 (2002).
    Google Scholar 
    32.Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).Article 

    Google Scholar 
    34.Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N. & Kawabata, Z. Surveillance of fish species composition using environmental DNA. Limnology 13, 193–197 (2012).CAS 
    Article 

    Google Scholar 
    35.Bienert, F. et al. Tracking earthworm communities from soil DNA. Mol. Ecol. 21, 2017–2030 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Turner, C. R., Uy, K. L. & Everhart, R. C. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol. Conserv. 183, 93–102 (2015).Article 

    Google Scholar 
    37.Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).Article 

    Google Scholar 
    38.Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).Article 

    Google Scholar 
    39.Takahara, T., Minamoto, T. & Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in Ponds. PLoS One 8, e56584 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Geerts, A. N., Boets, P., Van den Heede, S., Goethals, P. & Van der Heyden, C. A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecol. Indic. 84, 564–572 (2018).CAS 
    Article 

    Google Scholar 
    41.Valentin, R. E., Fonseca, D. M., Nielsen, A. L., Leskey, T. C. & Lockwood, J. L. Early detection of invasive exotic insect infestations using eDNA from crop surfaces. Front. Ecol. Environ. 16, 265–270 (2018).Article 

    Google Scholar 
    42.Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 7, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    43.Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS One 7, e35868 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Tillotson, M. D. et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 220, 1–11 (2018).Article 

    Google Scholar 
    46.Sakata, M. K. et al. Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environ. DNA 2, 505–518 (2020).Article 

    Google Scholar 
    47.Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fert. Soils 45, 219–235 (2009).CAS 
    Article 

    Google Scholar 
    48.Matisoo-Smith, E. et al. Recovery of DNA and pollen from New Zealand lake sediments. Quat. Int. 184, 139–149 (2008).Article 

    Google Scholar 
    49.Foucher, A. et al. Persistence of environmental DNA in cultivated soils: Implication of this memory effect for reconstructing the dynamics of land use and cover changes. Sci. Rep. 10, 10502 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ogram, A. V., Mathot, M. L., Harsh, J. B., Boyle, J. & Pettigrew, C. A. Effects of DNA polymer length on its adsorption to soils. Appl. Environ. Microbiol. 60, 393–396 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Braid, M. D., Daniels, L. M. & Kitts, C. L. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52, 389–393 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Shogren, A. J. et al. Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. J. R. Soc. Interface 13, 20160290 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS 
    Article 

    Google Scholar 
    55.Hayami, K. et al. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecol. Evol. 10, 5354–5367 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Sato, K. et al. Relationship among establishment durations, kin relatedness, aggressiveness, and distance between populations of eight invasive Argentine Ant (Hymenoptera: Formicidae) supercolonies in Japan. J. Econ. Entomol. 110, 1676–1684 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Nakajima, S. et al. A list of ant species on the Yard of Kyoto Prefectural Institute of Public Health and Environment, Fushimi, Kyoto Annual report of Kyoto Pref. Inst. Hyg. Environ. Sci. 58, 47–50 (2013).
    Google Scholar 
    58.Nakajima, S. et al. Time saving improvement to the time-unit sampling method for quantitative surveys of ant faunas. Jpn. J. Environ. Entomol. Zool. 24, 39–50 (2013).
    Google Scholar 
    59.Kouduka, M. et al. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol. Lett. 326, 47–54 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.The eDNA Society. Environmental DNA Sampling and Experiment Manual (ver. 2.1). https://ednasociety.org/eDNA_manual_Eng_v2_1_3b.pdf (2019).61.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ (2018). More

  • in

    Inter-sexual and inter-generation differences in dispersal of a bivoltine butterfly

    1.Høye, T. T. et al. Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Curr. Zool. 60, 243–251 (2014).Article 

    Google Scholar 
    2.Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).ADS 
    Article 

    Google Scholar 
    3.Lewins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).
    Google Scholar 
    4.Zografou, K. et al. Who flies first? Habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: A case study from the south-east Mediterranean. Ecol. Entomol. 40, 562–574 (2015).Article 

    Google Scholar 
    5.Yamamura, N. & Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289–298 (1998).Article 

    Google Scholar 
    6.Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: The global pest insect Helicoverpa armigera (Hubner, 1808) (Lepidoptera: Noctuidae). Aus. Entomol. 53, 249–258 (2014).Article 

    Google Scholar 
    7.Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations Of Insects (Oxford University Press on Demand, 1986).
    Google Scholar 
    8.Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B. 277, 1281–1287 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lees, A. D. The physiology and biochemistry of diapause. Annu. Rev. Entomol. 1, 1–16 (1956).CAS 
    Article 

    Google Scholar 
    10.Roff, D. A. & Fairbairn, D. J. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am. Zool. 31, 243–251 (1991).Article 

    Google Scholar 
    11.Van Dyck, H. & Wiklund, C. Seasonal butterfly design: MORPHOLOGICAL plasticity among three developmental pathways relative to sex, flight and thermoregulation. J. Evol. Biol. 15, 216–225 (2002).Article 

    Google Scholar 
    12.Fric, Z. & Konvicka, M. Generations of the polyphenic butterfly Araschnia levana differ in body design. Evol. Ecol. Res. 4, 1017–1032 (2002).
    Google Scholar 
    13.Urquhart, F. A. The Monarch Butterfly (University of Toronto Press, 1960).Book 

    Google Scholar 
    14.Stefanescu, C. The nature of migration in the red admiral butterfly Vanessa atalanta: Evidence from the population ecology in its southern range. Ecol. Entomol. 26, 525–536 (2001).Article 

    Google Scholar 
    15.Stefanescu, C., Askew, R. R., Corbera, J. & Shaw, M. R. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur. J. Entomol. 109, 85–94 (2012).Article 

    Google Scholar 
    16.Ohsaki, N. Comparative population studies of three Pieris butterflies, P. rapae, P. melete and P. napi, living in the same area. II. Utilization of patchy habitats by adults through migratory and non-migratory movements. Res. Popul. Ecol. 22, 163–183 (1980).Article 

    Google Scholar 
    17.Pollard, E., Greatorex-Davies, J. N. & Thomas, J. A. Drought reduces breeding success of the butterfly Aglais urticae. Ecol. Entomol. 22, 315–318 (1997).Article 

    Google Scholar 
    18.Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).Article 

