More stories

  • in

    Globally invariant metabolism but density-diversity mismatch in springtails

    Data reportingThe data underpinning this study is a compilation of existing datasets and therefore, no statistical methods were used to predetermine sample size, the experiments were not randomized and the investigators were not blinded to allocation during experiments and outcome assessment. The measurements were taken from distinct samples, repeated measurements from the same sites were averaged in the main analysis.Inclusion & ethicsData were primarily collected from individual archives of contributing co-authors. The data collection initiative was openly announced via the mailing list of the 10th International Seminar on Apterygota and via social media (Twitter, Researchgate). In addition, colleagues from less explored regions (Africa, South America) were contacted via personal networks of the initial authors group and literature search. All direct data providers who collected and standardised the data were invited as co-authors with defined minimum role (data provision and cleaning, manuscript editing and approval). For unpublished data, people who were directly involved in sorting and identification of springtails, including all local researchers, were invited as co-authors. Principal investigators were normally not included as co-authors, unless they contributed to conceptualisation and writing of the manuscript. All co-authors were informed and invited to contribute throughout the research process—from the study design and analysis to writing and editing. The study provided an inclusive platform for researchers around the globe to network, share and test their research ideas.Data acquisitionBoth published and unpublished data were collected, using raw data whenever possible entered into a common template. In addition, data available from Edaphobase47 was included. The following minimum set of variables was collected: collectors, collection method (including sampling area and depth), extraction method, identification precision and resources, collection date, latitude and longitude, vegetation type (generalized as grassland, scrub, woodland, agriculture and other for the analysis), and abundances of springtail taxa found in each soil sample (or sampling site). Underrepresented geographical areas (Africa, South America, Australia and Southeast Asia) were specifically targeted by a literature search in the Web of Science database using the keywords ‘springtail’ or ‘Collembola’, ‘density’ or ‘abundance’ or ‘diversity’, and the region of interest; data were acquired from all found papers if the minimum information listed above was provided. All collected datasets were cleaned using OpenRefine v3.3 (https://openrefine.org) to remove inconsistencies and typos. Geographical coordinates were checked by comparing the dataset descriptions with the geographical coordinates. In total, 363 datasets comprising 2783 sites were collected and collated into a single dataset (Supplementary Fig. 1).Calculation of community parametersCommunity parameters were calculated at the site level. Here, we defined a site as a locality that hosts a defined springtail community, is covered by a certain vegetation type, with a certain management, and is usually represented by a sampling area of up to a hundred metres in diameter, making species co-occurrence and interactions plausible. To calculate density, numerical abundance in all samples was averaged and recalculated per square metre using the sampling area. Springtail communities were assessed predominantly during active vegetation periods (i.e., spring, summer and autumn in temperate and boreal biomes, and summer in polar biomes). Our estimations of community parameters therefore refer to the most favourable conditions (peak yearly densities). This seasonal sampling bias is likely to have little effect on our conclusions, since most springtails survive during cold periods38,48. Finally, we used mean annual soil temperatures49 to estimate the seasonal mean community metabolism (described below) and tested for the seasonal bias in additional analysis (see Linear mixed-effects models).All data analyses were conducted in R v. 4.0.250 with RStudio interface v. 1.4.1103 (RStudio, PBC). Data was transformed and visualised with tidyverse packages51,52, unless otherwise mentioned. Background for the global maps was acquired via the maps package53,54. To calculate local species richness, we used data identified to species or morphospecies level (validated by the expert team). Since the sampling effort varied among studies, we extrapolated species richness using rarefaction curves based on individual samples with the Chao estimator51,52 in the vegan package53. For some sites, sample-level data were not available in the original publications, but site-level averages were provided, and an extensive sampling effort was made. In such cases, we predicted extrapolated species richness based on the completeness (ratio of observed to extrapolated richness) recorded at sites where sample-level data were available (only sites with 5 or more samples were used for the prediction). We built a binomial model to predict completeness in sites where no sample-level data were available using latitude and the number of samples taken at a site as predictors: glm(Completeness~N_samples*Latitude). We found a positive effect of the number of samples (Chisq = 1.97, p = 0.0492) and latitude (Chisq = 2.07, p = 0.0391) on the completeness (Supplementary Figs. 17–19). We further used this model to predict extrapolated species richness on the sites with pooled data (435 sites in Europe, 15 in Australia, 6 in South America, 4 in Asia, and 3 in Africa).To calculate biomass, we first cross-checked all taxonomic names with the collembola.org checklist55 using fuzzy matching algorithms (fuzzyjoin R package56) to align taxonomic names and correct typos. Then we merged taxonomic names with a dataset on body lengths compiled from the BETSI database57, a personal database of Matty P. Berg, and additional expert contributions. We used average body lengths for the genus level (body size data on 432 genera) since data at the species level were not available for many morphospecies (especially in tropical regions), and species within most springtail genera had similar body size ranges. Data with no genus-level identifications were excluded from the analysis. Dry and fresh body masses were calculated from body length using a set of group-specific length-mass regressions (Supplementary Table 1)58,59 and the results of different regressions applied to the same morphogroup were averaged. Dry mass was recalculated to fresh mass using corresponding group-specific coefficients58. We used fresh mass to calculate individual metabolic rates60 and account for the mean annual topsoil (0–5 cm) temperature at a given site61. Group-specific metabolic coefficients for insects (including springtails) were used for the calculation: normalization factor (i0) ln(21.972) [J h−1], allometric exponent (a) 0.759, and activation energy (E) 0.657 [eV]60. Community-weighted (specimen-based) mean individual dry masses and metabolic rates were calculated for each sample and then averaged by site after excluding 10% of maximum and 10% of minimum values to reduce impact of outliers. To calculate site-level biomass and community metabolism, we summed masses or metabolic rates of individuals, averaged them across samples, and recalculated them per unit area (m2).Parameter uncertaintiesOur biomass and community metabolism approximations contain several assumptions. To account for the uncertainty in the length-mass and mass-metabolism regression coefficients, in addition to the average coefficients, we also used maximum (average + standard error) and minimum coefficients (average—standard error; Supplementary Table 1) in all equations to calculate maximum and minimum estimations of biomass and community metabolism reported in the main text. Further, we ignored latitudinal variation in body sizes within taxonomic groups62. Nevertheless, latitudinal differences in springtail density (30-fold), environmental temperature (from −16.0 to +27.6 °C in the air and from −10.2 to +30.4 °C in the soil), and genus-level community compositions (there are only few common genera among polar regions and the tropics)55 are higher than the uncertainties introduced by indirect parameter estimations, which allowed us to detect global trends. Although most springtails are concentrated in the litter and uppermost soil layers20, their vertical distribution depends on the particular ecosystem63. Since sampling methods are usually ecosystem-specific (i.e. sampling is done deeper in soils with developed organic layers), we treated the methods used by the original data collectors as representative of a given ecosystem. Under this assumption, we might have underestimated the number of springtails in soils with deep organic horizons, so our global estimates are conservative and we would expect true global density and biomass to be slightly higher. To minimize these effects, we excluded sites where the estimations were likely to be unreliable (see data selection below).Data selectionOnly data collection methods allowing for area-based recalculation (e.g. Tullgren or Berlese funnels) were used for analysis. Data from artificial habitats, coastal ecosystems, caves, canopies, snow surfaces, and strong experimental manipulations beyond the bounds of naturally occurring conditions were excluded (Supplementary Fig. 1). To ensure data quality, we performed a two-step quality check: technical selection and expert evaluation. Collected data varied according to collection protocols, such as sampling depth and the microhabitats (layers) considered. To technically exclude unreliable density estimations, we explored data with a number of diagnostic graphs (Supplementary Table 2; Supplementary Figs. 12–20) and filtered it, excluding the following: (1) All woodlands where only soil or only litter was considered; (2) All scrub ecosystems where only ground cover (litter or mosses) was considered; (3) Agricultural sites in temperate zones where only soil with sampling depth 90% of cases were masked on the main maps; for the map with density-species richness visualisation, two corresponding masks were applied (Fig. 2).To estimate spatial variability of our predictions while accounting for the spatial sampling bias in our data (Fig. 1a) we performed a spatially stratified bootstrapping procedure. We used the relative area of each IPBES79 region (i.e., Europe and Central Asia, Asia and the Pacific, Africa, and the Americas) to resample the original dataset, creating 100 bootstrap resamples. Each of these resamples was used to create a global map, which was then reduced to create mean, standard deviation, 95% confidence interval, and coefficient of variation maps (Supplementary Figs. 4–7).Global biomass, abundance, and community metabolism of springtails were estimated by summing predicted values for each 30 arcsec pixel10. Global community metabolism was recalculated from joule to mass carbon by assuming 1 kg fresh mass = 7 × 106 J80, an average water proportion in springtails of 70%58, and an average carbon concentration of 45% (calculated from 225 measurements across temperate forest ecosystems)81. We repeated the procedure of global extrapolation and prediction for biomass and community metabolism using minimum and maximum estimates of these parameters from regression coefficient uncertainties (see Parameter uncertainties).Path analysisTo reveal the predictors of springtail communities at the global scale, we performed a path analysis. After filtering the selected environmental variables (see above) according to their global availability and collinearity, 13 variables were used (Supplementary Fig. 9b): mean annual air temperature, mean annual precipitation (CHELSA database67), aridity (CGIAR database68), soil pH, sand and clay contents combined (sand and clay contents were co-linear in our dataset), soil organic carbon content (SoilGrids database73), NDVI (MODIS database72), human population density (GPWv4 database74), latitude, elevation69, and vegetation cover reported by the data providers following the habitat classification of European Environment Agency (woodland, scrub, agriculture, and grasslands; the latter were coded as the combination of woodland, scrub, and agriculture absent). Before running the analysis, we performed the Rosner’s generalized extreme Studentized deviate test in the EnvStats package82 to exclude extreme outliers and we z-standardized all variables (Supplementary R Code).Separate structural equation models were run to predict density, dry biomass, community metabolism, and local species richness in the lavaan package83. To account for the spatial clustering of our data in Europe, instead of running a model for the entire dataset, we divided the data by the IPBES79 geographical regions and selected a random subset of sites for Eurasia, such that only twice the number of sites were included in the model as the second-most represented region. We ran the path analysis 99 times for each community parameter with different Eurasian subsets (density had n = 723 per iteration, local species richness had n = 352, dry biomass had n = 568, and community metabolism had n = 533). We decided to keep the share of the Eurasian dataset larger than other regions to increase the number of sites per iteration and validity of the models. The Eurasian dataset also had the best data quality among all regions and a substantial reduction in datasets from Eurasia would result in a low weight for high-quality data. We additionally ran a set of models in which the Eurasian dataset was represented by the same number of sites as the second-most represented region, which yielded similar effect directions for all factors, but slightly higher variations and fewer consistently significant effects. In the paper, only the first version of analysis is presented. To illustrate the results, we averaged effect sizes for the paths across all iterations and presented the distribution of these effect sizes using mirrored Kernel density estimation (violin) plots. We marked and discussed effects that were significant at p  More

