More stories

  • in

    Escaping the choosiness trap

    1.Courtiol, A., Etienne, L., Feron, R., Godelle, B. & Rousset, F. Am. Nat. 188, 521–538 (2016).Article 

    Google Scholar 
    2.Jennions, M. D. & Petrie, M. Biol. Rev. 75, 21–64 (2000).CAS 
    Article 

    Google Scholar 
    3.Kokko, H. & Mappes, J. Evolution 59, 1876–1885 (2005).Article 

    Google Scholar 
    4.Hare, R. M. & Simmons, L. W. Biol. Rev. 94, 929–956 (2019).Article 

    Google Scholar 
    5.Kohlmeier, P., Zhang, Y., Gorter, J. A., Su, C.-Y. & Billeter, J.-C. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01482-4 (2021).Article 

    Google Scholar 
    6.Halliday, T. R. in Mate Choice (ed. Bateson, P.) 3–32 (Cambridge Univ. Press, 1983).7.Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Annu. Rev. Entomol. 56, 21–40 (2011).CAS 
    Article 

    Google Scholar 
    8.Perry, J. C. & Rowe, L. Cold Spring Harb. Perspect. Biol. 7, a017558 (2015).Article 

    Google Scholar 
    9.Hopkins, B. R., Avila, F. W. & Wolfner, M. F. in Encyclopedia of Reproduction (ed. Skinner, M. K.) 137–144 (Elsevier, 2018).10.de Boer, R. A., Vega-Trejo, R., Kotrschal, A. & Fitzpatrick, J. L. Nat. Ecol. Evol. https://doi.org/ggbb (2021). More

  • in

    Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments

    1.D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, et al. Distributions of microbial activities in deep subseafloor sediments. Science. 2004;306:2216–21.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta. 1979;43:1075–90.CAS 
    Article 

    Google Scholar 
    3.Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol. 2014;352:409–25.CAS 
    Article 

    Google Scholar 
    4.Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Annu Rev Mar Sci. 2011;3:401–25.Article 

    Google Scholar 
    5.Thamdrup B, Rosselló-Mora R, Amann R. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl Environ Microbiol. 2000;66:2888–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B, editor. Advances in microbial ecology. Boston, MA, US: Springer; 2000. p. 41–84.7.Jørgensen BB, Kasten S. Sulfur cycling and methane oxidation. In: Schulz HD, Zabel M, editors. Marine geochemistry. 2nd ed. Berlin, Heidelberg, Germany: Springer-Verlag; 2006. p. 271–309.8.Bowles MW, Mogollón JM, Kasten S, Zabel M, Hinrichs K-U. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities. Science. 2014;344:889–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 2005;308:67–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Raiswell R, Hawkings JR, Benning LG, Baker AR, Death R, Albani S, et al. Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. Biogeosciences. 2016;13:3887–900.CAS 
    Article 

    Google Scholar 
    11.Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ, et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun. 2014;5:3929.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Death R, Wadham JL, Monteiro F, Le Brocq AM, Tranter M, Ridgwell A, et al. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences. 2014;11:2635–43.Article 

    Google Scholar 
    13.Monien D, Monien P, Brünjes R, Widmer T, Kappenberg A, Silva Busso AA, et al. Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarct Sci. 2017;29:277–91.Article 

    Google Scholar 
    14.Henkel S, Kasten S, Hartmann JF, Silva-Busso A, Staubwasser M. Iron cycling and stable Fe isotope fractionation in Antarctic shelf sediments, King George Island. Geochim Cosmochim Acta. 2018;237:320–38.CAS 
    Article 

    Google Scholar 
    15.Hodson A, Nowak A, Sabacka M, Jungblut A, Navarro F, Pearce D, et al. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff. Nat Commun. 2017;8:14499.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Wang S, Bailey D, Lindsay K, Moore JK, Holland M. Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences. 2014;11:4713–31.CAS 
    Article 

    Google Scholar 
    17.Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Findlay AJ, Kamyshny A. Turnover rates of intermediate sulfur species (Sx2−, S0, S2O32−, S4O62−, SO32−) in anoxic freshwater and sediments. Front Microbiol. 2017;8:2551.19.Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochim Cosmochim Acta. 2020;280:441–52.CAS 
    Article 

    Google Scholar 
    20.Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol. 1993;113:27–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Michaud AB, Laufer K, Findlay A, Pellerin A, Antler G, Turchyn AV, et al. Glacial influence on the iron and sulfur cycles in Arctic fjord sediments (Svalbard). Geochim Cosmochim Acta. 2020;280:423–40.CAS 
    Article 

    Google Scholar 
    22.Jensen MM, Thamdrup B, Rysgaard S, Holmer M, Fossing H. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry. 2003;65:295–317.Article 

    Google Scholar 
    23.Beckler JS, Kiriazis N, Rabouille C, Stewart FJ, Taillefert M. Importance of microbial iron reduction in deep sediments of river-dominated continental-margins. Mar Chem. 2016;178:22–34.CAS 
    Article 

    Google Scholar 
    24.Riedinger N, Brunner B, Krastel S, Arnold GL, Wehrmann LM, Formolo MJ, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: the Argentine Continental Margin. Front Earth Sci. 2017;5:33.Article 

    Google Scholar 
    25.Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta. 1994;58:5115–29.CAS 
    Article 

    Google Scholar 
    26.Arndt S, Jørgensen BB, LaRowe DE, Middelburg J, Pancost R, Regnier P. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev. 2013;123:53–86.CAS 
    Article 

    Google Scholar 
    27.Algora C, Vasileiadis S, Wasmund K, Trevisan M, Krüger M, Puglisi E, et al. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol Ecol. 2015;91:fiv056.PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Franco M, De Mesel I, Diallo MD, Van Der Gucht K, Van Gansbeke D, Van, et al. Effect of phytoplankton bloom deposition on benthic bacterial communities in two contrasting sediments in the southern North Sea. Aquat Micro Ecol. 2007;48:241–54.Article 

    Google Scholar 
    29.Zonneveld KAF, Versteegh GJM, Kasten S, Eglinton TI, Emeis K-C, Huguet C, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences. 2010;7:483–511.CAS 
    Article 

    Google Scholar 
    30.Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci U S A. 2012;109:E2846–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zinke LA, Glombitza C, Bird JT, Røy H, Jørgensen BB, Lloyd KG, et al. Microbial organic matter degradation potential in Baltic Sea sediments is influenced by depositional conditions and in situ geochemistry. Appl Environ Microbiol. 2019;85:e02164-18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Yang J, Jiang H, Wu G, Dong H. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep. 2016;6:25078.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Hicks N, Liu X, Gregory R, Kenny J, Lucaci A, Lenzi L, et al. Temperature driven changes in benthic bacterial diversity influences biogeochemical cycling in coastal sediments. Front Microbiol. 2018;9:1730.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 2013;7:685–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Schulz HD, Zabel M, editors. Marine geochemistry. 2nd ed. Berlin, Heidelberg, Germany: Springer-Verlag; 2006.36.Geprägs P, Torres ME, Mau S, Kasten S, Römer M, Bohrmann G. Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic. Geochem, Geophys Geosystems. 2016;17:1401–18.Article 
    CAS 

    Google Scholar 
    37.Atkinson A, Whitehouse MJ, Priddle J, Cripps GC, Ward P, Brandon MA. South Georgia, Antarctica: a productive, cold water, pelagic ecosystem. Mar Ecol Prog Ser. 2001;216:279–308.CAS 
    Article 

    Google Scholar 
    38.Löffler B. Geochemische Prozesse und Stoffkreisläufe in Sedimenten innerhalb und außerhalb des Cumberland-Bay Fjordes, Süd Georgien. Bachelor Thesis. Bremen, Germany: University of Bremen; 2013.39.Köster M. (Bio-)geochemische Prozesse in den eisenreichen Seep-Sedimenten der Cumberland-Bucht Südgeorgiens, Subantarktis. Bachelor Thesis. Bremen, Germany: University of Bremen; 2014.40.Römer M, Torres M, Kasten S, Kuhn G, Graham AG, Mau S, et al. First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth Planet Sci Lett. 2014;403:166–77.Article 
    CAS 

    Google Scholar 
    41.Bohrmann G, Aromokeye AD, Bihler V, Dehning K, Dohrmann I, Gentz T, et al. R/V METEOR Cruise Report M134, emissions of free gas from cross-shelf troughs of South Georgia: distribution, quantification, and sources for methane ebullition sites in sub-Antarctic waters, Port Stanley (Falkland Islands)—Punta Arenas (Chile), 16 January–18 February 2017. 2017.42.Schnakenberg A, Aromokeye DA, Kulkarni A, Maier L, Wunder LC, Richter-Heitmann T, et al. Electron acceptor availability shapes Anaerobically Methane Oxidizing Archaea (ANME) communities in South Georgia sediments. Front Microbiol. 2021;12:726.Article 

    Google Scholar 
    43.Rückamp M, Braun M, Suckro S, Blindow N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global Planet Change. 2011;79:99–109.44.Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods. 2005;3:361–71.Article 

    Google Scholar 
    45.Oni OE, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol. 2015;6:365.PubMed 
    PubMed Central 

    Google Scholar 
    46.Aromokeye DA, Richter-Heitmann T, Oni OE, Kulkarni A, Yin X, Kasten S, et al. Temperature controls crystalline iron oxide utilization by microbial communities in methanic ferruginous marine sediment incubations. Front Microbiol. 2018;9:2574.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Ovreås L, Forney L, Daae FL, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997;63:3367–73.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 2000;66:5066–72.51.Viollier E, Inglett P, Hunter K, Roychoudhury A, Van Cappellen P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem. 2000;15:785–90.CAS 
    Article 

    Google Scholar 
    52.Yin X, Kulkarni AC, Friedrich MW. DNA and RNA stable isotope probing of methylotrophic methanogenic Archaea. In: Dumont MG, Hernández García M, editors. Stable isotope probing: methods and protocols. New York, NY: Springer; 2019. p. 189–206.53.Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Front Microbiol. 2020;10:3041.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Eden PA, Schmidt TM, Blakemore RP, Pace NR. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Evol Microbiol. 1991;41:324–5.CAS 

    Google Scholar 
    55.Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89:670–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Lueders T, Friedrich MW. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol. 2002;68:2484–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: John Wiley and Sons; 1991. p. 115–75.58.Großkopf R, Janssen PH, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol. 1998;64:960–9.59.Reyes C, Schneider D, Thürmer A, Kulkarni A, Lipka M, Sztejrenszus SY, et al. Potentially active iron, sulfur, and sulfate reducing bacteria in Skagerrak and Bothnian Bay sediments. Geomicrobiol J. 2017;34:840–50.CAS 
    Article 

    Google Scholar 
    60.Kondo R, Nedwell DB, Purdy KJ, Silva SQ. Detection and enumeration of sulphate-reducing Bacteria in estuarine sediments by competitive PCR. Geomicrobiol J. 2004;21:145–57.CAS 
    Article 

    Google Scholar 
    61.Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.Article 

