More stories

  • in

    Ecological niche model transferability of the white star apple (Chrysophyllum albidum G. Don) in the context of climate and global changes

    IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J. Settele, E. S. Brondízio E.S., H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, and C. N. Zayas (eds.). IPBES secretariat, Bonn, Germany. 56 p.FAO. in Global Forest Resources Assessment 2020: Main report. Rome. https://doi.org/10.4060/ca9825en (2020).Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Synthesis. Island Press, Washington (2005)CBD. Considerations for Implementing International Standards and Codes of Conduct in National Invasive Species. Strategies and Plans. CBD (2011).Semper-Pascual, A. et al. Using occupancy models to assess the direct and indirect impacts of agricultural expansion on species’ populations. Biodivers. Conserv. 29, 3669–3688 (2020).
    Google Scholar 
    IPCC. Provisional State of the Global Climate. 2022. https://storymaps.arcgis.com/stories/5417cd9148c248c0985a5b6d028b0277, Accessed 23rd December 2022.Nunez, S. & Alkemade, R. Exploring interaction effects from mechanisms between climate and land-use changes and the projected consequences on biodiversity. Biodivers. Conserv. 30, 3685–3696 (2021).
    Google Scholar 
    Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence absence data. Ecography 34, 232–243. https://doi.org/10.1111/j.1600-0587.2010.06354.x (2011).Article 
    CAS 

    Google Scholar 
    Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558. https://doi.org/10.1111/ecog.04890 (2020).Article 

    Google Scholar 
    Pearson, G. R., Raxworthy, J. C., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr 34, 102–117 (2007).
    Google Scholar 
    Thuiller, W. et al. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob. Chang. Biol. 11, 2234–2250 (2005).ADS 

    Google Scholar 
    He, Y. et al. Predicting potential global distribution and risk regions for potato cyst nematodes (Globodera rostochiensis and Globodera pallida). Sci. Rep. 12(1), 1–10 (2022).ADS 
    CAS 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Google Scholar 
    Ashraf, U., Chaudhry, M. N. & Peterson, A. T. Ecological niche models of biotic interactions predict increasing pest risk to olive cultivars with changing climate. Ecosphere 12, e03714. https://doi.org/10.1002/ecs2.3714 (2021).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Ganglo, J. C. et al. Ecological niche modeling and strategies for the conservation of Dialium guineense Willd. (Black velvet) in West Africa. Int. J. Biodivers. Conserv. 9, 373–388 (2017).
    Google Scholar 
    Djotan, A. K. G. et al. How far can climate changes help to conserve and restore Garcinia kola Heckel, an extinct species in the wild in Benin (West Africa). Int. J. Biodivers. Conserv. 10, 203–213 (2018).
    Google Scholar 
    Kakpo, S. B. et al. Spatial distribution and impacts of climate change on Milicia excelsa in Benin, West Africa. J. For. Res. 32, 143–150. https://doi.org/10.1007/s11676-019-01069-7 (2021).Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7(1), 1–8 (2020).MathSciNet 

    Google Scholar 
    Poor, E. E., Scheick, B. K. & Mullinax, J. M. Multiscale consensus habitat modeling for landscape level conservation prioritization. Sci. Rep. 10(1), 1–13 (2020).
    Google Scholar 
    Schüßler, D., Mantilla-Contreras, J., Stadtmann, R., Ratsimbazafy, J. H. & Radespiel, U. Identification of crucial stepping stone habitats for biodiversity conservation in northeastern Madagascar using remote sensing and comparative predictive modeling. Biodivers. Conserv. 29, 2161–2184 (2020).
    Google Scholar 
    Campos-Cerqueira, M. et al. Climate change is creating a mismatch between protected areas and suitable habitats for frogs and birds in Puerto Rico. Biodivers. Conserv. 30, 3509–3528 (2021).
    Google Scholar 
    Biddle, R. et al. The value of local community knowledge in species distribution modelling for a threatened Neotropical parrot. Biodivers. Conserv. 30, 1803–1823 (2021).
    Google Scholar 
    Costa, A. et al. Modelling the amphibian chytrid fungus spread by connectivity analysis: Towards a national monitoring network in Italy. Biodivers. Conserv. 30(10), 2807–2825 (2021).
    Google Scholar 
    Konowalik, K. & Nosol, A. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. Sci. Rep. 11(1), 1–15 (2021).
    Google Scholar 
    Borgelt, J., Sicacha-Parada, J., Skarpaas, O. & Verones, F. Native range estimates for red-listed vascular plants. Sci. Data 9(1), 1–12 (2022).
    Google Scholar 
    Brychkova, G. et al. Climate change and land-use change impacts on future availability of forage grass species for Ethiopian dairy systems. Sci. Rep. 12(1), 1–16 (2022).
    Google Scholar 
    Carrara, R. & Roig-Juñent, S. A. Maps of potential biodiversity: when the tools for regional conservation planning clash with species ecological niches. Biodivers. Conserv. 31(2), 651–665 (2022).
    Google Scholar 
    Critchlow, R. et al. Multi-taxa spatial conservation planning reveals similar priorities between taxa and improved protected area representation with climate change. Biodivers. Conserv. 31(2), 683–702 (2022).
    Google Scholar 
    González-Orozco, C. E., Porcel, M., Rodriguez-Medina, C. & Yockteng, R. Extreme climate refugia: A case study of wild relatives of cacao (Theobroma cacao) in Colombia. Biodivers. Conserv. 31(1), 161–182 (2022).
    Google Scholar 
    Karami, S., Ejtehadi, H., Moazzeni, H., Vaezi, J. & Behroozian, M. Minimal climate change impacts on the geographic distribution of Nepeta glomerulosa, medicinal species endemic to southwestern and central Asia. Sci. Rep. 12(1), 1–10 (2022).ADS 
    CAS 

    Google Scholar 
    Montemayor, S. I., Besteiro, S. I. & del Río, M. G. Integrating ecological and biogeographical tools for the identification of conservation areas in two Neotropical biogeographic provinces in Argentina based on phytophagous insects. Biodivers. Conserv. 31(7), 1969–1986 (2022).
    Google Scholar 
    da Silva, L. B. et al. How future climate change and deforestation can drastically affect the species of monkeys endemic to the eastern Amazon, and priorities for conservation. Biodivers. Conserv. 31(3), 971–988 (2022).
    Google Scholar 
    Yousefi, M. & Naderloo, R. Global habitat suitability modeling reveals insufficient habitat protection for mangrove crabs. Sci. Rep. 12(1), 1–9 (2022).
    Google Scholar 
    Yudaputra, A. et al. Habitat preferences, spatial distribution and current population status of endangered giant flower Amorphophallus titanum. Biodivers. Conserv. 31(3), 831–854 (2022).
    Google Scholar 
    Gomes, V. H. et al. Species distribution modelling: Contrasting presence-only models with plot abundance data. Sci. Rep. 8(1), 1–12 (2018).
    Google Scholar 
    Hoveka, L. N., van der Bank, M., Bezeng, B. S. & Davies, T. J. Identifying biodiversity knowledge gaps for conserving South Africa’s endemic flora. Biodivers. Conserv. 29, 2803–2819 (2020).
    Google Scholar 
    Macdonald, D. W. et al. Predicting biodiversity richness in rapidly changing landscapes: Climate, low human pressure or protection as salvation?. Biodivers. Conserv. 29, 4035–4057 (2020).
    Google Scholar 
    Peng, Y., Feng, J., Sang, W. & Axmacher, J. C. Geographical divergence of species richness and local homogenization of plant assemblages due to climate change in grasslands. Biodivers. Conserv. 31(3), 797–810 (2022).
    Google Scholar 
    Rincón, V. et al. Connectivity of Natura 2000 potential natural riparian habitats under climate change in the Northwest Iberian Peninsula: Implications for their conservation. Biodivers. Conserv. 31(2), 585–612 (2022).MathSciNet 

    Google Scholar 
    Leta, S. et al. Modeling the global distribution of Culicoides imicola: An Ensemble approach. Sci. Rep. 9(1), 1–9 (2019).ADS 
    CAS 

    Google Scholar 
    Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 4(9), 1508–1515 (2019).CAS 

    Google Scholar 
    Redding, D. W. et al. Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa. Nat. Commun. 10, 4531 (2019).ADS 

    Google Scholar 
    Klitting, R. et al. Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades. Nat. Commun. 13(1), 1–15 (2022).
    Google Scholar 
    Li, Y. P., Gao, X., An, Q., Sun, Z. & Wang, H. B. Ecological niche modeling based on ensemble algorithms to predicting current and future potential distribution of African swine fever virus in China. Sci. Rep. 12(1), 1–11 (2022).ADS 

    Google Scholar 
    Oppel, S., Schaefer, H. M., Schmidt, V. & Schröder, B. How much suitable habitat is left for the last known population of the Pale-headed Brush-Finch?. The Condor 106, 429–434 (2004).
    Google Scholar 
    Heikkinen, R. K., Marmion, M. & Luoto, M. Does the interpolation accuracy of species distribution models come at the expense of transferability?. Ecography 35, 276–288 (2012).
    Google Scholar 
    Manzoor, S. A., Griffiths, G. & Lukac, M. Species distribution model transferability and model grain size–finer may not always be better. Sci. Rep. 8(1), 1–9 (2018).
    Google Scholar 
    Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802. https://doi.org/10.1016/j.tree.2018.08.001 (2018).Article 