  • in

    Reconciling policy instruments with drivers of deforestation and forest degradation: cross-scale analysis of stakeholder perceptions in tropical countries

    Global Forest Resources Assessment 2020 (FAO, 2020).Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).ADS 
    CAS 

    Google Scholar 
    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).ADS 

    Google Scholar 
    Foley, J. A. et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).
    Google Scholar 
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).ADS 
    CAS 

    Google Scholar 
    Brandon, K. Ecosystem services from tropical forests: Review of current science. SSRN J. https://doi.org/10.2139/ssrn.2622749 (2014). Article 

    Google Scholar 
    Indarto, J. & Mutaqin, D. J. An overview of theoretical and empirical studies on deforestation. MPRA. Paper No. 70178 (2016).Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 52, 143–150 (2002).
    Google Scholar 
    Angelsen, A. & Kaimowitz, D. Rethinking the causes of deforestation: Lessons from economic models. World Bank Res. Obs. 14, 73–98 (1999).CAS 

    Google Scholar 
    Contreras-Hermosilla, A. The Underlying Causes of Forest Decline (Center for International Forestry Research, 2000).
    Google Scholar 
    Turner, B. L. et al. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions. Glob. Environ. Change 1, 14–22 (1990).
    Google Scholar 
    Meyer, W. B. & Turner, B. L. Human population growth and global land-use/cover change. Ann. Rev. Ecol. Syst. 2, 39–61 (1992).
    Google Scholar 
    Miyamoto, M., Mohd Parid, M., Noor Aini, Z. & Michinaka, T. Proximate and underlying causes of forest cover change in Peninsular Malaysia. For. Policy Econ. 44, 18–25 (2014).
    Google Scholar 
    Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).
    Google Scholar 
    Carodenuto, S. et al. A methodological framework for assessing agents, proximate drivers and underlying causes of deforestation: Field test results from southern cameroon. Forests 6, 203–224 (2015).
    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 

    Google Scholar 
    Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).ADS 

    Google Scholar 
    Köthke, M., Leischner, B. & Elsasser, P. Uniform global deforestation patterns—An empirical analysis. For. Policy Econ. 28, 23–37 (2013).
    Google Scholar 
    Busch, J. & Ferretti-Gallon, K. What drives deforestation and what stops it? A meta-analysis. Rev. Environ. Econ. Policy 11, 3–23 (2017).
    Google Scholar 
    Ferrer Velasco, R. F., Köthke, M., Lippe, M. & Günter, S. Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics. PLoS One 15, e0226830 (2020).CAS 

    Google Scholar 
    Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).
    Google Scholar 
    Börner, J., Schulz, D., Wunder, S. & Pfaff, A. The effectiveness of forest conservation policies and programs. Ann. Rev. Resour. Econ. 12, 45–64 (2020).
    Google Scholar 
    Bemelmans-Videc, M.-L., Rist, R. C. & Vedung, E. Carrots, Sticks & Sermons: Policy Instruments and their Evaluation (Transaction Publishers, 1998).
    Google Scholar 
    Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).ADS 
    CAS 

    Google Scholar 
    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).ADS 

    Google Scholar 
    Wolff, S. & Schweinle, J. Effectiveness and economic viability of forest certification: A systematic review. Forests 13, 798 (2022).
    Google Scholar 
    Müller, R., Pistorius, T., Rohde, S., Gerold, G. & Pacheco, P. Policy options to reduce deforestation based on a systematic analysis of drivers and agents in lowland Bolivia. Land Use Policy 30, 895–907 (2013).
    Google Scholar 
    Tegegne, Y. T., Lindner, M., Fobissie, K. & Kanninen, M. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy 51, 312–324 (2016).
    Google Scholar 
    Hoffmann, C., García Márquez, J. R. & Krueger, T. A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia. Land Use Policy 77, 379–391 (2018).
    Google Scholar 
    Henders, S., Ostwald, M., Verendel, V. & Ibisch, P. Do national strategies under the UN biodiversity and climate conventions address agricultural commodity consumption as deforestation driver?. Land Use Policy 70, 580–590 (2018).
    Google Scholar 
    Salvini, G. et al. How countries link REDD+ interventions to drivers in their readiness plans: implications for monitoring systems. Environ. Res. Lett. 9, 074004 (2014).ADS 

    Google Scholar 
    Bos, A. B. et al. Integrated assessment of deforestation drivers and their alignment with subnational climate change mitigation efforts. Environ. Sci. Policy 114, 352–365 (2020).CAS 

    Google Scholar 
    Fritz, S. et al. A continental assessment of the drivers of tropical deforestation with a focus on protected areas. Front. Conserv. Sci. https://doi.org/10.3389/fcosc.2022.830248 (2022).Article 

    Google Scholar 
    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).ADS 

    Google Scholar 
    Fedele, G., Locatelli, B., Djoudi, H. & Colloff, M. J. Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS One 13, e0195895 (2018).
    Google Scholar 
    Yackulic, C. B. et al. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. https://doi.org/10.5751/ES-04275-160315 (2011).Article 

    Google Scholar 
    Loran, C., Ginzler, C. & Bürgi, M. Evaluating forest transition based on a multi-scale approach: Forest area dynamics in Switzerland 1850–2000. Reg. Environ. Change 16, 1807–1818 (2016).
    Google Scholar 
    Moonen, P. C. et al. Actor-based identification of deforestation drivers paves the road to effective REDD+in DR Congo. Land Use Policy 58, 123–132 (2016).
    Google Scholar 
    Strassburg, B. The tragedy of the tropics: A dynamic, cross-scale analysis of deforestation incentives. Working Paper—Centre for Social and Economic Research on the Global Environment No. 07-02 (2007).López-Carr, D. et al. Space versus place in complex human–natural systems: Spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala. Ecol. Model. 229, 64–75 (2012).
    Google Scholar 
    Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).
    Google Scholar 
    Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
    Google Scholar 
    Ferrer Velasco, R. et al. Towards accurate mapping of forest in tropical landscapes: A comparison of datasets on how forest transition matters. Remote Sens. Environ. 274, 112997 (2022).ADS 