    Google Scholar 
    19.Kim, S. Y., Torres, R. & Drummond, H. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90, 230–239 (2009).PubMed 
    Article 

    Google Scholar 
    20.Nowicki, P. & Vrabec, V. Evidence for positive density dependent emigration in butterfly metapopulations. Oecologia 167, 657–665 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Plazio, E., Margol, T. & Nowicki, P. Intersexual differences in density-dependent dispersal and their evolutionary drivers. J. Evol. Biol. 33, 1495–1506 (2020).PubMed 
    Article 

    Google Scholar 
    22.Brown, I. & Ehrlich, P. Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia 47, 239–251 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    23.Hanski, I., Kuussaari, M. & Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75, 747–762 (1994).Article 

    Google Scholar 
    24.Petit, S., Moilanen, A., Hanski, I. & Baguette, M. Metapopulation dynamics of the bog fritillary butterfly, movements between habitat patches. Oikos 92, 491–500 (2001).Article 

    Google Scholar 
    25.Enfjäll, K. & Leimar, O. Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos 108, 465–472 (2005).Article 

    Google Scholar 
    26.Schtickzelle, N., Mennechez, G. & Baguette, M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87, 1057–1065 (2006).PubMed 
    Article 

    Google Scholar 
    27.Habel, J. C., Meyer, M., & Schmitt, T. Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle (Pensoft, 2014).28.Martin, Y., Habel, J. C., Van Dyck, H. & Titeux, N. Losing genetic uniqueness under global change: the Violet Copper (Lycaena helle) in Europe. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 165–184 (Pensoft, 2014).29.Nabielec, J. & Nowicki, P. Drivers of local densities of endangered Lycaena helle butterflies in a fragmented landscape. Popul. Ecol. 57, 649–656 (2015).Article 

    Google Scholar 
    30.Bauerfeind, S. S., Theisen, A. & Fischer, K. Patch occupancy in the endangered butterfly Lycaena helle in fragmented landscape: effects of habitat quality, patch size and isolation. J. Insect. Conserv. 13, 271–277 (2009).Article 

    Google Scholar 
    31.Habel, J. C., Rodder, D., Schmitt, T. & Néves, G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 17, 194–205 (2011).ADS 
    Article 

    Google Scholar 
    32.Van Helsdingen, P. J., Willemse, L. & Speight, M. C. D. Background Information On Invertebrates Of The Habitats Directive And The Bern Convention. Crustacea, Coleoptera And Lepidoptera. Vol. 2 (Council of Europe Publishing, 1996)33.Van Swaay, C. et al. European Red List Of Butterfies. (Publications Office of the European Union, 2010).34.Fischer, K., Beinlich, B. & Plachter, H. Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lyceanidae) in Western Germany: Implications for conservation. J. Insect. Conserv. 3, 43–52 (1999).Article 

    Google Scholar 
    35.Kudłek, J & Pępkowska, A. Natura 2000 Standard Data Form For SCI Dębnicko-Tyniecki Obszar Łąkowy PLH 120065 (GDOŚ, 2008).36.Begon, M. Investigating Animal Abundance. Capture-recapture For Biologists. (Edward Arnold (Publishers) Ltd., 1979).37.Cerrato, C., Lai, V., Balletto, E. & Bonelli, S. Direct and indirect effects of weather variability in a specialist butterfly. Ecol. Entomol. 41, 263–275 (2016).Article 

    Google Scholar 
    38.Hanski, I., Alho, J. & Moilanen, A. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81, 239–251 (2000).Article 

    Google Scholar 
    39.Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    40.Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).Article 

    Google Scholar 
    41.Hambäck, P. A. & Englund, G. Patch area, population density and the scaling of migration rates: The resource concentration hypothesis revisited. Ecol. Lett. 8, 1057–1065 (2005).Article 

    Google Scholar 
    42.Matter, S. F., Roland, J., Moilanen, A. & Hanski, I. Migration and survival of Parnassius smintheus: detecting effects of habitat for individual butterflies. Ecol. Appl. 14, 1526–1534 (2004).Article 

    Google Scholar 
    43.Dempster, J. P. & Pollard, E. Spatial heterogeneity, stochasticity and the detection of density dependence in animal populations. Oikos 46, 413–416 (1986).Article 

    Google Scholar 
    44.Gros, A., Hovestadt, T. & Poethke, H. J. Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding. Ecol. Model. 219, 226–233 (2008).MATH 
    Article 

    Google Scholar 
    45.Shapiro, A. M. The role of sexual behavior in density related dispersal of pierid butterflies. Am. Nat. 104, 367–372 (1970).Article 

    Google Scholar 
    46.Odendaal, F. J., Turchin, P. & Stermitz, F. R. Influence of host-plant density and male harassment on the distribution of female Euphydryas anicia (Nymphalidae). Oecologia 78, 283–288 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Baguette, M., Convie, I. & Neve, G. Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 17, 225–232 (1996).
    Google Scholar 
    48.Baguette, M., Vansteenwegen, C., Convi, I. & Neve, G. Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 19, 17–24 (1998).ADS 
    Article 

    Google Scholar 
    49.Matthysen, E. Multicausality of dispersal: a review. In Dispersal Ecology And Evolution (ed. Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M.) 3–18 (Oxford University Press, 2012).50.Li, X. Y. & Kokko, H. Sex-biased dispersal: a review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 
    Article 

    Google Scholar 
    51.Dethier, V. & MacArthur, R. A field’s capacity to support a butterfly population. Nature 201, 728–729 (1964).ADS 
    Article 

    Google Scholar 
    52.Baker, R. The dilemma: when and how to go or stay. In The Biology Of Butterflies. Symposium Of The Royal Entomological Society Of London. Number 11 (ed. Vane-Wright, R. I. & Ackery, P. R.) 279–296 (Academic Press, 1984).53.Rausher, M. Egg recognition: Its advantage to a butterfly. Anim. Behav. 27, 1034–1040 (1979).Article 

    Google Scholar 
    54.Ray, C., Gilpin, M. & Smith, A. The effect of conspecific attraction on metapopulation dynamics. Biol. J. Linn. Soc. Lond. 42, 123–134 (1991).Article 

    Google Scholar 
    55.Kuussaari, M., Nieminen, M. & Hanski, I. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J. Anim. Ecol. 65, 791–801 (1996).Article 

