More stories

  • in

    Impact of a tropical forest blowdown on aboveground carbon balance

    Study siteThis study was conducted at La Selva Biological Station, located in the lowland Atlantic forest of Costa Rica (10°26′ N, 83°59′ W). The mean annual temperature is 26 °C; mean annual precipitation is 4 m and all months have mean precipitation  > 100 mm39. La Selva has undulating topography, with elevation varying between 10 and 140 m above sea level. La Selva Biological Station includes multiple land uses; our analysis includes 103.5 hectares of forest, comprising 33.0 ha of old-growth forest and 70.5 ha of forests with past human disturbance (secondary forests, abandoned agroforestry, abandoned plantation, selectively-logged forests); here, we refer to all areas with past human disturbance as “secondary forests”. This study area does not include the full extent of old-growth or secondary forests at La Selva—we focused our drone data collection on this area because it contained the most severe apparent disturbance from the blowdown. Forests with past human disturbance have been naturally regenerating for a range of time (since 1955–1988); we excluded secondary forests with regeneration starting after 1988.Lidar dataWe use two airborne lidar datasets to quantify dynamics in canopy structure and ACD. Data were collected in 2009 and 2019 (Supplementary Table 2). Data from 2009 were collected by a fixed-wing aircraft over the entire reserve; data from 2019 were collected using the Brown Platform for Autonomous Remote Sensing40. We focused on an area 1.4 km2 in size that includes the region of most severe damage from the blowdown (Supplementary Fig. 1). Both lidar sensors were discrete-return systems. To minimize variation in lidar height estimates from variable laser beam divergence and detector characteristics, we only used data from first returns for all analyses. For the 2019 drone-based lidar with higher native point density and a wider scan angle range40, we limited our analysis to lidar returns with scan angle ± 15 degrees and randomly subsampled data to a homogenous resolution of 10 pts m−2. Previous research demonstrates that lidar data collected above densities of 1 pts m−2 have similar predictive power for determining many forest properties (including tree height, tree density, and basal area)41; both lidar datasets in this study are above this density threshold. All lidar data were projected using EPSG 32,616.For all lidar data, we calculated height above ground using a digital terrain model (DTM) created from lidar data collected in 2006 and validated using 4184 independent measurements within the old-growth forest (intercept =  − 0.406, slope = 0.999, r2 = 0.994, RMSE = 1.85 m; Supplementary Table 2)42. We verified that the horizontal geolocation accuracy with  More

  • in

    1H NMR based metabolic profiling distinguishes the differential impact of capture techniques on wild bighorn sheep

    Examining the serum metabolome profiles of bighorn sheep captured by the three primary techniques used to capture wild ungulates revealed significant changes in polar metabolite levels between the different animal groups, and trends that persisted throughout the analyses when directly comparing, in a pairwise fashion, specific capture techniques. Results from PLS-DA modeling and analysis of the top 15 metabolites that contribute most (VIP  > 1.2) to the separation of the three capture groups revealed that amino acid levels of tryptophan, valine, isoleucine, phenylalanine, and proline were highest in animals captured by dart, with intermediate levels in animals capture using dropnets, and lowest in animals captured using the helicopter method (Fig. 3A). One-way ANOVA analyses identified additional amino acids that displayed similar decreasing level trends from dart to dropnet to helicopter capture (dart  > drop net  > helicopter) methods, and included arginine, asparagine, aspartate, cysteine, glutamate, and glutamine, glycine, histidine, leucine, lysine, serine, and tyrosine (Fig. 4). These metabolite level changes suggest a shift in amino acid metabolism, and a potentially higher catabolism of these compounds as a function of increasingly more energetically intense and possibly more stressful capture methods such as helicopter capture.Of these amino acids, aspartate, glycine, and glutamate function as precursors for neurotransmitter synthesis, and may therefore be valuable indicators of the capture techniques’ impacts on animal health and changes to their physiological state. Glutamate is a fundamental component of nitrogen excretion in the urea cycle, and its lower serum levels in animals captured by helicopter support the idea of altered metabolite flow through the urea cycle. In addition to these patterns, decreasing levels of aspartate were observed in samples of dropnet and helicopter captured animals compared to the levels found in the dart-captured animals. The change regarding urea cycle alterations also manifested itself in differential serum urea levels, with fold changes (FC) between the groups decreasing significantly with capture techniques, with a mean FC difference of 1.4 for the dart-captured group, 0.26 for the dropnet-captured group, and − 0.3 for the helicopter-captured animals (Supplementary Table S2). As urea recycling is a prominent feature of ruminant metabolism and urea flux can rapidly change, the urea concentration changes observed between the three capture techniques support an impact on urea cycle intermediates29. While the trend of an overall decrease in urea cycle intermediates parallels a similar trend in amino acid concentrations, the extent to which amino acid metabolism is linked to changes in urea cycle activity is difficult to evaluate due to the nature of nitrogen recycling in the rumen of these ruminants.Other metabolites found in significantly higher concentrations in the serum samples of dart-captured animals compared to the two other techniques included: formate, glucose, 3-hydroxybutyrate, dimethylamine, carnitine (Fig. 3A). Propionate, which was observed to be higher in the dart and dropnet captured animals than that of helicopter captured animals (Fig. 4) is of interest, as it is the main precursor for glucose synthesis in the liver of ruminants30, and potentially reflect a higher dependence of ruminants on gluconeogenesis due to the almost complete conversion of available dietary carbohydrates to volatile fatty acids in the rumen31. As animal capture via nets increases physical activity as the animals struggle to free themselves from entanglement, generally resulting in longer times animals are under physical restraint, as well as the increased physical exertion and stress as they attempt to flee the pursuing helicopter, the observed decrease in serum propionate levels may reflect increased needs to generate glucose de novo via gluconeogenesis.This interpretation of the metabolite data is reinforced by the observation of significantly elevated levels of O-acetylcarnitine in the drop net and helicopter net gun animal capture groups compared to the darted animals (Fig. 4). As an important element of the carnitine/acyl-carnitine shuttle and import of fatty acids into the mitochondria for β-oxidation, acyl-carnitine is a major contributor to the flow of acyl groups into the TCA cycle, and a robust indicator of cardiac output and, by extension, TCA cycle activity levels in mammals32. Additional metabolites that displayed distinctly increasing trends based on capture method (dart  More

  • in

    Ixodiphagus hookeri wasps (Hymenoptera: Encyrtidae) in two sympatric tick species Ixodes ricinus and Haemaphysalis concinna (Ixodida: Ixodidae) in the Slovak Karst (Slovakia): ecological and biological considerations

    1.George, J. E., Pound, J. M. & Davey, R. B. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology 129(S1), 5353–5366 (2004).Article 
    CAS 

    Google Scholar 
    2.Abbas, R. Z. et al. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 203, 6–20 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Yessinou, R. E. et al. Resistance of tick Rhipicephalus microplus to acaricides and control strategies. J. Ent. Zool. Stud. 4, 408–414 (2016).
    Google Scholar 
    4.Bradberry, S. M. et al. Poisoning due to pyrethroids. Toxicol. Rev. 24, 93–106 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Klainbart, S. et al. Tremor salivation syndrome in canine following pyrethroid/permethrin intoxication. Pharm. Anal. Acta 5, 320 (2014).
    Google Scholar 
    6.Antwi, F. B. & Reddy, G. V. P. Toxicological effects of pyrethroids on non-target aquatic insects. Environ. Toxicol. Pharmacol. 40, 915–923 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Glorennec, P. et al. Determinants of children’s exposure to pyrethroid insecticides in western France. Environ. Int. 104, 76–82 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Alfeev, N. I. The utilization of Hunterellus hookeri How. for the control of the ticks, Ixodes ricinus L. and Ixodes persulcatus P. Sch. with reference to peculiarities of their metamorphosis under conditions of the Province of Lenningrad. Rev. Appl. Ent. B. 34, 108–109 (1946).
    Google Scholar 
    9.Hu, R., Hyland, K. E. & Oliver, J. H. A review on the use of Ixodiphagus wasps (Hymenoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). Syst. Appl. Acarol. 3, 19–28 (1988).
    Google Scholar 
    10.Mwangi, E. N. et al. The impact of Ixodiphagus hookeri, a tick parasitoid, on Amblyomma variegatum (Acari: Ixodidae) in a field trial in Kenya. Exp. Appl. Acarol. 21, 117–126 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Takasu, K. & Nakamura, S. Life history of the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Kenya. Biol. Control 46, 114–121 (2008).Article 

    Google Scholar 
    12.Rehacek, J. & Kocianova, E. Attempt to infect Hunterellus hookeri Howard (Hymenoptera, Encyrtidae), an endoparasite of ticks, with Coxiella burnetti. Acta Virol. 36, 492 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Plantard, O. et al. Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri. PLoS ONE 7, e30692 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Bohacsova, M. et al. Arsenophonus nasoniae and Rickettsiae infection of Ixodes ricinus due to parasitic wasp Ixodiphagus hookeri. PLoS ONE 11, e0149950 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Mather, T. N., Piesman, J. & Spielman, A. Absence of spirochete (Borrelia burgdorferi) and piroplasms (Babesia microti) in deer tick (Ixodes dammini) parasitized by Chalcid wasps (Hunterellus hookeri). Med. Vet. Entomol. 1, 3–8 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Noda, H., Munderloh, U. & Kurtti, T. Endosymbionts of ticks relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl. Environ. Microbiol. 63, 3926–3932 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ahantarig, A. et al. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. 58, 419–428 (2013).CAS 
    Article 