    Google Scholar 
    Gantchoff, M. G. et al. Distribution model transferability for a wide-ranging species, the Gray Wolf. Sci. Rep. 12(1), 1–11 (2022).
    Google Scholar 
    Lyam, P. T., Adeyemi, T. O. & Ogundipe, O. T. Distribution modelling of Chrysophyllum albidum G. Don. in South-West Nigeria. J. Nat. Environ. Sci. 3, 7–14 (2012).
    Google Scholar 
    Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya. http://www.worldagroforestry.org/af/treedb/ (2009).Bolanle-Ojo, O. T. & Onyekwelu, J. C. Socio-economic importance of Chrysophyllum albidum G. Don. Rainforest and derived savanna ecosystems of Ondo state, Nigeria. Eur. J. Agric. For. Res. 2, 43–51 (2014).
    Google Scholar 
    Ugwu, J. A. & Umeh, V. C. Assessment of African star apple (Chrysophyllum albidum) fruit damage due to insect pests in Ibadan Southwest Nigeria. Res. J. For. 9, 87–92 (2015).
    Google Scholar 
    Akoegninou, A., Van der Burg, W. J. & Van der Maesen, L. J. G. in Flore Analytique du Bénin (No. 06.2). Backhuys Publishers. (2006).Houessou, L. G., Lougbegnon, T. O., Gbesso, F. G., Anagonou, L. E. & Sinsin, B. Ethno-botanical study of the African star apple (Chrysophyllum albidum G. Don) in the Southern Benin (West Africa). J. Ethnobiol. Ethnomed. 8, 1–10 (2012).
    Google Scholar 
    Lougbégnon, O. T., Nassi, K. M. & Gbesso, G. H. F. Ethnobotanique quantitative de l’usage de Chrysophyllum albidum G. Don par les populations locales au Bénin. J. Appl. Biosci. 95, 9028–9038 (2015).
    Google Scholar 
    Nartey, D., Gyesi, J. N., & Borquaye, L. S. Chemical composition and biological activities of the essential oils of Chrysophyllum albidum G. Don (African star apple). Biochem. Res. Int. 2021 (2021).Olajide, O., Udo, E. S., & Out, D. O. Diversity and population of timber tree species producing valuable non-timber products in two tropical rainforests in cross river state, Nigeria. J. Agric. Soc. Sci. ISSN Print 1813–2235 (2008)Platts, P. J., Omeny, P. & Marchant, R. AFRICLIM: High-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2015).
    Google Scholar 
    Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).ADS 

    Google Scholar 
    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
    Google Scholar 
    Lannuzel, G., Balmot, J., Dubos, N., Thibault, M. & Fogliani, B. High-resolution topographic variables accurately predict the distribution of rare plant species for conservation area selection in a narrow-endemism hotspot in New Caledonia. Biodivers. Conserv. 30, 963–990 (2021).
    Google Scholar 
    Scales, K. L. et al. Scale of inference: On the sensitivity of habitat models for wide-ranging marine predators to the resolution of environmental data. Ecography 40, 210–220 (2017).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. (2017) WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    Center for International Earth Science Information Network: CIESIN—Columbia University. 2021. Gridded Population of the World, Version 4 (GPWv4): Administrative Unit Center Points with Population Estimates, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Last Accessed 7th December, 2021. https://doi.org/10.7927/H4BC3WMT (2018)Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 (2016).Article 
    ADS 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    Naimi, B. & Araújo, M. B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375. https://doi.org/10.1111/ecog.01881 (2016).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020)Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).Article 
    MATH 

    Google Scholar 
    Zheng, B. & Agresti, A. Summarizing the predictive power of a generalized linear model. Stat. Med. 19, 1771–1781 (2000).CAS 

    Google Scholar 
    Hastie, T. J. in Generalized Additive Models, Statistical models, 249–307 (Routledge, 2017).Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67 (1991).MathSciNet 
    MATH 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
    Google Scholar 
    QGIS Development Team. QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021)Fandohan, B. et al. Women’s traditional knowledge, use value, and the contribution of tamarind (Tamarindus indica L.) to rural households’ cash income in Benin. Econ. Bot. 64, 248–259 (2010).
    Google Scholar 
    Gouwakinnou, G. N., Lykke, A. M., Assogbadjo, A. E. & Sinsin, B. Local knowledge, pattern and diversity of use of Sclerocarya birrea. J. Ethnobiol. Ethnomed. 7, 1–9 (2011).
    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Surv. Data Ser. 691, 4–9 (2012).
    Google Scholar 
    United Nations. 2022. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100, Accessed 25th December 2022 .Gbesso, F. H. G., Tente, B. H. A., Gouwakinnou, G. N. & Sinsin, B. A. Influence des changements climatiques sur la distribution géographique de Chrysophyllum albidum G. Don (Sapotaceae) au Benin. Int. J. Biol. Chem. Sci. 7, 2007–2018 (2013).
    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Google Scholar 
    Mi, C., Huettmann, F., Guo, Y., Han, X. & Wen, L. Why choose random forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. Peer J. 5, e2849. https://doi.org/10.7717/peerj.2849 (2017).Article 

    Google Scholar 
    Segurado, P. & Araujo, M. B. An evaluation of methods for modelling species distributions. J. Biogeogr. 31, 1555–1568 (2004).
    Google Scholar 
    Pearson, R. G. et al. Model-based uncertainty in species range prediction. J. Biogeogr. 33, 1704–1711 (2006).
    Google Scholar 
    Dambros, C. et al. The role of environmental filtering, geographic distance and dispersal barriers in shaping the turnover of plant and animal species in Amazonia. Biodivers. Conserv. 29, 3609–3634 (2020).
    Google Scholar  More

  • in

    Flickering flash signals and mate recognition in the Asian firefly, Aquatica lateralis

    Flash recordingAll field recording and experiments were performed at the paddy field in the Northern Chita Peninsula, Aichi Prefecture, central Japan, in June and July between 2003 and 2016. The ambient temperature at the firefly’s active period was measured using a thermometer. The flashes were recorded with a digital video camera (NV-GS-400, Panasonic, Japan) mounted on a tripod at a height of 30–50 cm from ground and a distance of 1.0–1.5 m away from the specimen. Isolated specimens were selected for recording to exclude the background light from other nontarget specimens. When another specimen appeared near the target specimen, the video recording was cancelled. When a female copulated during video recording in the field, her flashes until 1 min before copulation were regarded as those of a ‘receptive female’. To record the flashes of a ‘mated female’, the female specimens already mated were prepared in aquariums (because virgin and mated females cannot be distinguished in the field): the eggs were obtained from wild female specimens collected one year before at the same field and reared to adults; immediately after emergence the virgin female was confined in a small container with two cultured males for two nights to facilitate copulation. As the parents of the reared specimens were collected from the observation field (same genetic background), the rearing temperature was almost the same as that of the natural field, the emergence period of the cultured specimens overlapped with that of the natural population, the adult body sizes of the reared and natural specimens were indistinguishable, and the flash pattern of the cultured mated females was indistinguishable from that of the wild (potentially) mated females. Thus, we believe that there was no influence of different rearing environments, i.e., the flash behavior of the cultured mated female specimens is expected to be substantially the same as that of wild mated female specimens. To distinguish them from wild (potentially) mated females, the elytra of cultured mated females were marked with colored ink before placing them in the field, and after three days, the flashes of ink-marked specimens were recorded. Of note, we never observed male attraction and copulation in any of the mated females used for field observation; thus, the mated females were unreceptive.Waveform analysisSequential still images were captured from video files at 30 frames per second using VirtualDub (GPL), and then the light intensities in the images were qualified (8-bit linear gray scaling from black to white at 0–255) using ImageJ software. In this study, we defined ‘flash’ as a luminescent waveform from baseline to baseline and ‘flickering’ as fluctuation above baseline in a single flash. The waveforms containing a saturated signal (255, white) were omitted. The waveforms of the maximum signal value lower than 50 were also omitted because of the difficulty in separating signal and noise. Approximately 10–90 waveforms per individual were analyzed; thus, the effect of the occasional interruption of the flash recording by the specimen’s movement and/or vegetation swinging between the specimen and the video camera is statistically ignorable. FD is defined as the time interval between the beginning and the end of a flash (Fig. S1). Flicker intensity (FI) was defined as$${text{FI}} = left{ {begin{array}{*{20}l} {mathop {max }limits_{1 le i le n} left( {frac{{{text{min}}left( {p_{i} ,p_{i + 1} } right) – t_{i} }}{{min left( {p_{i} , p_{i + 1} } right) + t_{i} }}} right)} hfill & {{text{if}} , n ge 1} hfill \ 0 hfill & {{text{if}} , n = 0} hfill \ end{array} } right.$$where p, t, and n denote the peak and the trough (local extrema) in the waveform of a flash and the number of toughs in the flash, respectively (Fig. S1). In total, we measured the FD and FI values of 347, 94, and 355 waveforms from 13 sedentary males, 7 receptive females, and 8 mated females, respectively. We did not consider the flash brightness as a factor because the measured value of the light intensity depends largely on the distance between the light source and the detector; thus, the actual brightness of the lantern cannot be practically measured in the field.e-FireflyFor male attraction experiments, we built an electronic LED device, the e-firefly, to generate patterned flashes with various FDs and FIs using a chip LED (green type, λmax = 568 nm, Everlight Electronics, Taiwan; Figs. S2 and S3) with a microcontroller PIC16F628A (Microchip Technology, USA) (see Figs. S4-S5). An example of the program for the microcontroller is shown in Supplementary Data S1. The brightness was constant in all programs. Flickering frequency ranged between 5–12 Hz, which corresponds to that of sedentary male flashes (approximately 10 Hz)15. To prevent direct access of the attracted specimen to the light source, the chip LED was covered by a steel net painted green (see Fig. S2). For flying male attraction experiments, when the male landed within a 100-mm distance from the e-firefly, we judged the attraction to be a success; otherwise, it was a failure. For sedentary male attraction experiments, the e-firefly was placed 200–300 mm away from the sedentary male. When the approaching male touched the steel net covering the e-firefly, to warrant a positive approach, we measured the time the male remained on the net. If the male did not move away from the net for more than 2 min, we judged the attraction to be a success (strict criterion for judgment); otherwise, it was a failure.Spectral measurementThe luminescence spectra of e-firefly and A. lateralis were measured using a Flame-S spectrophotometer (Ocean Insight, USA). The living A. lateralis specimens were anesthetized on ice and frozen at − 20 °C until use. The lantern started luminescence by thawing at room temperature, and the spectrum was measured during luminescence (within 5 min).Statistical analysisFirst, we considered a discriminant analysis using a logistic regression model that discriminates between receptive females and others in the observational data. We fitted several models with combinations of FD and FI, quadratic terms of FD and FI (FD2, FI2), interaction of FD and FI (FD (times) FI), and temperature (T) as explanatory variables. Based on Akaike’s information criteria (AIC) values and model simplicity, we chose the logistic regression model with FD, FI, FD2 and T as explanatory variables. Let (p)(({varvec{x}})) denote the conditional probability that a flash is from a receptive female given ({varvec{x}}=left(mathrm{FD},mathrm{ FI},mathrm{ T}right)) and (widehat{p})(({varvec{x}})) denote its estimate. The coefficients of the logistic regression model are estimated as follows.
    [Model for the observational data with temperature (T)]
    $$begin{gathered} {text{log}}frac{{hat{p}}}{{1 – hat{p}}} = begin{array}{*{20}l} { – 32.26 + 69.69 times FD – 43.47 times FI – 76.63 times FD^{2} + 0.87 times T} hfill \ {~quad left( {6.50} right)quad quad left( {15.37} right)quad quad quad left( {8.56} right)quad quad quad quad left( {17.44} right)quad quad quad left( {0.19} right)~~} hfill \ end{array} hfill \ quad {text{AIC: 84}}{text{.75}} hfill \ end{gathered}$$[Model for the observational data without temperature (T)]$$begin{gathered} {text{log}}frac{{hat{p}}}{{1 – hat{p}}} = begin{array}{*{20}l} { – 7.69~ + 47.57 times FD~ – 38.29 times FI~ – 52.86 times FD^{2} ~} hfill \ {~;left( {1.86} right)quad quad left( {9.68} right)quad quad quad left( {7.08} right)quad quad quad quad left( {11.38} right)~~} hfill \ end{array} hfill \ quad {text{AIC: 114}}{text{.89}} hfill \ end{gathered}$$where values in parentheses indicate standard deviations. The same applies hereafter. Temperature (T) is included in the model not because it affects the occurrence of receptive females but because it affects the FD and/or FI of receptive females. The AIC value increased by 30, which is substantial, when temperature was excluded from the model.Figure 2 shows the FD and FI of each flash from receptive females, mated females and males with the discriminant boundaries of receptive females from others for (p=0.5).We next considered a discriminant analysis for the experimental data. Let ({q}^{f}({varvec{x}})) denote the conditional probability that a flying male is attracted to a flash of ({varvec{x}}=left(mathrm{FD},mathrm{ FI},mathrm{ T}right)) and lands, and ({widehat{q}}^{f}({varvec{x}})) denote its estimate. Among several models we fit, the smallest AIC value is attained by the logistic regression model with FD, FI and T as explanatory variables, but the AIC is not much different from the model with FD and FI only.
    [Model for flying males with temperature (T)]
    $$begin{gathered} {text{log}}frac{{hat{q}^{f} }}{{1 – hat{q}^{f} }} = begin{array}{*{20}l} { – 0.74~~ – 2.42 times FD – 16.82 times FI + 0.31 times T} hfill \ {~;left( {4.01} right)quad quad left( {0.83} right)quad quad quad left( {4.88} right)quad quad quad quad left( {0.20} right)~} hfill \ end{array} hfill \ quad {text{AIC}}:66.96 hfill \ end{gathered}$$

