Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators
1.Warren, J. & Mackenzie, S. Why are all colour combinations not equally represented as flower-colour polymorphisms?. New Phytol. 151, 237–241 (2001).PubMed
Article
PubMed Central
Google Scholar
2.Armbruster, S., Fenster, C. & Dudash, M. Pollination ‘principles’ revisited: specialization, pollination syndromes, and the evolution of flowers. Scandanavian Assoc. Pollinat. Ecol. 39, 179–200 (2000).
Google Scholar
3.Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).PubMed
Article
PubMed Central
Google Scholar
4.Hansen, D. M., van der Niet, T. & Johnson, S. D. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc. R. Soc. B Biol. Sci. 279, 634–639 (2012).Article
Google Scholar
5.Rosas-Guerrero, V. et al. A quantitative review of pollination syndromes: do floral traits predict effective pollinators?. Ecol. Lett. 17, 388–400 (2014).PubMed
Article
PubMed Central
Google Scholar
6.Narbona, E., Wang, H., Ortiz, P. L., Arista, M. & Imbert, E. Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biol. 20, 8–20 (2018).PubMed
Article
PubMed Central
Google Scholar
7.Altshuler, D. L. Flower color, hummingbird pollination, and habitat irradiance in four neotropical forests1. Biotropica 35, 344 (2003).Article
Google Scholar
8.Riordan, C. E., Ault, J. G., Langreth, S. G. & Keithly, J. S. Cryptosporidium parvum Cpn60 targets a relict organelle. Curr. Genet. 44, 138–147 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
9.Rodríguez-Gironés, M. A. & Santamaría, L. Why are so many bird flowers red?. PLoS Biol. 2, 1515–1519 (2004).Article
CAS
Google Scholar
10.Whibley, A. C. et al. Evolutionary paths underlying flower color variation in Antirrhinum. Science (80-.) 313, 963–966 (2006).CAS
Article
ADS
Google Scholar
11.Papiorek, S. et al. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns. Plant Biol. 18, 46–55 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Wilson, P., Castellanos, M., Wolfe, A. D. & Thomson, J. D. Shifts between bee and bird pollination in penstemons. Plant-Pollinat. Interact. Spec. Gen. 3, 47–68 (2006).13.Wilson, P., Castellanos, M. C., Hogue, J. N., Thomson, J. D. & Armbruster, W. S. A multivariate search for pollination syndromes among penstemons. Oikos 104, 345–361 (2004).Article
Google Scholar
14.Sutherland, S. D. & Vickery, R. K. Jr. On the relative importance of floral color, shape, and nectar rewards in attracting pollinators to Mimulus. Gt. Basin Nat. 53, 107–117 (1993).
Google Scholar
15.Wester, P. & Lunau, K. Plant-Pollinator Communication. Advances in Botanical Research Vol. 82 (Elsevier, 2017).
Google Scholar
16.de Camargo, M. G. G. et al. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytol. 222, 1112–1122 (2019).PubMed
Article
PubMed Central
Google Scholar
17.van der Kooi, C. J., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. https://doi.org/10.1093/aob/mcy119 (2018).Article
PubMed Central
Google Scholar
18.Castellanos, M. C., Wilson, P. & Thomson, J. D. ‘ Anti-bee ’ and ‘ pro-bird ’ changes during the evolution of hummingbird pollination in Penstemon flowers. J. Evol. Biol. 17, 876–885 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
19.del Carmen Salas-Arcos, L., Lara, C., Castillo-Guevara, C., Cuautle, M. & Ornelas, J. F. “Pro-bird” floral traits discourage bumblebee visits to Penstemon gentianoides (Plantaginaceae), a mixed-pollinated herb. Sci. Nat. 106, 1–11 (2019).Article
CAS
Google Scholar
20.Armbruster, W. S. Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). Flor. Biol. https://doi.org/10.1007/978-1-4613-1165-2_9 (1996).Article
Google Scholar
21.Chittka, L. & Schürkens, S. Successful invasion of a floral market. Nature 411, 653 (2001).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
22.Ellis, T. J. & Field, D. L. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Ann. Bot. 117, 1133–1140 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Tanaka, Y., Sasaki, N. & Ohmiya, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Lázaro, A., Lundgren, R. & Totland, Ø. Pollen limitation, species’ floral traits and pollinator visitation: different relationships in contrasting communities. Oikos 124, 174–186 (2015).Article
Google Scholar
25.Jones, K. N. & Reithel, J. S. Pollinator-mediated selection on a flower color polymorphism in experimental populations of Anthirrhinum (Scrophulariaceae). Am. J. Bot. 88, 447–454 (2001).Article