    Google Scholar 
    18.Duron, O. et al. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 26, 2905–2921 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Vila, A. et al. Endosymbionts carried by ticks feeding on dogs in Spain. Ticks Tick Borne Dis. 10, 848–852 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Cooley, R. A. & Kohls, G. M. A summary of tick parasites. In Proceedings of the 5th Pacific Science Congress, Vol. 5, 3375–3381 (1934).21.Bowman, J. L., Logan, T. M. & Hair, J. A. Host suitability of Ixodiphagus texanus Howard on five species of hard ticks. J. Agric. Entomol. 3, 1–9 (1986).
    Google Scholar 
    22.Mather, T. N., Piesman, J. & Spielman, A. Absence of spirochete (Borrelia burgdorferi ) and piroplasms (Babesia microti) in deer tick (Ixodes dammini) parasitized by Chalcid wasps (Hunterellus hookeri). Med. Vet. Entomol. 1, 3–8 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Hu, R., Hyland, K. E. & Mather, T. N. Occurrence and distribution in Rhode Island of Hunterellus hookeri (Hymenoptera: Encyrtidae), a wasp parasitoid of Ixodes dammini. J. Med. Entomol. 30, 277–280 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Stafford, K. C. 3rd., Denicola, A. J. & Kilpatrick, H. J. Reduced abundance of Ixodes scapularis (Acari: Ixodidae) and the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) with reduction of white-tailed deer. J. Med. Entomol. 40, 642–652 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hu, R. & Hyland, K. E. Prevalence and seasonal activity of the wasp parasitoid, Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in its tick host, Ixodes scapularis (Acari: Ixodidae). Syst. Appl. Acarol. 2, 95–100 (1997).
    Google Scholar 
    26.Lopes, A. J. O. et al. Parasitism by Ixodiphagus Wasps (Hymenoptera: Encyrtidae) in Rhipicephalus sanguineus and Amblyomma Ticks (Acari: Ixodidae) in Three Regions of Brazil. J. Econ. Entomol. 5, 1979–1981 (2012).Article 

    Google Scholar 
    27.Fiedler, O. G. H. A new African tick parasite, Hunterellus theilerae sp. n. Onderstepoort. J. Vet. Res. 26, 61–63 (1953).
    Google Scholar 
    28.Hoogstraal, H. & Kaiser, M. N. Records of Hunterellus theileri Fielder (Encyrtidae: Chalcidoidea) parasitizing Hyalomma ticks on birds migrating through Egypt. Ann. Ent. Soc. Am. 54, 616–617 (1961).Article 

    Google Scholar 
    29.Mwangi, E. N., Newson, R. M. & Kaaya, G. P. A hymenopteran parasitoid of the Bont tick Amblyomma variegatum Fabricius (Acarina: Ixodidae) in Kenya. Discov. Innov. 5, 331–335 (1993).
    Google Scholar 
    30.Shastri, U. V. Some observations on Hunterellus hookeri Howard, a parasitoid of Hyalomma-anatolicum anatolicum Koch, 1844 in Marathwada region Maharashtra State. Cheiron 13, 67–71 (1984).
    Google Scholar 
    31.Gaye, M. et al. Hymenopteran parasitoids of hard ticks in western Africa and the Russian Far East. Microorganisms 8, 1992 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    32.Oliver, J. H. A wasp parasite of the possum tick, Ixodes tasmani, Australia. Pan-Pac. Entomol. 40, 227–230 (1964).
    Google Scholar 
    33.Doube, B. M. & Heath, A. C. G. Observations on the biology and seasonal abundance of an encyrtid wasp, a parasite of ticks in Queensland. J. Med. Entomol. 12, 433–447 (1975).CAS 
    PubMed 

    Google Scholar 
    34.Heath, A. C. G. & Cane, R. P. A new species of Ixodiphagus (Hymenoptera: Chalcidoidea: Encyrtidae) parasitizing seabird ticks in New Zealand. N. Z. J. Zool. 37, 147–155 (2010).Article 

    Google Scholar 
    35.Costa Lima, A. The chalcid Hunterellus hookeri Howard, a parasite of the tick Rhipicephalus sanguineus Latreille, observed in Rio de Janeiro. Rev. Vet. Zoot. 5, 201–203 (1915).
    Google Scholar 
    36.Philip, C. B. Occurrence of a colony of the tick parasite Hunterellus hookeri Howard in West Africa. US Public Health Serv. Rpts. 46, 2168–2172 (1931).Article 

    Google Scholar 
    37.Bishopp, F. C. Record of hymenopterous parasites of ticks in the United States. Proc. Entomol. Soc. Wash. 36, 87–88 (1934).
    Google Scholar 
    38.Gahan, A. B. On the identities of chalcidoid tick parasites (Hymenoptera). Proc. Entomol. Soc. Wash. 36, 89–97 (1934).
    Google Scholar 
    39.Munaf, H. B. The first record of Hunterellus hookeri parasitizing Rhipicephalus sanguineus in Indonesia. South Asian J. Tropic. Med. Public Health 7, 492 (1976).CAS 

    Google Scholar 
    40.Cheong, W. H., Rajamanikam, C. & Mahadevan, S. A case of Hunterellus hookeri parasitization of ticks in Pentaling Jaya, Peninsula Malaysia. South Asian J. Tropic. Med. Publ. Health 9, 456–458 (1978).CAS 

    Google Scholar 
    41.Coronado, A. Ixodiphagus hookeri Howard, 1907 (Hymenoptera: Encyrtidae) in the brown dog tick Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) in Venezuela. Entomotropica 21, 61–64 (2006).
    Google Scholar 
    42.Bezerra Santos, M. et al. Larvae of Ixodiphagus wasps (Hymenoptera: Encyrtidae) in Rhipicephalus sanguineus sensu lato ticks (Acari: Ixodidae) from Brazil. Ticks Tick Borne Dis. https://doi.org/10.1016/j.ttbdis.2017.03.004 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Řehaček, J. Uzitočný cudzopasnik. Enviromagazin 3, 19 (1998).
    Google Scholar 
    44.Collatz, J. et al. A hidden beneficial: Biology of the tick-wasp Ixodiphagus hookeri in Germany. J. Appl. Entomol. 135, 351–358 (2011).Article 

    Google Scholar 
    45.Tijsse-Klasen, E. et al. Parasites of vectors—Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands. Parasit. Vectors 4, 228 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Ramos, R. A. et al. Occurrence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus (Acari: Ixodidae) in southern Italy. Ticks Tick Borne Dis. 6, 234–236 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Sormunen, J. J. et al. First evidence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) parasitization in Finnish castor bean ticks (Ixodes ricinus). Exp. Appl. Acarol. 79, 395–404 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Krawczyk, A. I. et al. Tripartite interactions among Ixodiphagus hookeri, Ixodes ricinus and deer: Differential interference with transmission cycles of tick-borne pathogens. Pathogens 9, 339 (2020).PubMed Central 
    Article 

    Google Scholar 
    49.Pervomaisky, G. S. On the infestation of Ixodes persulcatus by Hunterellus hookeri How. (Hymenoptera). Zool. Zh. 22, 211–213 (1943).
    Google Scholar 
    50.Alfeev, N. I. & Klimas, Y. V. Experience in cultivating ichneumon flies, Hunterellus hookeri, obtained from United States, which destroy ixodid ticks of Soviet fauna. Priroda 2, 98–101 (1938).
    Google Scholar 
    51.Brumpt, E. Utilisation des insectes auxiliares entomophages dans la lutte contre les insectes pathogenes. Presse Med. Paris 36, 359–361 (1913).
    Google Scholar 
    52.Klyushkina, E. A. A parasite of the ixodid ticks, Hunterellus hookeri How. in the Crimea. Zool. Zh. 37, 1561–1563 (1958).
    Google Scholar 
    53.Slovak, M. Finding of the endoparasitoid Ixodiphagus hookeri (Hymenoptera, Encyrtidae) in Haemaphysalis concinna ticks in Slovakia. Biologia 58, 890 (2003).
    Google Scholar 
    54.Brumpt, E. Parasitisme latent de l’Ixodiphagus caucurtei chez les larves gorgées et les nymphes á jeun de divers ixodines (Ixodes ricinus et Rhipicephalus sanguineus). Comptes Rendus de l’Académie des Sciences de Paris 191, 1085–1087 (1930).
    Google Scholar 
    55.Boucek, Z. & Černy, V. A parasite of ticks, the chalcid Hunterellus hookeri in Czechoslovakia. Zool. Listy 3, 109–111 (1954).
    Google Scholar 
    56.Heglasová, I. et al. Ticks, fleas and rodent-hosts analyzed for the presence of Borrelia miyamotoi in Slovakia: The first record of Borrelia miyamotoi in a Haemaphysalis inermis tick. Ticks Tick Borne Dis. 11, 101456 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Nosek, J. The ecology, bionomics and behavior of Haemaphysalis (Haemaphysalis) concinna tick. Z. Parasitenkd. 36, 233–241 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Nosek, J. The ecology and public health importance of Dermacentor marginatus and D. reticulatus ticks in central Europe. Folia Parasitol. 19, 93–102 (1972).CAS 

    Google Scholar 
    59.Széll, Z. et al. Temporal distribution of Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna in Hungary. Vet. Parasitol. 141, 377–379 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Harnok, S. & Farkas, R. Influence of biotope on the distribution and peak activity of questing ixodid ticks in Hungary. Med. Vet. Entomol. 23, 41–46 (2009).Article 