    Google Scholar 
    56.Fric, Z. & Konvicka, M. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lepid. 23, 2–25 (2000).
    Google Scholar 
    57.Gilchrist, G. W. The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Funct. Ecol. 4, 475–487 (1990).Article 

    Google Scholar 
    58.Klockmann, M., Karajoli, F., Kuczyk, J., Reimer, S. & Fischer, K. Fitness implications of simulated climate change in three species of copper butterflies (Lepidoptera: Lycaenidae). Biol. J. Linn. Soc. Lond. 120, 125–143 (2017).
    Google Scholar 
    59.Piaggio, A. J, Navo, K. W. & Stihler, C. W. Intraspecific comparison of population structure, genetic diversity, and dispersal among three subspecies of Townsend’s big-eared bats, Corynorhinus townsendii townsendii, C. t. pallescens, and the endangered C. t. virginianus. Conserv. Genet. 10, 143–159 (2009).60.Solmsen, N., Johannesen, J. & Schradin, C. Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics. Mol. Ecol. 20, 1624–1634 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Bergman, K. O. & Landin, J. Population structure and movements of a threatened butterfly (Lopinga achine) in a fragmented landscape in Sweden. Biol. Conserv. 108, 361–369 (2002).Article 

    Google Scholar 
    62.Craioveanu, C., Sitar, C. & Rakosy, L. Mobility, behaviour and phenology of the Violet Copper Lycaena helle in North-Western Romania. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 91–105 (Pensoft, 2014).63.Turlure, C., Van Dyck, H., Goffart, P., & Schtickzelle, N. Resource-based habitat use in Lycaena helle: Significance of a functional, ecological niche-oriented approach. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 67–86 (Pensoft, 2014).64.Hanski, I., & Gaggiotti, O. E. Ecology, Genetics and Evolution Of Metapopulations (Elsevier Academic Press, 2004). More

  • in

    Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators

    1.Warren, J. & Mackenzie, S. Why are all colour combinations not equally represented as flower-colour polymorphisms?. New Phytol. 151, 237–241 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Armbruster, S., Fenster, C. & Dudash, M. Pollination ‘principles’ revisited: specialization, pollination syndromes, and the evolution of flowers. Scandanavian Assoc. Pollinat. Ecol. 39, 179–200 (2000).
    Google Scholar 
    3.Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hansen, D. M., van der Niet, T. & Johnson, S. D. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc. R. Soc. B Biol. Sci. 279, 634–639 (2012).Article 

    Google Scholar 
    5.Rosas-Guerrero, V. et al. A quantitative review of pollination syndromes: do floral traits predict effective pollinators?. Ecol. Lett. 17, 388–400 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Narbona, E., Wang, H., Ortiz, P. L., Arista, M. & Imbert, E. Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biol. 20, 8–20 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Altshuler, D. L. Flower color, hummingbird pollination, and habitat irradiance in four neotropical forests1. Biotropica 35, 344 (2003).Article 

    Google Scholar 
    8.Riordan, C. E., Ault, J. G., Langreth, S. G. & Keithly, J. S. Cryptosporidium parvum Cpn60 targets a relict organelle. Curr. Genet. 44, 138–147 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Rodríguez-Gironés, M. A. & Santamaría, L. Why are so many bird flowers red?. PLoS Biol. 2, 1515–1519 (2004).Article 
    CAS 

    Google Scholar 
    10.Whibley, A. C. et al. Evolutionary paths underlying flower color variation in Antirrhinum. Science (80-.) 313, 963–966 (2006).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Papiorek, S. et al. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns. Plant Biol. 18, 46–55 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wilson, P., Castellanos, M., Wolfe, A. D. & Thomson, J. D. Shifts between bee and bird pollination in penstemons. Plant-Pollinat. Interact. Spec. Gen. 3, 47–68 (2006).13.Wilson, P., Castellanos, M. C., Hogue, J. N., Thomson, J. D. & Armbruster, W. S. A multivariate search for pollination syndromes among penstemons. Oikos 104, 345–361 (2004).Article 

    Google Scholar 
    14.Sutherland, S. D. & Vickery, R. K. Jr. On the relative importance of floral color, shape, and nectar rewards in attracting pollinators to Mimulus. Gt. Basin Nat. 53, 107–117 (1993).
    Google Scholar 
    15.Wester, P. & Lunau, K. Plant-Pollinator Communication. Advances in Botanical Research Vol. 82 (Elsevier, 2017).
    Google Scholar 
    16.de Camargo, M. G. G. et al. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytol. 222, 1112–1122 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.van der Kooi, C. J., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. https://doi.org/10.1093/aob/mcy119 (2018).Article 
    PubMed Central 

    Google Scholar 
    18.Castellanos, M. C., Wilson, P. & Thomson, J. D. ‘ Anti-bee ’ and ‘ pro-bird ’ changes during the evolution of hummingbird pollination in Penstemon flowers. J. Evol. Biol. 17, 876–885 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.del Carmen Salas-Arcos, L., Lara, C., Castillo-Guevara, C., Cuautle, M. & Ornelas, J. F. “Pro-bird” floral traits discourage bumblebee visits to Penstemon gentianoides (Plantaginaceae), a mixed-pollinated herb. Sci. Nat. 106, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    20.Armbruster, W. S. Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). Flor. Biol. https://doi.org/10.1007/978-1-4613-1165-2_9 (1996).Article 

    Google Scholar 
    21.Chittka, L. & Schürkens, S. Successful invasion of a floral market. Nature 411, 653 (2001).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    22.Ellis, T. J. & Field, D. L. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Ann. Bot. 117, 1133–1140 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Tanaka, Y., Sasaki, N. & Ohmiya, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lázaro, A., Lundgren, R. & Totland, Ø. Pollen limitation, species’ floral traits and pollinator visitation: different relationships in contrasting communities. Oikos 124, 174–186 (2015).Article 

    Google Scholar 
    25.Jones, K. N. & Reithel, J. S. Pollinator-mediated selection on a flower color polymorphism in experimental populations of Anthirrhinum (Scrophulariaceae). Am. J. Bot. 88, 447–454 (2001).Article 

    Google Scholar 
    26.Teixido, A. L., Barrio, M. & Valladares, F. Size matters: understanding the conflict faced by large flowers in mediterranean environments. Bot. Rev. 82, 204–228 (2016).Article 