Google Scholar
26.Teixido, A. L., Barrio, M. & Valladares, F. Size matters: understanding the conflict faced by large flowers in mediterranean environments. Bot. Rev. 82, 204–228 (2016).Article
Google Scholar
27.Ortiz, P. L., Fernández-Díaz, P., Pareja, D., Escudero, M. & Arista, M. Do visual traits honestly signal floral rewards at community level?. Funct. Ecol. 35, 369–383 (2021).Article
Google Scholar
28.Fenster, C. B., Cheely, G., Dudash, M. R. & Reynolds, R. J. Nectar reward and advertisement in hummingbird. Am. J. Bot. 93, 1800 (2006).PubMed
Article
PubMed Central
Google Scholar
29.Simpson, B. B., Neff, J. L. & Simpson, B. B. Floral rewards: alternatives to pollen and nectar. Ann. Mo. Bot. Gard. 68, 301–322 (2015).Article
Google Scholar
30.Canto, A., Herrera, C. M., García, I. M., Pérez, R. & Vaz, M. Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 668–675 (2011).
Google Scholar
31.Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. https://doi.org/10.1093/aob/mcy132 (2018).Article
PubMed Central
Google Scholar
32.Gómez, J. M. et al. Association between floral traits and rewards in Erysimum mediohispanicum (Brassicaceae). Ann. Bot. 101, 1413–1420 (2008).PubMed
PubMed Central
Article
Google Scholar
33.Worley, A. C. & Barrett, S. C. H. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlations between flower size and number. J. Evol. Biol. 14, 469–481 (2001).Article
Google Scholar
34.Lunau, K. The ecology and evolution of visual pollen signals. Plant Syst. Evol. 222, 89–111 (2000).Article
Google Scholar
35.Nicholls, E. & Hempel de Ibarra, N. Assessment of pollen rewards by foraging bees. Funct. Ecol. 31, 76–87 (2017).Article
Google Scholar
36.Tang, L.-L. & Huang, S.-Q. Evidence for reductions in floral attractants with increased selfing rates in two heterandrous species. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02115.x (2007).Article
PubMed
PubMed Central
Google Scholar
37.Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology (Elsevier, 2013).
Google Scholar
38.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. https://doi.org/10.1111/nph.16793 (2020).Article
PubMed
PubMed Central
Google Scholar
39.Kostyun, J. L., Gibson, M. J. S., King, C. M. & Moyle, L. C. A simple genetic architecture and low constraint allow rapid floral evolution in a diverse and recently radiating plant genus. New Phytol. 223, 1009–1022 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Roguz, K. et al. Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: ecological and evolutionary implications. Sci. Rep. 9, 1–12 (2019).CAS
Article
ADS
Google Scholar
41.Roguz, K. et al. Functional diversity of nectary structure and nectar composition in the genus Fritillaria (liliaceae). Front. Plant Sci. 9, 1–21 (2018).Article
ADS
Google Scholar
42.Zych, M. & Stpiczyńska, M. Neither protogynous nor obligatory out-crossed: Pollination biology and breeding system of the European Red List Fritillaria meleagris L. (Liliaceae). Plant Biol. 14, 285–294 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Day, P. D. et al. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Mol. Phylogenet. Evol. 80, 11–19 (2014).PubMed
Article
PubMed Central
Google Scholar
44.Hayashi, K. Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol. 15, 73–93 (2000).Article
Google Scholar
45.Stpiczyńska, M., Nepi, M. & Zych, M. Nectaries and male-biased nectar production in protandrous flowers of a perennial umbellifer Angelica sylvestris L. (Apiaceae). Plant Syst. Evol. https://doi.org/10.1007/s00606-014-1152-3 (2014).Article
Google Scholar
46.Hill, L. A taxonomic history of Japanese endemic Fritillaria (Liliaceae). Kew Bull. 66, 227–240 (2018).Article
Google Scholar
47.Kiani, M. et al. Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp. (Liliaceae): a review. Plant Divers. 39, 245–262 (2017).PubMed
PubMed Central
Article
Google Scholar
48.Shaw, A. J. Phylogeny of the Sphgnpsida based on chloroplast and nuclear DNA sequences. Bryologist 103, 277–306 (2000).CAS
Article
Google Scholar
49.Rønsted, N., Law, S., Thornton, H., Fay, M. F. & Chase, M. W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phylogenet. Evol. 35, 509–527 (2005).PubMed
Article
CAS
PubMed Central
Google Scholar
50.Tekşen, M. & Aytaç, Z. The revision of the genus Fritillaria L. (Liliaceae) in the Mediterranean region (Turkey). Turk. J. Bot. 35, 447–478 (2011).