    [Model for flying males without temperature (T)]
    $$begin{gathered} {text{log}}frac{{hat{q}^{f} }}{{1 – hat{q}^{f} }} = begin{array}{*{20}l} { – 5.36~ – 1.72 times FD – 13.69 times FI} hfill \ {~;left( {1.49} right)quad quad left( {0.63} right)~quad quad left( {4.09} right)~~} hfill \ end{array} hfill \ quad {text{AIC}}:67.61 hfill \ end{gathered}$$
    For sedentary males, the model with the smallest AIC value includes all the quadratic terms of FI and FD but not temperature. Let ({q}^{s}({varvec{x}})) denote the conditional probability that a sedentary male is attracted to a flash of ({varvec{x}}=left(mathrm{FD},mathrm{ FI},mathrm{ T}right)) and ({widehat{q}}^{s}left({varvec{x}}right)) denote its estimate. The logistic regression model for ({q}^{s}({varvec{x}})) with the best AIC value is given as follows.
    [Model for sedentary males]
    $${text{log}}frac{{hat{q}~^{s} }}{{1 – hat{q}~^{s} }} = begin{array}{*{20}l} { – 0.68~ + 7.84 times FD~ + 48.17 times FI – 5.35 times FD^{2} – 166.70 times FI^{2} – 65.67 times FD times FI} hfill \ {;left( {0.97} right)quad quad quad left( {2.99} right)quad quad quad left( {17.74} right)quad quad quad left( {1.74} right)quad quad quad quad left( {72.34} right)quad quad quad quad left( {17.67} right)~} hfill \ end{array}$$
    Figure 3 shows successes and failures of attraction of flying males on the left and sedentary males on the right with estimated discriminant boundaries.Let us now estimate probabilities that a flying male is attracted and lands or a sedentary male is attracted to a flash when a flash is from a receptive female or when a flash is either from a sedentary male or mated female. The probability that a flying male is attracted and lands when a flash is from a receptive female is a conditional probability and is expressed as follows.$$begin{aligned} Pleft(left.begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} right|begin{array}{*{20}c} {text{Receptive }} \ {{text{female}}} \ end{array} right) & = frac{{Pleft( {begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} {text{ and }}begin{array}{*{20}c} {text{Receptive }} \ {{text{female}}} \ end{array} } right) }}{{Pleft( {begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} } right)}}, \ Pleft( {begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} } right) & = mathop int_{Omega } Pleft(left. begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} right|{varvec{x}} right)fleft( {varvec{x}} right)d{varvec{x}} = mathop int_{Omega }pleft( {varvec{x}} right) fleft( {varvec{x}} right)d{varvec{x}} hspace{5mm}{text{and}} \ Pleft( {begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} {text{ and }}begin{array}{*{20}c} {text{Receptive }} \ {{text{female}}} \ end{array} } right) & = mathop int_{Omega } Pleft(left. begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} right|varvec{x} right)Pleft(left. begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} right|{varvec{x}} right)fleft( {varvec{x}} right)d{varvec{x}} \ & = mathop int_{Omega } pleft( varvec{x} right)q^{f} left( {varvec{x}} right)fleft( {varvec{x}} right)d{varvec{x}}mathbf{.} \ end{aligned}$$Integrals are taken over the domain (Omega) of ({varvec{x}}=(FD, FI, T)) of all females and males, and (f({varvec{x}})) is the joint density function of ({varvec{x}}.) Because (f({varvec{x}})) is unknown, we use the empirical distribution of the observational data, and conditional probabilities given ({varvec{x}}) are replaced with their estimates by logistic regression models. Let ({{varvec{x}}}_{i}=left(F{D}_{i}, F{I}_{i}, {T}_{i}right), i=mathrm{1,2},dots N) denote the (i) th observation in the observational data. The estimates of probabilities are given as follows:$$begin{aligned} hat{P}left( {begin{array}{*{20}c} {{text{Receptive}}} \ {{text{female}}} \ end{array} }right) & = frac{1}{N}mathop sum limits_{i = 1}^{n} hat{p}left( {{varvec{x}}_{i} } right) hspace{15mm} {text{and}} \ hat{P}left( {begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} {text{ and }}begin{array}{*{20}c} {text{Receptive }} \ {{text{female}}} \ end{array} } right) & = frac{1}{N}mathop sum limits_{i = 1}^{n} hat{p}left( {{varvec{x}}_{i} } right) hat{q}^{f} left( {{varvec{x}}_{i} } right). \ end{aligned}$$Thus,$$hat{P}left( left. begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array} right| begin{array}{*{20}c} {text{Receptive }} \ {text{female}} \ end{array} right) = frac{{mathop sum nolimits_{i = 1}^{n} hat{p}left( {{varvec{x}}_{i} } right) hat{q}^{f} left( {{varvec{x}}_{i} } right)}}{{mathop sum nolimits_{i = 1}^{n}hat{p}left(varvec{x}_i right)}}.$$Similarly, we have$$begin{aligned} hat{P}left( left.begin{array}{*{20}c} {text{Flying male}} \ {text{is attracted}} \ end{array}right| {text{Others}} right) & = frac{{mathop sum nolimits_{i = 1}^{n} (1 – hat{p}left( {{varvec{x}}_{i} } right)) hat{q}^{f} left( {{varvec{x}}_{i} } right)}}{{mathop sum nolimits_{i = 1}^{n} (1 – hat{p}left( {{varvec{x}}_{i} } right))}} \ hat{P}left( left. begin{array}{*{20}c} {text{Sedentary male}} \ {text{is attracted}} \ end{array} right| begin{array}{*{20}c} {text{Receptive }} \ {text{female}} \ end{array} right)& = frac{{mathop sum nolimits_{i = 1}^{n} hat{p}left( {{varvec{x}}_{i} } right) hat{q}^{s} left( {{varvec{x}}_{i} } right)}}{{mathop sum nolimits_{i = 1}^{n} hat{p}left( varvec{x}_{i} right)}}hspace{15mm} {text{ and}} \hat{P}left(left. begin{array}{*{20}c} {text{Sedentary male}} \ {text{is attracted}} \ end{array}right| {text{Others}} right) & = frac{{mathop sum nolimits_{i = 1}^{n} left( {1 – hat{p}left( varvec{x}_{i} right)} right) hat{q}^{s} left( {varvec{x}_{i} } right)}}{mathop sum nolimits_{i = 1}^{n} left( {1 – hat{p}left( varvec{x}_{i} right)} right)} . \ end{aligned}$$The estimated probabilities are shown in Table 1.Table 1 Estimated probabilities of a flying male and a sedentary male being attracted to flashes from a receptive female and from others.Full size table More

  • in

    Family before work: task reversion in workers of the red imported fire ant, Solenopsis invicta in the presence of brood

    Wilson, E. O. The Insect Societies (Oxford University Press, 1971).
    Google Scholar 
    Beshers, S. N. & Fewell, J. H. Models of division of labor in social insects. Annu. Rev. Entomol. 46, 413–440 (2001).CAS 