    Google Scholar 
    62.R Core Team. R: a language and environment for statistical computing, 3.6.1. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available from: https://www.R-project.org.63.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package, 2.5-6. 2019. Available from: https://CRAN.R-project.org/package=vegan.64.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Inkscape Team. Inkscape, 1.0.1. 2020. Available from: https://inkscape.org.68.Sun H, Spring S, Lapidus A, Davenport K, Glavina Del Rio T, Tice H, et al. Complete genome sequence of Desulfarculus baarsii type strain (2st14T). Stand Genom Sci. 2010;3:276–84.Article 

    Google Scholar 
    69.Kümmel S, Herbst F-A, Bahr A, Duarte M, Pieper DH, Jehmlich N, et al. Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol. 2015;91:fiv006.70.Belyakova EV, Rozanova EP, Borzenkov IA, Tourova TP, Pusheva MA, Lysenko AM, et al. The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology. 2006;75:161–71.71.Rezadehbashi M, Baldwin SA. Core sulphate-reducing microorganisms in metal-removing semi-passive biochemical reactors and the co-occurrence of methanogens. Microorganisms. 2018;6:16.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Sorokin DY, Chernyh NA. ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles. 2016;20:895–901.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips E, Gorby YA, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol. 1993;159:336–44.75.Roden EE, Lovley DR. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol. 1993;59:734–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Lovley DR, Coates JD, Saffarini DA, Lonergan DJ. Dissimilatory iron reduction. In: Winkelmann G, Carrano CJ, editors. Transition metals in microbial metabolism. Amsterdam: Harwood Academic Publishers; 1997. p. 187–215.77.Vandieken V, Finke N, Jørgensen BB. Pathways of carbon oxidation in an Arctic fjord sediment (Svalbard) and isolation of psychrophilic and psychrotolerant Fe(III)-reducing bacteria. Mar Ecol Prog Ser. 2006;322:29–41.CAS 
    Article 

    Google Scholar 
    78.Vandieken V, Thamdrup B. Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores. FEMS Microbiol Ecol. 2013;84:373–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, et al. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front Microbiol. 2015;6:386.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Vandieken V, Mußmann M, Niemann H, Jørgensen BB. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol. 2006;56:1133–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol. 2012;62:2463–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Tu T-H, Wu L-W, Lin Y-S, Imachi H, Lin L-H, Wang P-L. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano. Front Microbiol. 2017;8:2137.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Lovley DR, Roden EE, Phillips EJP, Woodward JC. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol. 1993;113:41–53.CAS 
    Article 

    Google Scholar 
    84.Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing Bacterium from deep sediment layers in the Japan Sea. Int J Syst Evol Microbiol. 1997;47:515–21.85.Treude N, Rosencrantz D, Liesack W, Schnell S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol. 2003;44:261–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J. 2010;4:267–78.87.Han Y, Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol. 2015;6:989.PubMed 
    PubMed Central 

    Google Scholar 
    88.Roalkvam I, Drønen K, Stokke R, Daae FL, Dahle H, Steen IH. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria. Front Microbiol. 2015;6:987.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Schlosser C, Schmidt K, Aquilina A, Homoky WB, Castrillejo M, Mills RA, et al. Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean. Biogeosciences. 2018;15:4973–93.CAS 
    Article 

    Google Scholar 
    90.Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv. 2015;1:e1500050.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Petro C, Starnawski P, Schramm A, Kjeldsen KU. Microbial community assembly in marine sediments. Aquat Micro Ecol. 2017;79:177–95.Article 

    Google Scholar 
    92.Petro C, Zäncker B, Starnawski P, Jochum LM, Ferdelman TG, Jørgensen BB, et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front Microbiol. 2019;10:758.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Starnawski P, Bataillon T, Ettema TJ, Jochum LM, Schreiber L, Chen X, et al. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA. 2017;114:2940–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Marshall IPG, Ren G, Jaussi M, Lomstein BA, Jørgensen BB, Røy H, et al. Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME J. 2019;13:1920–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Berner RA. Early diagenesis: a theoretical approach. Princeton, New Jersey: Princeton University Press; 1980.96.Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Bissett A, Bowman JP, Burke CM. Flavobacterial response to organic pollution. Aquat Micro Ecol. 2008;51:31–43.Article 

    Google Scholar 
    98.Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE. 2012;7:e35314.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Sabree ZL, Kambhampati S, Moran NA. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A. 2009;106:19521–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Bowman JP, McCuaig RD. Biodiversity, community structural shifts, and biogeography of Prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol. 2003;69:2463–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Blazejak A, Schippers A. High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol. 2010;72:198–207.CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol. 2006;56:1331–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Storesund JE, Øvreås L. Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie Van Leeuwenhoek. 2013;104:569–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Kovaleva OL, Merkel AY, Novikov AA, Baslerov RV, Toshchakov SV, Bonch-Osmolovskaya EA. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microbiol. 2015;65:549–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Borrione I, Schlitzer R. Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean. Biogeosciences. 2013;10:217–31.Article 

    Google Scholar 
    106.Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976;110:3–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Finster K, Bak F, Pfennig N. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch Microbiol. 1994;161:328–32.CAS 
    Article 

    Google Scholar 
    108.Lovley DR, Phillips EJP, Lonergan DJ, Widman PK. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol. 1995;61:2132–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.An TT, Picardal FW. Desulfuromonas carbonis sp. nov., an Fe(III)-, S0- and Mn(IV)-reducing bacterium isolated from an active coalbed methane gas well. Int J Syst Evol Microbiol. 2015;65:1686–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Pjevac P, Kamyshny A Jr, Dyksma S, Mußmann M. Microbial consumption of zero-valence sulfur in marine benthic habitats. Environ Microbiol. 2014;16:3416–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Miao Z-Y, He H, Tan T, Zhang T, Tang J-L, Yang Y-C, et al. Biotreatment of Mn2+ and Pb2+ with sulfate-reducing bacterium Desulfuromonas alkenivorans S-7. J Environ Eng. 2018;144:04017116.Article 

    Google Scholar 
    112.Buongiorno J, Herbert L, Wehrmann L, Michaud A, Laufer K, Røy H, et al. Complex microbial communities drive iron and sulfur cycling in Arctic fjord sediments. Appl Environ Microbiol. 2019;85:e00949-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Zhang H, Liu F, Zheng S, Chen L, Zhang X, Gong J. The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Mar Life Sci Technol. 2020;2:87–96.Article 

    Google Scholar 
    114.Ravenschlag K, Sahm K, Pernthaler J, Amann R. High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol. 1999;65:3982–9.115.Kashefi K, Holmes DE, Baross JA, Lovley DR. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol. 2003;69:2985–93.116.Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol. 2004;70:6023–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Jørgensen BB. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature. 1982;296:643–5.Article 

    Google Scholar 
    118.Bryant M, Campbell LL, Reddy C, Crabill M. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol. 1977;33:1162–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6:441–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Holmes DE, Bond DR, Lovley DR. Electron transfer by Desulfobulbus propionicus to Fe (III) and graphite electrodes. Appl Environ Microbiol. 2004;70:1234–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Lovley DR, Phillips EJP. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol. 1987;53:2636–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Finke N, Vandieken V, Jørgensen BB. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol. 2007;59:10–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    124.Canfield DE, Thamdrup B, Hansen JW. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta. 1993;57:3867–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    125.Jørgensen BB. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr. 1977;22:814–32.Article 

    Google Scholar 
    126.Jørgensen BB, Laufer K, Michaud AB, Wehrmann LM. Biogeochemistry and microbiology of high Arctic marine sediment ecosystems—case study of Svalbard fjords. Limnol Oceanogr. 2021;66:S273–92.Article 
    CAS 

    Google Scholar 
    127.Laufer K, Michaud AB, Røy H, Jørgensen BB. Reactivity of iron minerals in the seabed toward microbial reduction—a comparison of different extraction techniques. Geomicrobiol J. 2020;37:170–89.Article 

    Google Scholar 
    128.Holmkvist L, Ferdelman TG, Jørgensen BB. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta. 2011;75:3581–99.CAS 
    Article 

    Google Scholar 
    129.Riedinger N, Brunner B, Formolo MJ, Solomon E, Kasten S, Strasser M, et al. Oxidative sulfur cycling in the deep biosphere of the Nankai Trough, Japan. Geology. 2010;38:851–4.CAS 
    Article 

    Google Scholar  More

  • in

    Salmon going viral

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    A rapid phenotype change in the pathogen Perkinsus marinus was associated with a historically significant marine disease emergence in the eastern oyster

    1.Lafferty, K. D., Porter, J. W. & Ford, S. E. Are diseases increasing in the ocean?. Annu. Rev. Ecol. Evol. Syst. 35, 31–54 (2004).Article 

    Google Scholar 
    2.Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7, 471–496 (2015).Article 
    ADS 

    Google Scholar 
    3.Burreson, E. M., Stokes, N. A. & Friedman, C. S. Increased virulence in an introduced pathogen: Haplosporidium nelsoni (MSX) in the eastern oyster Crassostrea virginica. J. Aquat. Anim. Health 12, 1–8 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Elston, R. A., Farley, C. A. & Kent, M. L. Occurrence and significance of bonamiasis in European flat oysters Ostrea edulis in North America. Dis. Aquat. Org. 2, 49–54 (1986).Article 

    Google Scholar 
    5.Enzmann, P.-J., Kurath, G., Fichtner, D. & Bergmann, S. M. Infectious hematopoietic necrosis virus: Monophyletic origin of European isolates from North American genogroup M. Dis. Aquat. Org. 66, 187–195 (2005).CAS 
    Article 

    Google Scholar 
    6.Lightner, D. V. The penaeid shrimp viral pandemics due to IHHNV, WSSV, TSV and YHV: History in the Americas and current status (Proceedings of the 32nd Joint UJNR Aquaculture Panel Symposium, Davis and Santa Barbara, California, USA, 2003).7.Sutherland, K. P., Shaban, S., Joyner, J. L., Porter, J. W. & Lipp, E. K. Human pathogen shown to cause disease in the threatened elkhorn coral Acropora palmata. PLoS ONE 6, e23468 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Chang, P. et al. Herpes-like virus infection causing mortality of cultured abalone Haliotis diversicolor supertexta in Taiwan. Dis. Aquat. Org. 65, 23–27 (2005).Article 

    Google Scholar 
    9.Hooper, C., Hardy-Smith, P. & Handlinger, J. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Aust. Vet. J. 85, 188–193 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Segarra, A. et al. Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Res. 153, 92–99 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Jenkins, C. et al. Identification and characterisation of an ostreid herpesvirus-1 microvariant (OsHV-1 μ-var) in Crassostrea gigas (Pacific oysters) in Australia. Dis. Aquat. Org. 105, 109–126 (2013).CAS 
    Article 