Google Scholar
51.Roguz, K., Hill, L., Roguz, A. & Zych, M. Evolution of bird and insect flower traits in Fritillaria L. (Liliaceae). Front. Plant Sci. 12, 656783 (2020).Article
Google Scholar
52.Zaharof, E. Variation and taxonomy of Fritillaria graeca (Liliaceae) in Greece. Plant Syst. Evol. 154, 41–61 (1986).Article
Google Scholar
53.Búrquez, A. & Burquez, A. Blue tits, Parus caeruleus, as pollinators of the crown imperial, Fritillaria imperialis, in Britain. Oikos 55, 335 (1989).Article
Google Scholar
54.Peters, W. S., Pirl, M., Gottsberger, G. & Peters, D. Pollination of the crown imperial Fritillaria imperialis by great tits Parus major. J. Ornithol. 136, 207–212 (1995).Article
Google Scholar
55.Pendegrass, K. & Robinson, A. A recovery plan for Fritillaria gentneri (Gentner’s fritillary). Agric. U.S.F.a.W. Serv. (2005).56.Zox, H. Ecology of black lily (Fritillaria camschatcensis): a Washington State sensitive species. Douglasia (2008).57.Cronk, Q. & Ojeda, I. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot. 59, 715–727 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Lunau, K. & Verhoeven, C. Wie Bienen Blumen sehen: Falschfarbenaufnahmen von Blüten. Biol. Unserer Zeit 47, 120–127 (2017).Article
Google Scholar
59.Kranas, H., Spalik, K. & Banasiak, Ł. MatPhylobi, 0.1 (University of Warsaw, 2018).
Google Scholar
60.Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. Leaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt389 (2013).Article
PubMed
PubMed Central
Google Scholar
61.Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Evolution 62, 1103–1118 (2018).
Google Scholar
62.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform. Appl. 30, 1312–1313 (2014).CAS
Article
Google Scholar
63.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).Article
PubMed
PubMed Central
Google Scholar
64.Kim, J. S. & Kim, J. H. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Bot. J. Linn. Soc. 187, 579–593 (2018).Article
Google Scholar
65.Cockerell, T. D. A. Two new plants from the tertiary rocks of the west. Torrey Bot. Soc. 14, 135–137 (1914).