    Google Scholar 
    27.Ortiz, P. L., Fernández-Díaz, P., Pareja, D., Escudero, M. & Arista, M. Do visual traits honestly signal floral rewards at community level?. Funct. Ecol. 35, 369–383 (2021).Article 

    Google Scholar 
    28.Fenster, C. B., Cheely, G., Dudash, M. R. & Reynolds, R. J. Nectar reward and advertisement in hummingbird. Am. J. Bot. 93, 1800 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Simpson, B. B., Neff, J. L. & Simpson, B. B. Floral rewards: alternatives to pollen and nectar. Ann. Mo. Bot. Gard. 68, 301–322 (2015).Article 

    Google Scholar 
    30.Canto, A., Herrera, C. M., García, I. M., Pérez, R. & Vaz, M. Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 668–675 (2011).
    Google Scholar 
    31.Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. https://doi.org/10.1093/aob/mcy132 (2018).Article 
    PubMed Central 

    Google Scholar 
    32.Gómez, J. M. et al. Association between floral traits and rewards in Erysimum mediohispanicum (Brassicaceae). Ann. Bot. 101, 1413–1420 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Worley, A. C. & Barrett, S. C. H. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlations between flower size and number. J. Evol. Biol. 14, 469–481 (2001).Article 

    Google Scholar 
    34.Lunau, K. The ecology and evolution of visual pollen signals. Plant Syst. Evol. 222, 89–111 (2000).Article 

    Google Scholar 
    35.Nicholls, E. & Hempel de Ibarra, N. Assessment of pollen rewards by foraging bees. Funct. Ecol. 31, 76–87 (2017).Article 

    Google Scholar 
    36.Tang, L.-L. & Huang, S.-Q. Evidence for reductions in floral attractants with increased selfing rates in two heterandrous species. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02115.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology (Elsevier, 2013).
    Google Scholar 
    38.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. https://doi.org/10.1111/nph.16793 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Kostyun, J. L., Gibson, M. J. S., King, C. M. & Moyle, L. C. A simple genetic architecture and low constraint allow rapid floral evolution in a diverse and recently radiating plant genus. New Phytol. 223, 1009–1022 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Roguz, K. et al. Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: ecological and evolutionary implications. Sci. Rep. 9, 1–12 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Roguz, K. et al. Functional diversity of nectary structure and nectar composition in the genus Fritillaria (liliaceae). Front. Plant Sci. 9, 1–21 (2018).Article 
    ADS 

    Google Scholar 
    42.Zych, M. & Stpiczyńska, M. Neither protogynous nor obligatory out-crossed: Pollination biology and breeding system of the European Red List Fritillaria meleagris L. (Liliaceae). Plant Biol. 14, 285–294 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Day, P. D. et al. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Mol. Phylogenet. Evol. 80, 11–19 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Hayashi, K. Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol. 15, 73–93 (2000).Article 

    Google Scholar 
    45.Stpiczyńska, M., Nepi, M. & Zych, M. Nectaries and male-biased nectar production in protandrous flowers of a perennial umbellifer Angelica sylvestris L. (Apiaceae). Plant Syst. Evol. https://doi.org/10.1007/s00606-014-1152-3 (2014).Article 

    Google Scholar 
    46.Hill, L. A taxonomic history of Japanese endemic Fritillaria (Liliaceae). Kew Bull. 66, 227–240 (2018).Article 

    Google Scholar 
    47.Kiani, M. et al. Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp. (Liliaceae): a review. Plant Divers. 39, 245–262 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Shaw, A. J. Phylogeny of the Sphgnpsida based on chloroplast and nuclear DNA sequences. Bryologist 103, 277–306 (2000).CAS 
    Article 

    Google Scholar 
    49.Rønsted, N., Law, S., Thornton, H., Fay, M. F. & Chase, M. W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phylogenet. Evol. 35, 509–527 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Tekşen, M. & Aytaç, Z. The revision of the genus Fritillaria L. (Liliaceae) in the Mediterranean region (Turkey). Turk. J. Bot. 35, 447–478 (2011).
    Google Scholar 
    51.Roguz, K., Hill, L., Roguz, A. & Zych, M. Evolution of bird and insect flower traits in Fritillaria L. (Liliaceae). Front. Plant Sci. 12, 656783 (2020).Article 

    Google Scholar 
    52.Zaharof, E. Variation and taxonomy of Fritillaria graeca (Liliaceae) in Greece. Plant Syst. Evol. 154, 41–61 (1986).Article 

    Google Scholar 
    53.Búrquez, A. & Burquez, A. Blue tits, Parus caeruleus, as pollinators of the crown imperial, Fritillaria imperialis, in Britain. Oikos 55, 335 (1989).Article 

    Google Scholar 
    54.Peters, W. S., Pirl, M., Gottsberger, G. & Peters, D. Pollination of the crown imperial Fritillaria imperialis by great tits Parus major. J. Ornithol. 136, 207–212 (1995).Article 

    Google Scholar 
    55.Pendegrass, K. & Robinson, A. A recovery plan for Fritillaria gentneri (Gentner’s fritillary). Agric. U.S.F.a.W. Serv. (2005).56.Zox, H. Ecology of black lily (Fritillaria camschatcensis): a Washington State sensitive species. Douglasia (2008).57.Cronk, Q. & Ojeda, I. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot. 59, 715–727 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lunau, K. & Verhoeven, C. Wie Bienen Blumen sehen: Falschfarbenaufnahmen von Blüten. Biol. Unserer Zeit 47, 120–127 (2017).Article 

    Google Scholar 
    59.Kranas, H., Spalik, K. & Banasiak, Ł. MatPhylobi, 0.1 (University of Warsaw, 2018).
    Google Scholar 
    60.Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. Leaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt389 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Evolution 62, 1103–1118 (2018).
    Google Scholar 
    62.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform. Appl. 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    63.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Kim, J. S. & Kim, J. H. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Bot. J. Linn. Soc. 187, 579–593 (2018).Article 

    Google Scholar 
    65.Cockerell, T. D. A. Two new plants from the tertiary rocks of the west. Torrey Bot. Soc. 14, 135–137 (1914).
    Google Scholar 
    66.Ettingshausen, C. B. III. ‘ Report on Phyto-Palaeontologieal Investigations of Fossil Flora of Alum Bay.’ By Dr. (1AD).67.Conran, J. G., Carpenter, R. J. & Jordan, G. J. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Aust. Syst. Bot. 22, 219–228 (2009).Article 