    Google Scholar 
    12.Mackin, J. G. Oyster disease caused by Dermocystidium marinum and other microorganisms in Louisiana. Pub. Inst. Mar. Sci. Univ. Texas 7, 132–229 (1962).
    Google Scholar 
    13.Andrews, J. D. Epizootiology of the disease caused by the oyster pathogen Perkinsus marinus and its effects on the oyster industry. Am. Fish. Soc. Spec. Pub. 18, 47–63 (1988).
    Google Scholar 
    14.Burreson, E. M. & Andrews, J. D. Unusual intensification of Chesapeake Bay oyster diseases during recent drought conditions. In Proceeding of the Oceans ’88 Conference, Baltimore, Maryland, USA, 1988) 799–802.15.Ford, S. E. Range extension by the oyster parasite Perkinsus marinus into the northeastern United States: Response to climate change?. J. Shellfish Res. 15, 45–56 (1996).
    Google Scholar 
    16.Harvell, C. D. et al. Emerging marine diseases: Climate links and anthropogenic factors. Science 285, 1505–1510 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Burge, C. A. et al. Climate change influences on marine infectious diseases: Implications for management and society. Annu. Rev. Mar. Sci. 6, 249–277 (2014).Article 
    ADS 

    Google Scholar 
    18.Cook, T., Folli, M., Klinck, J., Ford, S. & Miller, J. The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuar. Coast. Shelf Sci. 46, 587–597 (1998).Article 
    ADS 

    Google Scholar 
    19.Crosby, M. P. & Roberts, C. F. Seasonal infection intensity cycle of the parasite Perkinsus marinus (and an absence of Haplosporidium spp.) in oysters from a South Carolina salt marsh. Dis. Aquat. Org. 9, 149–155 (1990).Article 

    Google Scholar 
    20.Shearman, R. K. & Lentz, S. J. Long-term sea surface temperature variability along the U.S. East Coast. J. Phys. Oceanogr. 40, 1004–1017 (2010).Article 
    ADS 

    Google Scholar 
    21.Ray, S. M. A culture technique for the diagnosis of infections with Dermocystidium marinus Mackin, Owen, and Collier in oysters. Science 116, 360–361 (1952).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    22.Carnegie, R. B., Arzul, I. & Bushek, D. Managing marine mollusc diseases in the context of regional and international commerce: Policy issues and emerging concerns. Phil. Trans. R. Soc. B 371, 20150215 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    23.OIE Infection with Perkinsus marinus. In Manual of Diagnostic Tests for Aquatic Animals 7th edn 526–538 (OIE, Paris, 2016).
    Google Scholar 
    24.Mackin, J. G., Owen, H. M. & Collier, A. Preliminary note on the occurrence of a new protistan parasite, Dermocystidium marinum n sp in Crassostrea virginica (Gmelin). Science 111, 328–329 (1950).25.Perkins, F. O. Ultrastructure of vegetative stages in Labyrinthomyxa marina (Dermocystidium marinum), a commercially significant oyster pathogen. J. Invertebr. Pathol. 13, 199–222 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Gates, D. E., Valletta, J. J., Bonneaud, C. & Recker, M. Quantitative host resistance drives the evolution of increased virulence in an emerging pathogen. J. Evol. Biol. 31, 1704–1714 (2018).PubMed 
    Article 

    Google Scholar 
    27.Moss, J. A., Burreson, E. M. & Reece, K. S. Advanced Perkinsus marinus infections in Crassostrea ariakensis maintained under laboratory conditions. J. Shellfish Res. 25, 65–72 (2006).Article 

    Google Scholar 
    28.Reece, K. S., Bushek, D., Hudson, K. L. & Graves, J. E. Geographic distribution of Perkinsus marinus genetic strains along the Atlantic and Gulf coasts of the USA. Mar. Biol. 139, 1047–1055 (2001).Article 

    Google Scholar 
    29.Thompson, P. C., Rosenthal, B. M. & Hare, M. P. Microsatellite genotypes reveal some long-distance gene flow in Perkinsus marinus, a major pathogen of the eastern oyster, Crassostrea virginica (Gmelin). J. Shellfish Res. 33, 195–206 (2014).Article 

    Google Scholar 
    30.Andrews, J. D. Epizootiology of diseases of oysters (Crassostrea virginica), and parasites of associated organisms in eastern North America. Helgoländer Meeresuntersuchungen 37, 149–166 (1984).Article 

    Google Scholar 
    31.Haven, D. S., Hargis, W. J., Jr. & Kendall, P. C. The oyster industry of Virginia: Its Status, Problems and Promise (VA Institute of Marine Science Special Papers in Marine Science No. 4, 1978).32.Andrews, J. D. Perkinsus marinus = Dermocystidium marinum (“Dermo”) in Virginia, 1950–1980 (VA Institute of Marine Science Data Report No. 16, 1980).33.Hite, J. L. & Cressler, C. E. Resource-driven changes to host population stability alter the evolution of virulence and transmission. Phil. Trans. R. Soc. B 373, 20170087 (2018).PubMed 
    Article 

    Google Scholar 
    34.Rick, T. C. et al. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery. Proc. Natl. Acad. Sci. USA 113, 6568–6573 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bushek, D., Ford, S. E. & Chintala, M. M. Comparison of in vitro-cultured and wild-type Perkinsus marinus. III. Fecal elimination and its role in transmission. Dis. Aquat. Org. 51, 217–225 (2002).Article 

    Google Scholar 
    36.Mann, R., Southworth, M., Harding, J. M. & Wesson, J. A. Population studies of the native eastern oyster, Crassostrea virginica (Gmelin, 1791) in the James River, Virginia, USA. J. Shellfish Res. 28, 193–220 (2009).Article 

    Google Scholar 
    37.Andrews, J. D. Oyster mortality studies in Virginia. IV. MSX in James River public seed beds. Proc. Natl. Shellfish. Assoc. 53, 65–84 (1964).
    Google Scholar 
    38.Carnegie, R. B. & Burreson, E. M. Declining impact of an introduced pathogen: Haplosporidium nelsoni in the oyster Crassostrea virginica in Chesapeake Bay. Mar. Ecol. Prog. Ser. 432, 1–15 (2011).Article 
    ADS 

    Google Scholar 
    39.Goedknegt, M. A. et al. Parasites and marine invasions: Ecological and evolutionary perspectives. J. Sea Res. 113, 11–27 (2016).Article 
    ADS 

    Google Scholar 
    40.Kemp, W. M. et al. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29 (2005).Article 
    ADS 

    Google Scholar 
    41.Ford, S. E. & Bushek, D. Development of resistance to an introduced marine pathogen by a native host. J. Mar. Res. 70, 205–223 (2012).Article 

    Google Scholar 
    42.Bobo, M. Y., Richardson, D. L., Coen, L. D. & Burrell, V. G. A Report on the Protozoan Pathogens Perkinsus marinus (dermo) and Haplosporidium nelsoni (MSX) in South Carolina shellfish populations (Tech. Rep. No. 86, SC Dept. of Natural Resources, 1997).43.Hill, K. M. et al. Observation of a Bonamia sp. infecting the oyster Ostrea stentina in Tunisia, and a consideration of its phylogenetic affinities. J. Invertebr. Pathol. 103, 179–185 (2010).PubMed 
    Article 

    Google Scholar 
    44.Carnegie, R. B. et al. Molecular detection of the oyster parasite Mikrocytos mackini, and a preliminary phylogenetic analysis. Dis. Aquat. Org. 54, 219–227 (2003).CAS 
    Article 

    Google Scholar 
    45.Stokes, N. A. & Burreson, E. M. A sensitive and specific DNA probe for the oyster pathogen Haplosporidium nelsoni. J. Eukaryot. Microbiol. 42, 350–357 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Reece, K. S., Dungan, C. F. & Burreson, E. M. Molecular epizootiology of Perkinsus marinus and P. chesapeaki infections among wild oysters and clams in Chesapeake Bay, USA. Dis. Aquat. Org. 82, 237–248 (2008).CAS 
    Article 

    Google Scholar 
    47.Carnegie, R. B. Status of the Major Oyster Diseases in Virginia, 2009–2012: A Summary of the Annual Oyster Disease Monitoring Program (Virginia Institute of Marine Science, 2013).
    Google Scholar 
    48.Andrews, J. D. & Hewatt, W. G. Oyster mortality studies in Virginia II The fungus disease caused by Dermocystidium marinum in Chesapeake Bay. Ecol. Monogr. 27, 1–26 (1957).Article 

    Google Scholar 
    49.Perkins, F. O. The structure of Perkinsus marinus (Mackin, Owen and Collier, 1950) Levine, 1978 with comments on taxonomy and phylogeny of Perkinsus spp. J. Shellfish Res. 15, 67–87 (1996).
    Google Scholar 
    50.RStudio Team. RStudio: Integrated Development for R. (RStudio, Inc., 2019). http://www.rstudio.com/.51.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.52.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    53.Wickham, H. forcats: Tools for Working with Categorical Variables (Factors). R Package Version 0.5.1. https://CRAN.R-project.org/package=forcats (2021).54.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
    Google Scholar 
    55.Zar, J. H. Biostatistical Analysis 3rd edn. (Prentice Hall, 1996).
    Google Scholar 
    56.Ragone, L. M. & Burreson, E. M. Effect of salinity on infection progression and pathogenicity of Perkinsus marinus in the eastern oyster, Crassostrea virginica (Gmelin). J. Shellfish Res. 12, 1–7 (1993).
    Google Scholar 
    57.Chu, F.-L.E., Volety, A. K. & Constantin, G. A comparison of Crassostrea gigas and Crassostrea virginica: Effects of temperature and salinity on susceptibility to the protozoan parasite, Perkinsus marinus. J. Shellfish Res. 15, 375–380 (1996).
    Google Scholar  More

