Bayesian analysis of Enceladus’s plume data to assess methanogenesis
1.Spilker, L. Cassini-Huygens’ exploration of the Saturn system: 13 years of discovery. Science 364, 1046–1051 (2019).ADS
Article
Google Scholar
2.Thomas, P. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).ADS
Article
Google Scholar
3.Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).ADS
Article
Google Scholar
4.Nathues, A. et al. Recent cryovolcanic activity at Occator crater on Ceres. Nat. Astron. 4, 794–801 (2020).ADS
Article
Google Scholar
5.Schmidt, B. et al. Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’s Occator crater. Nat. Geosci. 13, 605–610 (2020).ADS
Article
Google Scholar
6.Reynolds, R. T., Squyres, S. W., Colburn, D. S. & McKay, C. P. On the habitability of Europa. Icarus 56, 246–254 (1983).ADS
Article
Google Scholar
7.Martin, A. & McMinn, A. Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int. J. Astrobiol. 17, 1–16 (2018).ADS
Article
Google Scholar
8.McCollom, T. M. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. Planets 104, 30729–30742 (1999).ADS
Article
Google Scholar
9.Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).ADS
Article
Google Scholar
10.Glein, C. R., Baross, J. A. & Waite, J. H. Jr The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015).ADS
Article
Google Scholar
11.Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).ADS
Article
Google Scholar
12.Kleerebezem, R. & Van Loosdrecht, M. C. A generalized method for thermodynamic state analysis of environmental systems. Crit. Rev. Environ. Sci. Technol. 40, 1–54 (2010).Article
Google Scholar
13.Mousis, O. et al. Formation conditions of Enceladus and origin of its methane reservoir. Astrophys. J. Lett. 701, L39 (2009).ADS
Article
Google Scholar
14.McKay, C., Khare, B. N., Amin, R., Klasson, M. & Kral, T. A. Possible sources for methane and C2–C5 organics in the plume of Enceladus. Planet. Space Sci. 71, 73–79 (2012).ADS
Article
Google Scholar
15.Jannasch, H. W. & Mottl, M. J. Geomicrobiology of deep-sea hydrothermal vents. Science 229, 717–725 (1985).ADS
Article
Google Scholar
16.Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).Article
Google Scholar
17.Hedderich, R. & Whitman, W. B. in The Prokaryotes: Prokaryotic Physiology and Biochemistry (eds Rosenberg, E. et al.) 635–662 (Springer, 2013).18.Travis, B. & Schubert, G. Keeping Enceladus warm. Icarus 250, 32–42 (2015).ADS
Article
Google Scholar
19.Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).Article
Google Scholar
20.Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).ADS
Article
Google Scholar
21.McKay, C. P., Porco, C. C., Altheide, T., Davis, W. L. & Kral, T. A. The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8, 909–919 (2008).ADS
Article
Google Scholar
22.Catling, D. C. et al. Exoplanet biosignatures: a framework for their assessment. Astrobiology 18, 709–738 (2018).ADS
Article
Google Scholar
23.Lorenz, R. D. A. Bayesian approach to biosignature detection on ocean worlds. Nat. Astron. 3, 466–467 (2019).ADS
Article
Google Scholar
24.Bouquet, A., Mousis, O., Waite, J. H. & Picaud, S. Possible evidence for a methane source in Enceladus’ ocean. Geophys. Res. Lett. 42, 1334–1339 (2015).ADS
Article
Google Scholar
25.Neveu, M. & Rhoden, A. R. Evolution of Saturn’s mid-sized moons. Nat. Astron. 3, 543–552 (2019).ADS
Article
Google Scholar
26.Prialnik, D. & Merk, R. Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code: I. Application to Kuiper belt objects and Enceladus. Icarus 197, 211–220 (2008).ADS
Article
Google Scholar
27.Roberts, J. H. The fluffy core of Enceladus. Icarus 258, 54–66 (2015).ADS
Article
Google Scholar
28.Goodman, J. C., Collins, G. C., Marshall, J. & Pierrehumbert, R. T. Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. Planets 109, E03008 (2004).ADS
Article
Google Scholar