    Google Scholar 
    61.Bartosik, K., Wiśniowski, L. & Buczek, A. Abundance and seasonal activity of adult Dermacentor reticulatus (Acari: Amblyommidae) in eastern Poland in relation to meteorological conditions and the photoperiod. Ann. Agric. Environ. Med. 18, 340–344 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    62.Egyed, L. et al. Seasonal activity and tick-borne pathogen infection rates of Ixodes ricinus ticks in Hungary. Ticks Tick Borne Dis. 3, 90–94 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Hornok, S. et al. Ixodid ticks on ruminants, with on-host initiated moulting (apolysis) of Ixodes, Haemaphysalis and Dermacentor larvae. Vet. Parasitol. 187, 350–353 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Buczek, A. et al. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit. Vectors 7, 562 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Chitimia-Dobler, L. Spatial distribution of Dermacentor reticulatus in Romania. Vet. Parasitol. 214, 219–223 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Pfäffle, M., Littwin, N. & Petney, T. Host preferences of immature Dermacentor reticulatus (Acari: Ixodidae) in a forest habitat in Germany. Ticks Tick Borne Dis. 6, 508–515 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Collatz, J. et al. Being a parasitoid of parasites: Host finding in the tick wasp Ixodiphagus hookeri by odours from mammals. Ent. Exp. Appl. 134, 131–137 (2010).Article 

    Google Scholar 
    68.Takasu, K. et al. Host recognition by the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae). Environ. Entomol. 32, 614–617 (2003).Article 

    Google Scholar 
    69.Demas, F. A. et al. Cattle and Amblyomma variegatum odors used in host habitat and host finding by the tick parasitoid, Ixodiphagus hookeri. J. Chem. Ecol. 26, 1079–1093 (2000).CAS 
    Article 

    Google Scholar 
    70.Alfeev, N. I. & Klimas, Y. V. On the possibility of developing ichneumon flies, Hunterellus hookeri in climatic conditions of the USSR. Sovet. Vet. 15, 55 (1938).
    Google Scholar 
    71.Logan, T. M., Bowman, J. L. & Hair, J. A. Parthenogenesis and overwintering behavior in Ixodiphagus texanus Howard. J. Agric. Entomol. 2, 272–276 (1985).
    Google Scholar 
    72.Wood, H. P. Notes on the life history of the tick parasite Hunterellus hookeri Howard. J. Econ. Entomol. 4, 425–431 (1911).Article 

    Google Scholar 
    73.Cooley, R. A. & Kohls, G. M. Egg laying of Ixodiphagus caucurtei du Buysson in larval ticks. Science 67, 656 (1928).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Hu, R. Identification of the wasp parasitoid of the deer tick, Ixodes dammini, in Rhode Island and its implication in the control of Lyme disease. M.S. thesis, University of Rhode Island, USA (1990).75.Mwangi, E. N. et al. Parasitism of Amblyomma variegatum by a hymenopteran parasitoid in the laboratory, and some aspects of its basic biology. Biol. Control 4, 101–104 (1994).Article 

    Google Scholar 
    76.Hu, R. & Hyland, K. E. Effects of the feeding proces of Ixodes scapularis (Acari: Ixodidae) on embryonic development of its parasitoid, Ixodiphagus hookeri (Hymenoptera: Encyrtidae). J. Med. Entomol. 35, 1050–1053 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Knipling, E. F. & Steelman, C. D. Feasibility of controlling Ixodes scapularis ticks (Acari: Ixodidae), the vector of Lyme disease, by parasitoid augmentation. J. Med. Entomol. 37, 647–652 (2000).Article 

    Google Scholar 
    78.Stafford, K. C. 3rd., Denicola, A. J. & Magnarelli, L. A. Presence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in two Connecticut populations of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 33, 183–188 (1996).PubMed 
    Article 

    Google Scholar 
    79.Cole, M. M. Biological control of ticks by the use of hymenopterous insects. A review. World Health Organization (WHO/EBL/43.66) 43, 1–12 (1965).
    Google Scholar 
    80.Hoogstraal, H., Santana, F. J. & van Peenen, P. F. D. Ticks (Ixodoidea) of Mt. Sontra, Danang, Republic of Vietnam. Ann. Ent. Soc. Am. 61, 722–729 (1968).CAS 
    Article 

    Google Scholar 
    81.Zchori-Fein, E. et al. A newly discovered bacterium associated with parthenogenesis and a change in host selection behawior in parasitoid wasps. PNAS 98, 12555–12560 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Giorgini, M. et al. Rickettsia symbionts cause parthenogenic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl. Environ. 8, 2589–2599 (2010).Article 
    CAS 

    Google Scholar  More

  • in

    Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks

    1.Andrady AL. The plastic in microplastics: a review. Mar Pollut Bull. 2017;119:12–22.CAS 
    Article 

    Google Scholar 
    2.Akdogan Z, Guven B. Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ Pollut. 2019;254:113011.CAS 
    Article 

    Google Scholar 
    3.Dilkes-Hoffman LS, Pratt S, Lant PA, Laycock B. The role of biodegradable plastic in solving plastic solid waste accumulation. In: Al-Salem SM, editor. Plastics to energy. New York: William Andrew Publishing; 2019. p. 469–505.4.Reichert CL, Bugnicourt E, Coltelli MB, Cinelli P, Lazzeri A, Canesi I, et al. Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers. 2020;12:1558CAS 
    Article 

    Google Scholar 
    5.Reglero Ruiz JA, Trigo-López M, García FC, García JM. Functional aromatic polyamides. Polymers. 2017;9:414.Article 

    Google Scholar 
    6.Pilato L. Phenolic resins: a century of progress. New York: Springer; 2010.7.Ko HU, Zhai L, Park JH, Lee JY, Kim D, Kim J. Poly(vinyl alcohol)–lignin blended resin for cellulose-based composites. J Appl Polym Sci. 2018;135:46655.Article 

    Google Scholar 
    8.Shikinaka K, Nakamura M, Otsuka Y. Strong UV absorption by nanoparticulated lignin in polymer films with reinforcement of mechanical properties. Polymer. 2020;190:122254.CAS 
    Article 

    Google Scholar 
    9.Kargarzadeh H, Galeski A, Pawlak A. PBAT green composites: effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties. Polymer. 2020;203:122748.CAS 
    Article 

    Google Scholar 
    10.Matsuoka T, Nonaka H. Wet extrusion of wood powder using a cellulose derivative. Jpn TAPPI J. 2020;74:516–24.Article 

    Google Scholar 
    11.Shen X, Berton P, Shamshina JL, Rogers RD. Preparation and comparison of bulk and membrane hydrogels based on Kraft-and ionic-liquid-isolated lignins. Green Chem. 2016;18:5607–20.CAS 
    Article 

    Google Scholar 
    12.Li H, Sun JT, Wang C, Liu S, Yuan D, Zhou X, et al. High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustain Chem Eng. 2017;5:7942–9.CAS 
    Article 

    Google Scholar 
    13.Dehne L, Vila C, Saake B, Schwarz KU. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends. J Appl Polym Sci. 2017;134:44582.Article 

    Google Scholar 
    14.Dick TA, Couve J, Gimello O, Mas A, Robin JJ. Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly (L-lactide) composites. Polymer. 2017;118:280–96.Article 

    Google Scholar 
    15.Ushimaru K, Morita T, Fukuoka T. Moldable and humidity-responsive self-healable complex from lignosulfonate and cationic polyelectrolyte. ACS Sustain Chem Eng. 2018;6:14831–7.CAS 
    Article 

    Google Scholar 
    16.Ushimaru K, Hamano Y, Morita T, Fukuoka T. Moldable material from ε-poly-l-lysine and lignosulfonate: mechanical and self-healing properties of a bio-based polyelectrolyte complex. ACS Omega. 2019;4:9756–62.CAS 
    Article 

    Google Scholar 
    17.Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53:10316–29.CAS 
    Article 

    Google Scholar 
    18.Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33:499–512.CAS 
    Article 

    Google Scholar 
    19.Ushimaru K, Morita T, Fukuoka T. Bio-based, flexible, and tough material derived from ε-poly-l-lysine and fructose via the Maillard reaction. ACS Omega. 2020;5:22793–9.CAS 
    Article 

    Google Scholar 
    20.Ushimaru K, Morita T, Fukuoka T. A bio-based adhesive composed of polyelectrolyte complexes of lignosulfonate and cationic polyelectrolytes. J Wood Chem Technol. 2020;40:172–7.CAS 
    Article 

    Google Scholar 
    21.Zhang ZH, Zeng XA, Brennan CS, Ma H, Aadil RM. Preparation and characterisation of novelty food preservatives by Maillard reaction between ε-polylysine and reducing sugars. Int J Food Sci Technol. 2019;54:1824–35.CAS 
    Article 

    Google Scholar 
    22.Lay M, Thajudin NLN, Hamid ZAA, Rusli A, Abdullah MK, Shuib RK. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos B Eng. 2019;176:107341.CAS 
    Article 

    Google Scholar 
    23.Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213:222–4.CAS 
    Article 

    Google Scholar 
    24.Suarez G, Rajaram RAMA, Oronsky AL, Gawinowicz MA. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem. 1989;264:3674–9.CAS 
    Article 

    Google Scholar 
    25.Kim C, Yoshie N. Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers? Polym J. 2018;50:919–29.CAS 
    Article 

    Google Scholar 
    26.Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.CAS 
    Article 

    Google Scholar 
    27.Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–90.CAS 
    Article 

    Google Scholar 
    28.Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C. Toughening elastomers with sacrificial bonds and watching them break. Science. 2014;344:186–9.CAS 
    Article 

