Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin
1.Ryther, J. H. The Sargasso Sea. Sci. Am. 194, 98–108 (1956).ADS
Article
Google Scholar
2.Littler, D. S. & Littler, M. M. Caribbean Reef Plants (Offshore Graphics, 2000).3.Winge, O. The Sargasso Sea, Its Boundaries and Vegetation In Report of the Danish Oceanographic Expedition, Vol. III, 1908–1910, (Copenhagen: Andr. Fred. Hòst and Sòn) 34 pp. Miscellaneous Paper Number 2. (1923).4.Parr, A. E. Quantitative observations on the pelagic Sargassum vegetation of the western North Atlantic. Bull. Bingham Oceanogr. Collect. 6, 1–94 (1939).
Google Scholar
5.Lapointe, B. E. A comparison of nutrient-limited productivity in Sargassum natans from neritic vs. oceanic waters of the western North Atlantic Ocean. Limnol. Oceanogr. 40, 625–633 (1995).ADS
CAS
Article
Google Scholar
6.Lapointe, B. E., West, L. E., Sutton, T. T. & Hu, C. Ryther revisited: nutrient excretions by fishes enhance productivity of pelagic Sargassum in the western North Atlantic Ocean. J. Exp. Mar. Biol. Ecol. 458, 46–56 (2014).CAS
Article
Google Scholar
7.Gower, J., Hu, C., Borstad, G. & King, S. Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 44, 3619–3625 (2006).ADS
Article
Google Scholar
8.Williams, A., Feagin, R. & Stafford, A. W. Environmental impacts of beach raking of Sargassum spp. on Galveston Island, TX. Shore Beach 76, 63–69 (2008).
Google Scholar
9.Moritsugu, K. Tampa Bay Times (Times Publishing Company, 1991).10.Turner, R. E. & Rabalais, N. N. Coastal eutrophication near the Mississippi river delta. Nature 368, 619–621 (1994).ADS
Article
Google Scholar
11.Gower, J. F. R. & King, S. A. Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int. J. Remote Sens. 32, 1917–1929 (2011).ADS
Article
Google Scholar
12.Johnson, D. R., Ko, D. S., Franks, J. S., Moreno, P. & Sanchez-Rubio, G. The Sargassum invasion of the Eastern Caribbean and dynamics of the Equatorial North Atlantic. In Proceedings of the 65th Annual Gulf and Caribbean Fisheries Institute Conference pp. 102–103 (2013). http://aquaticcommons.org/21444/1/GCFI_65-17.pdf.13.Gower, J., Young, E. & King, S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens. Lett. 4, 764–773 (2013).Article
Google Scholar
14.Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269–102269 (2020).Article
Google Scholar
15.Wang, M. et al. The great Atlantic Sargassum belt. Science 364, 83–87 (2019).ADS
Article
CAS
Google Scholar
16.Djakouré, S., Araujo, M., Hounsou-Gbo, A., Noriega, C. & Bourlès, B. On the potential causes of the recent Pelagic Sargassum blooms events in the tropical North Atlantic Ocean. Biogeosci. Discuss. https://doi.org/10.5194/bg-2017-346 (2017).17.Oviatt, C. A., Huizenga, K., Rogers, C. S. & Miller, W. J. What nutrient sources support anomalous growth and the recent Sargassum mass stranding on Caribbean beaches? A review. Mar. Pollut. Bull. 145, 517–525 (2019).CAS
PubMed
Article
Google Scholar
18.McGillicuddy, D. J., Jr, Anderson, L. A., Doney, S. C. & Maltrud, M. E. Eddy‐driven sources and sinks of nutrients in the upper ocean: results from a 0.1 resolution model of the North Atlantic. Global Biogeochem. Cycles 17, 1035 (2003).19.Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).ADS
CAS
PubMed
Article
Google Scholar
20.Qi, L., Hu, C., Xing, Q. & Shang, S. Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae 58, 35–44 (2016).PubMed
Article
Google Scholar
21.Qi, L., Hu, C., Wang, M., Shang, S. & Wilson, C. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 44, 501–511,509 (2017).Article
CAS
Google Scholar
22.Smetacek, V. & Zingone, A. Green and golden seaweed tides on the rise. Nature 504, 84–88 (2013).ADS
CAS
PubMed
Article
Google Scholar
23.Van Tussenbroek, B. I. et al. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 122, 272–281 (2017).PubMed
Article
CAS
Google Scholar
24.Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069–e8069 (2019).PubMed
PubMed Central
Article
Google Scholar
25.Cabanillas-Terán, N., Hernández-Arana, H. A., Ruiz-Zárate, M.-Á., Vega-Zepeda, A. & Sanchez-Gonzalez, A. Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 7, e7589–e7589 (2019).PubMed
PubMed Central
Article
Google Scholar
26.Maurer, A. S., De Neef, E. & Stapleton, S. Sargassum accumulation may spell trouble for nesting sea turtles. Front. Ecol. Environ. 13, 394–395 (2015).Article
Google Scholar
27.Webster, R. K. & Linton, T. Development and implementation of Sargassum early advisory system (SEAS). Shore Beach 81, 1–1 (2013).