    Google Scholar 
    Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 4, 287–293 (1982).
    Google Scholar 
    Tallamy, D. W. Insect parental care. Bioscience 34, 20–24. https://doi.org/10.2307/1309421 (1984).Article 

    Google Scholar 
    Queller, D. C. Extended parental care and the origin of eusociality. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 256, 105–111. https://doi.org/10.1098/rspb.1994.0056 (1994).Article 
    ADS 

    Google Scholar 
    Bigley, W. S. & Vinson, S. B. Characterization of a brood pheromone isolated from the sexual brood of the imported fire ant, Solenopsis invicta 1,2. Ann. Entomol. Soc. Am. 68, 301–304 (1975).CAS 

    Google Scholar 
    Endler, A. et al. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc. Natl. Acad. Sci. USA 101, 2945–2950. https://doi.org/10.1073/pnas.0308447101 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D. & Le Conte, Y. E-beta-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE 5, e13531. https://doi.org/10.1371/journal.pone.0013531 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Schultner, E., Oettler, J. & Helantera, H. The role of brood in eusocial hymenoptera. Q. Rev. Biol. 92, 39–78. https://doi.org/10.1086/690840 (2017).Article 

    Google Scholar 
    Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A. & Omholt, S. W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): A factor in colony loss during overwintering? J. Econ. Entomol. 97, 741–747 (2004).
    Google Scholar 
    Calabi, P. & Traniello, J. F. Behavioral flexibility in age castes of the ant Pheidole dentata. J. Insect Behav. 2, 663–677 (1989).
    Google Scholar 
    Gordon, D. W. Dynamics of task switching in harvester ants. Anim. Behav. 38, 194–204 (1989).
    Google Scholar 
    Robinson, G. E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665. https://doi.org/10.1146/annurev.en.37.010192.003225 (1992).Article 
    CAS 

    Google Scholar 
    Robinson, E. J., Feinerman, O. & Franks, N. R. Flexible task allocation and the organization of work in ants. Proc. R. Soc. B: Biol. Sci. 276, 4373–4380 (2009).
    Google Scholar 
    Nijhout, H. F. & Wheeler, D. E. Juvenile-hormone and the physiological-basis of Insect polymorphisms. Q. Rev. Biol. 57, 109–133. https://doi.org/10.1086/412671 (1982).Article 
    CAS 

    Google Scholar 
    Herb, B. R. et al. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat. Neurosci. 15, 1371–1373. https://doi.org/10.1038/nn.3218 (2012).Article 
    CAS 

    Google Scholar 
    Kensuke, N. Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J. Ethol. 13, 113–123 (1995).
    Google Scholar 
    Kensuke, N. Does behavioral flexibility compensate or constrain colony productivity? Relationship among age structure, labor allocation, and production of workers in ant colonies. J. Insect Behav. 9, 557–569 (1996).
    Google Scholar 
    Shimoji, H., Kasutani, N., Ogawa, S. & Hojo, M. K. Worker propensity affects flexible task reversion in an ant. Behav. Ecol. 74, 1–8 (2020).
    Google Scholar 
    Bernadou, A., Busch, J. & Heinze, J. Diversity in identity: Behavioral flexibility, dominance, and age polyethism in a clonal ant. Behav. Ecol. Sociobiol. 69, 1365–1375 (2015).
    Google Scholar 
    Kohlmeier, P., Feldmeyer, B. & Foitzik, S. Vitellogenin-like A—Associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol. 16, e2005747 (2018).
    Google Scholar 
    Tripet, F. & Nonacs, P. Foraging for work and age-based polyethism: The roles of age and previous experience on task choice in ants. Ethology 110, 863–877 (2004).
    Google Scholar 
    Kohlmeier, P., Alleman, A. R., Libbrecht, R., Foitzik, S. & Feldmeyer, B. Gene expression is more strongly associated with behavioural specialisation than with age or fertility in ant workers. Mol. Ecol. https://doi.org/10.1111/mec.14971 (2018).Article 

    Google Scholar 
    Levenbook, L. & Bauer, A. C. The fate of the larval storage protein calliphorin during adult development of Calliphora vicina. Insect Biochem. 14, 77–86 (1984).CAS 

    Google Scholar 
    Zhou, X., Oi, F. M. & Scharf, M. E. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl. Acad. Sci. 103, 4499–4504 (2006).ADS 
    CAS 

    Google Scholar 
    Zhou, X., Tarver, M. R., Bennett, G., Oi, F. & Scharf, M. Two hexamerin genes from the termite Reticulitermes flavipes: Sequence, expression, and proposed functions in caste regulation. Gene 376, 47–58 (2006).CAS 

    Google Scholar 
    Hawkings, C., Calkins, T. L., Pietrantonio, P. V. & Tamborindeguy, C. Caste-based differential transcriptional expression of hexamerins in response to a juvenile hormone analog in the red imported fire ant (Solenopsis invicta). PLoS ONE 14, e0216800 (2019).CAS 

    Google Scholar 
    Hoffman, E. A. & Goodisman, M. A. Gene expression and the evolution of phenotypic diversity in social wasps. BMC Biol. 5, 1–9 (2007).
    Google Scholar 
    Hunt, J. H., Buck, N. A. & Wheeler, D. E. Storage proteins in vespid wasps: Characterization, developmental pattern, and occurrence in adults. J. Insect Physiol. 49, 785–794 (2003).CAS 

    Google Scholar 
    Colgan, T. J. et al. Polyphenism in social insects: Insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris. BMC Genom. 12, 1–20 (2011).
    Google Scholar 
    Cremer, S., Armitage, S. A. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).CAS 

    Google Scholar 
    Cremer, S., Pull, C. D. & Fuerst, M. A. Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).CAS 

    Google Scholar 
    Danihlík, J., Aronstein, K. & Petřivalský, M. Antimicrobial peptides: A key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. J. Apic. Res. 54, 123–136 (2015).
    Google Scholar 
    Koch, S. I. et al. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. PLoS ONE 8, e81518 (2013).ADS 

    Google Scholar 
    Chardonnet, F. et al. Food searching behaviour of a Lepidoptera pest species is modulated by the foraging gene polymorphism. J. Exp. Biol. 217, 3465–3473 (2014).
    Google Scholar 
    Scheiner, R., Page, R. E. Jr. & Erber, J. Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behav. Brain Res. 120, 67–73 (2001).CAS 

    Google Scholar 
    Wang, Z. et al. Visual pattern memory requires foraging function in the central complex of Drosophila. Learn. Mem. 15, 133–142 (2008).
    Google Scholar 
    Zhou, Y., Lei, Y., Lu, L. & He, Y. Temperature-and food-dependent foraging gene expression in foragers of the red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). Physiol. Entomol. 45, 1–6 (2020).
    Google Scholar 
    Ingram, K. K. et al. Context-dependent expression of the foraging gene in field colonies of ants: The interacting roles of age, environment and task. Proc. R. Soc. B: Biol. Sci. 283, 20160841 (2016).
    Google Scholar 
    Ingram, K. K., Oefner, P. & Gordon, D. M. Task-specific expression of the foraging gene in harvester ants. Mol. Ecol. 14, 813–818 (2005).CAS 

    Google Scholar 
    Lucas, C. & Sokolowski, M. B. Molecular basis for changes in behavioral state in ant social behaviors. Proc. Natl. Acad. Sci. 106, 6351–6356 (2009).ADS 
    CAS 

    Google Scholar 
    Ben-Shahar, Y. The foraging gene, behavioral plasticity, and honeybee division of labor. J. Comp. Physiol. A. 191, 987–994 (2005).CAS 

    Google Scholar 
    Daugherty, T., Toth, A. & Robinson, G. Nutrition and division of labor: Effects on foraging and brain gene expression in the paper wasp Polistes metricus. Mol. Ecol. 20, 5337–5347 (2011).CAS 

    Google Scholar 
    Morrison, L. W., Porter, S. D., Daniels, E. & Korzukhin, M. D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 6, 183–191 (2004).
    Google Scholar 
    Valles, S. M., Wetterer, J. K. & Porter, S. D. The red imported fire ant (Hymenoptera: Formicidae) in the West Indies: Distribution of natural enemies and a possible test bed for release of self-sustaining biocontrol agents. Fls. Entomol. 98, 1101–1105 (2015).
    Google Scholar 
    Greenberg, L., Vinson, S. & Ellison, S. Nine-year study of a field containing both monogyne and polygyne red imported fire ants (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 85, 686–695 (1992).
    Google Scholar 
    Keller, L. & Ross, K. G. Selfish genes: A green beard in the red fire ant. Nature 394, 573–575 (1998).ADS 
    CAS 

    Google Scholar 
    Vinson, S. B. Impact of the invasion of the imported fire ant. Insect Sci. 20, 439–455 (2013).
    Google Scholar 
    Tschinkel, W. R. The Fire Ants (Harvard University Press, 2006).
    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Task selection by workers of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 45, 301–310 (1999).
    Google Scholar 
    Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant Solenopsis invicta Buren. Anim. Behav. 29, 410–420 (1981).
    Google Scholar 
    Wilson, E. O. Division of labor in fire ants based on physical castes (Hymenoptera: Formicidae: Solenopsis). J. Kansas Entomol. Soc. 51, 615–636 (1978).
    Google Scholar 
    Sorensen, A., Busch, T. M. & Vinson, S. B. Behavioral flexibility of temporal subcastes in the fire ant, Solenopsis invicta in response to food. Psyche 91, 319–331 (1984).
    Google Scholar 
    Bigley, W. S. & Vinson, S. B. Characterization of a brood pheromone isolated from the sexual brood of the imported fire ant, Solenopsis invicta. Ann. Entomol. Soc. Am. 2, 301–304 (1975).
    Google Scholar 
    Bajracharya, P., Lu, H. L. & Pietrantonio, P. V. The red imported fire ant (Solenopsis invicta Buren) kept Y not F: Predicted sNPY endogenous ligands deorphanize the short NPF (sNPF) receptor. PLoS ONE 9(10), e109590 (2014).ADS 