    Google Scholar 
    29.Neal JA, Mozhdehi D, Guan Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J Am Chem Soc. 2015;137:4846–50.CAS 
    Article 

    Google Scholar 
    30.Nakajima T. Generalization of the sacrificial bond principle for gel and elastomer toughening. Polym J. 2017;49:477–85.CAS 
    Article 

    Google Scholar 
    31.Yamini G, Shakeri A, Zohuriaan-Mehr MJ, Kabiri K. Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: from natural waste to value-added bio-additive. J CO2 Util. 2018;24:50–8.32.Szabó G, Romhányi V, Kun D, Renner K, Pukánszky B. Competitive interactions in aromatic polymer/lignosulfonate blends. ACS Sustain Chem Eng. 2017;5:410–9.Article 

    Google Scholar 
    33.Lee SI, Chun BC. Effect of EGMA content on the tensile and impact properties of poly (phenylene sulfide)/EGMA blends. Polymer. 1998;39:6441–7.CAS 
    Article 

    Google Scholar 
    34.Yang Y, Duan H, Zhang S, Niu P, Zhang G, Long S, et al. Morphology control of nanofillers in poly (phenylene sulfide): a novel method to realize the exfoliation of nanoclay by SiO2 via melt shear flow. Compos Sci Technol. 2013;75:28–34.CAS 
    Article 

    Google Scholar 
    35.Tao X, Nonaka H. Wet extrusion molding of wood powder with hydroxy-propylmethyl cellulose and with citric acid as a crosslinking agent. BioResources. 2021;16:2314–25.CAS 

    Google Scholar 
    36.Hasegawa D, Teramoto Y, Nishio Y. Molecular complex of lignosulfonic acid/poly (vinyl pyridine) via ionic interaction: characterization of chemical composition and application to material surface modifications. J Wood Sci. 2008;54:143–52.CAS 
    Article 

    Google Scholar 
    37.Wei C, Zhu X, Peng H, Chen J, Zhang F, Zhao Q. Facile preparation of lignin-based underwater adhesives with improved performances. ACS Sustain Chem Eng. 2019;7:4508–14.CAS 
    Article 

    Google Scholar  More

  • in

    Coexistence holes fill a gap in community assembly theory

    1.Gamow, G. Biography of Physics (Harper, 1961).2.Cang, Z., Mu, L. & Wei, G.-W. PLoS Comput. Biol. 14, e1005929 (2018).Article 

    Google Scholar 
    3.Reimann, M. W. et al. Front. Comput. Neurosci. 11, 48 (2017).Article 

    Google Scholar 
    4.Angulo, M. T., Kelley, A., Montejano, L., Song, C. & Saavedra, S. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01462-8 (2021).Article 

    Google Scholar 
    5.Ghrist, R. Bull. Am. Math. Soc. 45, 61–75 (2008).Article 

    Google Scholar 
    6.Chesson, P. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    7.Friedman, J., Higgins, L. M. & Gore, J. Nat. Ecol. Evol. 1, 0109 (2017).Article 

    Google Scholar 
    8.Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Nature 548, 210–213 (2017).CAS 
    Article 

    Google Scholar 
    9.Grainger, T. N., Levine, J. M. & Gilbert, B. Trends Ecol. Evol. 34, 925–935 (2019).Article 

    Google Scholar 
    10.Gould, A. L. et al. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    Article 

    Google Scholar 
    11.Letten, A. D. & Stouffer, D. B. Ecol. Lett. 22, 423–436 (2019).Article 

    Google Scholar 
    12.Fukami, T. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).Article 

    Google Scholar  More

  • in

    Faster life history strategy manifests itself by lower age at menarche, higher sexual desire, and earlier reproduction in people with worse health

    1.Ellis, B. J., Figueredo, A. J., Brumbach, B. H. & Schlomer, G. L. Fundamental dimensions of environmental risk—The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Hum. Nat. 20, 204–268. https://doi.org/10.1007/s12110-009-9063-7 (2009).Article 
    PubMed 

    Google Scholar 
    2.Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359. https://doi.org/10.1038/346357a0 (1990).ADS 
    Article 

    Google Scholar 
    3.Pianka, E. R. On r- and K-selection. Am. Nat. 104, 592–597. https://doi.org/10.1086/282697 (1970).Article 

    Google Scholar 
    4.Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47. https://doi.org/10.1086/409052 (1976).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Flegr, J. Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems. J. Theor. Biol. 188, 121–126. https://doi.org/10.1006/jtbi.1997.0458 (1997).Article 

    Google Scholar 
    6.Bowyer, R. T., Person, D. K. & Pierce, B. M. Detecting top-down versus bottom-up regulation of ungulates by large carnivores: Implications for conservation of biodiversity. In Large Carnivores and the Conservation of Biodiversity (eds. Ray, J. C et al.) 342–361 (Island Press, 2005).7.Jones, M. E. et al. Life-history change in disease-ravaged Tasmanian devil populations. Proc. Natl. Acad. Sci. USA 105, 10023–10027. https://doi.org/10.1073/pnas.0711236105 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    8.Scheele, B. C. et al. Disease-associated change in an amphibian life-history trait. Oecologia 184, 825–833. https://doi.org/10.1007/s00442-017-3911-7 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    9.Thornhill, J. A., Jones, J. T. & Kusel, J. R. Increased oviposition and growth in immature Biomphalaria glabrata after exposure to Schistosoma mansoni. Parasitology 93, 443–450. https://doi.org/10.1017/S0031182000081166 (1986).Article 
    PubMed 

    Google Scholar 
    10.Polak, M. & Starmer, W. T. Parasite-induced risk of mortality elevates reproductive effort in male Drosophila. Proc. R. Soc. B 265, 2197–2201. https://doi.org/10.1098/rspb.1998.0559 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Chadwick, W. & Little, T. J. A parasite-mediated life-history shift in Daphnia magna. Proc. R. Soc. B 272, 505–509. https://doi.org/10.1098/rspb.2004.2959 (2005).Article 
    PubMed 

    Google Scholar 
    12.Schwanz, L. E. Chronic parasitic infection alters reproductive output in deer mice. Behav. Ecol. Sociobiol. 62, 1351–1358. https://doi.org/10.1007/s00265-008-0563-y (2008).Article 

    Google Scholar 
    13.Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437. https://doi.org/10.1111/j.1469-7998.1990.tb04316.x (1990).Article 

    Google Scholar 
    14.Hill, K. Life history theory and evolutionary anthropology. Evol. Anthropol. 2, 78–88. https://doi.org/10.1002/evan.1360020303 (1993).CAS 
    Article 

    Google Scholar 
    15.Charlesworth, B. Evolution in Age-Structured Populations 2nd edn. (Cambridge University Press, 1994).Book 

    Google Scholar 
    16.Nettle, D. & Frankenhuis, W. E. Life-history theory in psychology and evolutionary biology: One research programme or two?. Philos. Trans. R. Soc. B 375, 9. https://doi.org/10.1098/rstb.2019.0490 (2020).Article 

    Google Scholar 
    17.Del Giudice, M. Rethinking the fast-slow continuum of individual differences. Evol. Hum. Behav. 41, 536–549. https://doi.org/10.1016/j.evolhumbehav.2020.05.004 (2020).Article 

    Google Scholar 
    18.Lammers, C., Ireland, M., Resnick, M. & Blum, R. Influences on adolescents’ decision to postpone onset of sexual intercourse: A survival analysis of virginity among youths aged 13 to 18 years. J. Adolesc. Health 26, 42–48. https://doi.org/10.1016/s1054-139x(99)00041-5 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Wilson, M. & Daly, M. Life expectancy, economic inequality, homicide, and reproductive timing in Chicago neighbourhoods. BMJ 314, 1271–1274 (1997).CAS 
    Article 

    Google Scholar 
    20.Bereczkei, T. & Csanaky, A. Stressful family environment, mortality, and child socialisation: Life-history strategies among adolescents and adults from unfavourable social circumstances. Int. J. Behav. Dev. 25, 501–508. https://doi.org/10.1080/01650250042000573 (2001).Article 

    Google Scholar 
    21.Nettle, D. Dying young and living fast: Variation in life history across English neighborhoods. Behav. Ecol. 21, 387–395. https://doi.org/10.1093/beheco/arp202 (2010).Article 

    Google Scholar 
    22.Griskevicius, V., Delton, A. W., Robertson, T. E. & Tybur, J. M. Environmental contingency in life history strategies: The influence of mortality and socioeconomic status on reproductive timing. J. Pers. Soc. Psychol. 100, 241–254. https://doi.org/10.1037/a0021082 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Sheppard, P., Pearce, M. S. & Sear, R. How does childhood socioeconomic hardship affect reproductive strategy? Pathways of development. Am. J. Hum. Biol. 28, 356–363. https://doi.org/10.1002/ajhb.22793 (2016).Article 
    PubMed 

    Google Scholar 
    24.Belsky, J., Steinberg, L. & Draper, P. Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Dev. 62, 647–670. https://doi.org/10.1111/j.1467-8624.1991.tb01558.x (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Rickard, I. J., Frankenhuis, W. E. & Nettle, D. Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspect. Psychol. Sci. 9, 3–15. https://doi.org/10.1177/1745691613513467 (2014).Article 
    PubMed 

    Google Scholar 
    26.Chua, K. J., Lukaszewski, A. W., Grant, D. M. & Sng, O. Human life history strategies: Calibrated to external or internal cues?. Evol. Psychol. 15, 1474704916677342. https://doi.org/10.1177/1474704916677342 (2017).Article 
    PubMed 