  • in

    A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress

    Fitting tolerance time versus temperature to build a thermal death time curveThe high coefficients of determination found in the D. melanogaster TDT curves (Fig. 3A) are not uncommon and the exponential relation has consistently been found to provide a good fit of tolerance time vs. temperature in ectotherms3,15,20,22,23,24. Tolerance time vs. temperature data are also well fitted to Arrhenius plots which are based on thermodynamic principles (see for example15,36) and the absence of breakpoints in such plots provides a strong indication (but not direct proof) that the cause of coma/heat failure under the different intensities of acute heat stress is related to the same physiological process regardless whether failure occurs after 10 min or 10 h2,3 (but see “Discussion” section below). Despite the superior theoretical basis of Arrhenius analysis, we proceed with simple linear regressions of log10-transformed tcoma (TDT curve) as this analysis likewise provides a high R2 and is mathematically more straightforward. The physiological cause(s) of ectotherm heat failure are poorly understood37,38 but we argue that they are founded in a common process where heat injury accumulates at a temperature-dependent rate until a species-specific critical dose is attained (area below the curve and above Tc in Fig. 2). Thus, the organism has a fixed amount (dose) of thermally induced stress that it can tolerate before evoking the chosen endpoint. The experienced temperature of the animals then dictates the rate of which this stress is acquired, and accordingly when the endpoint is reached (Fig. 2) It is this reasoning that leads to TDT curves and explains why heat stress can be additive and thus also determines the boundaries of TDT curve modelling.Injury is additive across different stressful assay temperaturesIf heat stress acquired at intense and moderate stress within the span of the TDT curve acts through the same physiological mechanisms or converges to result in the same form of injury, then it is expected that injury is additive at different heat stress intensities. This hypothesis was tested by exposing flies sequentially to two static temperatures (different injury accumulation rates) and observe whether coma occurred as predicted from the summed injury (Fig. 2C). The accumulated heat injury at the two temperatures was found to be additive regardless of the order of temperature exposure (Fig. 3B,C). This finding is consistent with a conceptually similar study using speckled trout which also found strong support for additivity of heat stress at different stressful temperatures13. The exact physiological mechanism of heat injury accumulation is interesting to understand in this perspective, but it is not critical as long as the relation between temperature and injury accumulation rate is known.If injury accumulation is additive irrespective of the order of the heat exposure, we can extend the model to fluctuating temperature conditions. We have previously done this by accurately predicting dynamic CTmax from TDT parameters obtained from static assays for 11 Drosophila species (Fig. 6A, see “Discussion” section below and15). Here we extend this to temperature fluctuations that cannot be described by a simple mathematical ramp function. Specifically, groups of flies were subjected to randomly fluctuating temperatures and the observed tcoma was then compared to tcoma predicted using integration of heat injury based on TDT parameters (Fig. 4). The injury accumulation (Fig. 4C) was calculated by introducing the fluctuating temperature profiles in the associated R-script and the observed and predicted tcoma was found to correlate well (R2  > 0.94) across the 13 groups tested for each sex. These results further support the idea that injury is additive across a range of fluctuating and stressful temperatures and hence that similar physiological perturbations are in play during moderate and intense heat stress. It is important to note that in these experiments, temperatures fluctuated between 34.5 and 42.5 °C and accordingly the flies were never exposed to benign temperatures that could allow repair or hardening (see below).Figure 6adapted from Fig. 4b in15. (B) TDT parameters based on dCTmax from three dynamic tests were used to predict tcoma in static assays. Each point represents an observed vs. predicted value of species- and temperature-specific log10(tcoma). (Inset) Species values of the thermal sensitivity parameter z parameterized from TDT curves based on static assays (x-axis) or dynamic assays (y-axis). The dashed line represents the line of unity in all three panels.Conversion of heat tolerance measures between static and dynamic assays in Drosophila. Data from43. (A) Heat tolerance (dCTmax, d for dynamic assays) plotted against predicted dCTmax derived from species-specific TDT curves created from multiple (9–17) static assays. Data are presented for three different ramping rates (0.05, 0.1 and 0.25 °C min-1). Note that this graph is Full size imageIn conclusion, empirical data (present study;6,13,14,22) support the application of TDT curves to assess heat injury accumulation under fluctuating temperature conditions both in the lab and field for vertebrate and invertebrate ectotherms. Potential applications could be assessment of injury during foraging in extreme and fluctuating environments (e.g. ants in the desert39 or lizards in exposed habitat40) or for other animals experiencing extreme conditions41,42. The associated R-scripts allow assessment of percent lethal damage under such conditions if the model is provided with TDT parameters and information of temperature fluctuations (but see “Discussion” section of model limitations below).Model application for comparison of static versus dynamic dataThere is little consensus on the optimal protocol to assess ectotherm thermal tolerance and many different types of static or dynamic tests have been used to assess heat tolerance. TDT curves represent a mathematical and theoretical approach to reconcile different estimates of tolerance as the derived parameters can subsequently be used to assess heat injury accumulation at different rates (temperatures) and durations13,15,16. Here we provide R-scripts that enable such reconciliation and to demonstrate the ability of the TDT curves to reconcile data from static vs. dynamic assays we used published measurements of heat tolerance for 11 Drosophila species using three dynamic and 9–17 static measurements for each species43. Introducing data from only static assays we derived TDT parameters and subsequently used these to predict dynamic CTmax that were compared to empirically observed CTmax for three ramp rates (Fig. 6A). In a similar analysis, TDT parameters were derived from the three dynamic (ramp) experiments to predict tcoma at different static temperatures which were compared to empirical measures from static assays (Fig. 6B). Both analyses found good correlation between the predicted and observed values regardless whether the TDT curve was parameterized from static or dynamic experiments (Fig. 6). However, predictions from TDT curves based on three dynamic assays were characterised by more variation, particularly when used to assess tolerance time at very short or long durations. Furthermore, D. melanogaster and D. virilis which had the poorest correlation between predicted and observed tcoma in Fig. 6B had values of z from the TDT curves based on dynamic input data that were considerably different from values of z derived from TDT curves based on static assays (Fig. 6B inset). In conclusion TDT curves (and the associated R-scripts) are useful for conversion between static and dynamic assessment of tolerance. The quality of model output depends on the quality and quantity of data used as model input, and in this example the poorer model was parameterized from only three dynamic assays while the stronger model was based on 9–17 static assays (see also “Discussion” section below).Model application for comparison of published dataThermal tolerance is important for defining the fundamental niche of animals1,2,4 and the current anthropogenic changes in climate has reinvigorated the interest in comparative physiology and ecology of thermal limits in ectotherms. Meta-analyses of ectotherm heat tolerance data have provided important physiological, ecological and evolutionary insights5,44,45,46, but such studies are often challenged with comparison of tolerance estimates obtained through very different methodologies.Species tolerance is likely influenced by acclimation, age, sex, diet, etc.47 and also by the endpoint used (onset of spasms, coma, death, etc.27). Nevertheless, we expected heat tolerance of a species to be somewhat constrained45, so here we tested the model by converting literature data for nine species to a single and species-specific estimate of tolerance, sCTmax (1 h), the temperature that causes heat failure in 1 h (Fig. 5). The overwhelming result of this analysis is that TDT parameters are useful to convert static and dynamic heat tolerance measures to a single metric, and accordingly, the TDT model and R-scripts presented here have promising applications for large-scale comparative meta-analyses of ectotherm heat tolerance where a single metric allows for qualified direct comparison of results from different publications and experimental backgrounds. While this is an intriguing and powerful application, we caution that careful consideration should be put into the limitations of this model (see “Discussion” section below).Practical considerations and pitfalls for model interpretationAs shown above it is possible to convert and reconcile different types of heat tolerance measures using TDT parameters and these parameters can also be used to model heat stress under fluctuating field conditions. Modelling and discussion of TDT predictions beyond the boundaries of the input data has recently gained traction (see examples in48,49) but we caution that the potent exponential nature of the TDT curve requires careful consideration as it is both easy and enticing to misuse this model.Input dataThe quality of the model output is dictated by the input used for parameterization. Accordingly, we recommend TDT parameterization using several ( > 5) static experiments that should cover the time and temperature interval of interest, e.g. temperatures resulting in tcoma spanning 10 min to 10 h, thus covering both moderate and intense heat exposure. Such an experimental series can verify TDT curve linearity and allows modelling of temperature impacts across a broad range of temperatures and stress durations13,15,22. It is tempting to use only brief static experiments (high temperatures) for TDT parameterization, but in such cases, we recommend that the resulting TDT curve is only used to describe heat injury accumulation under severe heat stress intensities. Thus, the thermal sensitivity factor z represents a very powerful exponential factor (equivalent to Q10 = 100 to 100,000;15) which should ideally be parametrized over a broad temperature range (see below). We also include a script that allows TDT parametrization from multiple ramping experiments and again we recommend a broad span of ramping rates to cover the time/temperature interval of interest. A drawback of ramping experiments is the relatively large proportion of time spent at benign temperatures where there is no appreciable heat injury accumulation. Thus, dynamic experiments can conveniently use starting temperatures that are close to the temperature where injury accumulation rate surpasses injury repair rate (see “Discussion” section of “true” Tc below, in Supplemental Information and19 for other considerations regarding ramp experiments).A final methodological consideration relates to body-temperature in brief static experiments where the animal will spend a considerable proportion of the experiment in a state of thermal disequilibrium (i.e. it takes time to heat the animal). To avoid this, we recommend direct measurement of body temperature (large animals) or container temperature (small animals), and advise against excessive reliance on data from test temperatures that results in coma in less than 10 min.ExtrapolationMost studies of ectotherm heat tolerance include only a single measure of heat tolerance which is inadequate to parameterize a TDT curve. However, a TDT curve can still be generated from a single measure of tolerance (static or dynamic) if a value of z is assumed (see Supplemental Information). As z differs within species and between phylogenetic groups (Table S115,20), choosing the appropriate value may be difficult and discrepancies between the ‘true’ and assumed z represent a problem that should be approached with care. In Fig. 7A we illustrate this point in a constructed example where a single heat tolerance measurement is sampled from a ‘true’ TDT curve (full line; tcoma = 40 min at 37 °C). Along with this ‘true’ TDT curve we depict the consequences for model predictions if the assumed value of z is misestimated by ± 50%. Extrapolation from the original data point is necessary if an estimate of the temperature that causes coma after 1 h is desired, however due to limited extrapolation (from 40 to 60 min), estimation of sCTmax (1 h) values based on the ‘true’ and z ± 50% are not very different ( 6 h) between heat exposure disrupted additivity, suggesting that injury is repaired at benign temperature50. Injury repair rate is largely understudied but repair rate is generally increasing with temperature51,52,53. It is therefore an intriguing and promising idea to include a temperature-dependent repair function in more advanced modelling of heat injury. Until such repair processes are introduced in the model, we recommend that additivity of heat injury is evaluated critically if it involves periods at temperatures both above and below Tc (i.e. over consecutive days, see also13). An alternative, but not mutually excluding, explanation of increased heat resilience in split-dose experiments relates to the contribution of heat hardening as it is likely that the first heat exposure in a series can induce hardening responses that increase resilience (and thus change the TDT parameters) when a second heat exposure occurs. Such issues of repeated thermal stress have been discussed previously54 but for the purpose of the present study the main conclusion is that simple TDT curve modelling is not applicable to fluctuations bracketing Tc unless this is empirically validated. Future studies could address this issue as inclusion of repair functions would add further promise to the use of TDT curves in modelling of the impacts of temperature fluctuations. More

  • in

    Photoacclimation by phytoplankton determines the distribution of global subsurface chlorophyll maxima in the ocean