    Google Scholar 
    Jayathilake, H. M., Prescott, G. W., Carrasco, L. R., Rao, M. & Symes, W. S. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio 50, 215–228 (2021).
    Google Scholar 
    Minang, P. A. et al. REDD+Readiness progress across countries: Time for reconsideration. Clim. Policy 14, 685–708 (2014).
    Google Scholar 
    Current pledges | Bonn challenge. https://www.bonnchallenge.org/pledges. Accessed: 15th August 2022.Nansikombi, H. et al. Can de facto governance influence deforestation drivers in the Zambian Miombo?. For. Policy Econ. 120, 102309 (2020).
    Google Scholar 
    Sullivan, A., York, A., White, D., Hall, S. & Yabiku, S. D. Jure versus de facto institutions: Trust, information, and collective efforts to manage the invasive mile-a-minute weed (Mikania micrantha). Int. J. Commons 11, 171–199 (2017).
    Google Scholar 
    Busch, J. & Amarjargal, O. Authority of second-tier governments to reduce deforestation in 30 tropical countries. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2020.00001 (2020).Article 

    Google Scholar 
    Sandström, C., Eckerberg, K. & Raitio, K. Studying conflicts, proposing solutions—Towards multi-level approaches to the analyses of forest conflicts. For. Policy Econ. 33, 123–127 (2013).
    Google Scholar 
    Hoogstra-Klein, M. A., Permadi, D. B. & Yasmi, Y. The value of cultural theory for participatory processes in natural resource management. For. Policy Econ. 20, 99–106 (2012).
    Google Scholar 
    de Jong, W., Ruiz, S. & Becker, M. Conflicts and communal forest management in northern Bolivia. For. Policy Econ. 8, 447–457 (2006).
    Google Scholar 
    Eckerberg, K. & Sandström, C. Forest conflicts: A growing research field. For. Policy Econ. 33, 3–7 (2013).
    Google Scholar 
    Sierra, R., Calva, O. & Guevara, A. La Deforestación en el Ecuador, 1990–2018. Factores promotores y tendencias recientes, 216 (2021).Wasserstrom, R. & Southgate, D. Deforestation, agrarian reform and oil development in Ecuador, 1964–1994. Nat. Resour. 04, 31 (2013).
    Google Scholar 
    Wiebe, P. C., Zhunusova, E., Lippe, M., Ferrer Velasco, R. & Günter, S. What is the contribution of forest-related income to rural livelihood strategies in the Philippines’ remaining forested landscapes?. For. Policy Econ. 135, 102658 (2022).
    Google Scholar 
    Le, H. D., Smith, C. & Herbohn, J. What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Glob. Environ. Change 24, 334–348 (2014).
    Google Scholar 
    Carandang, A. P. et al. Analysis of key drivers of deforestation and forest degradation in the Philippines. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) (2013).Phiri, D., Morgenroth, J. & Xu, C. Four decades of land cover and forest connectivity study in Zambia—An object-based image analysis approach. Int. J. Appl. Earth Obs. Geoinf. 79, 97–109 (2019).ADS 

    Google Scholar 
    Nansikombi, H., Fischer, R., Kabwe, G. & Günter, S. Exploring patterns of forest governance quality: Insights from forest frontier communities in Zambia’s Miombo ecoregion. Land Use Policy 99, 104866 (2020).
    Google Scholar 
    Zhang, H., Wang, P. & Wood, J. Does institutional quality matter for the nexus between environmental quality and economic growth?: A tropics perspective. In Business, Industry, and Trade in the Tropics (eds Wood, J. et al.) (Routledge, 2022).
    Google Scholar 
    Reed, J., Van Vianen, J., Deakin, E. L., Barlow, J. & Sunderland, T. Integrated landscape approaches to managing social and environmental issues in the tropics: Learning from the past to guide the future. Glob. Change Biol. 22, 2540–2554 (2016).ADS 

    Google Scholar 
    Fischer, R. et al. Interplay of governance elements and their effects on deforestation in tropical landscapes: Quantitative insights from Ecuador. World Dev. 148, 105665 (2021).
    Google Scholar 
    Torres, B., Vasco, C., Günter, S. & Knoke, T. Determinants of agricultural diversification in a hotspot area: Evidence from colonist and indigenous communities in the Sumaco biosphere reserve Ecuadorian Amazon. Sustainability 10, 1432 (2018).
    Google Scholar 
    Ojeda Luna, T., Zhunusova, E., Günter, S. & Dieter, M. Measuring forest and agricultural income in the Ecuadorian lowland rainforest frontiers: Do deforestation and conservation strategies matter?. For. Policy Econ. 111, 102034 (2020).
    Google Scholar 
    Kazungu, M. et al. Effects of household-level attributes and agricultural land-use on deforestation patterns along a forest transition gradient in the Miombo landscapes Zambia. Ecol. Econ. 186, 107070 (2021).
    Google Scholar 
    Kleemann, J. et al. Deforestation in continental ecuador with a focus on protected areas. Land 11, 268 (2022).
    Google Scholar 
    Mulenga, M. M. & Roos, A. Assessing the awareness and adoptability of pellet cookstoves for low-income households in Lusaka, Zambia. J. Energy South. Afr. 32, 52–61 (2021).
    Google Scholar 
    Eguiguren, P., Ojeda Luna, T., Torres, B., Lippe, M. & Günter, S. Ecosystem service multifunctionality: Decline and recovery pathways in the amazon and chocó lowland rainforests. Sustainability 12, 7786 (2020).CAS 

    Google Scholar 
    Vasco, C., Torres, B., Pacheco, P. & Griess, V. The socioeconomic determinants of legal and illegal smallholder logging: Evidence from the Ecuadorian Amazon. For. Policy Econ. 78, 133–140 (2017).
    Google Scholar 
    van der Ploeg, J., van Weerd, M., Masipiqueña, A. B. & Persoon, G. A. Illegal logging in the Northern Sierra Madre Natural Park, the Philippines. Conserv. Soc. 9, 202–215 (2011).
    Google Scholar 
    Liu, D. S., Iverson, L. R. & Brown, S. Rates and patterns of deforestation in the Philippines: Application of geographic information system analysis. For. Ecol. Manag. 57, 1–16 (1993).
    Google Scholar 
    Boquet, Y. Environmental challenges in the Philippines. In The Philippine Archipelago (ed. Boquet, Y.) 779–829 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-51926-5_22.Chapter 

    Google Scholar 
    MAGAP. ATPA: Reconversión Agro productiva Sostenible en la Amazonía Ecuatoriana (2014).Jones, K. W. et al. Forest conservation incentives and deforestation in the Ecuadorian Amazon. Environ. Conserv. 44, 56–65 (2017).
    Google Scholar 
    Lindsey, P. A. et al. Underperformance of African protected area networks and the case for new conservation models: Insights from Zambia. PLoS One 9, e94109 (2014).ADS 

    Google Scholar 
    Fischer, R. et al. Effectiveness of policy instrument mixes for forest conservation in the tropics – a stakeholder perspective from Ecuador, the Philippines and Zambia. Land Use Policy https://doi.org/10.1016/j.landusepol.2023.106546 (2022).Article 

    Google Scholar 
    Gurney, G. G. et al. Biodiversity needs every tool in the box: Use OECMs. Nature 595, 646–649 (2021).ADS 
    CAS 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).ADS 
    CAS 

    Google Scholar 
    Priebe, J. et al. Transformative change in context—Stakeholders’ understandings of leverage at the forest–climate nexus. Sustain. Sci. 17, 1921–1938 (2022).
    Google Scholar 
    Höhl, M. et al. Forest landscape restoration—What generates failure and success?. Forests 11, 938 (2020).
    Google Scholar 
    Köthke, M., Ahimbisibwe, V. & Lippe, M. The evidence base on the environmental, economic and social outcomes of agroforestry is patchy—An evidence review map. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.925477 (2022).Article 

    Google Scholar 
    Fischer, R., Giessen, L. & Günter, S. Governance effects on deforestation in the tropics: A review of the evidence. Environ. Sci. Policy 105, 84–101 (2020).
    Google Scholar 
    Bare, M., Kauffman, C. & Miller, D. C. Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10, 125010 (2015).ADS 

    Google Scholar 
    Vuohelainen, A. J., Coad, L., Marthews, T. R., Malhi, Y. & Killeen, T. J. The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios. Peru. Environ. Manag. 50, 645–663 (2012).ADS 

