First record of a new microsporidium pathogenic to Gonipterus platensis in Brazil
1.Simões, R. A., Reis, L. G., Bento, J. M., Solter, L. F. & Delalibera, I. Jr. Biological and behavioral parameters of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae) are altered by the pathogen Nosema sp. (Microsporidia: Nosematidae). Biol. Control 63, 164–171 (2012).Article
Google Scholar
2.Frago, E., Dicke, M. & Godfray, H. C. J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27, 705–711 (2012).Article
Google Scholar
3.Himler, A. G. et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by the fitness benefits and female bias. Science 332, 254–256 (2011).ADS
CAS
Article
Google Scholar
4.Lu, M., Wingfield, M. J., Gillette, N. & Sun, J. H. Do novel genotypes drive the success of an invasive bark beetle–fungus complex? Implications for potential reinvasion. Ecology 92, 2013–2019 (2011).Article
Google Scholar
5.Vilcinskas, A., Stoecker, K., Schmidtberg, H., Röhrich, C. R. & Vogel, H. Invasive harlequin ladybird carries biological weapons against native competitors. Science 340, 862–863 (2013).ADS
CAS
Article
Google Scholar
6.Zhao, L. et al. A native fungal symbiont facilitates the prevalence and development of an invasive pathogen–native vector symbiosis. Ecology 94, 2817–2826 (2013).Article
Google Scholar
7.Solter, L. F., Becnel, J. J. & Vávra, J. Research methods for entomopathogenic microsporidia and other protists. Manual of Techniques in Invertebrate Pathology 329–371 (2012).8.Maddox, J. V. Protozoan diseases. Epizootiol. Insect Dis. 1, 417–452 (1987).
Google Scholar
9.Latchininsky, A. V. & VanDyke, K. A. Grasshopper and locust control with poisoned baits: a renaissance of the old strategy?. Outlooks Pest Manag. 17, 105–111 (2006).Article
Google Scholar
10.Sweeney, A. W. & Becnel, J. J. Potential of microsporidia for the control of mosquitoes. Parasitol. Today. 7, 217–220 (1991).CAS
Article
Google Scholar
11.Capella-Gutierrez, S., Marcet-Houben, M. & Gabaldon, T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol. 10, 47–52 (2012).Article
Google Scholar
12.Tokarev, Y. S. et al. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J. Invertebr. Pathol. 169, 107279 (2020).CAS
Article
Google Scholar
13.Tooke, F. G. C. The Eucalyptus Snout beetle, Gonipterus scutellatus Gyll. A study of its ecology and control by biological means Union of South Africa, Department of Agriculture. Entomol. Mem. 3, 1–184 (1955).
Google Scholar
14.Mapondera, T. S., Burgess, T., Matsuki, M. & Oberprieler, R. G. Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust. J. Entomol. 51, 175–188 (2012).Article
Google Scholar
15.Valente, C. et al. Economic outcome of classical biological control: a case study on the Eucalyptus snout beetle, Gonipterus platensis, and the parasitoid Anaphes nitens. Ecol Econ. 149, 40–47 (2018).Article
Google Scholar
16.Ansari, M. J., Al-Ghamdi, A., Nuru, A., Khan, K. A. & Alattal, Y. Geographical distribution and molecular detection of Nosema ceranae from indigenous honeybees of Saudi Arabia. Saudi J. Biol. Sci 24, 983–991 (2017).Article
Google Scholar
17.Ovcharenko, M., Świątek, P., Ironside, J. & Skalski, T. Orthosomella lipae sp. n. (Microsporidia) a parasite of the weevil, Liophloeus lentus Germar, 1824 (Coleoptera: Curculionidae). J. Invertebr. Pathol. 112, 33–40 (2013).Article
Google Scholar
18.Weiser, J. A new microsporidian from the bark beetle Pityokteines curvidens Germar (Coleoptera, Scolytidae) in Czechoslovakia. J. Invertebr. Pathol. 3, 324–329 (1961).
Google Scholar
19.Malone, L. A. A new pathogen, Microsporidium itiiti n. sp. (Microsporida), from the Argentine Stem Weevil, Listronotus bonariensis (Coleoptera, Curculionidae). J. Protozool. 32, 535–541 (1985).Article
Google Scholar
20.Purrini, K. & Weiser, J. Ultrastructural study of the microsporidian Chytridiopsis typographi (Chytridiopsida: Microspora) infecting the bark beetle, Ips typographus (Scolytidae: Coleoptera), with new data on spore dimorphism. J. Invertebr. Pathol. 45, 66–74 (1985).Article
Google Scholar
21.Yaman, M., Radek, R., Aslan, I. & Erturk, O. Characteristic features of Nosema phyllotretae Weiser 1961, a microsporidian parasite of Phyllotreta atra (Coleoptera: Chrysomelidae) in Turkey. Zool. Stud. Taipei. 44, 368 (2005).