    Physical modelThe physical part of the model is a global Oceanic General Circulation Model, Meteorological Research Institute Community Ocean Model version 3 (MRI.COM3)40. The model has horizontal resolutions of 1° in longitude and 0.5° in latitude south of 64° N, and tripolar coordinates are applied north of 64° N. The model is discretized in 51 vertical layers. In the upper 160 m, tracers are calculated at depths of 2.0, 6.5, 12.25, 19.25, 27.5, 37.75, 50.5, 65.5, 82.25, 100.0, 118.2, 137.5, and 157.75 m, and therefore vertical variation in chlorophyll concentration below the grid-scale is not represented in our model. The model was forced with realistic wind stress, surface heat and freshwater fluxes40.Marine ecosystem modelWe developed a marine ecosystem model composed of phytoplankton, zooplankton, nitrate, ammonia, particulate organic nitrogen, dissolved organic nitrogen, dissolved iron (Fed), and particulate iron. Our model is a 3D version of the FlexPFT model27 and is called the FlexPFT-3D model. The main changes of the FlexPFT-3D from original FlexPFT model are the introduction of iron limitation and substitution of the carbon-based phytoplankton biomass in the original with nitrogen-based biomass herein. The iron cycle is based on the nitrogen-, silicon- and iron-regulated Marine Ecosystem Model41 including the process of scavenging and iron input from dust and sediment. Dissolved iron starts from the distribution calculated by the Biological Elemental Cycling model in Misumi et al.42. Nitrate starts from the distribution of World Ocean Database 199843. After the connection of the physical model, a 20 years of historical simulation (1985–2004) is performed. In addition to the standard case with the chlorophyll-specific initial slope of growth versus irradiance, aI, of 0.35 m2 E−1 mol C (g chl)−1, the case studies with aI of 0.5 and 1.0 m2 E−1 mol C (g chl)−1 were implemented. The case studies are calculated from 2003 to 2004, starting from the distributions of biological variables at the end of 2002 in the standard case.Phytoplankton growthThe procedures of numerical integration of phytoplankton concentration are described here. Readers can construct a numerical model using the following equations. The derivations of the following equations from theories are presented by Smith et al.27 (hereafter Smith2016). Values of biological parameters are described in Supplementary Table 1.In accordance with Pahlow’s resource allocation theory28, the FlexPFT model assumes that resources are allocated among structural material, nutrient uptake and, light harvesting (Supplementary Fig. 1a). The fraction of structural material is assumed to be Qs/Q, where Q is the nitrogen cell quota, which is the intracellular nitrogen to carbon ratio (mol N mol C−1), and Qs is the structural cell quota (mol N mol C−1) given as a fixed parameter. The fraction of nutrient uptake is defined as fV (non-dimensional), so that the residual fraction available for light-harvesting is equal to ((1-frac{{Q}_{{rm{s}}}}{Q}-{f}_{{rm{v}}})). Optimal uptake kinetics further sub-divides the resources allocated to nutrient uptake between surface uptake sites (affinity) and enzymes for assimilation (maximum uptake rate), the fraction of which is given by fA and (1 − fA), respectively. Under nutrient-deficient conditions, the number of surface uptake sites (and hence affinity) increases, while enzyme concentration (hence, maximum uptake rate) decreases. The FlexPFT model assumes instantaneous resource allocation, which means that resource allocation tracks temporal environmental change with no lag time. It has elsewhere been demonstrated that an instantaneous acclimation model provides an accurate approximation of a fully dynamic acclimation model44.We assume that acclimation responds to daily-averaged environmental conditions, which are used to calculate the optimal values of fV, fA, and Q as ({f}_{V}^{o}), ({f}_{A}^{o}), and ({Q}^{o}). The optimal values are estimated at the beginning of a day and are retained for the following 24 h. The daily-averaged environmental variables of the seawater temperature, T (°C), intensity of photosynthetically active radiation, I, nitrogen concentration, [N], which is the sum of nitrate and ammonia concentrations, and dissolved iron concentration, [Fed] are defined as (bar{T}), (bar{I}), ([bar{{rm{N}}}]), and ([{overline{{rm{Fe}}}}_{{rm{d}}}]), respectively. Based on the assumption that diurnal variation of temperature and nutrient are very small, T, [N] and [Fed] at the beginning of a day are used as (bar{T}), ([bar{{rm{N}}}]), and ([{overline{{rm{Fe}}}}_{{rm{d}}}]), respectively. For (bar{I}), we use the average in sunshine duration in a day, which is slightly modified from the daily average in Smith2016.Phytoplankton growth rate per unit carbon biomass (day−1), μ, is given by$$mu ={hat{mu }}^{I}left(1-frac{{Q}_{{rm{s}}}}{{Q}^{o}}-{f}_{V}^{o}right)-{zeta }^{N}{f}_{V}^{o}{hat{V}}^{N},$$
    (1)
    where ({hat{mu }}^{I}) is the potential carbon fixation rate per unit carbon biomass (day−1), ({zeta }^{N}) is the energetic respiratory cost of assimilating inorganic nitrogen (0.6 mol C mol N−1), and ({hat{V}}^{N}) is the potential nitrogen uptake rate per unit carbon biomass (mol N mol C−1 day−1). Equation (1) represents the balance of net carbon fixation and respiration costs of nitrogen uptake, which are proportional to the fraction of resource allocation. ({hat{V}}^{N}([bar{{rm{N}}}],,bar{T})) is$${hat{V}}^{N}([bar{{rm{N}}}],bar{T})=frac{{hat{V}}_{0}[bar{{rm{N}}}]}{(frac{{hat{V}}_{0}}{{hat{A}}_{0}})+2sqrt{frac{{hat{V}}_{0}[bar{{rm{N}}}]}{{hat{A}}_{0}}}+[bar{{rm{N}}}]},$$
    (2)
    where ({hat{A}}_{0}) and ({hat{V}}_{0}) are the maximum value of affinity and maximum nitrogen uptake rate.From here, we will explain how the optimized values such as ({f}_{V}^{o}), ({f}_{A}^{o}), and ({Q}^{o}) are calculated. The optimal fraction of resource allocation to affinity, ({f}_{A}^{o}), is given by$${f}_{A}^{o}={[1+sqrt{frac{{hat{A}}_{0}[bar{{rm{N}}}]}{F(bar{T}){hat{V}}_{0}}}]}^{-1},$$
    (3)
    which is derived by substituting Eqs. (18) and (19) in Smith2016 into Eq. (17). (F(bar{T})) is temperature dependence, defined as$$F(bar{T})=exp {-frac{{E}_{a}}{R}[frac{1}{bar{T}+298}-frac{1}{{T}_{{rm{ref}}}+298}],},$$
    (4)
    where Ea is the parameter of the activation energy of 4.8 × 104 J mol−1, R is the gas constant of 8.3145 J (mol K)−1, and Tref is the reference temperature of 20 °C.Optimization for light-harvesting is described below. The potential carbon fixation rate per unit carbon biomass (day−1), ({hat{mu }}^{I},)(day−1), in Eq. (1) is$${hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])={hat{mu }}_{0}frac{[{overline{{rm{Fe}}}}_{{rm{d}}}]}{[{overline{{rm{Fe}}}}_{{rm{d}}}]+{k}_{{rm{Fe}}}}S(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])F(bar{T}),$$
    (5)
    where ({hat{mu }}_{0}) and kFe are the maximum carbon fixation rate and half saturation constant for iron, respectively. S specifies the dependence of light. Defining ({hat{mu }}_{0}^{{rm{limFe}}}={hat{mu }}_{0}frac{[{overline{{rm{Fe}}}}_{{rm{d}}}]}{[{overline{{rm{Fe}}}}_{{rm{d}}}]+{k}_{{rm{Fe}}}}),$${hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])={hat{mu }}_{0}^{{rm{limFe}}}S(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}],)F(bar{T}).,$$
    (6)
    Iron limitation is imposed by substituting ({hat{mu }}_{0}) to ({hat{mu }}_{0}^{{rm{limFe}}}) in all equations in Smith2016. S is defined as$$S(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}],)=1-exp {frac{-{a}_{I}{hat{Theta }}^{o}bar{I}}{{hat{mu }}_{0}^{{rm{limFe}}}F(bar{T})}},$$
    (7)
    where ({a}_{I}) is the chlorophyll-specific initial slope of growth versus irradiance. ({hat{Theta }}^{o}), optimal chloroplast chl:phyC (g chl (mol C)−1), is$${hat{Theta }}^{o} = ; frac{1}{{zeta }^{{rm{chl}}}}+frac{{hat{mu }}_{0}^{{rm{limFe}}}}{{a}_{I}bar{I}}{1-{W}_{0}[(1+frac{{R}_{M}^{{rm{chl}}}}{{L}_{{rm{d}}}{hat{mu }}_{0}^{{rm{limFe}}}})exp (1+frac{{a}_{I}bar{I}}{{zeta }^{{rm{chl}}}{hat{mu }}_{0}^{{rm{limFe}}}}),],},(bar{I} > {I}_{0})\ {hat{Theta }}^{o} = ; 0,(bar{I}le {I}_{0}),$$
    (8)
    where constant parameters ({{rm{zeta }}}^{{rm{chl}}}) and ({R}_{M}^{{rm{chl}}}) are the respiratory cost of photosynthesis (mol C (g chl)−1) and the loss rate of chlorophyll (day−1), respectively. Ld is the fractional day length in 24 h. W0 is the zero-branch of Lambert’s W function. I0 is the threshold irradiance below which the respiratory costs overweight the benefits of producing chlorophyll:$${I}_{0}=frac{{zeta }^{{rm{chl}}}{R}_{M}^{{rm{chl}}}}{{L}_{{rm{d}}}{a}_{I}}.,$$
    (9)
    The optimal fraction of resource allocation to nutrient uptake, ({f}_{V}^{o}), is$${f}_{V}^{o}=frac{{hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}]){Q}_{{rm{s}}}}{{hat{V}}^{N}([bar{{rm{N}}}],bar{T})}[-1+sqrt{{[{Q}_{{rm{s}}}(frac{{hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])}{{hat{V}}^{N}([bar{{rm{N}}}],bar{T})}+{zeta }^{N})]}^{-1}+1},]$$
    (10)
    The optimal nitrogen cell quota, ({Q}^{o}) is$${Q}^{o}={Q}_{{rm{s}}}[1+sqrt{1+{[{Q}_{{rm{s}}}(frac{{hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])}{{hat{V}}^{N}([bar{{rm{N}}}],bar{T})}+{zeta }^{N})]}^{-1}},]$$
    (11)
    Optimal cellular chl:phyC (g chl (mol C)−1), ({Theta }^{o}), is$${Theta }^{o}=(1-frac{{Q}_{{rm{s}}}}{{Q}^{o}}-{f}_{V}^{o}){hat{Theta }}^{o}$$
    (12)
    which is the multiplication of the fraction of resource allocation to light-harvesting and optimal chloroplast chl:phyC. The cellular chl:phyC and chloroplast chl:phyC in Figs. 1 and 2 are optimal cellular chl:phyC, ({Theta }^{o}), and optimal chloroplast chl:phyC, ({hat{Theta }}^{o}), respectively. The relation in Eq. (12) is displayed in Fig. 1i-n. If we artificially turn off the optimization of resource allocation by applying the constant ({Q}^{o}) and ({f}_{V}^{o}) to the all grid points, optimal cellular chl:phyC (Fig. 1i,j) only depends on optimal chloroplast chl:phyC (Fig. 1k, l), and therefore significant variation of SCM depth across the equatorial, subtropical, and subpolar regions is not reproduced.In the above equations, Eqs. (3), (8), (10), (11), and (12), optimized values related to acclimation processes are obtained and then used in calculating the phytoplankton growth rate. Phytoplankton growth rate per unit carbon biomass (day−1), (mu), in Eq. (1) is calculated at each time step:$$mu (I,T,[{rm{N}}],[{{rm{Fe}}}_{{rm{d}}}])=frac{{hat{mu }}^{I}(I,T,[{{rm{Fe}}}_{{rm{d}}}]){f}_{V}^{o}(1-{f}_{A}^{o}){hat{V}}_{0}{f}_{A}^{o}{hat{A}}_{0}[{rm{N}}]}{{hat{mu }}^{I}(I,T,[{{rm{Fe}}}_{{rm{d}}}]){Q}_{0}(1-{f}_{A}^{o}){hat{V}}_{0}+({hat{mu }}^{I}(I,T,[{{rm{Fe}}}_{{rm{d}}}]){Q}_{0}+{f}_{V}^{o}(1-{f}_{A}^{o}){hat{V}}_{0}){f}_{A}^{o}{hat{A}}_{0}[{rm{N}}]},$$
    (13)
    where ({hat{mu }}^{I}(I,,T,,[{{rm{Fe}}}_{{rm{d}}}])) is obtained by substituting I, T, and [Fed] for (bar{I}), (bar{{rm{T}}}), and ([{overline{{rm{Fe}}}}_{{rm{d}}}]) in Eq. (5), respectively. Note that the model calculates circadian variation in solar irradiance, I, and therefore the phytoplankton growth rate, μ, reaches its maximum at noon local time and is zero during night. On the other hand, phytoplankton optimization is assumed to respond to daily-averaged conditions. The FlexPFT model introduces phytoplankton respiration proportional to chlorophyll content, which is another important originality of Pahlow’s resource allocation theory30,33.The carbon biomass-specific respiratory costs of maintaining chlorophyll, Rchl, is$${R}^{{rm{chl}}}(I,T,[{rm{N}}],[{{rm{Fe}}}_{{rm{d}}}])=({hat{mu }}^{I}(I,T,[{{rm{Fe}}}_{{rm{d}}}])+{R}_{M}^{{rm{chl}}}){{rm{zeta }}}^{{rm{chl}}}{Theta }^{o}.,$$
    (14)
    The growth rate per unit nitrogen biomass, ({mu }_{{rm{N}}}), is equal to that per unit carbon biomass, μ. Instantaneous acclimation assumes that the quota of nitrogen to carbon biomass obtained by phytoplankton growth is equal to the nitrogen quota in a cell: (frac{{mu }_{{rm{N}}}[{{rm{p}}}^{{rm{N}}}]}{mu [{{rm{p}}}^{{rm{C}}}]}={Q}^{o}), where [pC] and [pN] are phytoplankton carbon and nitrogen concentration in a cell, respectively. Since (frac{[{{rm{p}}}^{{rm{N}}}]}{[{{rm{p}}}^{C}]}={Q}^{o}), ({mu }_{{rm{N}}}=mu). When temporal ({Q}^{o}) change occurs, to satisfy the mass conservation, carbon or nitrogen biomass is adjusted with the other fixed. The FlexPFT fixes carbon biomass, while the FlexPFT-3D fixes nitrogen biomass to the temporal ({Q}^{o}) change.The rate of change in the phytoplankton nitrogen concentration, [pN], except for the advection and diffusion terms is given by the following equation:$$frac{partial [{{rm{p}}}^{{rm{N}}}]}{partial t}=mu [{{rm{p}}}^{{rm{N}}}]-({R}^{{rm{chl}}}+{R}^{{rm{cnst}}})[{{rm{p}}}^{{rm{N}}}]-{M}_{{rm{p}}}{[{{rm{p}}}^{{rm{N}}}]}^{2}-({rm{extracellular}},{rm{excretion}})-({rm{grazing}}),$$
    (15)
    where Rcnst and Mp are the coefficient of respiration not related to chlorophyll concentration and mortality rate coefficient, respectively. The extracellular excretion is$$({rm{extracellular}},{rm{excretion}})={gamma }_{{rm{ex}}}[(mu -{R}^{{rm{chl}}})[{{rm{p}}}^{{rm{N}}}]],$$
    (16)
    where ({gamma }_{{rm{ex}}}) is the coefficient of extracellular excretion. The grazing term is represented by$$({rm{grazing}})={G}_{20deg }F(T)[{{rm{z}}}^{{rm{N}}}]frac{{[{{rm{p}}}^{{rm{N}}}]}^{{a}_{{rm{H}}}}}{{({k}_{{rm{H}}})}^{{a}_{{rm{H}}}}+{[{{rm{p}}}^{{rm{N}}}]}^{{a}_{{rm{H}}}}},$$
    (17)
    where G20deg is the maximum grazing rate at 20 °C, and [zN] is zooplankton concentration. Temperature dependency, F(T), is obtained by substituting T for (bar{T}) in Eq. (4). ({a}_{{rm{H}}}) is the parameter controlling Holling-type grazing, which takes a value from 1 to 2. kH is the grazing coefficient in Holling-type grazing.Once [pN] is calculated, phytoplankton carbon concentration (mol C L−1), and chlorophyll concentration (g chl L−1) are uniquely determined in an environmental condition, without prognostic calculation. Therefore, an instantaneous acclimation model can represent stoichiometric flexibility with lower computational costs compared with a dynamic acclimation model44.Model validationThe spatial pattern of simulated annually mean chlorophyll at the ocean surface agrees with that of satellite observation45 (Supplementary Fig. 3). The model reproduced the contrast of the surface chlorophyll concentration between subtropical and subpolar regions, although simulated surface chlorophyll concentration in subtropical regions is lower than that of the observation partly due to the lack of nitrogen fixers. Nitrogen fixation is estimated to support about 30–50% of carbon export in subtropical regions46,47. Simulated surface chlorophyll distribution in the Pacific equatorial region is close to the observed.Our model properly simulates the meridional distribution of nitrate compared with that of observations48 (Supplementary Fig. 4). The simulated horizontal distribution of primary production is consistent with that estimated by satellite data9,49 (Supplementary Fig. 5), although simulated primary production is underestimated in subtropical regions, associated with the underestimation of surface chlorophyll in these regions (Supplementary Fig. 3). More