    Google Scholar 
    Hull, V. & Liu, J. Telecoupling: A new frontier for global sustainability. Ecol. Soc. 23, 41 (2018).
    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. Roy. Stat. Soc. 44, 139–160 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 15, 625–632 (2010).
    Google Scholar 
    Day, M., Gumbo, D., Moombe, K. B., Wijaya, A. & Sunderland, T. Zambia Country Profile: Monitoring, Reporting and Verification for REDD+ Vol. 113 (CIFOR, 2014).
    Google Scholar 
    Piotrowski, M. Nearing the tipping point. Drivers of Deforestation in the Amazon Region (2019).Sarker, P. K., Fischer, R., Tamayo, F., Navarrete, B. T. & Günter, S. Analyzing forest policy mixes based on the coherence of policies and the consistency of legislative policy instruments: A case study from Ecuador. For. Policy Econ. 144, 102838 (2022).
    Google Scholar 
    Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22(140), 55–55 (1932).
    Google Scholar 
    Altinsoy, M. et al. Ambulatory ECG monitoring for syncope and collapse in United States, Europe, and Japan: The patients’ viewpoint. J. Arrhythm. 37, 1023–1030 (2021).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, Austria, 2022).Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7.0 (2021).Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7 (2020).Komsta, L. & Novometsky, F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14.1 (2022).Zhang, Y., Zhou, M. & Shao, Y. mvnormalTest: Powerful tests for multivariate normality. R package version 1.0.0 (2020).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0 (2020).Wickham, H. et al. Welcome to the Tidyverse. JOSS 4, 1686 (2019).ADS 

    Google Scholar 
    Bache, S. M. & Wickham, H. magrittr: A Forward-Pipe Operator for R. R package version 2.0.3 (2022).Ushey, K., Allaire, J., Wickham, H. & Ritchie, G. rstudioapi: Safely Access the RStudio API. R package version 0.13 (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.Book 
    MATH 

    Google Scholar 
    Wilkins, D. treemapify: Draw Treemaps in ‘ggplot2’. R package version 2.5.5 (2021).Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 

    Google Scholar 
    Mardia, K. V. Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970).MathSciNet 
    MATH 

    Google Scholar 
    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).MATH 

    Google Scholar 
    Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).
    Google Scholar 
    Conover, W. J. & Iman, R. L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 35, 124–129 (1981).MATH 

    Google Scholar 
    Student,. The probable error of a mean. Biometrika 6, 1–25 (1908).MATH 

    Google Scholar 
    Tukey, J. W. Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949).MathSciNet 
    CAS 

    Google Scholar 
    Jolliffe, I. T. Principal Component Analysis (Springer, 2002).MATH 

    Google Scholar  More

  • in

    Scenarios of land use and land cover change in the Colombian Amazon to evaluate alternative post-conflict pathways

    Study areaIn Colombia, the Amazon region represents 42.3% of the territory with an estimated area of 483,164 km2. In this area, 14% is dominated by agricultural lands, secondary vegetation and fragmented forests. Currently, 86% of the area corresponds to natural areas in a good state of conservation, where forests are the dominant coverage6. In the northwest area, the region borders the Andean Cordillera and Orinoquía to the north. The political-administrative division includes the departments Amazonas, Caquetá, Guainía, Guaviare, Putumayo and Vaupés, and part of the departments Cauca, Meta, Nariño and Vichada. The human population is estimated at ~ 1.4 million, with a density of 2.5 inhab/km2. Internal conflict and poverty make this region one of the most important population dynamics in the country in terms of displacement36. The geographical location of the study area and the spatial pattern of the loss of forests that occurred between 2002 and 2016 are shown in Fig. 1.Figure 1Study area. Colombian Amazon and location of Amazonian tropical forests that were lost between 2002 and 2016. (Maps were generated using software ArcGis 10.7.1 https://www.esri.com).Full size imageLand cover maps and variables for change analysisThematic land cover maps used in this research were produced by the Colombian Amazon Land Cover Monitoring System (SIMCOBA) of the Amazon Institute for Scientific Research SINCHI (https://siatac.co/simcoba/). SIMCOBA has prepared land cover maps for the periods 2002, 2007, 2012, 2014, 2016 and 2018. Three of the land cover maps prepared were used in this study: 2002, 2016 and 2018 a scale of 1:100,00033. The maps were generated from the visual interpretation of a mosaic of Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) images, using the PIAO technique (Photo Interprétation Assistée par Ordinateur). The classification categories of the land cover maps were based on the Corine land cover methodology adapted for Colombia37.The SIMCOBA system calculates the annual rates of Amazon forest loss (forest loss/ha/annual) by comparing the cover maps of the last two periods and subtracting from the previous map those forests that are no longer present in the most current map (Fig. 3). This process only considers the forests loss and the permanent forests. New forests due to natural regeneration or restoration are omitted in the calculations6.To facilitate the interpretation of changes and cover transitions, the classification categories of the maps were re-categorized into 7 types: “Amazon forests”, “floodplain forests”, “fragmented forests and secondary vegetation”, “grasslands and shrublands”, “water bodies and wetlands”, “pastures and crops” and “urban and artificialized cover”. The land cover maps were resampled at a resolution of 60 m × 60 m to facilitate the computational analysis of the explanatory model, the simulations of the scenarios, and to keep the detailed spatial resolution of the coverage and explanatory variables16.A geospatial database was created with a set of variables for the cover changes to create an explanatory model for each transition. Driving factors of change are grouped into the following variables: (1) accessibility, (2) climate, (3) landscape features, (4) production practices and environmental degradation, (5) landscape management, (6) socioeconomy, and (7) soil characteristics. We considered 41 explanatory variables (see supplementary information Table S1).Accessibility variables such as roads and navigable rivers were obtained from the geodatabase at a scale of 1:100,000 of the Agustín Codazzi Geographical Institute of Colombia (IGAC). Bioclimatic temperature data were obtained from Worldclim v1.438. Cover variables (e.g., patch sizes Amazon forests and distance to pastures and crops) were created using the software ArcGis (v.10.7.1)39 from the 2002 land cover map to understand which drivers were more influential in the dynamics of land-use changes since 2002 that resulted in the distribution of land cover in 2016.Degradation variables, such as advances of the agricultural frontier, were obtained from the Territorial Environmental Information System of the Colombian Amazon (SIAT-AC)40; livestock density data came from the Colombian Agricultural Institute (ICA); the fire density were processed from MODIS and VIIRS images (https://siatac.co/puntos-de-calor/); and the location of mining titles was obtained from the National Mining Agency.The information on the landscape features and socioeconomic variables was obtained from different sources: (1) the limit of the protected natural areas was provided by the National System of Protected Areas (SINAP)41, (2) the Amazon Forest Reserve areas (Second Law of 1959) were obtained from the Ministry of Environment and Sustainable Development (MADS), (3) the location of the indigenous reservations was provided by the Ministry of the Interior, and (4) the limits of the areas of Indigenous Reservations and the legal status of the Amazonian region were obtained from the SINCHI cartographic database40.Socioeconomic information was spatialized from data from the National Administrative Department of Statistics (DANE). Soil-type data were obtained from IGAG, and topographic and altitudinal variables were derived from a DEM at 100 m resolution from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER V003) sensor42. All explanatory variables were resampled at a resolution of 60 m.Patterns of land cover changes and transitionsThe transformation patterns of territory are mainly defined by human intentions and the activities that these groups plan to develop after making the land cover changes, as well as the dynamics of vegetation regeneration43. In this study, these changes in the study area were obtained and analyzed employing the Land Change Modeller (LCM) module of TerrSet34 and using the land cover maps for 2002 and 2016 as input information (Fig. 2).Figure 2(Source: Open Data—SINCHI Institute https://datos.siatac.co/pages/coberturas) (Maps were generated using software ArcGis 10.7.1 ).Land cover maps 2002, 2016 and 2018, produced by the Colombian Amazon Land Cover Monitoring System (SIMCOBA) of the Amazonian Research Institute SINCHIFull size imageTo represent dynamics and changes in the vegetation during the study period, a total of 14 transitions of greater importance in terms of area were considered (transitions with an area  More

  • in

    Upwelling, climate change, and the shifting geography of coral reef development

    Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918. https://doi.org/10.1016/j.cub.2013.04.020 (2013).Article 
    CAS 