    Google Scholar 
    27.Adamo, S. A. Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Anim. Behav. 57, 117–124. https://doi.org/10.1006/anbe.1998.0999 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Giehr, J., Grasse, A. V., Cremer, S., Heinze, J. & Schrempf, A. Ant queens increase their reproductive efforts after pathogen infection. R. Soc. Open Sci. 4, 170547. https://doi.org/10.1098/rsos.170547 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sorci, G., Clobert, J. & Michalakis, Y. Cost of reproduction and cost of parasitism in the common lizard, Lacerta vivipara. Oikos 76, 121–130. https://doi.org/10.2307/3545754 (1996).Article 

    Google Scholar 
    30.Oppliger, A., Christe, P. & Richner, H. Clutch size and malarial parasites in female great tits. Behav. Ecol. 8, 148–152. https://doi.org/10.1093/beheco/8.2.148 (1997).Article 

    Google Scholar 
    31.Sanz, J. J., Arriero, E., Moreno, J. & Merino, S. Interactions between hemoparasite status and female age in the primary reproductive output of pied flycatchers. Oecologia 126, 339–344. https://doi.org/10.1007/s004420000530 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    32.Westendorp, R. G. J. & Kirkwood, T. B. L. Human longevity at the cost of reproductive success. Nature 396, 743–746. https://doi.org/10.1038/25519 (1998).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Thomas, F., Teriokhin, A. T., Renaud, F., De Meeus, T. & Guégan, J. F. Human longevity at the cost of reproductive success: Evidence from global data. J. Evol. Biol. 13, 409–414. https://doi.org/10.1046/j.1420-9101.2000.00190.x (2000).Article 

    Google Scholar 
    34.Figueredo, A. J., Vasquez, G., Brumbach, B. H. & Schneider, S. M. R. The heritability of life history strategy: The K-factor, covitality, and personality. Soc. Biol. 51, 121–143 (2004).PubMed 

    Google Scholar 
    35.Figueredo, A. J., Vasquez, G., Brumbach, B. H. & Schneider, S. M. R. The K-factor, covitality, and personality—A psychometric test of life history theory. Hum. Nat. 18, 47–73. https://doi.org/10.1007/bf02820846 (2007).Article 
    PubMed 

    Google Scholar 
    36.Hill, S. E., Boehm, G. W. & Prokosch, M. L. Vulnerability to disease as a predictor of faster life history strategies. Adapt. Hum. Behav. Physiol. 2, 116–133. https://doi.org/10.1007/s40750-015-0040-6 (2016).Article 

    Google Scholar 
    37.Uggla, C. & Mace, R. Local ecology influences reproductive timing in Northern Ireland independently of individual wealth. Behav. Ecol. 27, 158–165. https://doi.org/10.1093/beheco/arv133 (2016).Article 

    Google Scholar 
    38.Waynforth, D. Life-history theory, chronic childhood illness and the timing of first reproduction in a British birth cohort. Proc. R. Soc. B 279, 2998–3002. https://doi.org/10.1098/rspb.2012.0220 (2012).Article 
    PubMed 

    Google Scholar 
    39.Mace, R. Evolutionary ecology of human life history. Anim. Behav. 59, 1–10. https://doi.org/10.1006/anbe.1999.1287 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Low, B. S., Simon, C. P. & Anderson, K. G. An evolutionary ecological perspective on demographic transitions: Modeling multiple currencies. Am. J. Hum. Biol. 14, 149–167. https://doi.org/10.1002/ajhb.10043 (2002).Article 
    PubMed 

    Google Scholar 
    41.Galor, O. The demographic transition: Causes and consequences. Cliometrica 6, 1–28. https://doi.org/10.1007/s11698-011-0062-7 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Protsiv, M., Ley, C., Lankester, J., Hastie, T. & Parsonnet, J. Decreasing human body temperature in the United States since the industrial revolution. Elife 9, e49555. https://doi.org/10.7554/eLife.49555 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Novotná, M. et al. Toxoplasma and reaction time: Role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology 135, 1253–1261. https://doi.org/10.1017/s003118200800485x (2008).Article 
    PubMed 

    Google Scholar 
    44.Flegr, J., Novotná, M., Lindová, J. & Havlíček, J. Neurophysiological effect of the Rh factor. Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuroendocrinol. Lett. 29, 475–481 (2008).PubMed 

    Google Scholar 
    45.Flegr, J., Preiss, M. & Klose, J. Toxoplasmosis-associated difference in intelligence and personality in men depends on their Rhesus blood group but not ABO blood group. PLoS One 8, e61272. https://doi.org/10.1371/journal.pone.0061272 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Flegr, J., Šebánková, B., Příplatová, L., Chvátalová, V. & Kaňková, Š. Lower performance of Toxoplasma-infected, Rh-negative subjects in the weight holding and hand-grip tests. PLoS One 13, e0200346. https://doi.org/10.1371/journal.pone.0200346 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Flegr, J., Klose, J., Novotná, M., Berenreitterová, M. & Havlíček, J. Increased incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect RhD molecule revealed by a large-scale prospective cohort study. BMC Infect. Dis. https://doi.org/10.1186/1471-2334-9-72 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Flegr, J., Geryk, J., Volný, J., Klose, J. & Černochová, D. Rhesus factor modulation of effects of smoking and age on psychomotor performance, intelligence, personality profile, and health in Czech soldiers. PLoS One 7, e4947810. https://doi.org/10.1371/journal.pone.0049478 (2012).CAS 
    Article 

    Google Scholar 
    49.Flegr, J., Hoffmann, R. & Dammann, M. Worse health status and higher incidence of health disorders in Rhesus negative subjects. PLoS One 10, e0141362. https://doi.org/10.1371/journal.pone.0141362 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Flegr, J. Heterozygote advantage probably maintains Rhesus factor blood group polymorphism: Ecological regression study. PLoS One 11, e0147955. https://doi.org/10.1371/journal.pone.0147955 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Flegr, J., Kuba, R. & Kopecký, R. Rhesus-minus phenotype as a predictor of sexual desire and behavior, wellbeing, mental health, and fecundity. PLoS One 15, e0236134. https://doi.org/10.1371/journal.pone.0236134 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kaňková, Š., Flegr, J., Toman, J. & Calda, P. Maternal RhD heterozygous genotype is associated with male biased secondary sex ratio. Early Hum. Dev. 140, 104864. https://doi.org/10.1016/j.earlhumdev.2019.104864 (2020).Article 
    PubMed 

    Google Scholar 
    53.Flegr, J. & Dama, M. Does the prevalence of latent toxoplasmosis and frequency of Rhesus-negative subjects correlate with the nationwide rate of traffic accidents?. Folia Parasitol. 61, 485–494 (2014).CAS 
    Article 

    Google Scholar 
    54.Halmin, M. et al. Length of storage of red blood cells and patient survival after blood transfusion: A binational cohort study. Ann. Intern. Med. 166, 248–256. https://doi.org/10.7326/m16-1415 (2017).Article 
    PubMed 

    Google Scholar 
    55.Jacobsen, B. K., Oda, K., Knutsen, S. F. & Fraser, G. E. Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: The Adventist Health Study, 1976–88. Int. J. Epidemiol. 38, 245–252. https://doi.org/10.1093/ije/dyn251 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Lakshman, R. et al. Early age at menarche associated with cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 94, 4953–4960. https://doi.org/10.1210/jc.2009-1789 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Canoy, D. et al. Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation 131, 237–244. https://doi.org/10.1161/circulationaha.114.010070 (2015).Article 
    PubMed 

    Google Scholar 
    58.Macsali, F. et al. Early age at menarche, lung function, and adult asthma. Am. J. Respir. Crit. Care Med. 183, 8–14. https://doi.org/10.1164/rccm.200912-1886OC (2011).Article 
    PubMed 

    Google Scholar 
    59.Stöckl, D. et al. Age at menarche is associated with prediabetes and diabetes in women (aged 32–81 years) from the general population: The KORA F4 Study. Diabetologia 55, 681–688. https://doi.org/10.1007/s00125-011-2410-3 (2012).Article 
    PubMed 

    Google Scholar 
    60.Brinton, L. A., Schairer, C., Hoover, R. N. & Fraumeni, J. F. Menstrual factors and risk of breast cancer. Cancer Investig. 6, 245–254. https://doi.org/10.3109/07357908809080645 (1988).CAS 
    Article 

    Google Scholar 
    61.Kvale, G. & Heuch, I. Menstrual factors and breast cancer risk. Cancer 62, 1625–1631. https://doi.org/10.1002/1097-0142(19881015)62:8%3c1625::aid-cncr2820620828%3e3.0.co;2-k (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Adair, L. S. Size at birth predicts age at menarche. Pediatrics 107, e59. https://doi.org/10.1542/peds.107.4.e59 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Romundstad, P. R. et al. Birth size in relation to age at menarche and adolescent body size: Implications for breast cancer risk. Int. J. Cancer 105, 400–403. https://doi.org/10.1002/ijc.11103 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Sloboda, D. M., Hart, R., Doherty, D. A., Pennell, C. E. & Hickey, M. Age at menarche: Influences of prenatal and postnatal growth. J. Clin. Endocrinol. Metab. 92, 46–50. https://doi.org/10.1210/jc.2006-1378 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Rich-Edwards, J. W. et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315, 396–400. https://doi.org/10.1136/bmj.315.7105.396 (1997).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Andersen, A. M. N. & Osler, M. Birth dimensions, parental mortality, and mortality in early adult age: A cohort study of Danish men born in 1953. Int. J. Epidemiol. 33, 92–99. https://doi.org/10.1093/ije/dyg195 (2004).Article 
    PubMed 