  • in

    The extracellular contractile injection system is enriched in environmental microbes and associates with numerous toxins

    eCIS are encoded by 1.9% and 1.2% of sequenced bacteria and archaea, respectively, with a highly biased taxonomic distributionFirst, we were interested in identifying all eCIS loci in a large genomic dataset. We compiled a set of 64,756 microbial isolate genomes retrieved from Integrated Microbial Genomes (Supplementary Data 1)16. To identify core component homologs from known systems, we searched for genes with known eCIS-associated pfam annotations (Supplementary Table 1). To supplement this, we also annotated homologous genes ourselves by searching using the Hidden Markov Model (HMM) profiles from a recent publication1,17. We defined putative eCIS operons as gene cassettes that included these multiple eCIS core genes in close proximity and were not bacteriophage, T6SS, or R-type pyocins (Supplementary Table 1, Methods). Overall, we identified eCIS operons encoded in 1230 (1.9%) bacteria and 19 (1.2%) archaea from our genomic repository (Supplementary Data 2–3). We identified two core genes, Afp8 and Afp11, that co-occur in eCIS operons across 98.7% of loci and used their protein sequences to construct an eCIS phylogenetic gene tree (Fig. 1a, Supplementary Figs. 2–3, Supplementary Data 4). Afp8 and Afp11 alone resulted in phylogenetically similar trees (Supplementary Fig. 4) and the trees agree with eCIS division into subtype I and II that were defined in a previous eCIS analysis17 (Supplementary Fig. 5). eCIS is scattered across the prokaryotic diversity with presence in 14 bacterial phyla and one archaeal phylum. The incongruence between this tree and the genomic phylogeny suggests that eCIS undergo HGT frequently, as was proposed before1,17. The previously experimentally characterized eCISs are located within a narrow clade on the eCIS tree, pointing to the possibility that other eCIS particles may play more diverse ecological roles (Fig. 1a, Supplementary Fig. 2).Fig. 1: Taxonomic Distribution of eCIS-encoding microbes.a A phylogenetic tree of eCIS across the microbial world. eCIS core genes Afp8 and Afp11 from each operon were concatenated, aligned, and used to construct the phylogenetic tree. The Domain and Phylum corresponding to each leaf are indicated in the inner and outer rings, respectively. Scaffolds encoding eCIS that have been predicted to be plasmids using Deeplasmid were marked with black triangles. Previously experimentally investigated eCIS are marked on their respective leaves (2 o’clock). Within the tree MACS, AFP, and PVC are abbreviations for Metamorphosis-associated Contractile Structures, Antifeeding Prophage, and Photorhabdus Virulence Cassettes. b eCIS distribution in different genera. We calculated the eCIS distribution across genera using a Fisher exact test. The Odds Ratio represents the enrichment or depletion magnitude, with hotter colors representing enrichment, and colder colors representing depletion. Calculated p values were corrected for multiple testing using FDR to yield minus log10 q values, shown in shades of gray. Only selected Genera are shown. Source data are provided in Supplementary Data 1–2,5–6.Full size imageNext, we looked for genetic mechanisms that may mediate the eCIS HGT. Using Deeplasmid, a new plasmid prediction tool that we developed18, we identified that 7.6% of eCIS are likely plasmid-borne (Fig. 1a and Supplementary Fig. 6, Supplementary Data 5, Methods). In other cases, we found a clear signature of eCIS operon integration into a specific bacterial chromosome (Supplementary Fig. 7). For example, we identified a likely homologous recombination event between identical tRNA genes, a classical integration site19 (Supplementary Fig. 7b). These genomic integration events and the plasmid-borne eCIS operons shed light on the mechanisms through which eCIS loci have been horizontally propagated in microbial genomes.eCIS displays a highly biased taxonomic distributionGiven the propensity of eCIS to transfer between microbes as phylogenetically distant as bacteria and archaea, we were surprised by its scarcity in microbial genomes. We tested if eCIS loci are homogeneously distributed across microbial taxa and found that eCIS are mostly constrained to particular taxa (Fig. 1b, Supplementary Data 6). Strikingly, we found that it is present in 100% (18/18) of Photorhabdus genomes in our dataset (Fisher exact test, odds ratio = infinity, q value = 2.97e−28), 89% of sequenced Chitinophaga (odds ratio = 276, q value = 1.69e−35), 86% of sequenced Dickeya (odds ratio = 211, q value = 3.78e−18), and 69% of sequenced Algoriphagus (odds ratio = 73, q value = 1.99e−24). These genera are known as environmental microbes; Photorhabdus is a commensal of entomopathogenic nematodes20, Chitinophaga is a soil microbe and a fungal endosymbiont21, Dickeya is a plant and pea aphid pathogen22,23, and Algoriphagus is an aquatic or terrestrial microbe24,25,26,27,28. In contrast, eCIS is strongly depleted from the most cultured and sequenced genera of Gram-positive and negative human pathogens, including Staphylococcus, Escherichia, Salmonella, Streptococcus, Acinetobacter, and Klebsiella. Strikingly, within these genera, for which our repository had 18,355 genomes, eCIS was totally absent (odds ratio = 0, q value ≤ 3.86E-16 for each one of these genera), suggesting a very potent purifying selection acting against eCIS integration into these microbial genomes, despite the eCIS operons’ tendency for extensive lateral transfer and its presence in other host-associated systems. Interestingly, 146 genomes, mostly from Photorhabdus, Dickeya, Actinokineospora, Streptomyces, Algoriphagus, Chitinophaga, Flavobacterium, and Calothrix genera, were found to contain more than one eCIS operon, ranging from 2 to 5 copies per genomes (Supplementary Data 7).eCIS presence is highly correlated with specific ecosystems, microbial lifestyles, and microbial hostsGiven the strong eCIS taxonomic bias we identified, we were curious to know if we could further associate eCIS with specific ecological features. To this end, we retrieved metadata available for all sequenced genomes in our repository (Methods). These traits include the microbial isolation site, ecosystem and habitat, microbial lifestyle and physiology, and the organisms hosting the microbes (Supplementary Data 8). We calculated the correlation of eCIS presence with certain microbial traits to identify significant enrichment and depletion patterns. This was done using a naïve enrichment test (Fisher exact test) together with a phylogeny-aware test, Scoary29, which is used to correct for the phylogenetic bias of the isolate genomes. Using this test we quantify to what extent the eCIS presence in a genome correlates with a certain trait, independently of the microbial phylogeny (Fig. 2, Supplementary Fig. 8). Notably, eCIS is positively correlated with terrestrial and aquatic environments, such as soil, sediments, lakes, and coasts, but is depleted from food production venues. In terms of microbial lifestyle and physiology, eCISs are enriched in environmental microbes, mostly symbiotic, and are depleted from pathogens (the vast majority of which were isolated from humans). eCISs are enriched in aerobic microbes that dwell in mild and cold temperatures. In general, the eCIS-encoding microbes tend to associate with terrestrial hosts including insects, nematodes, annelids, protists, fungi, and plants, and in aquatic hosts such as fish, sponges, and molluscs. Intriguingly, we detected a strong depletion from bacteria that were isolated from birds and mammals, including humans. We did find some eCIS isolated from bacteria associated with humans, but sparse and statistically depleted (Supplementary Fig. 8). Looking closer we also see that the operon is depleted from all tissues in which the human microbiome is abundant: oral and digestive systems, skin, and the urogenital tract. However, we detected a mild eCIS enrichment in the human gut commensal Bacteroides (Fig. 1b) and Parabacteroidetes genera. Bacteroides was recently reported by the Shikuma group as being eCIS-rich30.Fig. 2: eCIS-encoding microbes’ lifestyle and isolation.A Fisher exact test combined with a modified version of Scoary was used to perform a phylogeny-aware analysis of eCIS-encoding microbes’ metadata. The Odds Ratio represents the enrichment or depletion magnitude, with hotter colors representing enrichment, and colder colors representing depletion. The negative log10 of the q-values, shown in shades of gray, are corrected for multiple hypothesis testing. One q-value corresponds to the statistical significance of a two-sided Fisher exact test, and the other represents the same for the Scoary pairwise comparison test. Source Data are provided in Supplementary Data 8.Full size imageWe also see that eCIS is clearly associated with larger bacterial genomes in five bacterial phyla (Supplementary Fig. 9), although small genome endosymbionts are found to contain eCIS as well, for example, the Candidatus Regiella insecticola LSR1, which harbours an eCIS even though its genome size is ~2 Mbps and it contains 10 is defined “Core”, 4–10 is “Shell”, More