    Google Scholar 
    Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun. 9, 2186. https://doi.org/10.1038/s41467-018-04568-z (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715. https://doi.org/10.1111/cobi.12725 (2016).Article 

    Google Scholar 
    Allemand, D. et al. Biomineralisation in reef-building corals: From molecular mechanisms to environmental control. C. R. Palevol. 3, 453–467. https://doi.org/10.1016/j.crpv.2004.07.011 (2004).Article 

    Google Scholar 
    Glynn, P. W. Bioerosion and coral-reef growth: A dynamic balance. In Life and Death of Coral Reefs (ed Birkeland, C.) 68–95 (Chapman & Hall, 1997).Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976. https://doi.org/10.1038/nclimate2380 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Enochs, I. C. et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 91, e01482. https://doi.org/10.1002/ecm.1482 (2021).Article 
    CAS 

    Google Scholar 
    Alvarado, J. J., Grassian, B., Cantera-Kintz, J. R., Carballo, J. L. & Londoño-Cruz, E. Coral reef bioerosion in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 369–403 (Springer, 2017).Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402. https://doi.org/10.1038/ncomms2409 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Oppenheimer, M. et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A. & Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 5, 440. https://doi.org/10.1038/s42003-022-03398-6 (2022).Article 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400. https://doi.org/10.1038/s41586-018-0194-z (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Carbonate production of Micronesian reefs suppressed by thermal anomalies and Acanthaster as sea-level rises. PLoS ONE 14, e0224887. https://doi.org/10.1371/journal.pone.0224887 (2019).Article 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Thermal stress jeopardizes carbonate production of coral reefs across the western and central Pacific Ocean. PLoS ONE 16, e0249008. https://doi.org/10.1371/journal.pone.0249008 (2021).Article 
    CAS 

    Google Scholar 
    van Woesik, R. & Cacciapaglia, C. W. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean. PLoS ONE 13, e0197077. https://doi.org/10.1371/journal.pone.0197077 (2018).Article 
    CAS 

    Google Scholar 
    Eakin, C. M. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15, 109–119. https://doi.org/10.1007/BF01771900 (1996).Article 
    ADS 

    Google Scholar 
    Perry, C. T. & Morgan, K. M. Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Sci. Rep. 7, 40581. https://doi.org/10.1038/srep40581 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Connell, J. H. Disturbance and recovery of coral assemblages. Coral Reefs 16, S101–S113. https://doi.org/10.1007/s003380050246 (1997).Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Dana, T. F. Development of contemporary eastern Pacific coral reefs. Mar. Biol. 33, 355–374. https://doi.org/10.1007/BF00390574 (1975).Article 

    Google Scholar 
    Cortés, J. Eastern tropical Pacific coral reefs. In The Encyclopedia of Modern Coral Reefs: Structure, Form and Process. 351–358 (2011).O’Dea, A., Hoyos, N., Rodríguez, F., Degracia, B. & de Gracia, C. History of upwelling in the tropical eastern Pacific and the paleogeography of the Isthmus of Panama. Palaeogeogr. Palaeoclimatol. Palaeoecol. 348–349, 59–66. https://doi.org/10.1016/j.palaeo.2012.06.007 (2012).Article 

    Google Scholar 
    Glynn, P. W. & Colgan, M. W. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the Eastern Pacific. Am. Zool. 32, 707–718. https://doi.org/10.1093/icb/32.6.707 (1992).Article 

    Google Scholar 
    Manzello, D. P. et al. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proc. Natl. Acad. Sci. USA 105, 10450–10455. https://doi.org/10.1073/pnas.0712167105 (2008).Article 
    ADS 

    Google Scholar 
    Eakin, C. M. & Glynn, P. W. Low tidal exposures and reef mortalities in the eastern Pacific. Coral Reefs 15, 120 (1996).Article 

    Google Scholar 
    Glynn, P. W. Some physical and biological determinants of coral community structure in the eastern pacific. Ecol. Monogr. 46, 431–456. https://doi.org/10.2307/1942565 (1976).Article 

    Google Scholar 
    Toth, L. T., Macintyre, I. G. & Aronson, R. B. Holocene reef development in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 177–201 (Springer, 2017).Cortés, J., Macintyre, I. G. & Glynn, P. W. Holocene growth history of an eastern Pacific fringing reef, Punta Islotes, Costa Rica. Coral Reefs 13, 65–73. https://doi.org/10.1007/BF00300763 (1994).Article 
    ADS 

    Google Scholar 
    Glynn, P. W. et al. Eastern pacific coral reef provinces, coral community structure and composition: An overview. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 107–176 (Springer, 2017).Glynn, P. W. & Macintyre, I. G. Growth rate and age of coral reefs on the Pacific coast of Panama. In Proceedings of the 3rd International Coral Reef Symposium, Miami, vol. 2, 251–259 (1977).Glynn, P. W. & Stewart, R. H. Distribution of coral reefs in the Pearl Islands (Gulf of Panama) in relation to thermal conditions. Limnol. Oceanogr. 18, 367–379. https://doi.org/10.4319/lo.1973.18.3.0367 (1973).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Druffel, E. M. & Dunbar, R. B. A dead Central American coral reef tract: Possible link with the Little Ice Age (Costa Rica, Gulf of Papagayo, Gulf of Panama). J. Mar. Res. 41, 605–637. https://doi.org/10.1357/002224083788519740 (1983).Article 

    Google Scholar 
    Glynn, P. W. & Leyte Morales, G. E. Coral reefs of Huatulco, west México: Reef development in upwelling Gulf of Tehuantepec. Rev. Biol. Trop. 45, 1033–1047 (1997).
    Google Scholar 
    Tribollet, A. & Golubic, S. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24, 422–434. https://doi.org/10.1007/s00338-005-0003-7 (2005).Article 
    ADS 

    Google Scholar 
    D’Croz, L. & O’Dea, A. Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar. Coast. Shelf S. 73, 325–340. https://doi.org/10.1016/j.ecss.2007.01.013 (2007).Article 
    ADS 

    Google Scholar 
    Randall, C. J., Toth, L. T., Leichter, J. J., Maté, J. L. & Aronson, R. B. Upwelling buffers climate change impacts on coral reefs of the eastern tropical Pacific. Ecology 101, e02918. https://doi.org/10.1002/ecy.2918 (2020).Article 

    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x (2012).Article 

    Google Scholar 
    Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284. https://doi.org/10.1111/geb.12693 (2018).Article 

    Google Scholar 
    R Development Core Team. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R Foundation for Statistical Computing vol. 2.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016). ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. (2022). https://paleolimbot.github.io/ggspatial/, https://github.com/paleolimbot/ggspatial.Toth, L. T. et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 336, 81–84. https://doi.org/10.1126/science.1221168 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Toth, L. T. et al. Climatic and biotic thresholds of coral-reef shutdown. Nat. Clim. Change 5, 369–374. https://doi.org/10.1038/nclimate2541 (2015).Article 
    ADS 

    Google Scholar 
    Guzman, H. & Cortés, J. Arrecifes coralinos del Pacífico oriental tropical: revisión y perspectivas. Rev. Biol. Trop. 41, 535–557 (1993).
    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming Ocean. Mar. Ecol. Prog. Ser. 416, 47–56. https://doi.org/10.3354/meps08775 (2010).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).
    Google Scholar 
    Paz-García, D. A., Hellberg, M. E., García-de-León, F. J. & Balart, E. F. Switch between morphospecies of Pocillopora corals. Am. Nat. 186, 434–440. https://doi.org/10.1086/682363 (2015).Article 

    Google Scholar 
    Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Cupul-Magaña, A. L. & Carricart-Ganivet, J. P. Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 2017, e3191. https://doi.org/10.7717/peerj.3191 (2017).Article 

    Google Scholar 
    Medellín-Maldonado, F. et al. Calcification of the main reef-building coral species on the Pacific coast of southern Mexico. Cienc. Mar. 42, 209–225. https://doi.org/10.7773/cm.v42i3.2650 (2016).Article 
    CAS 

    Google Scholar 
    Cabral-Tena, R. A. et al. Calcification of coral assemblages in the eastern Pacific: Reshuffling calcification scenarios under climate change. Ecol. Indic. 95, 726–734. https://doi.org/10.1016/j.ecolind.2018.08.021 (2018).Article 
    CAS 

    Google Scholar 
    Glynn, P. Coral growth in upwelling and nonupwelling areas off the Pacific coast of Panama. J. Mar. Res. 35, 567–585 (1977).
    Google Scholar 
    Guzman, H. M. & Cortes, J. Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 44, 1186–1194 (1989).
    Google Scholar 
    Cabral-Tena, R. A. et al. Functional potential of coral assemblages along a typical eastern tropical Pacific reef tract. Ecol. Indic. 119, 106795. https://doi.org/10.1016/j.ecolind.2020.106795 (2020).Article 