    Google Scholar 
    67.Gluckman, P. D. & Hanson, M. A. Evolution, development and timing of puberty. Trends Endocrinol. Metab. 17, 7–12. https://doi.org/10.1016/j.tem.2005.11.006 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Kulin, H. E., Bwibo, N., Mutie, D. & Santner, S. J. The effect of chronic childhood malnutrition on pubertal growth and development. Am. J. Clin. Nutr. 36, 527–536. https://doi.org/10.1093/ajcn/36.3.527 (1982).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Khan, A. D., Schroeder, D. G., Martorell, R., Haas, J. D. & Rivera, J. Early childhood determinants of age at menarche in rural Guatemala. Am. J. Hum. Biol. 8, 717–723. https://doi.org/10.1002/(sici)1520-6300(1996)8:6%3c717::aid-ajhb3%3e3.0.co;2-q (1996).Article 
    PubMed 

    Google Scholar 
    70.Leenstra, T. et al. Prevalence and severity of malnutrition and age at menarche; cross-sectional studies in adolescent schoolgirls in western Kenya. Eur. J. Clin. Nutr. 59, 41–48. https://doi.org/10.1038/sj.ejcn.1602031 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Walker, R. et al. Growth rates and life histories in twenty-two small-scale societies. Am. J. Hum. Biol. 18, 295–311. https://doi.org/10.1002/ajhb.20510 (2006).Article 
    PubMed 

    Google Scholar 
    72.Idler, E. L. & Kasl, S. V. Self-ratings of health: Do they also predict change in functional ability. J. Gerontol. B 50, S344–S353. https://doi.org/10.1093/geronb/50B.6.S344 (1995).CAS 
    Article 

    Google Scholar 
    73.O’Sullivan, L. F. & Byers, E. S. College students’ incorporation of initiator and restrictor roles in sexual dating interactions. J. Sex Res. 29, 435–446. https://doi.org/10.1080/00224499209551658 (1992).Article 

    Google Scholar 
    74.Smith, C. A. Factors associated with early sexual activity among urban adolescents. Soc. Work 42, 334–346. https://doi.org/10.1093/sw/42.4.334 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Mercer, C. H. et al. Changes in sexual attitudes and lifestyles in Britain through the life course and over time: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet 382, 1781–1794. https://doi.org/10.1016/s0140-6736(13)62035-8 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Kalick, S. M., Zebrowitz, L. A., Langlois, J. H. & Johnson, R. M. Does human facial attractiveness honestly advertise health? Longitudinal data on an evolutionary question. Psychol. Sci. 9, 8–13. https://doi.org/10.1111/1467-9280.00002 (1998).Article 

    Google Scholar 
    77.Jones, B. C. et al. Facial symmetry and judgements of apparent health: Support for a “good genes” explanation of the attractiveness-symmetry relationship. Evol. Hum. Behav. 22, 417–429. https://doi.org/10.1016/s1090-5138(01)00083-6 (2001).Article 

    Google Scholar 
    78.Woodley of Menie, M. A. et al. Slow and steady wins the race: K positively predicts fertility in the USA and Sweden. Evol. Psychol. Sci. 3, 109–117. https://doi.org/10.1007/s40806-016-0077-1 (2017).79.Kington, R., Lillard, L. & Rogowski, J. Reproductive history, socioeconomic status, and self-reported health status of women aged 50 years or older. Am. J. Public Health 87, 33–37. https://doi.org/10.2105/ajph.87.1.33 (1997).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Doblhammer, G. & Oeppen, J. Reproduction and longevity among the British peerage: The effect of frailty and health selection. Proc. R. Soc. B 270, 1541–1547. https://doi.org/10.1098/rspb.2003.2400 (2003).Article 
    PubMed 

    Google Scholar 
    81.Lawlor, D. A. et al. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British women’s heart and health study and the British regional heart study. Circulation 107, 1260–1264. https://doi.org/10.1161/01.cir.0000053441.43495.1a (2003).Article 
    PubMed 

    Google Scholar 
    82.Parikh, N. I. et al. Parity and risk of later-life maternal cardiovascular disease. Am. Heart J. 159, 215–221. https://doi.org/10.1016/j.ahj.2009.11.017 (2010).Article 
    PubMed 

    Google Scholar 
    83.Ryan, C. P. et al. Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Sci. Rep. 8, 11100. https://doi.org/10.1038/s41598-018-29486-4 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kaňková, Š., Šulc, J. & Flegr, J. Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology 137, 1773–1779. https://doi.org/10.1017/s0031182010000661 (2010).Article 
    PubMed 

    Google Scholar 
    85.Case, A., Fertig, A. & Paxson, C. The lasting impact of childhood health and circumstance. J. Health Econ. 24, 365–389. https://doi.org/10.1016/j.jhealeco.2004.09.008 (2005).Article 
    PubMed 

    Google Scholar 
    86.Kuh, D. J. L. & Wadsworth, M. E. J. Physical health-status at 36 years in a British national birth cohort. Soc. Sci. Med. 37, 905–916. https://doi.org/10.1016/0277-9536(93)90145-t (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    87.Eide, E. R. & Showalter, M. H. Estimating the relation between health and education: What do we know and what do we need to know?. Econ. Educ. Rev. 30, 778–791. https://doi.org/10.1016/j.econedurev.2011.03.009 (2011).Article 

    Google Scholar 
    88.Behrman, J. R. & Rosenzweig, M. R. Returns to birthweight. Rev. Econ. Stat. 86, 586–601. https://doi.org/10.1162/003465304323031139 (2004).Article 

    Google Scholar 
    89.Black, S. E., Devereux, P. J. & Salvanes, K. G. From the cradle to the labor market? The effect of birth weight on adult outcomes. Q. J. Econ. 122, 409–439. https://doi.org/10.1162/qjec.122.1.409 (2007).Article 

    Google Scholar 
    90.Almond, D. Is the 1918 influenza pandemic over? Long-term effects of in utero influenza exposure in the post-1940 US population. J. Polit. Econ. 114, 672–712. https://doi.org/10.1086/507154 (2006).Article 

    Google Scholar 
    91.Almond, D., Edlund, L. & Palme, M. Chernobyl’s subclinical legacy: Prenatal exposure to radioactive fallout and school outcomes in Sweden. Q. J. Econ. 124, 1729–1772. https://doi.org/10.1162/qjec.2009.124.4.1729 (2009).Article 
    MATH 

    Google Scholar 
    92.Nilsson, J. P. The Long-Term Effects of Early Childhood Lead Exposure: Evidence from the Phase-Out of Leaded Gasoline. (Uppsala University and Institute for Labor Market Policy Evaluation (IFAU), 2009).93.Bleakley, H. Disease and development: Evidence from hookworm eradication in the American South. Q. J. Econ. 122, 73–117. https://doi.org/10.1162/qjec.121.1.73 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Rees, D. I. & Sabia, J. J. The effect of migraine headache on educational attainment. J. Hum. Resour. 46, 317–332 (2011).
    Google Scholar 
    95.Kessler, R. C., Foster, C. L., Saunders, W. B. & Stang, P. E. Social consequences of psychiatric disorders, I. Educational attainment. Am. J. Psychiatry 152, 1026–1032 (1995).CAS 
    Article 

    Google Scholar 
    96.Miech, R. A., Caspi, A., Moffitt, T. E., Wright, B. R. E. & Silva, P. A. Low socioeconomic status and mental disorders: A longitudinal study of selection and causation during young adulthood. Am. J. Sociol. 104, 1096–1131. https://doi.org/10.1086/210137 (1999).Article 

    Google Scholar 
    97.Flegr, J. & Horáček, J. Negative effects of latent toxoplasmosis on mental health. Front. Psychiatry. https://doi.org/10.3389/fpsyt.2019.01012 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kopecký, R., Boschetti, S. & Flegr, J. Effect of being religious on wellbeing in a predominantly atheist country: Explorative study on wellbeing, fitness, physical and mental health. PsyArXiv https://doi.org/10.31234/osf.io/3kr6n (2019).99.Flegr, J. & Horáček, J. Toxoplasma-infected subjects report an obsessive-compulsive disorder diagnosis more often and score higher in obsessive-compulsive inventory. Eur. Psychiatry. 40, 82–87. https://doi.org/10.1016/j.eurpsy.2016.09.001 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    100.Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Revised edn. (Academic Press, 1977).101.Armelagos, G. J., Goodman, A. H. & Jacobs, K. H. The origins of agriculture: Population growth during a period of declining health. Popul. Environ. 13, 9–22. https://doi.org/10.1007/bf01256568 (1991).Article 

    Google Scholar 
    102.Lallo, J. W., Armelagos, G. J. & Mensforth, R. P. The role of diet, disease, and physiology in the origin of porotic hyperostosis. Hum. Biol. 49, 471–483 (1977).CAS 
    PubMed 

    Google Scholar 
    103.Goodman, A. H., Armelagos, G. J. & Rose, J. C. Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Hum. Biol. 52, 515–528 (1980).CAS 
    PubMed 

    Google Scholar 
    104.Angel, J. L. Porotic hyperostosis, anemias, malarias, and marshes in the prehistoric Eastern Mediterranean. Science 153, 760–763 (1966).ADS 
    CAS 
    Article 

    Google Scholar 
    105.Eaton, S. B., Eaton, S. B. & Konner, M. J. Paleolithic nutrition revisited: A twelve-year retrospective on its nature and implications. Eur. J. Clin. Nutr. 51, 207–216. https://doi.org/10.1038/sj.ejcn.1600389 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    106.Flegr, J. & Kuba, R. The relation of Toxoplasma infection and sexual attraction to fear, danger, pain, and submissiveness. Evol. Psychol. https://doi.org/10.1177/1474704916659746 (2016).Article 