  • in

    Lifetime stability of social traits in bottlenose dolphins

    1.Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Sinn, D. L., Apiolaza, L. A. & Moltschaniwskyj, N. A. Heritability and fitness-related consequences of squid personality traits. J. Evol. Biol. 19, 1437–1447 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: heritability of personality. Proc. R. Soc. B Biol. Sci. 282, 20142201 (2015).Article 

    Google Scholar 
    4.Hensley, N. M., Cook, T. C., Lang, M., Petelle, M. B. & Blumstein, D. T. Personality and habitat segregation in giant sea anemones (Condylactis gigantea). J. Exp. Mar. Biol. Ecol. 426–427, 1–4 (2012).Article 

    Google Scholar 
    5.Holtmann, B., Santos, E. S. A., Lara, C. E. & Nakagawa, S. Personality-matching habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype‒environment covariance. Proc. R. Soc. B Biol. Sci. 284, 20170943 (2017).6.Boyer, N., Réale, D., Marmet, J., Pisanu, B. & Chapuis, J.-L. Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus. J. Anim. Ecol. 79, 538–547 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Cockrem, J. F. Corticosterone responses and personality in birds: Individual variation and the ability to cope with environmental changes due to climate change. Gen. Comp. Endocrinol. 190, 156–163 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Villegas‐Ríos, D., Réale, D., Freitas, C., Moland, E. & Olsen, E. M. Personalities influence spatial responses to environmental fluctuations in wild fish. J. Anim. Ecol. 87, 1309–1319 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Trnka, A., Požgayová, M., Samaš, P. & Honza, M. Repeatability of host female and male aggression towards a brood parasite. Ethology 119, 907–917 (2013).Article 

    Google Scholar 
    11.Bohn, S. J. et al. Personality predicts ectoparasite abundance in an asocial sciurid. Ethology 123, 761–771 (2017).Article 

    Google Scholar 
    12.Ballew, N. G., Mittelbach, G. G. & Scribner, K. T. Fitness consequences of boldness in juvenile and adult largemouth bass. Am. Nat. 189, 396–406 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Seyfarth, R. M., Silk, J. B. & Cheney, D. L. Variation in personality and fitness in wild female baboons. Proc. Natl Acad. Sci. 109, 16980–16985 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Twiss, S. D., Cairns, C., Culloch, R. M., Richards, S. A. & Pomeroy, P. P. Variation in female grey seal (Halichoerus grypus) reproductive performance correlates to proactive-reactive behavioural types. PLoS ONE 7, e49598 (2012).15.Sinn, D. L., Gosling, S. D. & Moltschaniwskyj, N. A. Development of shy/bold behaviour in squid: context-specific phenotypes associated with developmental plasticity. Anim. Behav. 75, 433–442 (2008).Article 

    Google Scholar 
    16.Monceau, K. et al. Larval personality does not predict adult personality in a holometabolous insect. Biol. J. Linn. Soc. 120, 869–878 (2017).Article 

    Google Scholar 
    17.Wilson, A. D. M. & Krause, J. Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts? Behav. Ecol. 23, 1316–1323 (2012).Article 

    Google Scholar 
    18.Brodin, T. Behavioral syndrome over the boundaries of life—carryovers from larvae to adult damselfly. Behav. Ecol. 20, 30–37 (2009).Article 

    Google Scholar 
    19.Cabrera, D., Nilsson, J. R. & Griffen, B. D. The development of animal personality across ontogeny: a cross-species review. Anim. Behav. 173, 137–144 (2021).Article 

    Google Scholar 
    20.Brommer, J. E. & Class, B. The importance of genotype-by-age interactions for the development of repeatable behavior and correlated behaviors over lifetime. Front. Zool. 12, S2 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: a meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.López, B. D. When personality matters: personality and social structure in wild bottlenose dolphins, Tursiops truncatus. Anim. Behav. 163, 73–84 (2020).Article 

    Google Scholar 
    23.Yoshida, K. C. S., Meter, P. E. V. & Holekamp, K. E. Variation among free-living spotted hyenas in three personality traits. Behaviour 153, 1665–1722 (2016).Article 

    Google Scholar 
    24.Kulahci, I. G., Ghazanfar, A. A. & Rubenstein, D. I. Consistent individual variation across interaction networks indicates social personalities in lemurs. Anim. Behav. 136, 217–226 (2018).Article 

    Google Scholar 
    25.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B Biol. Sci. 271, 847–852 (2004).Article 

    Google Scholar 
    26.Polverino, G., Cigliano, C., Nakayama, S. & Mehner, T. Emergence and development of personality over the ontogeny of fish in absence of environmental stress factors. Behav. Ecol. Sociobiol. 70, 2027–2037 (2016).Article 

    Google Scholar 
    27.Gyuris, E., Feró, O. & Barta, Z. Personality traits across ontogeny in firebugs, Pyrrhocoris apterus. Anim. Behav. 84, 103–109 (2012).Article 

    Google Scholar 
    28.Stanley, C. R., Mettke-Hofmann, C. & Preziosi, R. F. Personality in the cockroach Diploptera punctata: Evidence for stability across developmental stages despite age effects on boldness. PLOS ONE 12, e0176564 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Stamps, J. & Groothuis, T. G. G. The development of animal personality: relevance, concepts and perspectives. Biol. Rev. 85, 301–325 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Groothuis, T. G. G. & Trillmich, F. Unfolding personalities: the importance of studying ontogeny. Dev. Psychobiol. 53, 641–655 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Wuerz, Y. & Krüger, O. Personality over ontogeny in zebra finches: long-term repeatable traits but unstable behavioural syndromes. Front. Zool. 12, S9 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Petelle, M. B., McCoy, D. E., Alejandro, V., Martin, J. G. A. & Blumstein, D. T. Development of boldness and docility in yellow-bellied marmots. Anim. Behav. 86, 1147–1154 (2013).Article 

    Google Scholar 
    33.Urszán, T. J., Török, J., Hettyey, A., Garamszegi, L. Z. & Herczeg, G. Behavioural consistency and life history of Rana dalmatina tadpoles. Oecologia 178, 129–140 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Suomi, S. J., Novak, M. A. & Well, A. Aging in rhesus monkeys: Different windows on behavioral continuity and change. Dev. Psychol. 32, 1116 (1996).Article 

    Google Scholar 
    35.Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Cote, J. & Clobert, J. Social personalities influence natal dispersal in a lizard. Proc. R. Soc. B Biol. Sci. 274, 383–390 (2007).CAS 
    Article 

    Google Scholar 
    37.Johnson, J. C. & Sih, A. Precopulatory sexual cannibalism in fishing spiders (Dolomedes triton): a role for behavioral syndromes. Behav. Ecol. Sociobiol. 58, 390–396 (2005).Article 

    Google Scholar 
    38.Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Brent, L. J. N. et al. Genetic origins of social networks in rhesus macaques. Sci. Rep. 3, 1042 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Ellis, S., Snyder-Mackler, N., Ruiz-Lambides, A., Platt, M. L. & Brent, L. J. N. Deconstructing sociality: the types of social connections that predict longevity in a group-living primate. Proc. R. Soc. B Biol. Sci. 286, 20191991 (2019).Article 

    Google Scholar 
    41.Stanton, M. A. & Mann, J. Early social networks predict survival in wild bottlenose dolphins. PLoS ONE 7, e47508 (2012).42.Silk, J. B., Alberts, S. C. & Altmann, J. Social relationships among adult female baboons (Papio cynocephalus) II. Variation in the quality and stability of social bonds. Behav. Ecol. Sociobiol. 61, 197–204 (2006).Article 

    Google Scholar 
    43.Seyfarth, R. M. & Cheney, D. L. The evolutionary origins of friendship. Annu. Rev. Psychol. 63, 153–177 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Aplin, L. M. et al. Consistent individual differences in the social phenotypes of wild great tits, Parus major. Anim. Behav. 108, 117–127 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Wilson, A. D. M., Krause, S., Dingemanse, N. J. & Krause, J. Network position: a key component in the characterization of social personality types. Behav. Ecol. Sociobiol. 67, 163–173 (2013).Article 