    Google Scholar 
    Manzello, D. P. Coral growth with thermal stress and ocean acidification: Lessons from the eastern tropical Pacific. Coral Reefs 29, 749–758. https://doi.org/10.1007/s00338-010-0623-4 (2010).Article 
    ADS 

    Google Scholar 
    González-Barrios, F. J. & Álvarez-Filip, L. A framework for measuring coral species-specific contribution to reef functioning in the Caribbean. Ecol. Indic. 95, 877–886. https://doi.org/10.1016/j.ecolind.2018.08.038 (2018).Article 

    Google Scholar 
    Jokiel, P. L., Maragos, J. & Franzisket, L. Coral growth: Buoyant weight technique. In Coral Reefs: Research Methods (eds Stoddart, D. R., & Johannes, R. E.) 529–541 (UNESCO, 1978).Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32, 987–997. https://doi.org/10.1007/s00338-013-1047-8 (2013).Article 
    ADS 

    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. USA 118, e2015265118. https://doi.org/10.1073/pnas.201526511 (2021).Article 
    CAS 

    Google Scholar 
    Rose, C. S. & Risk, M. J. Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar. Ecol. 6, 345–363. https://doi.org/10.1111/j.1439-0485.1985.tb00142.x (1985).Article 
    ADS 

    Google Scholar 
    Prouty, N. G. et al. Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J. Geophys. Res-Oceans 122, 9319–9331. https://doi.org/10.1002/2017JC013264 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Eakin, C. M. The damselfish-algal lawn symbiosis and its influence on the bioerosion of an El Niño impacted coral reef, Uva Island, Pacific Panama. ProQuest Dissertations and Theses (1991).Alvarado, J. J., Reyes-Bonilla, H. & Benítez-Villalobos, F. Diadema mexicanum, erizo de mar clave en los arrecifes coralinos del Pacífico Tropical Oriental: Lo que sabemos y perspectivas futuras (Diadematoida: Diadematidae). Rev. Biol. Trop. 63(Suppl 2), 135–157. https://doi.org/10.15517/rbt.v63i2.23140 (2015).Article 

    Google Scholar 
    Glynn, P. W. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11, 133–146. https://doi.org/10.1017/S0376892900013825 (1984).Article 

    Google Scholar 
    Glynn, P. W. El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7, 129–160 (1988).
    Google Scholar 
    Eakin, C. M. A tale of two ENSO events: Carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull. Mar. Sci. 69, 171–186 (2001).ADS 

    Google Scholar 
    Russ, G. R., Questel, S. L. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: Refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045. https://doi.org/10.1007/s00227-015-2728-3 (2015).Article 

    Google Scholar 
    Wellington, G. M. & Glynn, P. W. Responses of Coral Reefs to El Niño-Southern Oscillation Sea-Warming Events. In Geological Approaches to Coral Reef Ecology (ed Aronson, R. B.) 342–385 (Springer, 2007).Guzmán, H. M. & Cortés, J. Changes in reef community structure after fifteen years of natural disturbances in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 69, 133–149 (2001).
    Google Scholar 
    Guzman, H. M. & Cortés, J. Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar. Biol. 151, 401–411. https://doi.org/10.1007/s00227-006-0495-x (2007).Article 

    Google Scholar 
    Edmunds, P. J. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306. https://doi.org/10.3354/meps12805 (2019).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. et al. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proc. R. Soc. B 283, 20161742. https://doi.org/10.1098/rspb.2016.1742 (2016).Article 
    CAS 

    Google Scholar 
    Roff, G. Reef accretion and coral growth rates are decoupled in Holocene reef frameworks. Mar. Geol. 419, 106065. https://doi.org/10.1016/j.margeo.2019.106065 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Perry, C. T. et al. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob. Change Biol. 21, 1153–1164. https://doi.org/10.1111/gcb.12792 (2015).Article 
    ADS 

    Google Scholar 
    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (2014).Neumann, A. C. & Macintyre, I. Reef response to sea level rise: Keep-up, catch-up or give up. In Proceedings 5th International Coral Reef Congress, Tahiti 3, 105–110 (1985).Macintyre, I. G. Modern coral reefs of western Atlantic: New geological perspective. AAPG Bull. 72, 1360–1369. https://doi.org/10.1306/703C99A1-1707-11D7-8645000102C1865D (1988).Article 

    Google Scholar 
    Hallock, P. & Schlager, W. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–398. https://doi.org/10.2307/3514476 (1986).Article 
    ADS 

    Google Scholar 
    Kleypas, J. A. Coral reef development under naturally turbid conditions: Fringing reefs near Broad Sound, Australia. Coral Reefs 15, 153–167. https://doi.org/10.1007/BF01145886 (1996).Article 
    ADS 

    Google Scholar 
    van Woesik, R. & Done, T. J. Coral communities and reef growth in the southern Great Barrier Reef. Coral Reefs 16, 103–115. https://doi.org/10.1007/s003380050064 (1997).Article 

    Google Scholar 
    Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob. Change Biol. 26, 1367–1373. https://doi.org/10.1111/gcb.14948 (2020).Article 
    ADS 

    Google Scholar 
    Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Romero-Torres, M. et al. Coral reef resilience to thermal stress in the eastern tropical Pacific. Glob. Change Biol. 26, 3880–3890. https://doi.org/10.1111/gcb.15126 (2020).Article 
    ADS 

    Google Scholar 
    Martínez-Castillo, V., Rodríguez-Troncoso, A. P., Mayfield, A. B., Rodríguez-Zaragoza, F. A. & Cupul-Magaña, A. L. Coral recovery in the central Mexican Pacific 20 years after the 1997–1998 El Niño Event. Oceans 3, 48–59. https://doi.org/10.3390/oceans3010005 (2022).Article 

    Google Scholar 
    Anton, A. et al. Differential thermal tolerance between algae and corals may trigger the proliferation of algae in coral reefs. Glob. Change Biol. 26, 4316–4327. https://doi.org/10.1111/gcb.15141 (2020).Article 
    ADS 

    Google Scholar 
    Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology 102, e03226. https://doi.org/10.1002/ecy.3226 (2021).Article 

    Google Scholar 
    Roik, A., Röthig, T., Pogoreutz, C., Saderne, V. & Voolstra, C. R. Coral reef carbonate budgets and ecological drivers in the central Red Sea—A naturally high temperature and high total alkalinity environment. Biogeosciences 15, 6277–6296. https://doi.org/10.5194/bg-15-6277-2018 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34. https://doi.org/10.1038/s41561-019-0486-4 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673. https://doi.org/10.1890/13-0468.1 (2014).Article 

    Google Scholar 
    Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875. https://doi.org/10.1111/1365-2664.13179 (2018).Article 

    Google Scholar 
    Courtney, T. A. et al. Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere 11, e03066. https://doi.org/10.1002/ecs2.3066 (2020).Article 

    Google Scholar 
    Bachman, S. D., Kleypas, J. A., Erdmann, M. & Setyawan, E. A global atlas of potential thermal refugia for coral reefs generated by internal gravity waves. Front. Mar. Sci. 9, 1346. https://doi.org/10.3389/fmars.2022.921879 (2022).Article 

    Google Scholar 
    Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004. https://doi.org/10.1371/journal.pclm.0000004 (2022).Article 

    Google Scholar 
    Kuffner, I. B., Stathakopoulos, A., Toth, L. T. & Bartlett, L. A. Reestablishing a stepping-stone population of the threatened elkhorn coral Acropora palmata to aid regional recovery. Endanger. Species Res. 43, 461–473. https://doi.org/10.3354/esr01083 (2020).Article 

    Google Scholar 
    Perry, C. T., Lange, I. D. & Januchowski-Hartley, F. A. ReefBudget Indo Pacific: Online resource and methodology. http://geography.exeter.ac.uk/reefbudget/ (2018).Nava, H. & Carballo, J. L. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J. Exp. Biol. 211, 2827–2831. https://doi.org/10.1242/jeb.019216 (2008).Article 

    Google Scholar 
    Carballo, J. L., Bautista, E., Nava, H., Cruz-Barraza, J. A. & Chávez, J. A. Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol. Evol. 3, 872–886. https://doi.org/10.1002/ece3.452 (2013).Article 