Google Scholar
22.Zhu, F. et al. A new isolate of Nosema sp. (Microsporidia, Nosematidae) from Phyllobrotica armata Baly (Coleoptera, Chrysomelidae) from China. Jour J. Invertebr. Pathol. 106, 339–342 (2011).CAS
Article
Google Scholar
23.Andreadis, T. G., Takaoka, H., Otsuka, Y. & Vossbrinck, C. R. Morphological and molecular characterization of a microsporidian parasite, Takaokaspora nipponicus n. gen. n. sp. from the invasive rock pool mosquito, Ochlerotatus japonicus japonicus. J. Invertebr. Pathol. 114, 161–172 (2013).CAS
Article
Google Scholar
24.Sapir, A. et al. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. Front. Microbiol. 5, 43–52 (2014).Article
Google Scholar
25.Solter, L. F., Maddox, J. V. & McManus, M. L. Host specificity of microsporidia (Protista: Microspora) from European populations of Lymantria dispar (Lepidoptera: Lymantriidae) to indigenous North American Lepidoptera. J. Invertebr. Pathol. 69, 135–150 (1997).CAS
Article
Google Scholar
26.Knell, J. D., Allen, G. E. & Hazard, E. I. Light and electron microscope study of Thelohania solenopsae n. sp. (Microsporida: Protozoa) in the red imported fire ant Solenopsis invict. J. Invertebr. Pathol. 29, 192–200 (1977).CAS
Article
Google Scholar
27.Henry, J. E., & Oma, E. A. Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. Microbial Control of Pests and Plant Diseases 1970–1980 (1981).28.Vávra, J. & Maddox, J. V. Methods in microsporidiology. In Biology of the Microsporidia 281–319 (Springer, Boston, 1976).
Google Scholar
29.Simões, R. A., Feliciano, J. R., Solter, L. F. & Delalibera, I. Jr. Impacts of Nosema sp. (Microsporidia: Nosematidae) on the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). J. Invertebr. Pathol. 129, 7–12 (2015).Article
Google Scholar
30.Inglis, G. D., Lawrence, A. M. & Davis, F. M. Impact of a novel species of Nosema on the southwestern corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 96, 12–20 (2003).CAS
Article
Google Scholar
31.Zheng, H. Q. et al. Spore loads may not be used alone as a direct indicator of the severity of Nosema ceranae infection in honey bees Apis mellifera (Hymenoptera: Apidae). J. Econ. Entomol. 107, 2037–2044 (2014).Article
Google Scholar
32.Goettel, M. S., Inglis, G. D. & Lacey, L. A. Manual of Techniques in Invertebrate Pathology (Academic Press, 2012).
Google Scholar
33.Canning, E. U., Curry, A., Cheney, S., Lafranchi-Tristem, N. J., Haque, M. A. Vairimorpha imperfecta n. sp., a microsporidian exhibiting an abortive octosporous sporogony in Plutella xylostella L. (Lepidoptera: Yponomeutidae). Parasitology 119, 273–286 (1999).34.Tsai, S. J., Lo, C. F., Soichi, Y. & Wang, C. H. The characterization of microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan. J. Invertebr. Pathol. 83, 51–59 (2003).CAS
Article
Google Scholar
35.Cai, S. F., Lu, X. M., Qiu, H. H., Li, M. Q. & Feng, Z. Z. Phagocytic uptake of Nosema bombycis (Microsporidia) spores by insect cell lines. J. Integr. Agric. 11, 1321–1326 (2012).Article
Google Scholar
36.Dong, S., Shen, Z., Xu, L. & Zhu, F. Sequence and phylogenetic analysis of SSU rRNA gene of five microsporidia. Curr. Microbiol. 60, 30 (2010).CAS
Article
Google Scholar
37.Becnel, J. J. & Andreadis, T. G. Microsporidia in insects. The microsporidia and microsporidiosis 447-501 (1999).38.Knell, R. J. & Webberley, K. M. Sexually transmitted diseases of insects: Distribution, evolution, ecology and host behaviour. Biol. Rev. 79, 557–581 (2004). (PERMANECE)39.Bell, H. A., Down, R. E., Kirkbride‐Smith, A. E. & Edwards, J. P. Effect of microsporidian infection in Lacanobia oleracea (Lep., Noctuidae) on prey selection and consumption by the spined soldier bug Podisus maculiventris (Het., Pentatomidae). J. Appl. Entomol. 128(8), 548–553 (2004).40.Dakhel, W. H., Latchininsky, A. V. & Jaronski, S. T. Efficacy of two entomopathogenic fungi, Metarhizium brunneum, strain F52 alone and combined with Paranosema locustae against the migratory grasshopper, Melanoplus sanguinipes, under laboratory and greenhouse conditions. Insects 10(4), 94–102 (2019).Article
Google Scholar
41.Guo, Y., An, Z. & Shi, W. Control of grasshoppers by combined application of Paranosema locustae and an insect growth regulator (IGR) (cascade) in rangelands in China. J. Econ. Entomol. 105(6), 1915–1920 (2012).Article
Google Scholar
42.Lockwood, J. A., Bomar, C. R. & Ewen, A. B. The history of biological control with Nosema locustae: Lessons for locust management. Int. J. Trop. Insect Sci. 19(4), 333–350 (1999).Article
Google Scholar
43.Larem, A., Fritsch, E., Undorf-Spahn, K., Kleespies, E. G. & Jehle, J. A. Interaction of Phthorimaea operculella granulovirus with a Nosema sp. microsporidium in larvae of Phthorimaea operculella. J. Invertebr. Pathol. 160, 76–86 (2019).Article
Google Scholar
44.Tokarev, Y. S., Grizanova, E. V., Ignatieva, A. N. & Dubovskiy, I. M. Greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) as a resistant model host for Nosema pyrausta (Microsporidia: Nosematidae). J. Invertebr. Pathol. 157, 1–3 (2018).Article
Google Scholar
45.Coombs, N. J., Gough, A. C. & Primrose, J. N. Optimisation of DNA and RNA extraction from archival formalin-fixed tissue. Nucleic Acids Res. 27, e12-I (1999).46.Huang, W. F., Tsai, S. J., Lo, C. F., Soichi, Y. & Wang, C. H. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genet. Biol 41, 473–481 (2004).CAS
Article
Google Scholar
47.Karnovsky, M. J. A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell. Biol. 27, 1A-149A (1965).Article
Google Scholar More