    Google Scholar 
    107.Penke, L. & Asendorpf, J. B. Beyond global sociosexual orientations: A more differentiated look at sociosexuality and its effects on courtship and romantic relationships. J. Pers. Soc. Psychol. 95, 1113–1135. https://doi.org/10.1037/0022-3514.95.5.1113 (2008).Article 
    PubMed 

    Google Scholar 
    108.Sýkorová, K. & Flegr, J. Dataset to the study ‘Faster life history strategy manifests itself by lower age at menarche, higher sexual desire, and earlier reproduction in people with worse health’. igshare https://doi.org/10.6084/m9.figshare.12100623.v1 (2020).109.R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ . Accessed September 2018. (2019).110.Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).Article 

    Google Scholar 
    111.Epskamp, S. semPlot: Unified visualizations of structural equation models. Struct. Equ. Model. 22, 474–483. https://doi.org/10.1080/10705511.2014.937847 (2015).MathSciNet 
    Article 

    Google Scholar  More

  • in

    Artificial neural network analysis of microbial diversity in the central and southern Adriatic Sea

    Physico-chemical conditionsSampling was performed at 6 stations representing the physical and chemical characteristics of the investigated area (Supplementary Table S1). Thermohaline properties were the result of horizontal advection of above-average salinities driven by a North Ionian cyclonic gyre controlled by the Adriatic Ionian Bimodal Oscillating System46. September and the whole summer of 2016 was characterized by extremely high temperatures, and precipitation in the climatologic expected range. A cyclone with a cold front followed by a strong Bora wind passed over the Adriatic a week before the cruise, in the period between the 16th and 20th of September 2016. Heat and mass exchange in the air-sea boundary layer were responsible for the characteristic vertical thermohaline profiles measured in late summer. Over the investigated area, the mixed layer depth located between 20 and 25 m was horizontally homogenous. The coldest water mass (temperature 12.94 °C, salinity 38.68) was located at the bottom of Jabuka Pit.Abundance of bacteria, autotrophic picoplankton and AAPBacterial abundances ranged between 0.05 and 0.46 × 106 cell mL−1 in all three areas, with a slightly higher average value in Jabuka Pit (0.31 × 106 cell mL−1). The bacterial abundances were the highest in the upper layers down to the 50 m deep layer and showed a decreasing trend towards the bottom (Supplementary Table S2). The portion of HNA bacteria ranged from 37.8 to 73.12% (on average 51.27%), with the prevalence of HNA over the LNA group below the epipelagic layer.Marine Synechococcus dominated the autotrophic picoplankton community with abundances ranging from 0.08 to 23.86 × 103 cell mL−1. The presence of Prochlorococcus cells was also detected in all samples in a range from a few cells to 1.33 × 103 cell mL−1. Picoeukaryotes also showed a similar range from a few cells to 0.83 × 103 cell mL−1. The highest abundances of picophytoplankton were measured in the upper 50 m, with the exception of the Palagruža Sill (PS) area, where an increase in abundance was observed at 100 m depth. Bacterial production ranged from 0.2 × 104 to 0.36 × 104 cell mL−1 h−1, with increased values in the shallow layers and a mostly uniform vertical distribution in the water column (Supplementary Table S2).AAP bacteria abundance ranged from 0.9 × 103 to 22.3 × 103 cell mL−1, thus constituting 0.42% to 6.83% of the bacteria. Their highest average contribution was observed in the South Adriatic Pit (4.11%), while on the vertical scale, their highest contribution was observed in the upper 20 m of the seawater (see Supplementary Table S2).Relationship between the picoplankton community and environmental parametersBased on biological characteristics (total prokaryotes, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, aerobic anoxygenic phototrophs, high and low nucleic acid bacteria, bacterial production), we distinguished five picoplanktonic clusters (PIC-BMUs) and then searched for explanations of the observed patterns (Fig. 2A,B). The mean values of biological and physico-chemical parameters for each cluster are shown in Table 1.Figure 2(A) Bar plot representation of biotic (black) and abiotic (grey) parameters for neural gas best-matching units (picoplankton-PIC-BMUs) with relative frequency appearance for each neuron. TP-total prokaryotes, SYN-Synechococcus, PROCHL-Prochlorococcus, PE-picoeukaryotes, HNF-heterotrophic nanoflagellates, AAP-aerobic anoxygenic phototrophs, AAP%-portion of AAP, HNA% percentage of high nucleic acid content bacteria, LNA%-percentage of low nucleic acid content bacteria-LNA%, BP-bacterial production. (B) Water column distribution of Neural gas best-matching units (BMU, labels with numbers, and stained with a different colour for clearance, coloured non-labelled squares shows clarity) for measuring stations (SAP1-3, PS1-2 and JP1). The software MATLAB. version 7.10.0 (R2018). Natick, Massachusetts: The MathWorks Inc. (2018) (https://www.mathworks.com/) was used to generate the figure.Full size imageTable 1 Characteristics of biological (abundances of total prokaryotes-TP, Synechococcus-SYN, Prochlorococcus-PROCHL, picoeukaryotes-PE, heterotrophic nanoflagellates-HNF, aerobic anoxygenic phototrophs(AAP); contributions (%) of AAP, High nucleic acid content bacteria-HNA and Low nucleic acid content bacteria-LNA%; and bacterial production-BP) and environmental factors in the sampling terms assigned to the neural gas clusters.Full size tablePIC-BMU1 described a very rare pattern, found in only two samples from 10 m depth in Palaguža Sill and Jabuka Pit. They were characterised by the highest abundances of total prokaryotes with a dominance of HNA and elevated AAP abundance. These samples were unique in terms of hydrological parameters, as they represented an N-limited environment (TIN  More

  • in

    Association between stress and bilateral symmetrical alopecia in free-ranging Formosan macaques in Mt. Longevity, Taiwan

    1.Kimura, T. Systemic alopecia resulting from hyperadrenocorticism in a Japanese monkey. Lab. Primate Newsl. 47, 5–9 (2008).
    Google Scholar 
    2.Novak, M. A. et al. Assessing significant ( > 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta). Am. J. Primatol. 79, e22547 (2017).Article 
    CAS 

    Google Scholar 
    3.Lutz, C. K., Menard, M. T., Rosenberg, K., Meyer, J. S. & Novak, M. A. Alopecia in rhesus macaques (Macaca mulatta): Association with pregnancy and chronic stress. J. Med. Primatol. 48, 251–256. https://doi.org/10.1111/jmp.12419 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Steinmetz, H. W., Kaumanns, W., Dix, I., Neimeier, K.-A. & Kaup, F.-J. Dermatologic investigation of alopecia in rhesus macaques (Macaca mulatta). J. Zoo. Wildl. Med. 36, 229–239 (2005).PubMed 
    Article 

    Google Scholar 
    5.Lynch, M., Kirkwood, R., Mitchell, A., Duignan, P. & Arnould, J. P. Y. Prevalence and significance of an alopecia syndrome in Australian fur seals (Arctocephalus pusillus doriferus). J. Mammal. 92, 342–351 (2011).Article 

    Google Scholar 
    6.Atwood, T. et al. Prevalence and spatio-temporal variation of an alopecia syndrome in polar bears (Ursus maritimus) of the southern Beaufort Sea. J. Wildl. Dis. 51, 48–59 (2015).PubMed 
    Article 

    Google Scholar 
    7.McCoy, R. H., Murphie, S. L., Szykman Gunther, M. & Murphie, B. L. Influence of hair loss syndrome on black-tailed deer fawn survival. J. Wildl. Manag. 78, 1177–1188. https://doi.org/10.1002/jwmg.772 (2014).Article 

    Google Scholar 
    8.Novak, M. A. et al. Hair loss and hypothalamic–pituitary–adrenocortical axis activity in captive rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 53, 261–266 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Lutz, C. K., Coleman, K., Worlein, J. & Novak, M. A. Hair loss and hair-pulling in rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 52, 454–457 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Swenerton, H. & Hurley, L. S. Zinc deficiency in rhesus and bonnet monkeys, including effects on reproduction. J. Nutr. 110, 575–583 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Lair, S., Crawshaw, G. J., Mehren, K. G. & Perrone, M. A. Diagnosis of hypothyroidism in a western lowland gorilla (Gorilla gorilla gorilla) using human thyroid-stimulating hormone assay. J. Zoo. Wildl. Med. 30, 537–540 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Beardi, B. et al. Alopecia areata in a rhesus monkey (Macaca mulatta). J. Med. Primatol. 36, 124–130. https://doi.org/10.1111/j.1600-0684.2007.00212.x (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Ovadia, S., Wilson, S. R. & Zeiss, C. J. Successful cyclosporine treatment for atopic dermatitis in a rhesus macaque (Macaca mulatta). Comp. Med. 55, 192–196 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Novak, M. A. & Meyer, J. S. Alopecia: Possible causes and treatments, particularly in captive nonhuman primates. Comp. Med. 59, 18–26 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Hadshiew, I. M., Foitzik, K., Arck, P. C. & Paus, R. Burden of hair loss: Stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J. Investig. Dermatol. 123, 455–457 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Moberg, G. P. Biological response to stress: implications for animal welfare in The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (eds Moberg, G. P. & Mench, J. A.) 1–21 (CABI Publishing, 2000).18.Romero, M. L. & Butler, L. K. Endocrinology of stress. Int. J. Comp. Psychol. 20, 89–95 (2007).
    Google Scholar 
    19.Shutt, K., Setchell, J. M. & Heistermann, M. Non-invasive monitoring of physiological stress in the Western lowland gorilla (Gorilla gorilla gorilla): Validation of a fecal glucocorticoid assay and methods for practical application in the field. Gen. Comp. Endocrinol. 179, 167–177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Heistermann, M. Non-invasive monitoring of endocrine status in laboratory primates: Methods, guidelines and applications. Adv. Sci. Res. 5, 1–9 (2010).Article 