29.Goodman, J. C. & Lenferink, E. Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus 221, 970–983 (2012).ADS
Article
Google Scholar
30.Topçuoğlu, B. D. et al. Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents. Front. Microbiol. 7, 1240 (2016).Article
Google Scholar
31.Daniel, R. M. et al. The molecular basis of the effect of temperature on enzyme activity. Biochem. J. 425, 353–360 (2010).Article
Google Scholar
32.Tijhuis, L., Van Loosdrecht, M. C. & Heijnen, J. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).Article
Google Scholar
33.Sleep, N., Meibom, A., Fridriksson, T., Coleman, R. & Bird, D. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 101, 12818–12823 (2004).ADS
Article
Google Scholar
34.McCollom, T. M. Abiotic methane formation during experimental serpentinization of olivine. Proc. Natl Acad. Sci. USA 113, 13965–13970 (2016).ADS
Article
Google Scholar
35.Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2015).Article
Google Scholar
36.Krissansen-Totton, J., Olson, S. & Catling, D. C. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4, eaao5747 (2018).ADS
Article
Google Scholar
37.Russell, M. J. et al. The drive to life on wet and icy worlds. Astrobiology 14, 308–343 (2014).ADS
Article
Google Scholar
38.Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).ADS
Article
Google Scholar
39.Takai, K. et al. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).ADS
Article
Google Scholar
40.Kalirai, J. Scientific discovery with the James Webb Space Telescope. Contemp. Phys. 59, 251–290 (2018).ADS
Article
Google Scholar
41.Phillips, C. B. & Pappalardo, R. T. Europa Clipper mission concept: exploring Jupiter’s ocean moon. Eos 95, 165–167 (2014).ADS
Article
Google Scholar
42.Eigenbrode, J., Gold, R. E., McKay, C. P., Hurford, T. & Davila, A. Searching for life in an ocean world: the Enceladus Life Signatures and Habitability (ELSAH) mission concept. In Proc. 42nd COSPAR Scientific Assembly abstr. F3.6–3-18 (2018).43.Cable, M. L. et al. Enceladus Life Finder: The Search for Life in a Habitable Moon (NASA, JPL, 2016); https://trs.jpl.nasa.gov/handle/2014/4590544.Mitri, G. et al. Explorer of Enceladus and Titan (E2T): investigating ocean worlds’ evolution and habitability in the solar system. Planet. Space Sci. 155, 73–90 (2018).ADS
Article
Google Scholar
45.Sauterey, B., Charnay, B., Affholder, A., Mazevet, S. & Ferrière, R. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).ADS
Article
Google Scholar
46.Lever, M. A. et al. Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations. FEMS Microbiol. Rev. 39, 688–728 (2015).Article
Google Scholar
47.Connolly, J. P. & Coffin, R. B. Model of carbon cycling in planktonic food webs. J. Environ. Eng. 121, 682–690 (1995).Article
Google Scholar
48.Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).ADS
Article
Google Scholar
49.Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).Article
Google Scholar
50.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS
Article
Google Scholar
51.Csilléry, K., Blum, M. G., Gaggiotti, O. E. & François, O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 25, 410–418 (2010).Article
Google Scholar
52.Sisson, S. A., Fan, Y. & Beaumont, M. Handbook of Approximate Bayesian Computation (Chapman and Hall/CRC, 2018).53.Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet
MATH
Google Scholar
54.Tutolo, B. M., Seyfried, W. E. & Tosca, N. J. A seawater throttle on H2 production in Precambrian serpentinizing systems. Proc. Natl Acad. Sci. USA 117, 14756–14763 (2020).Article
Google Scholar
55.Glein, C. R. & Waite, J. H. The carbonate geochemistry of Enceladus’ ocean. Geophys. Res. Lett. 47, e2019GL085885 (2020).ADS
Article
Google Scholar
56.Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’ N, MAR). Chem. Geol. 191, 345–359 (2002).ADS
Article
Google Scholar More