    Google Scholar 
    Castillo, P. Short neuropeptide F receptor in the worker brain of the red imported fire ant (Solenopsis invicta Buren) and methodology for RNA interference M.S. thesis, Texas A&M University (2015).Castillo, P. & Pietrantonio, P. V. Differences in sNPF receptor-expressing neurons in brains of fire ant (Solenopsis invicta Buren) worker subcastes: Indicators for division of labor and nutritional status? PLoS ONE 8, e83966 (2013).ADS 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 3, 801–813 (1995).
    Google Scholar 
    Cassill, D. L., Stuy, A. & Buck, R. G. Emergent properties of food distribution among fire ant larvae. J. Theor. Biol. 3, 371–381 (1998).ADS 

    Google Scholar 
    Dussutour, A. & Simpson, S. J. Communal nutrition in ants. Curr. Biol. 19, 740–744. https://doi.org/10.1016/j.cub.2009.03.015 (2009).Article 
    CAS 

    Google Scholar 
    Petralia, R. S. & Vinson, S. B. Feeding in the larvae of the imported fire ant, Solenopsis invicta: Behavior and morphological adaptations. Ann. Entomol. Soc. Am. 71, 643–648 (1978).
    Google Scholar 
    Petralia, R. S. & Vinson, S. B. Developmental morphology of larvae and eggs of the imported fire ant, Solenopsis invicta. Ann. Entomol. Soc. Am. 72, 472–484 (1979).
    Google Scholar 
    Chen, J. Advancement on techniques for the separation and maintenance of the red imported fire ant colonies. Insect Sci. 14, 1–4 (2007).
    Google Scholar 
    Banks, W. A. et al. (Agricultural Research (Southern Region), Science and Education…, 1981).Valles, S. M. & Porter, S. D. Identification of polygyne and monogyne fire ant colonies (Solenopsis invicta) by multiplex PCR of Gp-9 alleles. Insectes Soc. 2, 199–200 (2003).
    Google Scholar 
    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101 (2008).CAS 

    Google Scholar 
    Cheng, D., Zhang, Z., He, X. & Liang, G. Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE 8, e57718. https://doi.org/10.1371/journal.pone.0057718 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Qiu, H.-L., Zhao, C.-Y. & He, Y.-R. On the molecular basis of division of labor in Solenopsis invicta (Hymenoptera: Formicidae) workers: RNA-seq analysis. J. Insect Sci. 17, 48 (2017).
    Google Scholar 
    Chen, J. et al. Role of the foraging gene in worker behavioral transition in the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Pest Manag. Sci. https://doi.org/10.1002/ps.6921 (2022).Article 

    Google Scholar 
    Shorter, J. R. & Tibbetts, E. A. The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. Insectes Soc. 56, 7–13 (2009).
    Google Scholar 
    Pankiw, T., Page, R. E. Jr. & Kim Fondrk, M. Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behav. Ecol. Sociobiol. 44, 193–198. https://doi.org/10.1007/s002650050531 (1998).Article 

    Google Scholar 
    Smedal, B., Brynem, M., Kreibich, C. D. & Amdam, G. V. Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). J. Exp. Biol. 212, 3795–3801. https://doi.org/10.1242/jeb.035063 (2009).Article 
    CAS 

    Google Scholar 
    Solis, C. R. & Strassmann, J. E. Presence of brood affects caste differentiation in the social wasp, Polistes exclamans Viereck (Hymenoptera, Vespidae). Funct. Ecol. 4, 531–541. https://doi.org/10.2307/2389321 (1990).Article 

    Google Scholar 
    Traynor, K. S. Decoding Brood Pheromone: The Releaser and Primer Effects of Young and Old Larvae on Honey Bee (Apis mellifera) Workers (Arizona State University, 2014).
    Google Scholar 
    Wagoner, K. M., Spivak, M. & Rueppell, O. Brood affects hygienic behavior in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 111, 2520–2530. https://doi.org/10.1093/jee/toy266 (2018).Article 
    CAS 

    Google Scholar 
    Nijhout, H. F. & Wheeler, D. E. Juvenile hormone and the physiological basis of insect polymorphisms. Q. Rev. Biol. 57, 109–133 (1982).CAS 

    Google Scholar  More

  • in

    What it would take to bring back the dodo

    The flightless dodo went extinct in the seventeenth century. Biotech company Colossal Biosciences plans to resurrect it.Credit: Hart, F/Bridgeman Images

    A biotech company announced an audacious effort to ‘de-extinct’ the dodo last week. The flightless birds vanished from the island of Mauritius — in the Indian Ocean — in the late seventeenth century, and became emblematic of humanity’s negative impacts on the natural world. Could the plan actually work?Colossal Biosciences, based in Dallas, Texas, has landed US$225 million in investment (including funds from the celebrity Paris Hilton) — having previously announced plans to de-extinct thylacines, an Australian marsupial, and create elephants with woolly mammoth traits. But Colossal’s plans depend on huge advances in genome editing, stem-cell biology and animal husbandry, making success far from certain.“It’s incredibly exciting that there’s that kind of money available,” says Thomas Jensen, a cell and molecular reproductive physiologist at Wells College in Aurora, New York. “I’m not sure that the end goal they’re going for is something that’s super feasible in the near future.”Iridescent pigeonsColossal’s plan starts with the dodo’s closest living relative, the iridescent-feathered Nicobar pigeon (Caloenas nicobarica). The company plans to isolate and culture specialized primordial germ cells (PGCs) — which make sperm and egg-producing cells — from developing Nicobars. Colossal’s scientists would edit DNA sequences in the PGCs to match those of dodos using tools such as CRISPR. These gene-edited PGCs would then be inserted into embryos from a surrogate bird species to generate chimeric — those with DNA from both species — animals that make dodo-like egg and sperm. These could potentially produce something resembling a dodo (Raphus cucullatus).To gene-edit Nicobar pigeon PGCs, scientists first need to identify the conditions that allow these cells to flourish in the laboratory, says Jae Yong Han, an avian-reproduction scientist at Seoul National University. Researchers have done this with chickens, but it will take time to identify the appropriate culture conditions that suit other birds’ PGCs.A greater challenge will be determining the genetic changes that could transform Nicobar pigeons into Dodos. A team including Beth Shapiro, a palaeogeneticist at the University of California, Santa Cruz, who is advising Colossal on the dodo project, has sequenced the dodo genome but has not yet published the results. Dodos and Nicobar pigeons shared a common ancestor that lived around 30 million to 50 million years ago, Shapiro’s team reported in 20161. By comparing the nuclear genomes of the two birds, the researchers hope to identify most of the DNA changes that distinguish between them.Insights from ratsTom Gilbert, an evolutionary biologist at the University of Copenhagen, who also advises Colossal, expects the dodo genome to be of high quality — it comes from a museum sample he provided to Shapiro. But he says that finding all the DNA differences between the two birds is not possible. Ancient genomes are cobbled together from short sequences of degraded DNA, and so are filled with unavoidable gaps and errors. And research he published last year comparing the genome of the extinct Christmas Island rat (Rattus macleari) with that of the Norwegian brown rat (Rattus norvegicus)2 suggests that gaps in the dodo genome could lie in the very DNA regions that have changed the most since its lineage split from that of Nicobar pigeons.Even if researchers could identify every genetic difference, introducing the thousands of changes to PGCs would not be simple. “I’m not sure it’s feasible in the near future,” says Jensen, whose team is encountering difficulties making a single genetic change to the genomes of quail.Focusing on only a subset of DNA changes, such as those that alter protein sequences, could slash the number of edits needed. But it’s still not clear that this would yield anything resembling a wild dodo, says Gilbert. “My worry is that Paris Hilton thinks she’s going to get a dodo that looks like a dodo,” he says.A further problem will be the need to find a large bird, such as an emu (Dromaius novaehollandiae), that can act as the surrogate, says Jensen. “Dodo eggs are much, much larger than Nicobar pigeon eggs, you couldn’t grow a dodo inside of a Nicobar egg.”Chicken embryos are fairly receptive to PGCs from other birds, and Jensen’s team has created chimeric chickens that can produce quail sperm — efforts to generate eggs have failed so far. But he thinks it will be far more challenging to transfer PGCs — particularly heavily gene-edited ones — from one wild bird into another.Conservation boon?Colossal chief executive Ben Lamm acknowledges these hurdles, but argues they aren’t dealbreakers. Work towards dodo de-extinction will help with conservation efforts for other birds, he adds. “It will bring a lot of new technologies to the field of bird conservation,” agrees Jensen.Vikash Tatayah, conservation director at the Mauritian Wildlife Foundation in Vacoas-Phoenix, is also enthusiastic about the attention dodo de-extinction could bring to conservation. “It’s something we would like to embrace,” he says.But he points out that the predators that threatened the dodo in the seventeeth century haven’t gone away, whereas most of its habitat has. “You do have to ask,” he says, “if we could have such money, wouldn’t it be better spent on restoring habitat on Mauritius and preventing species from going extinct?” More

  • in

    Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria

    Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).Article 
    CAS 

    Google Scholar 
    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).Article 
    CAS 

    Google Scholar 
    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).Article 
    CAS 

    Google Scholar 
    Mayali, X. Metabolic interactions between bacteria and phytoplankton. Front. Microbiol. 9, 727 (2018).Article 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98 (2015).Article 
    CAS 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453 (2015).Article 
    CAS 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).Article 
    CAS 

    Google Scholar 
    Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).Article 

    Google Scholar 
    Azam, F. & Ammerman, J. W. in Flows of Energy and Materials in Marine Ecosystems 345–360 (Springer, 1984).Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C., Syit, D. A., Grossart, H.-P. & Ullrich, M. S. Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 78, 6900–6907 (2012).Article 
    CAS 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).Article 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).Article 
    CAS 

    Google Scholar 
    Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).Article 
    CAS 

    Google Scholar 
    Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 17100 (2017).Article 
    CAS 

    Google Scholar 
    Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).Article 
    CAS 

    Google Scholar 
    Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).Article 
    CAS 