    Google Scholar 
    68.Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss020 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Paradis, E. & Schliep, K. Phylogenetics ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    71.Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic Analysis of Covariance by Computer Simulation. vol. 42, 1993. https://academic.oup.com/sysbio/article/42/3/265/1629506 (Accessed 09 March 2021).72.Orme, C. D. L. The caper package: comparative analyses in phylogenetics and evolution in R, 1–36, 2012. See http://caper.r-forge.r-project.org/. (Accessed 09 March 2021).73.TEAM, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    74.Dyer, A. G. et al. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc. R. Soc. B Biol. Sci. 279, 3606–3615 (2012).Article 

    Google Scholar 
    75.Ollerton, J. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. J. Ecol. 84, 767–769 (1996).Article 

    Google Scholar 
    76.Wessinger, C. A. & Rausher, M. D. Predictability and irreversibility of genetic changes associated with flower color evolution in Penstemon barbatus. Evolution (N. Y.) 68, 1058–1070 (2014).CAS 

    Google Scholar 
    77.Wittmann, D., Radtke, R., Cure, J. R. & Schifino-Wittmann, M. T. Coevolved reproductive strategies in the oligolectic bee Callonychium petuniae (Apoidea, Andrenidae) and three purple flowered Petunia species (Solanaceae) in southern Brazil. J. Zool. Syst. Evol. Res. 28, 157–165 (1990).Article 

    Google Scholar 
    78.Chittka, L. & Waser, N. M. Why red flowers are not invisible to bees. Isr. J. Plant Sci. 45, 169–183 (1997).Article 

    Google Scholar 
    79.Kołodziejska-Degórska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans (L.) seem. in Poland. Acta Soc. Bot. Pol. 75, 79–85 (2006).Article 

    Google Scholar 
    80.Mayr, G. New specimens of the early oligocene old world hummingbird Eurotrochilus inexpectatus. J. Ornithol. 148, 105–111 (2007).Article 

    Google Scholar 
    81.Mayr, G. Old world fossil record of modern-type hummingbirds. Science (80-.) 304, 861–864 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    82.Schiestl, F. P. & Johnson, S. D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 28, 307–315 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Daumer, K. Blumenfarben, wie sie die Bienen sehen. Z. Vgl. Physiol. 41, 49–110 (1958).
    Google Scholar 
    84.Kevan, P. G. Floral colours in the high Arctic with reference to insect flower relations and pollination. Can. J. Bot. 50, 2289–2316 (1972).Article 

    Google Scholar 
    85.Chittka, L., Shmida, A., Troje, N. & Menzel, R. Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vis. Res. 34, 1489–1508 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Lunau, K. Stamens and mimic stamens as components of floral colour patterns. Bot. Jahrbücher für Syst. Pflanzengeschichte und Pflanzengeographie 127, 13–41 (2006).Article 

    Google Scholar 
    87.Koski, M. H. & Ashman, T. L. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct. Ecol. 28, 868–877 (2014).Article 

    Google Scholar 
    88.Menzel, R. & Shmida, A. The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol. Rev. 68, 81–120 (1993).Article 

    Google Scholar 
    89.van der Kooi, C. J. & Stavenga, D. G. Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 205, 363–372 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Kevan, P., Giurfa, M. & Chittka, L. Why are there so many and so few white flowers?. Trends Plant Sci. 1, 280–284 (1996).Article 

    Google Scholar 
    91.Kapustjansky, A., Chittka, L. & Spaethe, J. Bees use three-dimensional information to improve target detection. Naturwissenschaften 97, 229–233 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    92.Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Hansen, D. M., Olesen, J. M., Mione, T., Johnson, S. D. & Müller, C. B. Coloured nectar: Distribution, ecology, and evolution of an enigmatic floral trait. Biol. Rev. 82, 83–111 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Raguso, R. A. Start making scents: the challenge of integrating chemistry into pollination ecology. Entomol. Exp. Appl. 128, 196–207 (2008).CAS 
    Article 

    Google Scholar 
    95.Sapir, Y., Shmida, A. & Ne’eman, G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147, 53–59 (2006).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    96.Bazzaz, F. A. & Carslon, R. W. Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. New Phytol. 82, 223–232 (1979).Article 

    Google Scholar  More

  • in

    Influence of intrinsic and extrinsic attributes on neonate survival in an invasive large mammal

    1.Sæther, B.-E. Environmental stochasticity and population dynamics of large herbivores: A search for mechanisms. Trends Ecol. Evol. 12, 143–149 (1997).PubMed 
    Article 

    Google Scholar 
    2.Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Coulson, T. et al. Estimating individual contributions to population growth: Evolutionary fitness in ecological time. Proc. R. Soc. B 273, 547–555 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S. & Coulson, T. The evolutionary demography of ecological change: Linking trait variation and population growth. Science 315, 1571–1574 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J.-M. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. & Albon, S. D. Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70, 721–729 (2001).Article 

    Google Scholar 
    7.Owen-Smith, N., Mason, D. R. & Ogutu, J. O. Correlates of survival rates for 10 African ungulate populations: Density, rainfall and predation. J. Anim. Ecol. 74, 774–788 (2005).Article 

    Google Scholar 
    8.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    9.Griffin, K. A. et al. Neonatal mortality of elk driven by climate, predator phenology and predator community composition. J. Anim. Ecol. 80, 1246–1257 (2011).PubMed 
    Article 

    Google Scholar 
    10.Kilgo, J. C., Vukovich, M., Scott Ray, H., Shaw, C. E. & Ruth, C. Coyote removal, understory cover, and survival of white-tailed deer neonates. J. Wildl. Manag. 78, 1261–1271 (2014).Article 

    Google Scholar 
    11.Coltman, D. W., Bowen, W. D. & Wright, J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. B 265, 803–809 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kolbe, J. & Janzen, F. The influence of propagule size and maternal nest-site selection on survival and behaviour of neonate turtles. Funct. Ecol. 15, 772–781 (2001).Article 

    Google Scholar 
    13.Kissner, K. J. & Weatherhead, P. J. Phenotypic effects on survival of neonatal northern watersnakes Nerodia sipedon. J. Anim. Ecol. 74, 259–265 (2005).Article 