    Google Scholar 
    Smith, T. B. Temperature effects on herbivory for an Indo-Pacific parrotfish in Panamá: Implications for coral-algal competition. Coral Reefs 27, 397–405. https://doi.org/10.1007/s00338-007-0343-6 (2008).Article 
    ADS 

    Google Scholar 
    Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247. https://doi.org/10.3354/meps10594 (2014).Article 
    ADS 

    Google Scholar 
    Palacios, M. M., Muñoz, C. G. & Zapata, F. A. Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33, 625–636. https://doi.org/10.1007/s00338-014-1173-y (2014).Article 
    ADS 

    Google Scholar 
    Toth, L. T. Holocene Coral-Reef Development in the Tropical Eastern Pacific. (Florida Institute of Technology, 2013).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. https://cran.r-project.org/package=nlme.R-project (2021).Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1 (2013).Article 

    Google Scholar 
    Permanent Service for Mean Sea Level. Balboa Tide Gauge Data. http://www.psmsl.org/data/obtaining/ (2022). More

  • in

    Net loss of biomass predicted for tropical biomes in a changing climate

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. 108, 9899–9904 (2011).Article 
    CAS 

    Google Scholar 
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).Article 
    CAS 

    Google Scholar 
    Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).Article 
    CAS 

    Google Scholar 
    Betts, R. A. et al. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol. 78, 157–175 (2004).Article 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).Article 
    CAS 

    Google Scholar 
    Rammig, A. et al. Estimating the risk of Amazonian forest dieback. N. Phytol. 187, 694–706 (2010).Article 
    CAS 

    Google Scholar 
    Huntingford, C. et al. Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philos. Trans. R. Soc. B Biol. Sci. 363, 1857–1864 (2008).Article 

    Google Scholar 
    Galbraith, D. et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. N. Phytol. 187, 647–665 (2010).Article 

    Google Scholar 
    Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L. & Scheiter, S. Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia. Biogeosciences 18, 2957–2979 (2021).Article 
    CAS 

    Google Scholar 
    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).Article 
    CAS 

    Google Scholar 
    Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).Article 
    CAS 

    Google Scholar 
    Koch, A., Hubau, W. & Lewis, S. L. Earth system models are not capturing present-day tropical forest carbon dynamics. Earths Future 9, e2020EF001874 (2021).Article 
    CAS 

    Google Scholar 
    Negrón-Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G. & Chambers, J. Q. Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environ. Res. Lett. 10, 064017 (2015).Article 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).Article 
    CAS 

    Google Scholar 
    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article 
    CAS 

    Google Scholar 
    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. 106, 20610–20615 (2009).Article 
    CAS 

    Google Scholar 
    Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 137–160 (2011).
    Google Scholar 
    Huang, L. et al. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Sci. Rep. 6, 24639 (2016).Article 
    CAS 

    Google Scholar 
    Castanho, A. D. A. et al. Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environ. Res. Lett. 15, 034053 (2020).Article 

    Google Scholar 
    Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v3. NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/5f331c418e9f4935b8eb1b836f8a91b8 (2021).Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).Article 
    CAS 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).Article 
    CAS 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article 

    Google Scholar 
    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).Article 
    CAS 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).Article 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the amazon rainforest. Science 323, 1344–1347 (2009).Article 
    CAS 

    Google Scholar 
    Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Change 11, 449–455 (2021).Article 

    Google Scholar 
    Larjavaara, M., Lu, X., Chen, X. & Vastaranta, M. Impact of rising temperatures on the biomass of humid old-growth forests of the world. Carbon Balance Manag. 16, 31 (2021).Article 

    Google Scholar 
    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).Article 
    CAS 

    Google Scholar 
    Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutierrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation and plant mortality in a tropical forest. Ecology 102, e03541 (2021).Article 

    Google Scholar 
    Magnabosco Marra, D. et al. Windthrows control biomass patterns and functional composition of Amazon forests. Glob. Change Biol. 24, 5867–5881 (2018).Article 

    Google Scholar 
    Negrón-Juárez, R. I. et al. Windthrow variability in central amazonia. Atmosphere 8, 28 (2017).Article 

    Google Scholar 
    Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, 40 (2020).Article 

    Google Scholar 
    Yin, Y. et al. Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nat. Commun. 11, 1900 (2020).Article 
    CAS 

    Google Scholar 
    Koch, A. & Kaplan, J. O. Tropical forest restoration under future climate change. Nat. Clim. Change 12, 279–283 (2022).Article 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article 
    CAS 

    Google Scholar 
    Case, M. F. & Staver, A. C. Fire prevents woody encroachment only at higher-than-historical frequencies in a South African savanna. J. Appl. Ecol. 54, 955–962 (2017).Article 
    CAS 

    Google Scholar 
    Mau, A. C., Reed, S. C., Wood, T. E. & Cavaleri, M. A. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis. Forests 9, 47 (2018).Article 

    Google Scholar 
    Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article 
    CAS 

    Google Scholar 
    Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).Article 
    CAS 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold?. J. Geophys. Res. Biogeosciences 113, G00B07 (2008).Article 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Seasonal patterns of tropical forest leaf area index and CO2 exchange. J. Geophys. Res. Biogeosciences 113, G00B06 (2008).Article 

    Google Scholar 
    Langenbrunner, B., Pritchard, M. S., Kooperman, G. J. & Randerson, J. T. Why does amazon precipitation decrease when tropical forests respond to increasing CO2? Earths Future 7, 450–468 (2019).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Maurer, E. P., Brekke, L., Pruitt, T. & Duffy, P. B. Fine-resolution climate projections enhance regional climate change impact studies. EOS Trans. Am. Geophys. Union 88, 504–504 (2007).Article 

    Google Scholar 
    Reclamation. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with preceding Information, and Summary of User Needs. https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf (2014).Silva de Miranda, P. L. et al. Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Glob. Ecol. Biogeogr. 27, 899–912 (2018).Article 

    Google Scholar 
    Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).Article 

    Google Scholar 
    Middleton, N., Thomas, D. & UNEP. World Atlas of Desertification (Arnold, 1997).Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of Savanna and forest as alternative biome states. Science 334, 230–232 (2011).Article 
    CAS 

    Google Scholar 
    ESRI Data & Maps. World Continents Version 10.3. (2015).Uribe, M. R. et al. Net loss of biomass predicted for tropical biomes in a changing climate. Dryad https://doi.org/10.7280/D1D124 (2023). More

  • in

    Enhancing the ecological value of oil palm agriculture through set-asides

    Phalan, B. et al. Crop expansion and conservation priorities in tropical countries. PLoS ONE 8, e51759 (2013).Article 
    CAS 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).Article 
    CAS 

    Google Scholar 
    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).Article 
    CAS 

    Google Scholar 
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).Edwards, D. P. et al. Conservation of tropical forests in the Anthropocene. Curr. Biol. 29, R1008–R1020 (2019).Article 
    CAS 

    Google Scholar 
    Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).Article 
    CAS 

    Google Scholar 
    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    CAS 

    Google Scholar 
    Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B 281, 20141371 (2014).Article 

    Google Scholar 
    Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).Article 
    CAS 

    Google Scholar 
    Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).Article 
    CAS 

    Google Scholar 
    van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci. 2, 737–738 (2009).Article 

    Google Scholar 
    Harvey, C. A. et al. Climate‐smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv. Lett. 7, 77–90 (2014).Article 

    Google Scholar 
    Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).Article 
    CAS 

    Google Scholar 
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).Article 
    CAS 

    Google Scholar 
    Oil Palm and Biodiversity: a Situation Analysis by the IUCN Oil Palm Task Force (International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.11.enMeijaard, E. & Sheil, D. The moral minefield of ethical oil palm and sustainable development. Front. For. Glob. Change 2, 22 (2019).The Future of Food and Agriculture – Alternative Pathways to 2050 (FAO, 2018).Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).Article 

    Google Scholar 
    Donofrio, S., Rothrock, P. & Leonard, J. Supply Change: Tracking Corporate Commitments to Deforestation-Free Supply Chains (Forest Trends, 2017).Terrenoire, E., Hauglustaine, D. A., Gasser, T. & Penanhoat, O. The contribution of carbon dioxide emissions from the aviation sector to future climate change. Environ. Res. Lett. 14, 084019 (2019).Article 
    CAS 

    Google Scholar 
    Parsons, S., Raikova, S. & Chuck, C. J. The viability and desirability of replacing palm oil. Nat. Sustain. 3, 412–418 (2020).Article 