    Google Scholar 
    Aharonovich, D. & Sher, D. Transcriptional response of Prochlorococcus to co-culture with a marine Alteromonas: differences between strains and the involvement of putative infochemicals. ISME J. 10, 2892–2906 (2016).Article 
    CAS 

    Google Scholar 
    Jackson, G. A. Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32, 1253–1266 (1987).Article 
    CAS 

    Google Scholar 
    Gärdes, A., Iversen, M. H., Grossart, H.-P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).Article 

    Google Scholar 
    Al-Wahaib, D., Al-Bader, D., Al-Shaikh Abdou, D. K., Eliyas, M. & Radwan, S. S. Consistent occurrence of hydrocarbonoclastic Marinobacter strains in various cultures of picocyanobacteria from the Arabian Gulf: promising associations for biodegradation of marine oil pollution. J. Mol. Microbiol. Biotechnol. 26, 261–268 (2016).CAS 

    Google Scholar 
    Raina, J.-B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).Article 

    Google Scholar 
    Gärdes, A. et al. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genom. Sci. 3, 97–107 (2010).Article 

    Google Scholar 
    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).Article 
    CAS 

    Google Scholar 
    Wawrik, B., Callaghan, A. V. & Bronk, D. A. Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida shelf as measured using stable isotope probing. Appl. Environ. Microbiol. 75, 6662–6670 (2009).Article 
    CAS 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).Article 
    CAS 

    Google Scholar 
    Raina, J.-B. et al. Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature 605, 132–138 (2022).Article 
    CAS 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).Article 
    CAS 

    Google Scholar 
    Myklestad, S. M. in Marine Chemistry (ed. Wangersky, P. J.) 111–148 (Springer Berlin Heidelberg, 2000).Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020).Article 
    CAS 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).Article 
    CAS 

    Google Scholar 
    Buitenhuis, E. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Raina, J.-B. et al. Symbiosis in the microbial world: from ecology to genome evolution. Biol. Open 7, bio032524 (2018).Article 

    Google Scholar 
    Giardina, M. et al. Quantifying inorganic nitrogen assimilation by Synechococcus using bulk and single-cell mass spectrometry: a comparative study. Front. Microbiol. 9, 2847 (2018).Article 

    Google Scholar 
    Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).Article 

    Google Scholar 
    Guillard, R. R. L. in Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Walter, L. S. & Matoira, H. C.) 29–60 (Springer US, 1975).Kaeppel, E. C., Gärdes, A., Seebah, S., Grossart, H.-P. & Ullrich, M. S. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int. J. Syst. Evolut. Microbiol. 62, 124–128 (2012).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C. et al. Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J. Microbiol. Methods 87, 176–183 (2011).Article 
    CAS 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).Article 
    CAS 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
    CAS 

    Google Scholar 
    Hillion, F., Kilburn, M., Hoppe, P., Messenger, S. & Weber, P. K. The effect of QSA on S, C, O and Si isotopic ratio measurements. Geochim. Cosmochim. Acta 72, A377 (2008).
    Google Scholar 
    Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).Article 
    CAS 

    Google Scholar 
    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).Article 
    CAS 

    Google Scholar 
    Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. JoVE https://doi.org/10.3791/61062 (2020).Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).
    Google Scholar 
    Xie, L., Lu, C. & Wu, X.-L. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophys. J. 108, 766–774 (2015).Article 
    CAS 

    Google Scholar 
    Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).Article 
    CAS 

    Google Scholar 
    Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).Article 
    CAS 

    Google Scholar 
    Yamashita, Y. & Tanoue, E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem. 82, 145–160 (2003).Article 
    CAS 

    Google Scholar 
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).Article 
    CAS 

    Google Scholar 
    Mullin, M. M., Sloan, P. R. & Eppley, R. W. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11, 307–311 (1966).Article 

    Google Scholar  More

  • in

    Integrated biochar solutions can achieve carbon-neutral staple crop production

    Martin-Roberts, E. et al. Carbon capture and storage at the end of a lost decade. One Earth 4, 1569–1584 (2021).Article 
    ADS 

    Google Scholar 
    Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022).Article 
    ADS 

    Google Scholar 
    Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).CAS 

    Google Scholar 
    Third National Communication of Climate Change in the People’s Republic of China (Ministry of Ecology and Environment of the People’s Republic of China, 2018).Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, B. et al. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food 2, 570–577 (2021).Article 

    Google Scholar 
    Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crops Res. 234, 47–54 (2019).Article 

    Google Scholar 
    Shang, Z. et al. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob. Change Biol. 27, 4657–4670 (2021).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 23, 1917–1925 (2016).Article 
    ADS 

    Google Scholar 
    Ju, X. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, B. et al. Four pathways towards carbon neutrality by controlling net greenhouse gas emissions in Chinese cropland. Resour. Conserv. Recycl. 186, 106576 (2022).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 12, 5919–5932 (2018).Article 

    Google Scholar 
    Zhao, Y. et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change guidelines. Glob. Biogeochemical Cycles 23, GB2002 (2009).Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Z. et al. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials. Environ. Pollut. 284, 117176 (2021).Article 
    CAS 

    Google Scholar 
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L., Wang, S. & Yan, X. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agric. Ecosyst. Environ. 197, 118–127 (2014).Article 

    Google Scholar 
    Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y. et al. Restoring abandoned farmland to mitigate climate change on a full Earth. One Earth 3, 176–186 (2020).Article 
    ADS 

    Google Scholar 
    Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).Article 
    ADS 

    Google Scholar 
    Jeffery, S., Verheijen, F. G., Kammann, C. & Abalos, D. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101, 251–258 (2016).Article 
    CAS 

    Google Scholar 
    Schmidt, H. P. et al. Biochar in agriculture – a systematic review of 26 global meta-analyses. GCB Bioenergy 13, 1708–1730 (2021).Article 
    CAS 

    Google Scholar 
    Cayuela, M. L. et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci. Rep. 3, 1732 (2013).Article 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Glob. Change Biol. 25, 2077–2093 (2019).Article 
    ADS 

    Google Scholar 
    He, X. et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143, 746–756 (2018).Article 
    CAS 

    Google Scholar 
    Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).Ritchie, H., Roser, M. & Rosado, P. CO2 and Greenhouse Gas Emissions (Our World in Data, 2020); https://ourworldindata.org/co2-and-other-greenhouse-gas-emissionsLiu, Y. et al. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: a meta-analysis. Sci. Total Environ. 830, 154792 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y., Reilly, E. C., Jungers, J. M., Chen, J. & Smith, T. M. Climate benefits of increasing plant diversity in perennial bioenergy crops. One Earth 1, 434–445 (2019).Article 
    ADS 

    Google Scholar 
    Weller, S. et al. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycling Agroecosyst. 101, 37–53 (2015).Article 
    CAS 

    Google Scholar 
    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lee, X. J., Ong, H. C., Gan, Y. Y., Chen, W. H. & Mahlia, T. M. I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manag. 210, 112707 (2020).Article 
    CAS 

    Google Scholar 
    Nevzorova, T. & Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energy Strategy Rev. 26, 100414 (2019).Article 

    Google Scholar 
    Xia, S. et al. Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. Bioresource Technol. 270, 189–197 (2018).Article 
    CAS 

    Google Scholar 
    Liu, Z., Niu, W., Chu, H., Zhou, T. & Niu, Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13, 3429–3446 (2018).Article 
    CAS 

    Google Scholar 
    Hengeveld, E. J., Bekkering, J., van Gemert, W. J. T. & Broekhuis, A. A. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids. Biomass Bioenergy 86, 43–52 (2016).Article 

    Google Scholar 
    Ansari, S. H. et al. Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power. Environ. Pollut. 266, 115103 (2020).Article 
    CAS 

    Google Scholar 
    Yang, S. I., Wu, M. S. & Hsu, T. C. Spray combustion characteristics of kerosene/bio-oil part I: experimental study. Energy 119, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth 4, 1752–1763 (2022).Article 
    ADS 

    Google Scholar 
    Gu, B. et al. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ. Sci. Technol. 46, 9420–9427 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L. et al. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences 13, 4569–4579 (2016).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Asynchrony in coral community structure contributes to reef-scale community stability

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).CAS 

    Google Scholar 
    Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).ADS 
    CAS 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 

    Google Scholar 
    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).ADS 
    CAS 

    Google Scholar 
    Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).
    Google Scholar 
    Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity?. Ecology 82, 2381–2396 (2001).
    Google Scholar 
    van Nes, E. H. & Scheffer, M. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86, 1797–1807 (2005).
    Google Scholar 
    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. Plos Biol. 6, e122 (2008).
    Google Scholar 
    Loreau, M. et al. In Metacommunities: Spatial Dynamics and Ecological Communities (eds Holyoak, M. et al.) (The University of Chicago Press, 2005).
    Google Scholar 
    Loreau, M. From Populations to Ecosystems (Princeton University Press, 2010). https://doi.org/10.1515/9781400834167.vii.Book 

    Google Scholar 
    Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).
    Google Scholar 
    Costanza, J. K., Moody, A. & Peet, R. K. Multi-scale environmental heterogeneity as a predictor of plant species richness. Landsc. Ecol. 26, 851–864 (2011).
    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 

    Google Scholar 
    Nyström, M., Graham, N. A. J., Lokrantz, J. & Norström, A. V. Capturing the cornerstones of coral reef resilience: Linking theory to practice. Coral Reefs 27, 795–809 (2008).ADS 

    Google Scholar 
    Virah-Sawmy, M., Gillson, L. & Willis, K. J. How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar. Ecol. Monogr. 79, 557–574 (2009).
    Google Scholar 
    Wilson, D. S. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73, 1984–2000 (1992).
    Google Scholar 
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
    Google Scholar 
    Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid–host and predator–prey models: A review. Theor. Popul. Biol. 65, 299–315 (2004).MATH 

    Google Scholar 
    Wang, S., Haegeman, B. & Loreau, M. Dispersal and metapopulation stability. PeerJ 3, e1295 (2015).
    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100, 12765–12770 (2003).ADS 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. 96, 1463–1468 (1999).ADS 
    CAS 