Google Scholar
28.Resiere, D. et al. Sargassum seaweed on Caribbean islands: an international public health concern. Lancet 392, 2691–2691 (2018).Article
Google Scholar
29.Glibert, P. et al. The role of in the global proliferation of harmful algal blooms: new perspectives and approaches. Oceanography 18, 196–207 (2005).
Google Scholar
30.Glibert, P. M. Eutrophication, harmful algae and biodiversity — Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).CAS
PubMed
Article
Google Scholar
31.Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 6223 https://doi.org/10.1126/science.1259855 (2015).32.Ryther, J. H. The ecology of phytoplankton blooms in Moriches bay and Great South bay, Long Island, New York. Biol. Bull. 106, 198–209 (1954).Article
Google Scholar
33.Ryther, J. H. & Dunstan, W. M. Nitrogen, Phosphorus, and Eutrophication in the coastal marine environment. Science 171, 1008 LP-1013 (1971).Article
Google Scholar
34.Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).ADS
CAS
Article
Google Scholar
35.Oelsner, G. P. & Stets, E. G. Recent trends in nutrient and sediment loading to coastal areas of the conterminous U.S.: insights and global context. Sci. Total Environ. 654, 1225–1240 (2019).ADS
CAS
PubMed
Article
Google Scholar
36.Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).ADS
CAS
Article
Google Scholar
37.Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).ADS
CAS
Article
Google Scholar
38.Lapointe, B. E., Littler, M. M. & Littler, D. S. A comparison of nutrient-limited productivity in macroalgae from a Caribbean barrier reef and from a mangrove ecosystem. Aquat. Bot. 28, 243–255 (1987).Article
Google Scholar
39.Culliney, J. L. Measurements of reactive phosphorus associated with pelagic Sargassum in the Northwest Sargasso Sea1. Limnol. Oceanogr. 15, 304–305 (1970).ADS
CAS
Article
Google Scholar
40.Schaffelke, B. Particulate organic matter as an alternative nutrient source for tropical Sargassum species (Fucales, Phaeophyceae). J. Phycol. 35, 1150–1157 (1999).CAS
Article
Google Scholar
41.Vonk, J. A., Middelburg, J. J., Stapel, J. & Bouma, T. J. Dissolved organic nitrogen uptake by seagrasses. Limnol. Oceanogr. 53, 542–548 (2008).ADS
CAS
Article
Google Scholar
42.Han, T., Qi, Z., Huang, H., Liao, X. & Zhang, W. Nitrogen uptake and growth responses of seedlings of the brown seaweed Sargassum hemiphyllum under controlled culture conditions. J. Appl. Phycol. 30, 507–515 (2018).CAS
Article
Google Scholar
43.Fujita, R., Wheeler, P. & Edwards, R. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar. Ecol. Prog. Ser. 53, 293–303 (1989).ADS
Article
Google Scholar
44.Prospero, J. M. et al. in Nitrogen Cycling in the North Atlantic Ocean and its Watersheds (ed. Robert, W. H.) (Springer, 1996).45.Howarth, R. W. Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8, 14–20 (2008).CAS
Article
Google Scholar
46.Rockström, J. & Karlberg, L. The quadruple squeeze: defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. Ambio 39, 257–265 (2010).PubMed
PubMed Central
Article
Google Scholar
47.Hanisak, M. D. & Samuel, M. A. Twelfth International Seaweed Symposium (Springer, 1986).48.Rabalais, N. N. et al. Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuar. Coasts 30, 753–772 (2007).CAS
Article
Google Scholar
49.Tian, H. et al. Long-term trajectory of nitrogen loading and delivery from Mississippi river basin to the Gulf of Mexico. Glob. Biogeochem. Cycles 34, e2019GB006475–e002019GB006475 (2020).ADS
CAS
Article
Google Scholar
50.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108–108 (2019).Article
CAS
Google Scholar
51.Lapointe, B. E., Barile, P. J. & Littler, M. M. & Littler, D. S. Macroalgal blooms on southeast Florida coral reefs: II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4, 1106–1122 (2005).CAS
Article
Google Scholar