    Google Scholar 
    21.Murray, C. M., Heintz, M. R., Lonsdorf, E. V., Parr, L. A. & Santymire, R. M. Validation of a field technique and characterization of fecal glucocorticoid metabolite analysis in wild chimpanzees (Pan troglodytes). Am. J. Primatol. 75, 57–64 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Schwarzenberger, F. The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species. Int. Zoo. Yearb. 41, 52–74. https://doi.org/10.1111/j.1748-1090.2007.00017.x (2007).Article 

    Google Scholar 
    23.Touma, C. & Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann. N. Y. Acad. Sci. 1046, 54–74. https://doi.org/10.1196/annals.1343.006 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Kersey, D. C. & Dehnhard, M. The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen. Comp. Endocrinol. 203, 296–306. https://doi.org/10.1016/j.ygcen.2014.04.022 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S. M. & Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 1040, 162–171 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Teskey-Gerstl, A., Bamberg, E., Steineck, T. & Palme, R. Excretion of corticosteroids in urine and faeces of hares (Lepus europaeus). J. Comp. Physiol. B. 170, 163–168 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: Considerations for application and interpretation. Gen. Comp. Endocrinol. 138, 189–199 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Bahr, N. I., Palme, R., Möhle, U., Hodges, J. K. & Heistermann, M. Comparative aspects of the metabolism and excretion of cortisol in three individual nonhuman primates. Gen. Comp. Endocrinol. 117, 427–438. https://doi.org/10.1006/gcen.1999.7431 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Whitten, P. L., Brockman, D. K. & Stavisky, R. C. Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Am. J. Phys. Anthropol. 107, 1–23 (1998).Article 

    Google Scholar 
    30.Heistermann, M., Palme, R. & Ganswindt, A. Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. Am. J. Primatol. 68, 257–273 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Wheeler, B. C., Tiddi, B., Kalbitzer, U., Visalberghi, E. & Heistermann, M. Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella). Int. J. Primatol. 34, 879–898 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pei, J.-C. et al. Disease surveillance, conservation, and management strategies for Taiwanese macaque (Macaca cyclopis) at Shoushan National Nature Park. 136 (Construction and Planning Agency. Ministry of the Interior, 2015).33.Hsu, M. J., Kao, C. C. & Agoramoorthy, G. Interactions between visitors and Formosan macaques (Macaca cyclopis) at Shou-Shan Nature Park, Taiwan. Am. J. Primatol. 71, 214–222 (2009).PubMed 
    Article 

    Google Scholar 
    34.Lee, L. L., Wu, H. Y., Chang, S. W., Minna, J. H. & Chakraborty, C. Survey of Current Status of Taiwan Macaques 1–27 (Council of Agriculture, Executive Yuan, 2001).35.Pei, K. C. J., Chen, C. C., Lin, C. N. & Ju, Y. T. The study of population dynamic and health status of Taiwanese macaques in Shanshan National Nature Park., 175 (Shoushan National Nature Park, Construction and Planning Agency, Ministry of the Interior, 2016).36.Bellanca, R. U. et al. A simple alopecia scoring system for use in colony management of laboratory-housed primates. J. Med. Primatol. 43, 153–161 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Whiting, D. A. Histology of the human hair follicle in Hair Growth and Disorders (eds Blume-Peytavi, U. et al.) 107–123 (Springer, 2008).38.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Horenstein, M. G. & Bacheler, C. J. Follicular density and ratios in scarring and nonscarring alopecia. Am. J. Dermatopathol. 35, 818–826 (2013).PubMed 
    Article 

    Google Scholar 
    40.Rangel-Negrín, A., Flores-Escobar, E., Chavira, R., Canales-Espinosa, D. & Dias, P. A. D. Physiological and analytical validations of fecal steroid hormone measures in black howler monkeys. Primates 55, 459–465 (2014).PubMed 
    Article 

    Google Scholar 
    41.Pineda-Galindo, E., Cerda-Molina, A. L., Mayagoitia-Novales, L. & Matamoros-Trejo, G. Biological validations of fecal glucocorticoid, testosterone, and progesterone metabolite measurements in captive stumptail macaques (Macaca arctoides). Int. J. Primatol. 38, 985–1001 (2017).Article 

    Google Scholar 
    42.Palme, R. & Möstl, E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Int. J. Mammal. Biol. 62, 192–197 (1997).
    Google Scholar 
    43.Braga Goncalves, I. et al. Validation of a fecal glucocorticoid assay to assess adrenocortical activity in meerkats using physiological and biological stimuli. PLoS ONE 11, e0153161. https://doi.org/10.1371/journal.pone.0153161 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Pei, K. J.-C., Lin, C. N. & Chen, C. C. Disease surveillance, conservation, and management strategies for Taiwanese macaque (Macaca cyclopis) at Shoushan National Nature Park. 133 (Construction and Planning Agency, Ministry of the Interior, R2015).45.Hsu, M. J. & Lin, J.-F. Troop size and structure in free-ranging Formosan macaques (Macaca cyclopis) at Mt. Longevity, Taiwan. Zool. Stud. Taipei 40, 49–60 (2001).
    Google Scholar 
    46.Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    47.Allison, P. D. Multiple Regression: A Primer (Pine Forge Press, 1999).
    Google Scholar 
    48.Dohoo, I., Martin, W. & Stryhn, H. Model-building strategies in Veterinary Epidemiologic Research 553–578 (VER Inc, 2009).49.Bolker, B. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 
    Article 

    Google Scholar 
    50.Ganswindt, A., Palme, R., Heistermann, M., Borragan, S. & Hodges, J. Non-invasive assessment of adrenocortical function in the male African elephant (Loxodonta africana) and its relation to musth. Gen. Comp. Endocrinol. 134, 156–166 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Rimbach, R., Heymann, E. W., Link, A. & Heistermann, M. Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. Gen. Comp. Endocrinol. 191, 13–23 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Novak, M. A. et al. Assessing significant ( > 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta). Am. J. Primatol. 79, 1–8. https://doi.org/10.1002/ajp.22547 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Bernardez, C., Molina-Ruiz, A. & Requena, L. Histologic features of alopecias–part I: Nonscarring alopecias. Actas Dermosifiliogr. 106, 158–167. https://doi.org/10.1016/j.adengl.2015.01.001 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Luchins, K. R. et al. Application of the diagnostic evaluation for alopecia in traditional veterinary species to laboratory rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 50, 926–938 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Werner, B. & Mulinari-Brenner, F. Clinical and histological challenge in the differential diagnosis of diffuse alopecia: Female androgenetic alopecia, telogen effluvium and alopecia areata-part II. An. Bras. Dermatol. 87, 884–890 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Liyanage, D. & Sinclair, R. Telogen effluvium. Cosmetics 3, 13 (2016).Article 
    CAS 

    Google Scholar 
    57.Alotaibi, M. K. Telogen effluvium: A review. Int. J. Med. Dev. Cties. 3, 797–801. https://doi.org/10.7759/cureus.8320 (2019).Article 

    Google Scholar 
    58.Arck, P. C. et al. Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am. J. Pathol. 162, 803–814. https://doi.org/10.1016/S0002-9440(10)63877-1athology (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Horenstein, V.D.-P., Williams, L. E., Brady, A. R., Abee, C. R. & Horenstein, M. G. Age-related diffuse chronic telogen effluvium-type alopecia in female squirrel monkeys (Saimiri boliviensis boliviensis). Comp. Med. 55, 169–174 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    60.Coleman, K. et al. The correlation between alopecia and temperament in rhesus macaques (Macaca mulatta) at four primate facilities. Am. J. Primatol. 79, e22504. https://doi.org/10.1002/ajp.22504 (2017).Article 

    Google Scholar 
    61.Lutz, C. K. et al. Factors influencing alopecia and hair cortisol in rhesus macaques (Macaca mulatta). J. Med. Primatol. 45, 180–188. https://doi.org/10.1111/jmp.12220 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 199, 229–243. https://doi.org/10.1016/j.physbeh.2018.11.021 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Hoffman, C. L. et al. Immune function and HPA axis activity in free-ranging rhesus macaques. Physiol. Behav. 104, 507–514. https://doi.org/10.1016/j.physbeh.2011.05.021 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Marty, P. R., Hodges, K., Heistermann, M., Agil, M. & Engelhardt, A. Is social dispersal stressful? A study in male crested macaques (Macaca nigra). Horm. Behav. 87, 62–68. https://doi.org/10.1016/j.yhbeh.2016.10.018 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Takeshita, R. S. C., Bercovitch, F. B., Kinoshita, K. & Huffman, M. A. Beneficial effect of hot spring bathing on stress levels in Japanese macaques. Primates 59, 215–225. https://doi.org/10.1007/s10329-018-0655-x (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Cheng, H. C. et al. The Red List of Terrestrial Mammals of Taiwan, 2017. 35 (Endemic Species Research Institute, 2017).68.Chang, A.-M., Chen, C.-C. & Huffman, M. A. Entamoeba spp in wild formosan rock macaques (Macaca cyclopis) in an area with frequent human-macaque contact. J. Wildl. Dis. 55, 608–618 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More