    Google Scholar 
    Bouvier, T. et al. Contrasted effects of diversity and immigration on ecological insurance in marine bacterioplankton communities. PLoS ONE 7, e37620 (2012).ADS 
    CAS 

    Google Scholar 
    Hammond, M., Loreau, M., Mazancourt, C. & Kolasa, J. Disentangling local, metapopulation, and cross-community sources of stabilization and asynchrony in metacommunities. Ecosphere 11, e03078 (2020).
    Google Scholar 
    Lamy, T., Legendre, P., Chancerelle, Y., Siu, G. & Claudet, J. Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: Insights from beta-diversity decomposition. PLoS ONE 10, e0138696 (2015).
    Google Scholar 
    Lamy, T. et al. Species insurance trumps spatial insurance in stabilizing biomass of a marine macroalgal metacommunity. Ecology 100, e02719 (2019).
    Google Scholar 
    Stier, A. C., Shelton, A. O., Samhouri, J. F., Feist, B. E. & Levin, P. S. Fishing, environment, and the erosion of a population portfolio. Ecosphere https://doi.org/10.1002/ecs2.3283 (2020).Article 

    Google Scholar 
    Burgess, S. C. et al. Beyond connectivity: How empirical methods can quantify population persistence to improve marine protected-area design. Ecol. Appl. 24, 257–270 (2014).
    Google Scholar 
    Saenz-Agudelo, P., Jones, G. P., Thorrold, S. R. & Planes, S. Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc. R. Soc. B Biol. Sci. 278, 2954–2961 (2011).
    Google Scholar 
    Wood, S., Paris, C. B., Ridgwell, A. & Hendy, E. J. Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Glob. Ecol. Biogeogr. 23, 1–11 (2014).
    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: From concept to measurement and application. Biol. Rev. https://doi.org/10.1111/brv.12756 (2021).Article 

    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: Towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).
    Google Scholar 
    Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017).
    Google Scholar 
    Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).
    Google Scholar 
    Loreau, M. & Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).
    Google Scholar 
    Gross, K. et al. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).
    Google Scholar 
    Sullaway, G. H., Shelton, A. O. & Samhouri, J. F. Synchrony erodes spatial portfolios of an anadromous fish and alters availability for resource users. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13575 (2021).Article 

    Google Scholar 
    Adjeroud, M., Augustin, D., Galzin, R. & Salvat, B. Natural disturbances and interannual variability of coral reef communities on the outer slope of Tiahura (Moorea, French Polynesia): 1991 to 1997. Mar. Ecol. Prog. Ser. 237, 121–131 (2002).ADS 

    Google Scholar 
    Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).ADS 

    Google Scholar 
    Pratchett, M. S., Trapon, M., Berumen, M. L. & Chong-Seng, K. Recent Disturbances Augment Community Shifts in Coral Assemblages in Moorea, French Polynesia (SpringerLink, 2011). https://doi.org/10.1007/s00338-010-0678-2.Book 

    Google Scholar 
    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).ADS 
    CAS 

    Google Scholar 
    McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B 287, 20192628 (2020).
    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 

    Google Scholar 
    Penin, L., Adjeroud, M., Schrimm, M. & Lenihan, H. S. High spatial variability in coral bleaching around Moorea (French Polynesia): Patterns across locations and water depths. C. R. Biol. 330, 171–181 (2007).
    Google Scholar 
    Adam, T. C. et al. Herbivory, connectivity, and ecosystem resilience: Response of a coral reef to a large-scale perturbation. PLoS ONE 6, e23717 (2011).ADS 
    CAS 

    Google Scholar 
    Edmunds, P. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306 (2019).ADS 

    Google Scholar 
    Pérez-Rosales, G. et al. Documenting decadal disturbance dynamics reveals archipelago-specific recovery and compositional change on Polynesian reefs. Mar. Pollut. Bull. 170, 112659 (2021).
    Google Scholar 
    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).ADS 

    Google Scholar 
    Jackson, J. B. C. et al. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland (2014)Edmunds, P. J. Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Sci. Rep. 8, 16615 (2018).ADS 

    Google Scholar 
    Burgess, S. C., Johnston, E. C., Wyatt, A. S. J., Leichter, J. J. & Edmunds, P. J. Response diversity in corals: Hidden differences in bleaching mortality among cryptic Pocillopora species. Ecology https://doi.org/10.1002/ecy.3324 (2021).Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).ADS 

    Google Scholar 
    Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875 (2018).
    Google Scholar 
    Hench, J. L., Leichter, J. J. & Monismith, S. G. Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol. Oceanogr. 53, 2681–2694 (2008).ADS 

    Google Scholar 
    Barry, J. P. & Dayton, P. K. Ecological heterogeneity. Ecol. Stud. https://doi.org/10.1007/978-1-4612-3062-5_14 (1991).Article 

    Google Scholar 
    Edmunds, P. & Bruno, J. The importance of sampling scale in ecology: Kilometer-wide variation in coral reef communities. Mar. Ecol. Prog. Ser. 143, 165–171 (1996).ADS 

    Google Scholar 
    Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).ADS 
    CAS 

    Google Scholar 
    van Oppen, M. J. H. & Lough, J. M. Coral bleaching, patterns, processes, causes and consequences. Ecol. Stud. https://doi.org/10.1007/978-3-319-75393-5_14 (2018).Article 

    Google Scholar 
    Monismith, S. G. Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech. 39, 37–55 (2007).ADS 
    MATH 

    Google Scholar 
    Edmunds P. Of Moorea Coral Reef LTER. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Corals, ongoing since 2005. knb-lter-mcr.4.33 https://doi.org/10.6073/pasta/1f05f1f52a2759dc096da9c24e88b1e8 (2020).Cowles, J. et al. Resilience: insights from the U.S. Long-term ecological research network. Ecosphere 12, e03434 (2021).
    Google Scholar 
    Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).
    Google Scholar 
    Veron, J. E. N. Corals of the world, v. 1–3. Australian Institute of Marine Science (2000)Washburn, L of Moorea Coral Reef LTER. MCR LTER: Coral Reef: Ocean Currents and Biogeochemistry: salinity, temperature and current at CTD and ADCP mooring FOR01 from 2004 ongoing. knb-lter-mcr.30.36doi:10.6073/pasta/124d19950c5234bf1937661989dcced7 (2021).Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).ADS 

    Google Scholar 
    Dean, R. G. & Dalrymple, R. A. Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering Vol. 2 (World Scientific, 1991).
    Google Scholar 
    Carroll, A., Harrison, P. & Adjeroud, M. Sexual reproduction of Acropora reef corals at Moorea, French Polynesia. Coral Reefs 25, 93–97 (2006).ADS 

    Google Scholar 
    Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).ADS 

    Google Scholar 
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).
    Google Scholar 
    Clarke, K. R., Somerfield, P. J. & Chapman, M. G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330, 55–80 (2006).
    Google Scholar 
    RStudio Team. RStudio: Integrated development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2021).Oksanen J. et al. vegan: Community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Wickham, et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).Article 
    ADS 

    Google Scholar 
    Corlett, R. T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).
    Google Scholar 
    Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022 (2019).
    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 

    Google Scholar 
    Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 2019–2024 (2010).
    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).ADS 
    CAS 

    Google Scholar 
    Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410 (2010).
    Google Scholar 
    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).ADS 
    CAS 

    Google Scholar 
    Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 12, 443–451 (2009).
    Google Scholar 
    Connell, J. H. Diversity in tropical rain forests and coral reefs author. Science 199, 1302–1310 (1978).ADS 
    CAS 

    Google Scholar 
    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).ADS 
    CAS 

    Google Scholar 
    Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).
    Google Scholar 
    Moritz, C. et al. Long-term monitoring of benthic communities reveals spatial determinants of disturbance and recovery dynamics on coral reefs. Mar. Ecol. Prog. Ser. 672, 141–152 (2021).ADS 

    Google Scholar 
    Dietzel, A. et al. The spatial footprint and patchiness of large scale disturbances on coral reefs. Global Change Biol. 27, 4825–4838 (2021).CAS 

    Google Scholar 
    Leichter, J. et al. Biological and physical interactions on a tropical island coral reef: Transport and retention processes on Moorea, French Polynesia. Oceanography 26, 52–63 (2011).
    Google Scholar 
    Porter, J. W. et al. Population trends among Jamaican reef corals. Nature 294, 249–250 (1981).ADS 

    Google Scholar 
    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 

    Google Scholar 
    Whittaker, R. H. & Levin, S. A. The role of mosaic phenomena in natural communities. Theor. Popul. Biol. 12, 117–139 (1977).CAS 

    Google Scholar 
    Karlson, R. H. & Hurd, L. E. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12, 117–125 (1993).ADS 

    Google Scholar 
    Stoddart, D. R. Effects of Hurricane Hattie on the British Honduras reefs and cays, October 30–31, 1961. Atoll Res. Bull. 95, 1–142 (1963).
    Google Scholar 
    Witman, J. D. Physical disturbance and community structure of exposed and protected reefs: A case study from St. John U.S. Virgin Islands. Integr. Comp. Biol. 32, 641–654 (1992).
    Google Scholar 
    Thorson, J. T., Scheuerell, M. D., Olden, J. D. & Schindler, D. E. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc. R. Soc. B 285, 20180915 (2018).
    Google Scholar 
    Mellin, C., MacNeil, M. A., Cheal, A. J., Emslie, M. J. & Caley, M. J. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).
    Google Scholar 
    Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 11, e12587 (2018).
    Google Scholar 
    Harrison, H. B., Bode, M., Williamson, D. H., Berumen, M. L. & Jones, G. P. A connectivity portfolio effect stabilizes marine reserve performance. Proc. Natl. Acad. Sci. 117, 25595–25600 (2020).ADS 
    CAS 

    Google Scholar 
    Walter, J. A. et al. The spatial synchrony of species richness and its relationship to ecosystem stability. Ecology https://doi.org/10.1002/ecy.3486 (2021).Article 