    Google Scholar 
    14.Carstensen, M., Delgiudice, G. D., Sampson, B. A. & Kuehn, D. W. Survival, birth characteristics, and cause-specific mortality of white-tailed deer neonates. J. Wildl. Manag. 73, 175–183 (2009).Article 

    Google Scholar 
    15.Guttery, M. R. et al. Effects of landscape-scale environmental variation on greater sage-grouse chick survival. PLoS One 8, e65582 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Duquette, J. F., Belant, J. L., Svoboda, N. J., Beyer, D. E. Jr. & Lederle, P. E. Effects of maternal nutrition, resource use and multi-predator risk on neonatal white-tailed deer survival. PLoS One 9, 1–10 (2014).Article 

    Google Scholar 
    17.Pimentel, D. In Managing Vertebrate Invasive Species: Proceedings of an International Symposium. (eds. Pitt, W.C. et al.) 2–8 (USDA/APHIS/WS, 2007).18.Pitt, W. C., Beasley, J. & Witmer, G. W. Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States. 7–31 (CRC Press, 2018).19.Strickland, B. K., Smith, M. D., Smith, A. L. Wild pig damage to resources. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 143–174 (CRC Press, 2020).20.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. In 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Vol. 12 (Invasive Species Specialist Group, Species Survival Commission, World Conservation Union (IUCN), 2000).21.Keiter, D. A., Mayer, J. J. & Beasley, J. C. What is in a “common” name? A call for consistent terminology for nonnative Sus scrofa. Wild. Soc. Bull. 40, 384–387 (2016).Article 

    Google Scholar 
    22.Smyser, T. J. et al. Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Mol. Ecol. 29, 1103–1119 (2020).PubMed 
    Article 

    Google Scholar 
    23.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioSci. 64, 291–299 (2014).Article 

    Google Scholar 
    24.Mohr, D., Cohnstaedt, L. W. & Topp, W. Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol. Biochem. 37, 693–700 (2005).CAS 
    Article 

    Google Scholar 
    25.Barrios-García, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    26.Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).Article 

    Google Scholar 
    27.Ditchkoff, S. S. & Bodenchuk, M. J. Management of wild pigs. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 175–198 (CRC Press, 2020).28.Bieber, C. & Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213 (2005).Article 

    Google Scholar 
    29.Hanson, L. B. et al. Effect of experimental manipulation on survival and recruitment of feral pigs. Wildl. Res. 36, 185–191 (2009).Article 

    Google Scholar 
    30.Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    31.Keiter, D. A., Kilgo, J. C., Vukovich, M. A., Cunningham, F. L. & Beasley, J. C. Development of known-fate survival monitoring techniques for juvenile wild pigs (Sus scrofa). Wildl. Res. 44, 165–173 (2017).Article 

    Google Scholar 
    32.Snow, N. P., Miller, R. S., Beasely, J. C. & Pepin, K. M. Wild pig population dynamics. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 57–82 (CRC Press, 2020).33.Alonso-Spilsbury, M., Ramirez-Necoechea, R., Gonzalez-Lozano, M., Mota-Rojas, D. & Trujillo-Ortega, M. Piglet survival in early lactation: A review. J. Anim. Vet. Adv. 1, 76–86 (2007).
    Google Scholar 
    34.Baubet, E., Servanty, S. & Brandt, S. Tagging piglets at the farrowing nest in the wild: Some preliminary guidelines. Acta Sylvatica Lig. Hung. 5, 159–166 (2009).
    Google Scholar 
    35.Kerr, J. & Cameron, N. Reproductive performance of pigs selected for components of efficient lean growth. Anim. Sci. 60, 281–290 (1995).Article 

    Google Scholar 
    36.Van der Lende, T., KnoI, E. & Leenhouwers, J. Prenatal development asa predisposing factor for perinatal lossesin pigs. Reproduction 58, 247–261 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    37.Mount, L. The heat loss from new-born pigs to the floor. Res. Vet. Sci. 8, 175–186 (1967).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Herpin, P., Damon, M. & Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78, 25–45 (2002).Article 

    Google Scholar 
    39.Gaillard, J.-M., Pontier, D., Brandt, S., Jullien, J.-M. & Allaine, D. Sex differentiation in postnatal growth rate: A test in a wild boar population. Oecologia 90, 167–171 (1992).ADS 
    Article 

    Google Scholar 
    40.Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313, 131–133 (1985).ADS 
    Article 

    Google Scholar 
    42.Theil, P. K., Nielsen, M. O., Sørensen, M. T. & Lauridsen, C. Lactation, milk and suckling. In Nutritional Physiology of Pigs: with emphasis on Danish production conditions (eds. Knudsen et al.) 1–49 (University of Copenhagen, 2012).43.Theil, P. K., Lauridsen, C. & Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8, 1021–1030 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Mayer, J. & Brisbin Jr, I. L. Wild pigs of the Savannah River Site. Report No. SRNL-RP-2011-00295, 114 (Savannah River National Laboratory, 2012).45.Withey, J. C., Bloxton, T. D. & Marzluff, J. M. Effects of tagging and location error in wildlife telemetry studies. In Radio Tracking and Animal Populations. 43–75 (Academic Press, 2001).46.Webster, S. C. & Beasley, J. C. Influence of lure choice and survey duration on scent stations for carnivore surveys. Wildl. Soc. Bull. 43, 661–668 (2019).Article 

    Google Scholar 
    47.Matschke, G. H. Aging European wild hogs by dentition. J. Wildl. Manag. 31, 109–113 (1967).Article 

    Google Scholar 
    48.Mayer, J. J., Martin, F. D. & Brisbin, I. L. Characteristics of wild pig farrowing nests and beds in the upper Coastal Plain of South Carolina. Appl. Anim. Behav. Sci. 78, 1–17 (2002).Article 

    Google Scholar 
    49.Kilgo, J. C., Ray, H. S., Vukovich, M., Goode, M. J. & Ruth, C. Predation by coyotes on white-tailed deer neonates in South Carolina. J. Wildl. Manag. 76, 1420–1430 (2012).Article 