52.Dunn, D. E. Trends in Nutrient Inflows to the Gulf of Mexico from Streams Draining the Conterminous United States, 1972-93. Report No. 96-4113 (Austin, TX, 1996).53.Turner, R. E. & Rabalais, N. N. Changes in Mississippi River water quality this century: implications for coastal food webs. Bioscience 41, 140–147 (1991).Article
Google Scholar
54.Rabalais, N. N. et al. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19, 386–407 (1996).CAS
Article
Google Scholar
55.Weber, S. C. et al. Amazon River influence on nitrogen fixation and export production in the western tropical North Atlantic. Limnol. Oceanogr. 62, 618–631 (2017).ADS
Article
Google Scholar
56.Ryther, J. H., Menzel, D. W. & Corwin, N. Influence of Amazon River outflow on ecology of Western Tropical Atlantic. I. Hydrography and nutrient chemistry. J. Mar. Res. 25, 69–69 (1967).
Google Scholar
57.Subramaniam, A. et al. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc. Natl Acad. Sci.USA 105, 10460 LP–10410465 (2008).ADS
Article
Google Scholar
58.Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785–eaat8785 (2018).ADS
PubMed
PubMed Central
Article
Google Scholar
59.Howarth, R. W. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen Cycling in the North Atlantic Ocean and its Watersheds (ed. Robert, W. Howarth) (Springer, Dordrecht, 1996). https://doi.org/10.1007/978-94-009-1776-7_3.60.Galloway, J. N. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry (ed. Robert, W. Howarth) 35, 181–226 (Springer, 1996).61.Gower, J. & King, S. Satellite images show the movement of floating Sargassum in the Gulf of Mexico and Atlantic Ocean. Nat. Preced. https://doi.org/10.1038/npre.2008.1894.1 (2008).62.Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).CAS
Article
Google Scholar
63.Zimmerman, R. C. & Kremer, J. N. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42, 591–604 (1984).Article
Google Scholar
64.Kain, J. M. The seasons in the subtidal. Br. Phycol. J. 24, 203–215 (1989).Article
Google Scholar
65.Dorado, S., Rooker, J. R., Wissel, B. & Quigg, A. Isotope baseline shifts in pelagic food webs of the Gulf of Mexico. Mar. Ecol. Prog. Ser. 464, 37–49 (2012).ADS
CAS
Article
Google Scholar
66.Kendall, C., Elliott, E. M. & Wankel, S. D. Wiley Online Books 375-449 (2007).67.Altieri, K. E., Hastings, M. G., Peters, A. J., Oleynik, S. & Sigman, D. M. Isotopic evidence for a marine ammonium source in rainwater at Bermuda. Glob. Biogeochem. Cycles 28, 1066–1080 (2014).ADS
CAS
Article
Google Scholar
68.Bateman, A. S. & Kelly, S. D. Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43, 237–247 (2007).CAS
PubMed
Article
Google Scholar
69.Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M. & Lipschultz, F. Nitrate isotopic composition between Bermuda and Puerto Rico: implications for N2 fixation in the Atlantic Ocean. Global Biogeochem. Cycles 22, GB3014 https://doi.org/10.1029/2007GB003107 (2008).70.Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Global Biogeochem. Cycles 19, GB1018 https://doi.org/10.1029/2004GB002320 (2005).71.Montoya, J. P. Nitrogen stable isotopes in marine environments. Nitrogen Mar. Environ. 2, 1277–1302 (2008).Article
Google Scholar
72.Wissel, B. & Fry, B. Sources of particulate organic matter in the Mississippi River, USA. Large Rivers 15 105–118 (2003).73.Zaia Alves, G. H., Hoeinghaus, D. J., Manetta, G. I. & Benedito, E. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains. PLoS ONE 12, e0174499 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
74.Smith, N. P. Upwelling in Atlantic shelf waters of South Florida. Florida Scientist 45, 125–138 (1982).75.Atkinson, L. P., O’Malley, P. G., Yoder, J. A. & Paffenhöfer, G. A. The effect of summertime shelf break upwelling on nutrient flux in southeastern United States continental shelf waters. J. Mar. Res. 42, 969–993 (1984).Article
Google Scholar