    Google Scholar 
    Taheripour, F., Hertel, T. W. & Ramankutty, N. Market-mediated responses confound policies to limit deforestation from oil palm expansion in Malaysia and Indonesia. Proc. Natl Acad. Sci. USA 116, 19193–19199 (2019).Article 
    CAS 

    Google Scholar 
    Laurance, W. F. et al. Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conserv. Biol. 24, 377–381 (2010).Article 

    Google Scholar 
    Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).Article 
    CAS 

    Google Scholar 
    Driving Change With Sustainable Palm Oil (Roundtable on Sustainable Palm Oil, accessed August 2022). https://rspo.org/aboutGarrett, R. D., Carlson, K. M., Rueda, X. & Noojipady, P. Assessing the potential additionality of certification by the round table on responsible soybeans and the roundtable on sustainable palm oil. Environ. Res. Lett. 11, 045003 (2016).Article 

    Google Scholar 
    Mittermeier, R. A., Myers, N., Mittermeier, C. G. & Robles, G. Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions (Conservation International, 1999).Gaveau, D. L. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).Article 
    CAS 

    Google Scholar 
    Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).Article 

    Google Scholar 
    Mitchell, S. L. et al. Riparian reserves help protect forest bird communities in oil palm dominated landscapes. J. Appl. Ecol. 55, 2744–2755 (2018).Article 

    Google Scholar 
    Scriven, S. A. et al. Testing the benefits of conservation set-asides for improved habitat connectivity in tropical agricultural landscapes. J. Appl. Ecol. 56, 2274–2285 (2019).Article 

    Google Scholar 
    Deere, N. J. et al. Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Front. Ecol. Environ. 20, 459–466 (2021).Woodham, C. R. et al. Effects of replanting and retention of mature oil palm riparian buffers on ecosystem functioning in oil palm plantations. Front. Glob. Change 2, 29 (2019).Article 

    Google Scholar 
    Carlson, K. M. et al. Influence of watershed‐climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. J. Geophys. Res. Biogeosci. 119, 1110–1128 (2014).Article 

    Google Scholar 
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).Article 
    CAS 

    Google Scholar 
    Fleiss, S. et al. Conservation set-asides improve carbon storage and support associated plant diversity in certified sustainable oil palm plantations. Biol. Conserv. 248, 108631 (2020).Article 

    Google Scholar 
    Wunder, S., Angelsen, A. & Belcher, B. Forests, livelihoods, and conservation: broadening the empirical base. World Dev. 64, S1–S11 (2014).Struebig, M. J. et al. Quantifying the biodiversity value of repeatedly logged rainforests: gradient and comparative approaches from Borneo. Adv. Ecol. Res. 48, 183–224 (2013).Article 

    Google Scholar 
    Shevade, V. S. & Loboda, T. V. Oil palm plantations in Peninsular Malaysia: determinants and constraints on expansion. PLoS ONE 14, e0210628 (2019).Article 
    CAS 

    Google Scholar 
    Pirker, J., Mosnier, A., Kraxner, F., Havlík, P. & Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Change 40, 73–81 (2016).Article 

    Google Scholar 
    Launching the RSPO Jurisdictional Approach (JA) Piloting Framework (Roundtable on Sustainable Palm Oil, accessed August 2022).Abram, N. K. et al. Synergies for improving oil palm production and forest conservation in floodplain landscapes. PLoS ONE 9, e95388 (2014).Article 

    Google Scholar 
    Othman, N. et al. Shift of paradigm needed towards improving human–elephant coexistence in monoculture landscapes in Sabah. Int. Zoo Yearb. 53, 161–173 (2019).Article 

    Google Scholar 
    Horton, A. J. et al. Can riparian forest buffers increase yields from oil palm plantations? Earths Future 6, 1082–1096 (2018).Article 

    Google Scholar 
    Ewers, R. M. et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Phil. Trans. R. Soc. Lond. B 366, 3292–3302 (2011).Article 

    Google Scholar 
    Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).Ewers, R. M., Thorpe, S. & Didham, R. K. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106 (2007).Article 

    Google Scholar 
    Deere, N. J. et al. High carbon stock forests provide co-benefits for tropical biodiversity. J. Appl. Ecol. 55, 997–1008 (2018).Article 
    CAS 

    Google Scholar 
    Hemprich-Bennett, D. R. et al. Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Mol. Ecol. 30, 5844–5857 (2021).Article 

    Google Scholar 
    Williamson, J. et al. Riparian buffers act as microclimatic refugia in oil palm landscapes. J. Appl. Ecol. 58, 431–442 (2021).Article 

    Google Scholar 
    Slade, E. M., Mann, D. J. & Lewis, O. T. Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biol. Conserv. 144, 166–174 (2011).Article 

    Google Scholar 
    Gray, R. E. J. et al. Movement of forest-dependent dung beetles through riparian buffers in Bornean oil palm plantations. J. Appl. Ecol. 59, 238–250 (2022).Woodman, S. M. et al. esdm: a tool for creating and exploring ensembles of predictions from species distribution and abundance models. Methods Ecol. Evol. 10, 1923–1933 (2019).Article 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).Article 

    Google Scholar 
    Piccini, I. et al. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PloS ONE 12, e0178077 (2017).Article 

    Google Scholar 
    Raine, E. H. & Slade, E. M. Dung beetle–mammal associations: methods, research trends and future directions. Proc. R. Soc. B 286, 20182002 (2019).Article 

    Google Scholar 
    Nichols, E., Gardner, T., Peres, C., Spector, S. & Network, S. R. Co‐declining mammals and dung beetles: an impending ecological cascade. Oikos 118, 481–487 (2009).Article 

    Google Scholar 
    Asner, G. P. et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 217, 289–310 (2018).Article 

    Google Scholar 
    Jucker, T. et al. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences 15, 3811–3830 (2018).Article 

    Google Scholar 
    Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).Article 
    CAS 

    Google Scholar 
    Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015–16 El Niño. Nat. Commun. 12, 1526 (2021).Article 
    CAS 

    Google Scholar 
    Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).Article 

    Google Scholar  More

  • in

    Reconciling oil palm and ecosystems

    Oil palm plantations can supplant once biodiverse tropical forests. As planted areas expand, it is vital to plan landscapes to better balance biodiversity and oil palm production. Strategic ‘set-asides’ offer a key approach.In recent decades, oil palm has expanded spectacularly in some of the most biodiverse areas of the tropics, especially in Indonesia and Malaysia. This expansion has caused extensive deforestation (including loss of more than 2.1 million ha of primary forests in Borneo2, as well as other forests and agroforests), and management of plantations often relies heavily on clearing, herbicides and pesticides. This has generated many direct and indirect impacts on wildlife, ecosystems, climate and human communities3. Further expansion is ongoing, and global demand continues to rise4. More

  • in

    This baby turtle surprised scientists by swimming against the current

    In 2008, I had just begun volunteering at Equilibrio Azul — a non-profit marine-research and -conservation organization based in Quito — when colleagues discovered a hawksbill sea turtle (Eretmochelys imbricata) nesting at La Playita beach in Ecuador. The eastern Pacific population of hawksbill sea turtles is one of the most endangered in the world and was considered functionally extinct in the region before this turtle and others were observed.That discovery was a tipping point for hawksbill research in Ecuador and throughout the Pacific Ocean. Since 2008, we’ve found about 20 nests each year at La Playita, and one season, we documented 50.We have tagged 11 adult females with satellite transmitters. Previously, most of our understanding of these turtles had been based on observations in the Caribbean, where the reptiles are strictly coral-reef dwellers. But Ecuador’s reefs are mostly rocky, with patches of coral, and we were surprised to see females migrate south to mangroves, mainly for food.
    Women in science
    In this image, we have just attached a transmitter to a baby turtle — a first for hawksbill turtles this young and in the eastern Pacific region. We did not know much about hawksbills at this young age. It is tricky working with baby turtles, because they grow very fast, and the transmitters, which give us location data, can easily fall off. We’ve used cement to glue the devices to the shells of six newborns so far. The longest the transmitters have lasted is three months and the shortest period was only six weeks — but the devices provided our first insights into the ‘lost years’ of sea-turtle biology.Our findings have overturned assumptions that neonates were just carried along by currents. Instead, we found that one-day-old turtles can swim against the current. They aim for a specific direction — north by northwest — as they learn to dive and swim. We tracked one-year-old hawksbills to Costa Rican waters, a journey of roughly 2,000 kilometres, before we lost their signal.Cristina Miranda is a scientific coordinator at Equilibrio Azul in Quito, Ecuador. Interview by Virginia Gewin. More