    Google Scholar 
    50.Mayer, J. J. & Brisbin, I. J., Jr. Wild Pigs: Biology, Damage, Control Techniques and Management. Report No. SRNL-RP-2009-00869, 77–104 (Savannah River National Laboratory, 2009).51.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    52.R: A language and environment for statistical computing. v. 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020).53.Weinbeck, S. W., Viner, B. J., Rivera-Giboyeaux A. M. Meteorological Monitoring Program at the Savannah River Site. Report No. SRNL-TR-2020-00197 (Savannah River National Laboratory, 2020).54.Plummer, M. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. 1–10 (Vienna, Austria).55.Denwood, M. J. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25 (2016).Article 

    Google Scholar 
    56.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    57.Pollock, K. H., Winterstein, S. R., Bunck, C. M. & Curtis, P. D. Survival analysis in telemetry studies: The staggered entry design. J. Wildl. Manag. 53, 7–15 (1989).Article 

    Google Scholar 
    58.Harrell, F. Regression Modeling Strategies (ed. Harrell, F.) 60–64 (Springer, 2001).59.McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038. https://doi.org/10.1002/ajp.23038 (2019).60.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).61.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference, 2nd edn. 75–117 (Springer, 2002).62.Taylor, R. B., Hellgren, E. C., Gabor, T. M. & Ilse, L. M. Reproduction of feral pigs in southern Texas. J. Mammal. 79, 1325–1331 (1998).Article 

    Google Scholar 
    63.Mittwoch, U. Blastocysts prepare for the race to be male. Hum. Reprod. 8, 1550–1555 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Stanton, H. & Carroll, J. Potential mechanisms responsible for prenatal and perinatal mortality or low viability of swine. J. Anim. Sci. 38, 1037–1044 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Hartsock, T. G. & Graves, H. Neonatal behavior and nutrition-related mortality in domestic swine. J. Anim. Sci. 42, 235–241 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Spicer, E. et al. Causes of preweaning mortality on a large intensive piggery. Aus. Vet. J. 63, 71–75 (1986).CAS 
    Article 

    Google Scholar 
    67.Hendrix, W. F., Kelley, K. W., Gaskins, C. T. & Hinrichs, D. J. Porcine neonatal survival and serum gamma globulins. J. Anim. Sci. 47, 1281–1286 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.De Roth, L. & Downie, H. Evaluation of viability of neonatal swine. Can. Vet. J. 17, 275–279 (1976).PubMed 
    PubMed Central 

    Google Scholar 
    69.Williams, G. The question of adaptive sex ratio in outcrossed vertebrates. Proc. R. Soc. Lond. B 205, 567–580 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Servanty, S., Gaillard, J.-M., Allainé, D., Brandt, S. & Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 18, 427–432 (2007).Article 

    Google Scholar 
    71.Fernández-Llario, P., Carranza, J. & Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 58, 1079–1084 (1999).PubMed 
    Article 

    Google Scholar 
    72.Focardi, S., Gaillard, J.-M., Ronchi, F. & Rossi, S. Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. J. Mammal. 89, 1113–1123 (2008).Article 

    Google Scholar 
    73.Gamelon, M. et al. Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?. Evolution 68, 3636–3643 (2014).PubMed 
    Article 

    Google Scholar 
    74.Saïd, S., Tolon, V., Brandt, S. & Baubet, E. Sex effect on habitat selection in response to hunting disturbance: The study of wild boar. Eur. J. Wildl. Res. 58, 107–115 (2012).Article 

    Google Scholar 
    75.Caro, T. The adaptive significance of coloration in mammals. BioSci. 55, 125–136 (2005).Article 

    Google Scholar 
    76.Tewes, M. E., Mock, J. M. & Young, J. H. Bobcat predation on quail, birds, and mesomammals. In Proc. Nat. Quail Symp. 65–70. (2002).77.Jones, M. P., Pierce, K. E. Jr. & Ward, D. Avian vision: a review of form and function with special consideration to birds of prey. J. Ex. Pet Med. 16, 69–87 (2007).Article 

    Google Scholar 
    78.Walsberg, G. E. Coat color and solar heat gain in animals. BioSci. 33, 88–91 (1983).Article 

    Google Scholar 
    79.Lack, D. The Natural Regulation of Animal Numbers. (ed. Lack, D.) 343 (Oxford University Press, 1954).80.Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Gamelon, M. et al. The relationship between phenotypic variation among offspring and mother body mass in wild boar: Evidence of coin-flipping?. J. Anim. Ecol. 82, 937–945 (2013).PubMed 
    Article 

    Google Scholar 
    82.Mitchell, G. & Stevens, C. Primiparous and multiparous monkey mothers in a mildly stressful social situation: First three months. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 1, 280–286 (1968).Article 

    Google Scholar 
    83.Okai, D., Aherne, F. & Hardin, R. Effects of sow nutrition in late gestation on the body composition and survival of the neonatal pig. Can. J. Anim. Sci. 57, 439–448 (1977).CAS 
    Article 

    Google Scholar  More

  • in

    Thermally tolerant intertidal triplefin fish (Tripterygiidae) sustain ATP dynamics better than subtidal species under acute heat stress

    1.Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42(4), 780–789 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).
    Google Scholar 
    3.Helmuth, B. et al. Living on the Edge of Two Changing Worlds: Forecasting the Responses of Rocky Intertidal Ecosystems to Climate Change Vol. 37 (ECU Publications, 2006).
    Google Scholar 
    4.Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9(2), 228–241 (2006).ADS 
    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Woodward, A. Climate change: Disruption, risk and opportunity. Glob. Transit. 1, 44–49 (2019).Article 

    Google Scholar 
    6.Hoffmann, K. H. 6—Metabolic and enzyme adaptation to temperature and pressure. In The Mollusca (ed. Hochachka, P. W.) 219–255 (Academic Press, 1983).
    Google Scholar 
    7.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808), 95 (2007).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology. J. Exp. Biol. 220(15), 2685–2696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88(4), 137–146 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Verberk, W. C. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 192, 64–78 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: Blurring ecology and physiology. J. Exp. Biol. 221(1), jeb169615 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ern, R. et al. Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. Sci. Rep. 5, 10743 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mitchell, P. et al. Regulation of Metabolic Processes in Mitochondria (Elsevier, 1966).
    Google Scholar 
    14.Hüttemann, M. et al. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J. Bioenerg. Biomembr. 40(5), 445 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Iftikar, F. I. & Hickey, A. J. Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. PLoS One 8(5), e64120 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218(Pt 12), 1856–1866 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Power, A. et al. Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart. Physiol. Rep. 2(9), e12138 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Lemieux, H., Blier, P. U. & Gnaiger, E. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: Electron flow through the Q-junction in permeabilized fibers. Sci. Rep. 7(1), 2840 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Christen, F. et al. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic. Biol. Med. 116, 11–18 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kiyatkin, E. A. Brain hyperthermia as physiological and pathological phenomena. Brain Res. Brain Res. Rev. 50(1), 27–56 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kiyatkin, E. A. Brain temperature homeostasis: Physiological fluctuations and pathological shifts. Front. Biosci. (Landmark Ed) 15, 73–92 (2010).CAS 
    Article 