Google Scholar
66.Ettingshausen, C. B. III. ‘ Report on Phyto-Palaeontologieal Investigations of Fossil Flora of Alum Bay.’ By Dr. (1AD).67.Conran, J. G., Carpenter, R. J. & Jordan, G. J. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Aust. Syst. Bot. 22, 219–228 (2009).Article
Google Scholar
68.Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss020 (2012).Article
PubMed
PubMed Central
Google Scholar
69.Paradis, E. & Schliep, K. Phylogenetics ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2019).Article
PubMed
PubMed Central
Google Scholar
70.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article
Google Scholar
71.Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic Analysis of Covariance by Computer Simulation. vol. 42, 1993. https://academic.oup.com/sysbio/article/42/3/265/1629506 (Accessed 09 March 2021).72.Orme, C. D. L. The caper package: comparative analyses in phylogenetics and evolution in R, 1–36, 2012. See http://caper.r-forge.r-project.org/. (Accessed 09 March 2021).73.TEAM, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Google Scholar
74.Dyer, A. G. et al. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc. R. Soc. B Biol. Sci. 279, 3606–3615 (2012).Article
Google Scholar
75.Ollerton, J. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. J. Ecol. 84, 767–769 (1996).Article
Google Scholar
76.Wessinger, C. A. & Rausher, M. D. Predictability and irreversibility of genetic changes associated with flower color evolution in Penstemon barbatus. Evolution (N. Y.) 68, 1058–1070 (2014).CAS
Google Scholar
77.Wittmann, D., Radtke, R., Cure, J. R. & Schifino-Wittmann, M. T. Coevolved reproductive strategies in the oligolectic bee Callonychium petuniae (Apoidea, Andrenidae) and three purple flowered Petunia species (Solanaceae) in southern Brazil. J. Zool. Syst. Evol. Res. 28, 157–165 (1990).Article
Google Scholar
78.Chittka, L. & Waser, N. M. Why red flowers are not invisible to bees. Isr. J. Plant Sci. 45, 169–183 (1997).Article
Google Scholar
79.Kołodziejska-Degórska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans (L.) seem. in Poland. Acta Soc. Bot. Pol. 75, 79–85 (2006).Article
Google Scholar
80.Mayr, G. New specimens of the early oligocene old world hummingbird Eurotrochilus inexpectatus. J. Ornithol. 148, 105–111 (2007).Article
Google Scholar
81.Mayr, G. Old world fossil record of modern-type hummingbirds. Science (80-.) 304, 861–864 (2004).CAS
Article
ADS
Google Scholar
82.Schiestl, F. P. & Johnson, S. D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 28, 307–315 (2013).PubMed
Article
PubMed Central
Google Scholar
83.Daumer, K. Blumenfarben, wie sie die Bienen sehen. Z. Vgl. Physiol. 41, 49–110 (1958).
Google Scholar
84.Kevan, P. G. Floral colours in the high Arctic with reference to insect flower relations and pollination. Can. J. Bot. 50, 2289–2316 (1972).Article
Google Scholar
85.Chittka, L., Shmida, A., Troje, N. & Menzel, R. Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vis. Res. 34, 1489–1508 (1994).CAS
PubMed
Article
PubMed Central
Google Scholar
86.Lunau, K. Stamens and mimic stamens as components of floral colour patterns. Bot. Jahrbücher für Syst. Pflanzengeschichte und Pflanzengeographie 127, 13–41 (2006).Article
Google Scholar
87.Koski, M. H. & Ashman, T. L. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct. Ecol. 28, 868–877 (2014).Article
Google Scholar
88.Menzel, R. & Shmida, A. The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol. Rev. 68, 81–120 (1993).Article
Google Scholar
89.van der Kooi, C. J. & Stavenga, D. G. Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 205, 363–372 (2019).PubMed
PubMed Central
Article
Google Scholar
90.Kevan, P., Giurfa, M. & Chittka, L. Why are there so many and so few white flowers?. Trends Plant Sci. 1, 280–284 (1996).Article
Google Scholar
91.Kapustjansky, A., Chittka, L. & Spaethe, J. Bees use three-dimensional information to improve target detection. Naturwissenschaften 97, 229–233 (2010).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
92.Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).PubMed
Article
PubMed Central
Google Scholar
93.Hansen, D. M., Olesen, J. M., Mione, T., Johnson, S. D. & Müller, C. B. Coloured nectar: Distribution, ecology, and evolution of an enigmatic floral trait. Biol. Rev. 82, 83–111 (2007).PubMed
Article
PubMed Central
Google Scholar
94.Raguso, R. A. Start making scents: the challenge of integrating chemistry into pollination ecology. Entomol. Exp. Appl. 128, 196–207 (2008).CAS
Article
Google Scholar
95.Sapir, Y., Shmida, A. & Ne’eman, G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147, 53–59 (2006).PubMed
Article
ADS
PubMed Central
Google Scholar
96.Bazzaz, F. A. & Carslon, R. W. Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. New Phytol. 82, 223–232 (1979).Article
Google Scholar More