    Google Scholar 
    Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. Ecography 42, 1200–1211 (2019).
    Google Scholar 
    Catano, C. P., Fristoe, T. S., LaManna, J. A. & Myers, J. A. Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proc. R. Soc. B 287, 20192520 (2020).
    Google Scholar 
    Roscher, C. et al. Identifying population- and community-level mechanisms of diversity–stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).
    Google Scholar 
    Downing, A. L., Brown, B. L. & Leibold, M. A. Multiple diversity–stability mechanisms enhance population and community stability in aquatic food webs. Ecology 95, 173–184 (2014).
    Google Scholar 
    Moran, P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291–298 (1953).
    Google Scholar 
    Townsend, D. L. & Gouhier, T. C. Spatial and interspecific differences in recruitment decouple synchrony and stability in trophic metacommunities. Theor. Ecol. 12, 319–327 (2019).
    Google Scholar 
    Yeager, M. E., Gouhier, T. C. & Hughes, A. R. Predicting the stability of multitrophic communities in a variable world. Ecology 101, e02992 (2020).
    Google Scholar 
    Hughes, T. P. et al. Emergent properties in the responses of tropical corals to recurrent climate extremes. Curr. Biol. https://doi.org/10.1016/j.cub.2021.10.046 (2021).Article 

    Google Scholar 
    Jackson, J. B. C. Morphological strategies of sessile animals. In Biology and Systematics of Colonial Organisms (eds Larwood, G. & Rosen, B. R.) 499–555 (Academic, 1979).
    Google Scholar 
    Sammarco, P. W. & Andrews, J. C. Localized dispersal and recruitment in Great Barrier Reef Corals: The helix experiment. Science 239, 1422–1424 (1988).ADS 
    CAS 

    Google Scholar 
    Edmunds, P. J. Unusually high coral recruitment during the 2016 El Niño in Mo’orea, French Polynesia. PLoS ONE 12, e0185167 (2017).
    Google Scholar 
    Bull, G. Distribution and abundance of coral plankton. Coral Reefs 4, 197–200 (1986).ADS 

    Google Scholar 
    Hodgson, G. Abundance and distribution of planktonic coral larvae in Kaneohe Bay, Oahu, Hawaii. Mar. Ecol. Prog. Ser. 26, 61–71 (1985).ADS 

    Google Scholar 
    Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).ADS 

    Google Scholar  More

  • in

    Benthic biota of Chilean fjords and channels in 25 years of cruises of the National Oceanographic Committee

    The data were recorded under the DarwinCore standard55,56 in a matrix named “Benthic biota of CIMAR-Fiordos and Southern Ice Field Cruises”58. The occurrence dataset contains direct basic information (description, scope [temporal, geographic and taxonomic], methodology, bibliography, contacts, data description, GBIF registration and citation), project details, metrics (taxonomy and occurrences classification), activity (citations and download events) and download options. The following data fields were occupied:Column 1: “occurrenceID” (single indicator of the biological record indicating the cruise and correlative record).Column 2: “basisOfRecord” (“PreservedSpecimen” for occurrence records with catalogue number of scientific collection, “MaterialCitation” for any literature record).Column 3: “institutionCode” (The acronym in use by the institution having custody of the sample or information referred to in the record).Column 4: “collectionCode” (The name of the cruise).Column 5: “catalogNumber” (The repository number in museums or correlative number).Column 6: “type” (All records entered as “text”).Column 7: “language” (Spanish, English or both).Column 8: “institutionID” (The identifier for the institution having custody of the sample or information referred to in the record).Column 9: “collectionID” (The identifier for the collection or dataset from which the record was derived).Column 10: “datasetID” (The code “CONA-benthic-biota-database” for entire database).Column 11: “recordedBy” (Author/s who recorded the original occurrence [publication source]).Column 12: “individualCount” (Number of individuals recorded).Column 13: “associatedReferences” (Publication source [report and/or paper/s] for each record).Column 14: “samplingProtocol” (The sampling gear for each record).Column 15: “eventDate” (The date-time or interval during which the record occurred).Column 16: “eventRemarks” (Comments or notes about the event).Column 17: “continent” (Location).Column 18: “country” (Location).Column 19: “countryCode” (The standard code for the country in which the location occurs).Column 20: “stateProvince” (Location, refers to the Administrative Region of Chile).Column 21: “county” (Location, refers to the Administrative Province of Chile).Column 22: “municipality” (Location, refers to the Administrative Commune of Chile).Column 23: “locality” (The specific name of the place).Column 24: “verbatimLocality” (The original textual description of the place).Column 25: “verbatimDepth” (The original description of the depth).Column 26: “minimumDepthInMeters” (The shallowest depth of a range of depths).Column 27: “maximumDepthInMeters” (The deepest depth of a range of depths).Column 28: “locationRemarks” (The name of the sample station of the cruise).Column 29: “verbatimLatitude” (The verbatim original latitude of the location).Column 30: “verbatimLongitude” (The verbatim original longitude of the location).Column 31: “verbatimCoordinateSystem” (The coordinate format for the “verbatimLatitude” and “verbatimLongitude” or the “verbatimCoordinates” of the location).Column 32: “verbatimSRS” (The spatial reference system [SRS] upon which coordinates given in “verbatimLatitude” and “verbatimLongitude” are based)Column 33: “decimalLatitude” (The geographic latitude in decimal degrees).Column 34: “decimalLongitude” (The geographic longitude in decimal degrees).Column 35: “geodeticDatum” (The spatial reference system [SRS] upon which the geographic coordinates given in “decimalLatitude” and “decimalLongitude” was based).Column 36: “coordinateUncertaintyInMeters” (The horizontal distance from the given “decimalLatitude” and “decimalLongitude” describing the smallest circle containing the whole of the location).Column 37: “georeferenceRemarks” (Notes about the spatial description determination).Column 38: “identifiedBy” (Responsible for recording the original occurrence [publication source]).Column 39: “dateIdentified” (The date-time or interval during which the identification occurred.)Column 40: “identificationQualifier” (A taxonomic determination [e.g., “sp.”, “cf.”]).Column 41: “scientificNameID” (An identifier for the nomenclatural details of a scientific name).Column 42: “scientificName” (The name of species or taxon of the occurrence record).Column 43: “kingdom” (The scientific name of the kingdom in which the taxon is classified).Column 44: “phylum” (The scientific name of the phylum or division in which the taxon is classified).Column 45: “class” (The scientific name of the class in which the taxon is classified).Column 46: “order” (The scientific name of the order in which the taxon is classified).Column 47: “family” (The scientific name of the family in which the taxon is classified).Column 48: “genus” (The scientific name of the genus in which the taxon is classified).Column 49: “subgenus” (The scientific name of the subgenus in which the taxon is classified).Column 50: “specificEpithet” (The name of the first or species epithet of the “scientificName”).Column 51: “infraspecificEpithet” (The name of the lowest or terminal infraspecific epithet of the “scientificName”).Column 52: “taxonRank” (The taxonomic rank of the most specific name in the “scientificName”).Column 53: “scientificNameAuthorship” (The authorship information for the “scientificName” formatted according to the conventions of the applicable nomenclatural Code).Column 54: “verbatimIdentification” (A string representing the taxonomic identification as it appeared in the original record).The information sources (see Fig. 2b) provided a total of 107 publications (22 cruise reports and 85 scientific papers; see Fig. 2c). Nineteen of the 22 cruise reports reviewed provided species occurrence records8,28,29,30,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46, one provided qualitative or descriptive data, with no recorded occurrences31, and two did not provide information on benthic biota (CIMAR-9 and −23 cruises). Of all the scientific papers reviewed, 74 provided records of species occurrences (Table 2), while 11 did not provide any record, as they were data without occurrences of geographically referenced species or with descriptive or qualitative information: Foraminifera59,60,61,62, Annelida63,64,65,66, Fishes67, Mollusca68 and Echinodermata69. The phyla with the highest number of publications were the following: Annelida (present in 18 reports and 21 papers), Mollusca (in 14 and 20), Arthropoda (in 10 and 18), Echinodermata (in 10 and 9), Chordata (in 10 and 9) and Foraminifera (in 4 and 10).Table 2 Publications with >100 occurrences, indicating the main recorded taxa.Full size tableThe information registry includes data on occurrences and number of individuals for 8,854 records (files in the database), representing 1,225 species (Fig. 3). The main taxa in terms of occurrence and number of species were Annelida (mainly Polychaeta), Foraminifera, Mollusca and Arthopoda (mainly Crustacea), together accumulating ~70% of total occurrences and ~73% of the total species (Fig. 3). The large number of recorded occurrences of Myzozoa (10%) should be highlighted, which, however, only represent about 32 species. Echinodermata represented ~8% of occurrences and 7% of species.Fig. 3Occurrences and total species by taxon, considering large taxonomic groups of the benthic biota recorded in the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of occurrences and species are represented in parentheses.Full size imageThe cruises with the highest number of occurrences were CIMAR-2 (with 1,424), followed by CIMAR-8 (1,040) and CIMAR-16 (813) (Fig. 4). Three dominant taxonomic groups were recorded in most cruises, except for cruises CIMAR-1, CIMAR-4, CIMAR-17, CIMAR-18 and CIMAR-24 (Fig. 4). The cruises with the highest number of species recorded were CIMAR-2 (with 335), CIMAR-3 (328) and CIMAR-8 (323) (Fig. 5). Three or fewer dominant taxonomic groups were recorded only in the CIMAR-1, CIMAR-4, CIMAR-17, CIMAR-18 and CIMAR-24 cruises (Fig. 5).Fig. 4Total occurrences and percentages per dominant taxon recorded in each of the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of occurrences per dominant taxon are represented in parentheses.Full size imageFig. 5Total species and percentages per dominant taxon recorded in each of the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of species per dominant taxon are represented in parentheses.Full size imageThe latitudinal bands 42°S and 45°S are those with the highest number of occurrences (Fig. 6), while the 56°S and 46°S bands had the fewest. The highest number of species was recorded in the 52°S and 50°S latitudinal bands, while, as with the occurrences, the lowest values corresponded to the 56°S and 46°S latitudinal bands (Fig. 6).Fig. 6Occurrences and number of species recorded by latitudinal band from the CIMAR 1 to 25 and CDHS-1995 cruises. SEP: South-eastern Pacific.Full size image More