    Google Scholar 
    22.Wang, H. et al. Brain temperature and its fundamental properties: A review for clinical neuroscientists. Front. Neurosci.-switz 8, 307–307 (2014).
    Google Scholar 
    23.Pellerin, L. & Magistretti, P. J. How to balance the brain energy budget while spending glucose differently. J. Physiol. 546(Pt 2), 325–325 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Zhao, Y. & Boulant, J. A. Temperature effects on neuronal membrane potentials and inward currents in rat hypothalamic tissue slices. J. Physiol. 564(Pt 1), 245–257 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Obel, L. F. et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front. Neuroenergetics 4, 3 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.White, M. G. et al. Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons. J. Neurophysiol. 108(8), 2203–2214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Walter, E. J. & Carraretto, M. The neurological and cognitive consequences of hyperthermia. Crit. Care (London, England) 20(1), 199–199 (2016).Article 

    Google Scholar 
    28.Vornanen, M. & Paajanen, V. Seasonal changes in glycogen content and Na+-K+-ATPase activity in the brain of crucian carp. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(5), R1482–R1489 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Hochachka, P. W. et al. Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9493–9498 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Chung, D. J., Bryant, H. J. & Schulte, P. M. Thermal acclimation and subspecies-specific effects on heart and brain mitochondrial performance in a eurythermal teleost (Fundulus heteroclitus). J. Exp. Biol. 220(8), 1459–1471 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    31.Brahim, A., Mustapha, N. & Marshall, D. J. Non-reversible and reversible heat tolerance plasticity in tropical intertidal animals: Responding to habitat temperature heterogeneity. Front. Physiol. 9, 1909–1909 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26(4), 331–348 (1997).Article 

    Google Scholar 
    33.Hilton, Z., Clements, K. D. & Hickey, A. J. Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes. J. Comp. Physiol. B 180(7), 979–990 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.McArley, T. J., Hickey, A. J. R. & Herbert, N. A. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures. J. Exp. Biol. 221(22), 189993 (2018).Article 

    Google Scholar 
    35.Gout, E. et al. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. U. S. A. 111(43), E4560–E4567 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pham, T. et al. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am. J. Physiol. Cell Physiol. 307(6), C499-507 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Masson, S. W. C. et al. Mitochondrial glycerol 3-phosphate facilitates bumblebee pre-flight thermogenesis. Sci. Rep. 7(1), 13107 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Chinopoulos, C. et al. A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. Biophys. J. 96(6), 2490–2504 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Devaux, J. B. L. et al. Acidosis maintains the function of brain mitochondria in hypoxia-tolerant triplefin fish: A strategy to survive acute hypoxic exposure? Front. Physiol. 9, 1941 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Goo, S. et al. Multiscale measurement of cardiac energetics. Clin. Exp. Pharmacol. Physiol. 40(9), 671–681 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lagerspetz, K. Y. Temperature effects on different organization levels in animals. Symp. Soc. Exp. Biol. 41, 429–449 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Rosenthal, J. J. & Bezanilla, F. A comparison of propagated action potentials from tropical and temperate squid axons: Different durations and conduction velocities correlate with ionic conductance levels. J. Exp. Biol. 205(Pt 12), 1819–1830 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Robertson, R. M. Thermal stress and neural function: Adaptive mechanisms in insect model systems. J. Therm. Biol. 29(7), 351–358 (2004).CAS 
    Article 

    Google Scholar 
    44.Miller, N. A. & Stillman, J. H. Neural thermal performance in porcelain crabs, Genus Petrolisthes. Physiol. Biochem. Zool. 85(1), 29–39 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gladwell, R. T., Bowler, K. & Duncan, C. J. Heat death in the crayfish Austropotamobius pallipes—Ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1(2), 79–94 (1976).CAS 
    Article 

    Google Scholar 
    46.Chen, I. & Lui, F. Neuroanatomy, Neuron Action Potential (StatPearls Publishing, 2019).
    Google Scholar 
    47.Milligan, L. P. & McBride, B. W. Energy costs of ion pumping by animal tissues. J. Nutr. 115(10), 1374–1382 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Buzatu, S. The temperature-induced changes in membrane potential. Riv. Biol. 102(2), 199–217 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Krans, J. L., Rivlin, P. K. & Hoy, R. R. Demonstrating the temperature sensitivity of synaptic transmission in a Drosophila mutant. J. Undergrad. Neurosci. Educ. 4(1), A27–A33 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    50.Khan, J. R. et al. Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae). J. Comp. Physiol. B 184(8), 991–1001 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McArley, T. et al. Intertidal triplefin fishes have a lower critical oxygen tension (Pcrit), higher maximal aerobic capacity, and higher tissue glycogen stores than their subtidal counterparts. J. Comp. Physiol. B. 189, 399–411 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Pfleger, J., He, M. & Abdellatif, M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 6(7), e1835–e1835 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Brand, M. D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 33(Pt 5), 897–904 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Brown, J. H. et al. Toward a metabolic theory of ecology. Ecology 85(7), 1771–1789 (2004).ADS 
    Article 

    Google Scholar 
    55.Salin, K. et al. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 2015(282), 20151028–20151028 (1812).
    Google Scholar 
    56.Findly, R. C., Gillies, R. J. & Shulman, R. G. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Science 219(4589), 1223 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sharma, H. S. Neurobiology of Hyperthermia (Elsevier, 2011).
    Google Scholar 
    58.Salin, K. et al. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol. Rep. 4(20), e13007 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Hinkle, P. C. P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta BBA Bioenerg. 1706(1), 1–11 (2005).CAS 

    Google Scholar  More