    Google Scholar 
    46.Formica, V., Wood, C., Cook, P. & Brodie, E. Consistency of animal social networks after disturbance. Behav. Ecol. 28, 85–93 (2017).Article 

    Google Scholar 
    47.Rankin, R. W. et al. The role of weighted and topological network information to understand animal social networks: a null model approach. Anim. Behav. 113, 215–228 (2016).Article 

    Google Scholar 
    48.Strickland, K. & Frère, C. H. Predictable males and unpredictable females: repeatability of sociability in eastern water dragons. Behav. Ecol. 29, 236–243 (2018).Article 

    Google Scholar 
    49.Karniski, C., Krzyszczyk, E. & Mann, J. Senescence impacts reproduction and maternal investment in bottlenose dolphins. Proc. R. Soc. B Biol. Sci. 285, 20181123 (2018).Article 

    Google Scholar 
    50.Mann, J. Maternal Care and Offspring Development in Odontocetes. In: Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B.) 95–116 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-16663-2_5.51.Stanton, M. A. & Mann, J. Shark Bay Bottlenose Dolphins: A Case Study for Defining and Measuring Sociality. In: Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies (eds. Yamagiwa, J. & Karczmarski, L.) 115–126 (Springer, 2014). https://doi.org/10.1007/978-4-431-54523-1_6.52.Frère, C. H. et al. Social and genetic interactions drive fitness variation in a free-living dolphin population. Proc. Natl Acad. Sci. 107, 19949–19954 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Frère, C. H. et al. Home range overlap, matrilineal and biparental kinship drive female associations in bottlenose dolphins. Anim. Behav. 80, 481–486 (2010).Article 

    Google Scholar 
    54.Tsai, Y.-J. J. & Mann, J. Dispersal, philopatry, and the role of fission-fusion dynamics in bottlenose dolphins. Mar. Mammal. Sci. 29, 261–279 (2013).Article 

    Google Scholar 
    55.Galezo, A. A., Krzyszczyk, E. & Mann, J. Sexual segregation in Indo-Pacific bottlenose dolphins is driven by female avoidance of males. Behav. Ecol. 29, 377–386 (2018).Article 

    Google Scholar 
    56.Smith, J. E., Memenis, S. K. & Holekamp, K. E. Rank-related partner choice in the fission–fusion society of the spotted hyena (Crocuta crocuta). Behav. Ecol. Sociobiol. 61, 753–765 (2007).Article 

    Google Scholar 
    57.Connor, R. C., Smolker, R. A. & Richards, A. F. Two levels of alliance formation among male bottlenose dolphins (Tursiops sp.). Proc. Natl Acad. Sci. 89, 987–990 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Smolker, R. A., Richards, A. F., Connor, R. C. & Pepper, J. W. Sex differences in patterns of association among indian ocean bottlenose dolphins. Behaviour 123, 38–69 (1992).Article 

    Google Scholar 
    59.Gibson, Q. A. & Mann, J. The size, composition and function of wild bottlenose dolphin (Tursiops sp.) mother–calf groups in Shark Bay, Australia. Anim. Behav. 76, 389–405 (2008).Article 

    Google Scholar 
    60.Mann, J., Stanton, M. A., Patterson, E. M., Bienenstock, E. J. & Singh, L. O. Social networks reveal cultural. Behav. tool.-using dolphins. Nat. Commun. 3, 980 (2012).
    Google Scholar 
    61.Wolak, M. E., Fairbairn, D. J. & Paulsen, Y. R. Guidelines for estimating repeatability. Methods Ecol. Evol. 3, 129–137 (2012).Article 

    Google Scholar 
    62.Villemereuil, P., de, Gimenez, O. & Doligez, B. Comparing parent–offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits. Methods Ecol. Evol. 4, 260–275 (2013).Article 

    Google Scholar 
    63.Mann, J. Establishing trust: Sociosexual behaviour among Indian Ocean bottlenose dolphins and the development of male-male bonds. In Homosexual Behaviour in Animals: An Evolutionary Perspective (eds Vasey, P. & Sommer, V.) Chapter 4, pp. 107–130 (Cambridge University Press, 2006).64.Carter, K. D., Seddon, J. M., Frère, C. H., Carter, J. K. & Goldizen, A. W. Fission–fusion dynamics in wild giraffes may be driven by kinship, spatial overlap and individual social preferences. Anim. Behav. 85, 385–394 (2013).Article 

    Google Scholar 
    65.Murphy, D., Mumby, H. S. & Henley, M. D. Age differences in the temporal stability of a male African elephant (Loxodonta africana) social network. Behav. Ecol. 31, 21–31 (2020).
    Google Scholar 
    66.Bruck, J. N. Decades-long social memory in bottlenose dolphins. Proc. R. Soc. B Biol. Sci. 280, 20131726 (2013).Article 

    Google Scholar 
    67.Lukas, D. & Clutton‐Brock, T. Social complexity and kinship in animal societies. Ecol. Lett. 21, 1129–1134 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Schradin, C. Intraspecific variation in social organization by genetic variation, developmental plasticity, social flexibility or entirely extrinsic factors. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120346 (2013).Article 

    Google Scholar 
    69.Kappeler, P. M. & van Schaik, C. P. Evolution of primate social systems. Int. J. Primatol. 23, 707–740 (2002).Article 

    Google Scholar 
    70.Roberts, B. W. & DelVecchio, W. F. The rank-order consistency of personality traits from childhood to old age: a quantitative review of longitudinal studies. Psychol. Bull. 126, 3–25 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Terracciano, A., Costa, P. T. & McCrae, R. R. Personality plasticity after age 30. Pers. Soc. Psychol. Bull. 32, 999–1009 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Costa, P. T., McCrae, R. R. & Löckenhoff, C. E. Personality across the life span. Annu. Rev. Psychol. 70, 423–448 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Harris, M. A. Personality stability from age 14 to age 77 years. Psychol. Aging 31, 862 (2016).74.Trochet, A. et al. Evolution of sex-biased dispersal. Q. Rev. Biol. 91, 297–320 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Turner, J. W., Bills, P. S. & Holekamp, K. E. Ontogenetic change in determinants of social network position in the spotted hyena. Behav. Ecol. Sociobiol. 72, 10 (2018).Article 

    Google Scholar 
    76.Brent, L. J. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Koski, S. E. Social personality traits in chimpanzees: temporal stability and structure of behaviourally assessed personality traits in three captive populations. Behav. Ecol. Sociobiol. 65, 2161–2174 (2011).Article 

    Google Scholar 
    78.Mann, J. & Sargeant, B. Like mother, like calf: The ontogeny of foraging traditions in wild Indian Ocean bottlenose dolphins (Tursiops sp.). In The Biology of Traditions: Models and Evidence (eds Fragaszy, D. & Perry, S.) pp. 236–266 (Cambridge University Press, 2003).79.Strickland, K., Mann, J., Foroughirad, V., Levengood, A. L. & Frère, C. H. Maternal effects and fitness consequences of individual variation in bottlenose dolphins’ ecological niche. J. Anim. Ecol. n/a, (2021).80.von Merten, S., Zwolak, R. & Rychlik, L. Social personality: a more social shrew species exhibits stronger differences in personality types. Anim. Behav. 127, 125–134 (2017).Article 

    Google Scholar 
    81.Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B Biol. Sci. 365, 4051–4063 (2010).Article 

    Google Scholar 
    82.Hall, M. L. et al. Animal personality and pace-of-life syndromes: do fast-exploring fairy-wrens die young? Front. Ecol. Evol. 3, 28 (2015).83.Wolf, M. & Weissing, F. J. An explanatory framework for adaptive personality differences. Philos. Trans. R. Soc. B Biol. Sci. 365, 3959–3968 (2010).Article 

    Google Scholar 
    84.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: a review. Philos. Trans. R. Soc. B Biol. Sci. 365, 3947–3958 (2010).Article 

    Google Scholar 
    85.Highfill, L. E. & Kuczaj, S. A. Do bottlenose dolphins (Tursiops truncatus) have distinct and stable personalities? Aquat. Mamm. 33, 380 (2007).Article 

    Google Scholar 
    86.Kuczaj II, S. A., Highfill, L. & Byerly, H. The importance of considering context in the assessment of personality characteristics: evidence from ratings of dolphin personality. Int. J. Comp. Psychol. 25, 309–329 (2012).87.Mann, J., Connor, R. C., Barre, L. M. & Heithaus, M. R. Female reproductive success in bottlenose dolphins (Tursiops sp.): life history, habitat, provisioning, and group-size effects. Behav. Ecol. 11, 210–219 (2000).Article 

    Google Scholar 
    88.Bichell, L. M. V., Krzyszczyk, E., Patterson, E. M. & Mann, J. The reliability of pigment pattern-based identification of wild bottlenose dolphins. Mar. Mammal. Sci. 34, 113–124 (2018).Article 

    Google Scholar 
    89.Krützen, M. et al. A biopsy system for small cetaceans: darting success and wound healing in Tursiops spp. Mar. Mammal. Sci. 18, 863–878 (2002).Article 

    Google Scholar 
    90.Krzyszczyk, E. & Mann, J. Why become speckled? Ontogeny and function of speckling in Shark Bay bottlenose dolphins (Tursiops sp.). Mar. Mammal. Sci. 28, 295–307 (2012).Article 

    Google Scholar 
    91.Karniski, C. et al. A comparison of survey and focal follow methods for estimating individual activity budgets of cetaceans. Mar. Mammal. Sci. 31, 839–852 (2015).Article 

    Google Scholar 
    92.Stanton, M. A. Social networks and fitness consequences of early sociality in wild bottlenose dolphins (Tursiops sp.). (Georgetown University, 2011).93.Singer, J. D., Willett, J. B., Willett, C. W. E. P. J. B. & Willett, J. B. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. (Oxford University Press, 2003).94.Hadfield, J. D. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).95.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).96.Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Revelle, W. & Revelle, M. W. Package ‘psych’. Compr. R. Arch. Netw. 337, 338 (2015).
    Google Scholar 
    98.Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    99.Thys, B. et al. Exploration and sociability in a highly gregarious bird are repeatable across seasons and in the long term but are unrelated. Anim. Behav. 123, 339–348 (2017).Article 

    Google Scholar 
    100.McCrae, R. R. et al. Nature over nurture: temperament, personality, and life span development. J. Pers. Soc. Psychol. 78, 173–186 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Lee, K. & Ashton, M. C. Psychometric properties of the HEXACO personality inventory. Multivar. Behav. Res. 39, 329–358 (2004).Article 

    Google Scholar 
    102.McCrae, R. R. & Costa, P. T., Jr The five-factor theory of personality. in Handbook of personality: Theory and research, 3rd ed 159–181 (The Guilford Press, 2008).103.Dominey, W. J. Alternative mating tactics and evolutionarily stable strategies. Am. Zool. 24, 385–396 (1984).Article 

    Google Scholar  More