76.Subramaniam, A., Mahaffey, C., Johns, W. & Mahowald, N. Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean. Geophys. Res. Lett. 40, 1766–1771 (2013).ADS
Article
Google Scholar
77.Carpenter, E. J. Nitrogen fixation by a blue-green epiphyte on Pelagic Sargassum. Science 178, 1207–1209 (1972).ADS
CAS
PubMed
Article
Google Scholar
78.Phlips, E. J., Willis, M. & Verchick, A. Aspects of nitrogen fixation in Sargassum communities off the coast of Florida. J. Exp. Mar. Biol. Ecol. 102, 99–119 (1986).CAS
Article
Google Scholar
79.Subramaniam, A., Montoya, J. P., Foster, R. A. & Capone, D. G. Nitrogen fixation in the eastern equatorial Atlantic: who and how much? European Geosciences Union General Assembly 11, 10156–10156 (2009).80.Carpenter, E. J. et al. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 185, 273–283 (1999).ADS
CAS
Article
Google Scholar
81.Zubkova, M., Boschetti, L., Abatzoglou, J. T. & Giglio, L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys. Res. Lett. 46, 7643–7653 (2019).ADS
PubMed
PubMed Central
Article
Google Scholar
82.Baker, A. R., French, M. & Linge, K. L. Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume. Geophys. Res. Lett. 33 L07805, https://doi.org/10.1029/2005GL024764 (2006).83.Baker, A. R., Jickells, T. D., Witt, M. & Linge, K. L. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. 98, 43–58 (2006).CAS
Article
Google Scholar
84.Shelley, R. U., Morton, P. L. & Landing, W. M. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Res. Part II Top. Stud. Oceanogr. 116, 262–272 (2015).ADS
CAS
Article
Google Scholar
85.Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).ADS
PubMed
PubMed Central
Article
Google Scholar
86.Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 87, 273–282 (2003).ADS
Article
Google Scholar
87.Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J. & Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 6, 957–974 (2006).ADS
CAS
Article
Google Scholar
88.Roberts, G., Wooster, M. J. & Lagoudakis, E. Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 6, 849–866 (2009).ADS
Article
Google Scholar
89.Baker, A. R. & Jickells, T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Prog. Oceanogr. 158, 41–51 (2017).ADS
Article
Google Scholar
90.Chance, R., Jickells, T. D. & Baker, A. R. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).CAS
Article
Google Scholar
91.Myriokefalitakis, S., Nenes, A., Baker, A. R., Mihalopoulos, N. & Kanakidou, M. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study. Biogeosciences 13, 6519–6543 (2016).ADS
CAS
Article
Google Scholar
92.Kanakidou, M., Myriokefalitakis, S. & Tsigaridis, K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett. 13, 063004 (2018).93.Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).ADS
CAS
PubMed
Article
Google Scholar
94.McCann, K. S. et al. Landscape modification and nutrient‐driven instability at a distance. Ecol. Lett. 24, 398–414 (2021).PubMed
Article
Google Scholar
95.Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).ADS
CAS
Article
Google Scholar
96.Fanning, K. A. Nutrient provinces in the sea: concentration ratios, reaction rate ratios, and ideal covariation. J. Geophys. Res. Oceans 97, 5693–5712 (1992).ADS
Article
Google Scholar
97.Ammerman, J. W., Hood, R. R., Case, D. A. & Cotner, J. B. Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography. Eos, Trans. Am. Geophys. Union 84, 165–170 (2003).ADS
Article
Google Scholar
98.Lomas, M. W., Bonachela, J. A., Levin, S. A. & Martiny, A. C. Impact of ocean phytoplankton diversity on phosphate uptake. Proc. Natl Acad. Sci. USA 111, 17540–17545 (2014).ADS
CAS
PubMed
Article
Google Scholar
99.Richey, J. E. et al. (ORNL Distributed Active Archive Center, 2008).100.Cochonneau, G. et al. The environmental observation and research project, ORE HYBAM, and the rivers of the Amazon basin. In Climate Variability and Change—Hydrological Impacts (eds Demuth, S. et al.) vol. 308, 44–50 (2006). More